Identify the dominant variables to predict stream water temperature
NASA Astrophysics Data System (ADS)
Chien, H.; Flagler, J.
2016-12-01
Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.
Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity
NASA Technical Reports Server (NTRS)
Kandula, M.
2012-01-01
Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.
NASA Astrophysics Data System (ADS)
Szymanowski, Mariusz; Kryza, Maciej
2017-02-01
Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.
Variable temperature seat climate control system
Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.
1997-05-06
A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
Nonequilibrium air radiation (Nequair) program: User's manual
NASA Technical Reports Server (NTRS)
Park, C.
1985-01-01
A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.
NASA Technical Reports Server (NTRS)
Gary, Bruce L. (Inventor)
2001-01-01
The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.
Local air temperature tolerance: a sensible basis for estimating climate variability
NASA Astrophysics Data System (ADS)
Kärner, Olavi; Post, Piia
2016-11-01
The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.
Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012
Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang
2014-01-01
There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID:25375648
Garcia, J M; Teodoro, F; Cerdeira, R; Coelho, L M R; Kumar, Prashant; Carvalho, M G
2016-09-01
A methodology to predict PM10 concentrations in urban outdoor environments is developed based on the generalized linear models (GLMs). The methodology is based on the relationship developed between atmospheric concentrations of air pollutants (i.e. CO, NO2, NOx, VOCs, SO2) and meteorological variables (i.e. ambient temperature, relative humidity (RH) and wind speed) for a city (Barreiro) of Portugal. The model uses air pollution and meteorological data from the Portuguese monitoring air quality station networks. The developed GLM considers PM10 concentrations as a dependent variable, and both the gaseous pollutants and meteorological variables as explanatory independent variables. A logarithmic link function was considered with a Poisson probability distribution. Particular attention was given to cases with air temperatures both below and above 25°C. The best performance for modelled results against the measured data was achieved for the model with values of air temperature above 25°C compared with the model considering all ranges of air temperatures and with the model considering only temperature below 25°C. The model was also tested with similar data from another Portuguese city, Oporto, and results found to behave similarly. It is concluded that this model and the methodology could be adopted for other cities to predict PM10 concentrations when these data are not available by measurements from air quality monitoring stations or other acquisition means.
Heat recovery system employing a temperature controlled variable speed fan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, W.T.
1986-05-20
A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less
Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.
Campanella, M Victoria; Bertiller, Mónica B
2013-07-01
Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.
NASA Technical Reports Server (NTRS)
Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.
1993-01-01
Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.
ARIMA representation for daily solar irradiance and surface air temperature time series
NASA Astrophysics Data System (ADS)
Kärner, Olavi
2009-06-01
Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.
Zachery A. Holden; Michael A. Crimmins; Samuel A. Cushman; Jeremy S. Littell
2010-01-01
Accurate, fine spatial resolution predictions of surface air temperatures are critical for understanding many hydrologic and ecological processes. This study examines the spatial and temporal variability in nocturnal air temperatures across a mountainous region of Northern Idaho. Principal components analysis (PCA) was applied to a network of 70 Hobo temperature...
Temperature Anomalies from the AIRS Product in Giovanni for the Climate Community
NASA Technical Reports Server (NTRS)
Ding, Feng; Hearty, Thomas J.; Wei, Jennifer; Theobald, Michael; Vollmer, Bruce; Seiler, Edward; Meyer, David
2018-01-01
The Atmospheric Infrared Sounder (AIRS) mission began with the launch of Aqua in 2002. Over 15 years of AIRS products have been used by the climate research and application communities. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding Suomi National Polar-Orbiting Partnership (SNPP) Cross-track Infrared Sounder (CrIS) mission. We generated a Multi-year Monthly Mean and Anomaly product using 14 years of AIRS standard monthly product. The product includes Air Temperature at the Surface and Surface Skin Temperature, both in Ascending/Daytime and Descending/Nighttime mode. The temperature variables and their anomalies are deployed to Giovanni, a Web-based application developed by the GES DISC. Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. It is also a powerful tool that stakeholders can use for decision support in planning and preparing for increased climate variability. In this presentation, we demonstrate the functions in Giovanni with use cases employing AIRS Multi-year Monthly Mean and Anomaly variables.
NASA Astrophysics Data System (ADS)
Winckler, J.; Reick, C. H.; Lejeune, Q.; Pongratz, J.
2017-12-01
Deforestation influences temperature locally by changing the water, energy and momentum balance. While most observation-based studies and some modeling studies focused on the effects on surface temperature, other studies focused on the effects on near-surface air temperature. However, these two variables may respond differently to deforestation because changes in albedo and surface roughness may alter the land-atmosphere coupling and thus the vertical temperature distribution. Thus it is unclear whether it is possible to compare studies that assess the impacts of deforestation on these two different variables. Here, we analyze the biogeophysical effects of global-scale deforestation in the climate model MPI-ESM separately for surface temperature, 2m-air temperature and temperature the lowest atmospheric model layer. We investigate why the response of these variables differs by isolating the effects of only changing surface albedo and only changing surface roughness and by separating effects that are induced at the location of deforestation (local effects) from effects that are induced by advection and changes in circulation (nonlocal effects). Concerning surface temperature, we find that the local effects of deforestation lead to a global mean warming which is overcompensated by the nonlocal effects (up to 0.1K local warming versus -0.3K nonlocal cooling). The surface warming in the local effects is largely driven by the change in surface roughness while the cooling in the nonlocal effects is largely driven by the change in surface albedo. The nonlocal effects are largely consistent across surface temperature, 2m-air temperature, and the temperature of the lowest atmospheric layer. However, the local effects strongly differ across the three considered variables. The local effects are strong for surface temperature, but substantially weaker in the 2m-air temperature and largely absent in the lowest atmospheric layer. We conclude that studies focusing on the deforestation effects on surface temperature should not be compared to studies focusing on the effects on air temperature. While the local effects on surface temperature are useful for model evaluation, they might be less relevant for local adaptation and mitigation than previously thought because they might largely be absent in the atmosphere.
NASA Astrophysics Data System (ADS)
Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.
2018-03-01
Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.
Meteorological Measurement Guide
1992-01-01
measurements by inverting the equation for acoustic propa- gation through air . Uncertainties in this inversion, because of variability of atmospheric...shields can produce highly accurate relative air temperature measurements suitable for temperature gradient calculation. Well-designed radiation shields... measurement , clear- air profiling, and weather echo interpretations. The atmosphere is in a continuous state of change as patches of air with different
Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability
NASA Technical Reports Server (NTRS)
Koster, R.; Schubert, S.; Wang, H.; Chang, Y.
2018-01-01
Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.
An Estimate of the Vertical Variability of Temperature at KSC Launch Complex 39-B
NASA Technical Reports Server (NTRS)
Brenton, James
2017-01-01
The purpose of this analysis is to determine the vertical variability of the air temperature below 500 feet at Launch Complex (LC) 39-B at Kennedy Space Center (KSC). This analysis utilizes data from the LC39-B Lightning Protection System (LPS) Towers and the 500 foot Tower 313. The results of this analysis will be used to help evaluate the ambient air temperature Launch Commit Criteria (LCC) for the Exploration Mission 1 launch.
NASA Astrophysics Data System (ADS)
Lin, Hai
2018-05-01
Skillfully predicting persistent extreme temperature anomalies more than 10 days in advance remains a challenge although it is of great value to the society. Here the two leading modes of subseasonal variability of surface air temperature over the extratropical Northern Hemisphere in boreal winter are identified with pentad (5 days) averaged data. They are well separated geographically, dominating temperature variability in North America and Eurasia, respectively. There exists a two-pentad lagged correlation between these two modes, implying an intercontinental link of temperature variability. Forecast skill of these two modes is evaluated based on three operational subseasonal prediction models. The results show that useful forecasts of the Eurasian mode (EOF2) can be achieved four pentads in advance, which is more skillful than the North American mode (EOF1). EOF2 is found to benefit from the Madden-Julian Oscillation signal in the initial condition.
Chao, Lu-men; Sun, Jian-xin
2009-12-01
Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.
NASA Astrophysics Data System (ADS)
Khwarahm, Nabaz; Dash, Jadunandan; Atkinson, Peter M.; Newnham, R. M.; Skjøth, C. A.; Adams-Groom, B.; Caulton, Eric; Head, K.
2014-05-01
Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000-2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257-265,
NASA Astrophysics Data System (ADS)
Brown, Patrick T.; Li, Wenhong; Jiang, Jonathan H.; Su, Hui
2016-12-01
Unforced variability in global mean surface air temperature can obscure or exaggerate global warming on interdecadal time scales; thus, understanding both the magnitude and generating mechanisms of such variability is of critical importance for both attribution studies as well as decadal climate prediction. Coupled atmosphere-ocean general circulation models (climate models) simulate a wide range of magnitudes of unforced interdecadal variability in global mean surface air temperature (UITglobal), hampering efforts to quantify the influence of UITglobal on contemporary global temperature trends. Recently, a preliminary consensus has emerged that unforced interdecadal variability in local surface temperatures (UITlocal) over the tropical Pacific Ocean is particularly influential on UITglobal. Therefore, a reasonable hypothesis might be that the large spread in the magnitude of UITglobal across climate models can be explained by the spread in the magnitude of simulated tropical Pacific UITlocal. Here we show that this hypothesis is mostly false. Instead, the spread in the magnitude of UITglobal is linked much more strongly to the spread in the magnitude of UITlocal over high-latitude regions characterized by significant variability in oceanic convection, sea ice concentration, and energy flux at both the surface and the top of the atmosphere. Thus, efforts to constrain the climate model produced range of UITglobal magnitude would be best served by focusing on the simulation of air-sea interaction at high latitudes.
Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C
2008-05-01
Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.
NASA Astrophysics Data System (ADS)
Bahi, Hicham; Rhinane, Hassan; Bensalmia, Ahmed
2016-10-01
Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.
Temperature, traffic-related air pollution, and heart rate variability in a panel of healthy adults.
Wu, Shaowei; Deng, Furong; Liu, Youcheng; Shima, Masayuki; Niu, Jie; Huang, Qinsheng; Guo, Xinbiao
2013-01-01
Both ambient temperature and air pollution have been associated with alterations in cardiac autonomic function, but the responsive patterns associated with temperature exposure and the interactive effects of temperature and air pollution remain largely unclear. We investigated the associations between personal temperature exposure and cardiac autonomic function as reflected by heart rate variability (HRV) in a panel of 14 healthy taxi drivers in the context of traffic-related air pollution. We collected real-time data on study subjects' in-car exposures to temperature and traffic-related air pollutants including particulate matter with an aerodynamic diameter ≤2.5 μm (PM(2.5)) and carbon monoxide (CO) and HRV indices during work time (8:30-21:00) on 48 sampling days in the warm season (May-September) and cold season (October-March). We applied mixed-effects models and loess models adjusting for potential confounders to examine the associations between temperature and HRV indices. We found nonlinear relationships between temperature and HRV indices in both the warm and cold seasons. Linear regression stratified by temperature levels showed that increasing temperature levels were associated with declines in standard deviation of normal-to-normal intervals over different temperature strata and increases in low-frequency power and low-frequency:high-frequency ratio in higher temperature range (>25 °C). PM(2.5) and CO modified these associations to various extents. Temperature was associated with alterations in cardiac autonomic function in healthy adults in the context of traffic-related air pollution. Copyright © 2012 Elsevier Inc. All rights reserved.
Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance
ERIC Educational Resources Information Center
Lotz, Albert
2008-01-01
Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…
Spray Drying of Mosambi Juice in Lab
NASA Astrophysics Data System (ADS)
Singh, S. V.; Verma, A.
2014-01-01
The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.
Modeling and imaging land-cover influences on air-temperature in and near Baltimore, MD
Gordon Heisler; Alexis Ellis; David J. Nowak; Ian Yesilonis
2015-01-01
Over the course of 1681 hours between May 5 and September 30, 2006, air temperatures measured at the 1.5-m height at seven sites in and near the city of Baltimore, MD were used to empirically model Î TË R-p , the difference in air temperature between a site in downtown Baltimore and the six other sites. Variables in the...
Simulating soybean canopy temperature as affected by weather variables and soil water potential
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1982-01-01
Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.
NASA Technical Reports Server (NTRS)
Rennak, Robert M; Messing, Wesley E; Morgan, James E
1946-01-01
The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick; Early, Richard A.; Alzofon, Frederick E.; Witteborn, Fred C.
1959-01-01
Solutions are presented for the conduction of beat through a semi-infinite gas medium having a uniform initial temperature and a constant boundary temperature. The coefficients of thermal conductivity and diffusivity are treated as variables, and the solutions are extended to the case of air at temperatures where oxygen dissociation occurs. These solutions are used together with shock-tube measurements to evaluate the integral of thermal conductivity for air as a function of temperature.
Research on the operation control strategy of the cooling ceiling combined with fresh air system
NASA Astrophysics Data System (ADS)
Huang, Tao; Li, Hao
2018-03-01
The cooling ceiling combined with independent fresh air system was built by TRNSYS. And the cooling effects of the air conditioning system of an office in Beijing in a summer typical day were simulated. Based on the “variable temperature” control strategy, the operation strategy of “variable air volume auxiliary adjustment” was put forward. The variation of the indoor temperature, the indoor humidity, the temperature of supplying water and the temperature of returning water were simulated under the two control strategies. The energy consumption of system during the whole summer was compared by utilizing the two control strategies, and the indoor thermal comfort was analyzed. The optimal control strategy was proposed under the condition that the condensation on the surface of the cooling ceiling is not occurred and the indoor thermal comfort is satisfied.
Controls of air temperature variability over an Alpine Glacier
NASA Astrophysics Data System (ADS)
Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick
2016-04-01
Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.
Kim, Siyeon; Lee, Joo-Young
2016-04-01
The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
This effort summarizes the work performed on a steam cooled, rich-burn primary zone, variable geometry combustor designed for combustion of nitrogeneous fuels such as heavy oils or synthetic crude oils. The steam cooling was employed to determine its feasibility and assess its usefulness as part of a ground based gas turbine bottoming cycle. Variable combustor geometry was employed to demonstrate its ability to control primary and secondary zone equivalence ratios and overall pressure drop. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This low temperature offers the potential of both long life and reduced use of strategic materials for liner fabrication. These degrees of variable geometry were successfully employed to control air flow distribution within the combustor. A variable blade angle axial flow air swirler was used to control primary zone air flow, while the secondary and tertiary zone air flows were controlled by rotating bands which regulated air flow to the secondary zone quench holes and the dilutions holes respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.
2010-08-15
The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output.more » (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)« less
NASA Astrophysics Data System (ADS)
Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.
2018-04-01
There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.
Estimation of the temperature spatial variability in confined spaces based on thermal imaging
NASA Astrophysics Data System (ADS)
Augustyn, Grzegorz; Jurasz, Jakub; Jurczyk, Krzysztof; Korbiel, Tomasz; Mikulik, Jerzy; Pawlik, Marcin; Rumin, Rafał
2017-11-01
In developed countries the salaries of office workers are several times higher than the total cost of maintaining and operating the building. Therefore even a small improvement in human work productivity and performance as a result of enhancing the quality of their work environment may lead to a meaningful economic benefits. The air temperature is the most commonly used indicator in assessing the indoor environment quality. What is more, it is well known that thermal comfort has the biggest impact on employees performance and their ability to work efficiently. In majority of office buildings, indoor temperature is managed by heating, ventilation and air conditioning (HVAC) appliances. However the way how they are currently managed and controlled leads to the nonhomogeneous distribution of temperature in certain space. An approach to determining the spatial variability of temperature in confined spaces was introduced based on thermal imaging temperature measurements. The conducted research and obtained results enabled positive verification of the method and creation of surface plot illustrating the temperature variability.
Thomas, K A; Burr, R
1999-06-01
Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.
NASA Astrophysics Data System (ADS)
Hosseini, Hamid Reza; Yunos, Mohd Yazid Mohd; Ismail, Sumarni; Yaman, Maheran
2017-12-01
This paper analysis the effects of indoor air elements on the dissatisfaction of occupants in education of environments. Tries to find the equation model for increasing the comprehension about these affects and optimizes satisfaction of occupants about indoor environment. Subsequently, increase performance of students, lecturers and staffs. As the method, a satisfaction questionnaire (SQ) and measuring environment elements (MEE) was conducted, 143 respondents at five classrooms, four staff rooms and five lectures rooms were considered. Temperature, air velocity and humidity (TVH) were used as independent variables and dissatisfaction as dependent variable. The hypothesis was tested for significant relationship between variables, and analysis was applied. Results found that indoor air quality presents direct effects on dissatisfaction of occupants and indirect effects on performance and the highest effects fallowed by temperature. These results may help to optimize the quality of efficiency and effectiveness in education environments.
Sensitivity of Great Lakes Ice Cover to Air Temperature
NASA Astrophysics Data System (ADS)
Austin, J. A.; Titze, D.
2016-12-01
Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.
NASA Astrophysics Data System (ADS)
Garcia, Fausto; Shendell, Derek G.; Madrigano, Jaime
2017-03-01
Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.
Garcia, Fausto; Shendell, Derek G; Madrigano, Jaime
2017-03-01
Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.
A longitudinal study of mortality and air pollution for São Paulo, Brazil.
Botter, Denise A; Jørgensen, Bent; Peres, Antonieta A Q
2002-09-01
We study the effects of various air-pollution variables on the daily death counts for people over 65 years in São Paulo, Brazil, from 1991 to 1993, controlling for meteorological variables. We use a state space model where the air-pollution variables enter via the latent process, and the meteorological variables via the observation equation. The latent process represents the potential mortality due to air pollution, and is estimated by Kalman filter techniques. The effect of air pollution on mortality is found to be a function of the variation in the sulphur dioxide level for the previous 3 days, whereas the other air-pollution variables (total suspended particulates, nitrogen dioxide, carbon monoxide, ozone) are not significant when sulphur dioxide is in the equation. There are significant effects of humidity and up to lag 3 of temperature, and a significant seasonal variation.
Hou, Lan-Gong; Zou, Song-Bing; Xiao, Hong-Lang; Yang, Yong-Gang
2013-01-01
The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients.
40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...-controlled, fixed-displacement or pneumatic variable displacement compressor (e.g. a compressor that controls...
A one-dimensional model for gas-solid heat transfer in pneumatic conveying
NASA Astrophysics Data System (ADS)
Smajstrla, Kody Wayne
A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2018-05-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
PID temperature controller in pig nursery: spatial characterization of thermal environment
NASA Astrophysics Data System (ADS)
de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar
2017-11-01
The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.
Variability of Winter Air Temperature in Mid-Latitude Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.
2002-01-01
The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.
A Study on the Characteristics of Design Variables for IRSS Diffuser
NASA Astrophysics Data System (ADS)
Cho, Yong-Jin; Ko, Dae-Eun
2017-11-01
In modern naval ships, infrared signature suppression systems (IRSS) are installed to decrease the temperature of waste gas generated in propulsion engine and the metallic surface temperature of heated exhaust pipes. Generally, IRSS is composed of eductor, mixing tube, and diffuser. Diffuser serves to reduce the temperature by creating an air film using the pressure difference between internal gas and external air. In this study, design variables were selected by analyzing the diffuser and the characteristics of design variables that affect the performance of diffuser were examined using Taguchi experiment method. For the diffuser performance analysis, a heat flow analysis technique established in previous research was used. The IRSS performance evaluation was carried out based on the average area value of the metal surface temperature and the temperature of the exhaust gas at the outlet of the diffuser, which are variables directly related to the intensity of infrared signature in naval ships. It was verified that the exhaust gas temperature is greatly affected by changes in the diameter of the diffuser outlet, and the metal surface temperature of diffuser is greatly affected by changes in the number of diffuser rings.
Atmospheric Science Data Center
2015-11-25
... Microwave Radiometer Optical Counter Platinum Resistance Pyranometer Pyrgeometer Variable Capacitance ... Parameters: Aerosol Particle Properties Air Temperature Cloud Liquid Water Deiced Temperature Dew Point Doppler ...
Underestimated AMOC Variability and Implications for AMV and Predictability in CMIP Models
NASA Astrophysics Data System (ADS)
Yan, Xiaoqin; Zhang, Rong; Knutson, Thomas R.
2018-05-01
The Atlantic Meridional Overturning Circulation (AMOC) has profound impacts on various climate phenomena. Using both observations and simulations from the Coupled Model Intercomparison Project Phase 3 and 5, here we show that most models underestimate the amplitude of low-frequency AMOC variability. We further show that stronger low-frequency AMOC variability leads to stronger linkages between the AMOC and key variables associated with the Atlantic multidecadal variability (AMV), and between the subpolar AMV signal and northern hemisphere surface air temperature. Low-frequency extratropical northern hemisphere surface air temperature variability might increase with the amplitude of low-frequency AMOC variability. Atlantic decadal predictability is much higher in models with stronger low-frequency AMOC variability and much lower in models with weaker or without AMOC variability. Our results suggest that simulating realistic low-frequency AMOC variability is very important, both for simulating realistic linkages between AMOC and AMV-related variables and for achieving substantially higher Atlantic decadal predictability.
Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature
NASA Astrophysics Data System (ADS)
Wu, Chih-Da; Lung, Shih-Chun Candice
2016-04-01
The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.
Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature
Wu, Chih-Da; Lung, Shih-Chun Candice
2016-01-01
The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537
Reduction of Energy Consumption for Air Conditioning While Maintaining Acceptable Human Comfort.
1988-04-01
Fanger, 1972). It is not always possible, or, practical, to obtain optimi thermal comfort conditions. Therefore Frofessor Fanger devised an index to...understand the complex interaction of the six key variables that affect human comfort. Thermal comfort is not exclusively a function of air temperature... Thermal comfort also depends on five other, less obvious, parameters: mean radiant temperature, relative air velocity, humidity, activity level, and
Long-term trends in a Dimictic Lake
Robertson, Dale M.; Hsieh, Yi-Fang; Lathrop, Richard C; Wu, Chin H; Magee, Madeline; Hamilton, David P.
2016-01-01
The one-dimensional hydrodynamic ice model, DYRESM-WQ-I, was modified to simulate ice cover and thermal structure of dimictic Lake Mendota, Wisconsin, USA, over a continuous 104-year period (1911–2014). The model results were then used to examine the drivers of changes in ice cover and water temperature, focusing on the responses to shifts in air temperature, wind speed, and water clarity at multiyear timescales. Observations of the drivers include a change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s−1 before 1994 to 3.74 m s−1 thereafter. Observations show that Lake Mendota has experienced significant changes in ice cover: later ice-on date(9.0 days later per century), earlier ice-off date (12.3 days per century), decreasing ice cover duration (21.3 days per century), while model simulations indicate a change in maximum ice thickness (12.7 cm decrease per century). Model simulations also show changes in the lake thermal regime of earlier stratification onset (12.3 days per century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days per century), and decreasing summer hypolimnetic temperatures (−1.4 °C per century). Correlation analysis of lake variables and driving variables revealed ice cover variables, stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water temperature, stratification onset, fall turnover date, stratification duration, epilimnion temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three periods (1911–1980, 1981–1993, and 1994–2014) delineated by abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrupt change after 1994, which was related in part to the warm El Niño winter of 1997–1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994–2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modeling to better understand how these variables will respond in a future climate.
Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W
2016-09-30
The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimation of Monthly Near Surface Air Temperature Using Geographically Weighted Regression in China
NASA Astrophysics Data System (ADS)
Wang, M. M.; He, G. J.; Zhang, Z. M.; Zhang, Z. J.; Liu, X. G.
2018-04-01
Near surface air temperature (NSAT) is a primary descriptor of terrestrial environment conditions. The availability of NSAT with high spatial resolution is deemed necessary for several applications such as hydrology, meteorology and ecology. In this study, a regression-based NSAT mapping method is proposed. This method is combined remote sensing variables with geographical variables, and uses geographically weighted regression to estimate NSAT. The altitude was selected as geographical variable; and the remote sensing variables include land surface temperature (LST) and Normalized Difference vegetation index (NDVI). The performance of the proposed method was assessed by predict monthly minimum, mean, and maximum NSAT from point station measurements in China, a domain with a large area, complex topography, and highly variable station density, and the NSAT maps were validated against the meteorology observations. Validation results with meteorological data show the proposed method achieved an accuracy of 1.58 °C. It is concluded that the proposed method for mapping NSAT is very operational and has good precision.
Statistical modeling of urban air temperature distributions under different synoptic conditions
NASA Astrophysics Data System (ADS)
Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin
2015-04-01
Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm situations, cloudy and windy situations). Based on hourly air temperature data from our measurements in the urban area of Augsburg distinct temperature differences between locations with different urban land use characteristics are revealed. Under clear and calm weather conditions differences between mean hourly air temperatures reach values around 8°C. Whereas during cloudy and windy weather maximum differences in mean hourly air temperatures do not exceed 5°C. Differences appear usually slightly more pronounced in summer than in winter. First results from the application of statistical modeling approaches reveal promising skill of the models in terms of explained variances reaching up to 60% in leave-one-out cross-validation experiments. The contribution depicts the methodology of our approach and presents and discusses first results.
[Hygienic aspects of the microclimate in intensive management of rabbits].
Fiser, A
1994-01-01
In a four-row cowshed adapted for rabbit housing, air temperatures and humidity were recorded ambulantly and instrumentally, air flow rate, cooling variable, gas content in the air, microbial contamination of air and dust deposition were determined ambulantly in the years 1991-1992 and in January to April 1993. The values of ambulant measurings show that at the outside temperature -0.5 degrees C to -5.0 degrees C the microclimate quality decreases particularly with respect to the drop of air temperature in the cowshed below 10.0 degrees C, to the increase in cooling variable up to the value 53.17 mW/cm2 and to the increase in NH3 and CO2 content to 50 ppm and/or 0.45 vol.% in absolute maximum values. In these circumstances, the average determined values of both gases are higher than the standard prescription. At outside temperatures above 27.0 degrees C the average relative air humidity in the cowshed made 69.20% for the average temperature of 25.0 degrees C. To avoid the water vapor tension exceeding the limit in the cowshed air above the value 14.1 mm Hg, when sultry atmosphere sets in, the average relative air humidity should be maximally 59.0%. Hence the cowshed was found to be insufficiently ventilated at high outside temperatures above 27.0 degrees C, and it is recommended to increase the ventilator performance and at the same time to reduce water evaporation from catchpit surfaces when urine output of rabbits is excessive as a result of the increased water intake. Temperature and air humidity readings confirmed the need of heating source installation when the outside temperatures drop below 0.0 degrees C. Evaluation of air microbial contamination showed high counts of molds and particularly of micrococci in comparison with the ambience of a cage facility for piglet raising at a repopulation station with strict hygienic regime. Microbial picture of dust deposition was positively influenced by longitudinal aerosol disinfection of the air in the cowshed.
Can air temperatures be used to project influences of climate change on stream temperatures?
NASA Astrophysics Data System (ADS)
Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.
2013-12-01
The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for the two correlation models in regulated (n=14; lower panel) and unregulated (n=11; upper panel) streams. Solid lines represent average × SD of the NSE estimated for different time periods every 5-year. Dotted line at each plot indicates a NSE = 0.7. Symbols outside of the dotted line at each plot represent a satisfactory level of accuracy of the model
NASA Astrophysics Data System (ADS)
Feltz, M. L.; Knuteson, R. O.; Revercomb, H. E.
2017-08-01
Upper air temperature is defined as an essential climate variable by the World Meteorological Organization. Two remote sensing technologies being promoted for monitoring stratospheric temperatures are GPS radio occultation (RO) and spectrally resolved IR radiances. This study assesses RO and hyperspectral IR sounder derived temperature products within the stratosphere by comparing IR spectra calculated from GPS RO and IR sounder products to coincident IR observed radiances, which are used as a reference standard. RO dry temperatures from the University Corporation for Atmospheric Research (UCAR) Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission are compared to NASA Atmospheric Infrared Sounder (AIRS) retrievals using a previously developed profile-to-profile collocation method and vertical temperature averaging kernels. Brightness temperatures (BTs) are calculated for both COSMIC and AIRS temperature products and are then compared to coincident AIRS measurements. The COSMIC calculated minus AIRS measured BTs exceed the estimated 0.5 K measurement uncertainty for the winter time extratropics around 35 hPa. These differences are attributed to seasonal UCAR COSMIC biases. Unphysical vertical oscillations are seen in the AIRS L2 temperature product in austral winter Antarctic regions, and results imply a small AIRS tropical warm bias around 35 hPa in the middle stratosphere.
Incidence of Temperature Inversion and their Impact on Air Quality: A Case Study of Delhi
NASA Astrophysics Data System (ADS)
Singh, V. P.
2016-12-01
In troposphere, an increase in temperature with the altitude produces stable atmosphere which prohibits the air pollutants dispersion. This study investigates the phenomenon of temperature inversion (TI), Lapse rate (LR) and its effects on air quality in respect of Ozone (O3), CO2, CO & PM2.5 over a megacity- Delhi (Study Time Period: 2006-2012). Because of huge population, urban sprawl and orographic location, this study can be very helpful for Delhi and cities like Delhi. Radiosonde observations for temperature was used for TI calculations over the region. Results indicate that TI generally occurs at 975-850 hPa. Also, the maximum number of inversions occur during winter months (December and January) especially at night time and early mornings. Furthermore, during winter months, the incidence of inversion is highest at both 00UTC and 12UTC while it is least during the monsoon months (July and August) at 00UTC. The LR is maximum in terms of magnitude (i.e. highly negative) during the summer months (May & June) every year indicating the strong heating effects that takes place during the day time in summer and also because the sensible heat flux from the surface to the atmosphere is significant even at 12UTC (i.e. around 5.30 P.M.) The bivariate correlation analysis for air quality variables reveals negative relationship of all air quality variables except O3 with rainfall. A positive relationship of LR with all air quality variables, except O3, was observed indicating the increase in pollutants' concentrations with an increase in LR. The correlation coefficient between LR and air pollutants CO, NO, NO2, PM2.5 were found to be 0.463, 0.346, 0.249 and 0.673 respectively. A negative correlation was found between wind speed and most of the air pollutants. Also, significantly, O3 had been the only air pollutant having a negative relationship with LR (both at 00UTC &12UTC).
Inter-annual Variability of Snowfall in the Lower Peninsula of Michigan, USA
NASA Astrophysics Data System (ADS)
Meng, L.
2016-12-01
Winter snowfall, particularly lake-effect snowfall, impacts all aspects of Michigan life in the wintertime, from motorsports and tourism to impacting the day-to-day lives of residents. Understanding the inter-annual variability of winter snowfall will provide sound basis for local community safety management and improve weather forecasting. This study attempts to understand the trend in winter snowfall and the influencing factors of winter snowfall variability in the Lower Peninsula of Michigan (LPM) using station snowfall measurements and statistical analysis. Our study demonstrates that snowfall has significantly increased from 1932 to 2015. Correlation analysis suggests that regionally average air temperatures have a strong negative relationship with snowfall in LPM. On average, approximately 27% of inter-annual variability in snowfall can be explained by regionally average air temperatures. ENSO events are also negatively related to snowfall in LPM and can explain 8% of inter-annual variability. North Atlantic Oscillation (NAO) does not have strong influence on snowfall. Composite analysis demonstrates that on annual basis, more winter snowfall occurs during the years with higher maximum ice cover (MIC) than during the years with lower MIC in Lake Michigan. Higher MIC is often associated with lower air temperatures which are negatively related to winter snowfall. This study could provide insight on future snow related climate model improvement and weather forecasting.
NASA Astrophysics Data System (ADS)
Laska, Kamil; Prošek, Pavel; Budík, Ladislav
2010-05-01
Key words: air temperature, seasonal variation, James Ross Island, Antarctic Peninsula Recently, significant role of the atmospheric and oceanic circulation variation on positive trend of near surface air temperature along the Antarctic Peninsula has been reported by many authors. However, small number of the permanent meteorological stations located on the Peninsula coast embarrasses a detail analysis. It comprises analysis of spatiotemporal variability of climatic conditions and validation of regional atmospheric climate models. However, geographical location of the Czech Johann Gregor Mendel Station (hereafter Mendel Station) newly established on the northern ice-free part of the James Ross Island provides an opportunity to fill the gap. There are recorded important meteorological characteristics which allow to evaluate specific climatic regime of the region and their impact on the ice-shelf disintegration and glacier retreat. Mendel Station (63°48'S, 57°53'W) is located on marine terrace at the altitude of 7 m. In 2006, a monitoring network of several automatic weather stations was installed at different altitudes ranging from the seashore level up to mesas and tops of glaciers (514 m a.s.l.). In this contribution, a seasonal variation of near surface air temperature at the Mendel Station in the period of 2006-2009 is presented. Annual mean air temperature was -7.2 °C. Seasonal mean temperature ranged from +1.4 °C (December-February) to -17.7 °C (June-August). Frequently, the highest temperature occurred in the second half of January. It reached maximum of +8.1 °C. Sudden changes of atmospheric circulation pattern during winter caused a large interdiurnal variability of air temperature with the amplitude of 30 °C.
NASA Technical Reports Server (NTRS)
Susskind, Joel
2011-01-01
This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.
NASA Astrophysics Data System (ADS)
Vicente-Serrano, S. M.; Gimeno, L.; Nieto, R. O.; Azorin-Molina, C.
2016-12-01
Climate models and observations suggest that atmospheric humidity is increasing as a consequence of warmer air temperatures according to the Classius-Clapeyron relationship. In addition, given unlimited water availability in oceans it is suggested that relative humidity (RH) would remain constant. Nevertheless, recent global and regional studies have pointed out that RH may be decreasing in large areas of the world, and there are different hypotheses that could explain the possible decrease in RH as related to changes in: (i) the atmospheric circulation and moisture transport processes; (ii) precipitation; (iii) air vapour saturation given different warming in lands and oceans; etc. These trends have strong implications for the atmospheric evaporative demand (AED) and drought severity. We analysed changes in RH observed at the global scale for 1979-2014. For this purpose we have used 3462 stations across the world from the HadISDH data set. RH data have been also calculated from daily records of specific humidity, air pressure and air temperature from the ERA-Interim Reanalysis data set. The comparison results between observations and ERA-Interim show a strong agreement in the spatio-temporal variability and magnitude of trends of RH. We have analysed the relationship between the variability and changes in RH, precipitation, air temperature and evaporation at the global scale, concluding that the observed spatial patterns of RH are not well explained by the observed changes in the variability of precipitation and temperature. To improve the knowledge of the possible drivers of the observed trends in RH, we have selected 15 representative areas that showed a different temporal behaviour and applied a Lagrangian model (Flexpart). This has served to identify the humidity sources corresponding to each region, and to know the behaviour showed by Sea Surface Temperature (SST) and the evolution of oceanic and continental evaporation processes on the RH variability and trends. The effect of observed RH trends on AED and drought severity has been evaluated by means of the Standardized Precipitation Evapotranspiration Index (SPEI).
NASA Astrophysics Data System (ADS)
Zounemat-Kermani, Mohammad
2012-08-01
In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.
Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science
NASA Astrophysics Data System (ADS)
Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.
2017-12-01
The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.
NASA Technical Reports Server (NTRS)
Idso, S. B.; Jackson, R. D.; Reginato, R. J.
1976-01-01
A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.
2014-01-01
Background Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored. Methods We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated. Results We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship. Conclusion Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change. PMID:24941876
Benmarhnia, Tarik; Oulhote, Youssef; Petit, Claire; Lapostolle, Annabelle; Chauvin, Pierre; Zmirou-Navier, Denis; Deguen, Séverine
2014-06-18
Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored. We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated. We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship. Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change.
NASA Astrophysics Data System (ADS)
Shen, Lu; Mickley, Loretta J.; Leibensperger, Eric M.; Li, Mingwei
2017-12-01
We find that summertime air quality in the eastern U.S. displays strong dependence on North Atlantic sea surface temperatures, resulting from large-scale ocean-atmosphere interactions. Using observations, reanalysis data sets, and climate model simulations, we further identify a multidecadal variability in surface air quality driven by the Atlantic Multidecadal Oscillation (AMO). In one-half cycle ( 35 years) of the AMO from cold to warm phase, summertime maximum daily 8 h ozone concentrations increase by 1-4 ppbv and PM2.5 concentrations increase by 0.3-1.0 μg m-3 over much of the east. These air quality changes are related to warmer, drier, and more stagnant weather in the AMO warm phase, together with anomalous circulation patterns at the surface and aloft. If the AMO shifts to the cold phase in future years, it could partly offset the climate penalty on U.S. air quality brought by global warming, an effect which should be considered in long-term air quality planning.
Spatiotemporal investigation of long-term seasonal temperature variability in Libya
NASA Astrophysics Data System (ADS)
Elsharkawy, S. G.; Elmallah, E. S.
2016-09-01
Throughout this work, spatial and temporal variations of seasonal surface air temperature have been investigated. Moreover, the effects of relative internal (teleconnection) and external (solar) forcing on surface air temperature variability have been examined. Seasonal temperature time series covering 30 different meteorological locations and lasting over the last century are considered. These locations are classified into two groups based on their spatial distribution. One represents Coast Libya Surface Air Temperature (CLSAT), contains 19 locations, and the other represents Desert Libya Surface Air Temperature (DLSAT), contains 11 locations. Average temperature departure test is applied to investigate the nature of temperature variations. Temperature trends are analyzed using the nonparametric Mann-Kendall test and their coefficients are calculated using Sen's slope estimate. Cross-correlation and spectral analysis techniques are also applied. Our results showed temperature deviation from average within a band of ± 2°C at coast region, while ± 4°C at desert region. Extreme behavior intensions between summer and winter temperatures at coast region are noticed. Segmentation process declared reversal cooling/warming behavior within temperature records for all seasons. Desert region shows warming trend for all seasons with higher coefficients than obtained at coast region. Results obtained for spectral analysis show different short and medium signals and concluded that not only the spectral properties are different for different geographical regions but also different for different climatic seasons on regional scale as well. Cross-correlation results showed that highest influence for Rz upon coastal temperature is always in conjunction with highest influence of NAO upon coastal temperature during the period 1981-2010. Desert region does not obey this phenomenon, where highest temperature-NAO correlations at desert during autumn and winter seasons are not accompanied with highest correlations for temperature-Rz.
NASA Astrophysics Data System (ADS)
Urrego, Dunia H.; Hooghiemstra, Henry
2016-04-01
We use eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the signature of millennial-scale climate variability during the last 30,000 years, in particular the Younger Dryas (YD), Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the vegetation to millennial-scale climate variability in the tropical Andes. The signature of HS and the YD are generally recorded as downslope migrations of the upper forest line (UFL), and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicates a north to south difference that could be related to moisture availability. The direction of air temperature change recorded by the Andean vegetation is consistent with millennial-scale cryosphere and sea surface temperature records from the American tropics, but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere.
Using Machine learning method to estimate Air Temperature from MODIS over Berlin
NASA Astrophysics Data System (ADS)
Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.
2015-12-01
Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm. Considering the different relationships between T2m and LST for different land types enable us to improve better parameterization for determination of the best non-linear relation between LST and T2m over Berlin during day and nighttime. The results of the study will be presented and discussed.
Bastistella, Luciane; Rousset, Patrick; Aviz, Antonio; Caldeira-Pires, Armando; Humbert, Gilles; Nogueira, Manoel
2018-02-09
New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens , Cyclobalanopsis glauca , Trigonostemon huangmosun , and Bambusa vulgaris , and involved five relative humidity conditions (22, 43, 75, 84, and 90%), two mass samples (0.1 and 1 g), and two particle sizes (powder and piece). Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.
Frost Growth and Densification in Laminar Flow Over Flat Surfaces
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.
Convection in the Rayleigh-Bénard flow with all fluid properties variable
NASA Astrophysics Data System (ADS)
Sassos, Athanasios; Pantokratoras, Asterios
2011-10-01
In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.
The variability of California summertime marine stratus: impacts on surface air temperatures
Iacobellis, Sam F.; Cayan, Daniel R.
2013-01-01
This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.
Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes
NASA Astrophysics Data System (ADS)
Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.
2011-12-01
In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air temperature in a high elevation catchment. Our main result is that the assumption of a MALR is appropriate to describe the average variability of temperature over the entire measurement period (and possibly for daily scales), but that hourly near-surface lapse rates vary considerably and can deviate strongly from the MALR. This diurnal variability in lapse rates is associated with changes in wind direction and variations in wind velocity. Shallow lapse rates, in particular, occur during the morning, in correspondence to low wind speeds and change in wind direction from katabatic wind to valley wind and are associated with a weaker correlation between air temperature and elevation, while steeper lapse rates (meaning by this that temperature decreases more with elevation) closer to the MALR are typical of the afternoon hours from 13.00 on (and correspond to high wind speed), and are representative of a more linear dependency between air temperature and elevation. The steepest LRs, however, occur in the evening at 20.00-21.00, when wind velocity drops again and wind direction changes from valley wind to katabatic wind. It is clear that the wind regime is the main controls on LRs variability, and it is important to validate these findings with data sets from a second season.
Amplification of warming due to intensification of zonal circulation in the mid-latitudes
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana
2015-04-01
We propose a new index to evaluate the impact of atmospheric zonal transport oscillations on inter-annual variability and trends of average air temperature in mid-latitudes, Northern Hemisphere and globe. A simple model of mid-latitude channel "ocean-land-atmosphere" was used to produce the analytic relationship between the zonal circulation and the land-ocean temperature contrast which was used as a basis for index. An inverse relationship was found between indexes and average mid-latitude, hemisphere and global temperatures during the cold half of year and opposite one in summer. These relationships keep under 400 mb height. In winter relationship describes up to 70, 50 and 40 % of surface air temperature inter-annual variability of these averages, respectively. The contribution of zonal circulation to the increase in the average surface air temperature during warming period 1969-2008 reaches 75% in the mid-latitudes and 40% in the Northern Hemisphere. Proposed mid-latitude index correlates negatively with surface air temperature in the Arctic except summer. ECHAM4 projections with the A1B scenario show that increase of zonal circulation defines more than 74% of the warming in the Northern Hemisphere for 2001-2100. Our analysis confirms that the proposed index is an effective indicator of the climate change caused by variations of the zonal circulation that arise due to anthropogenic and/or natural global forcing mechanisms.
Snow-atmosphere coupling and its impact on temperature variability and extremes over North America
NASA Astrophysics Data System (ADS)
Diro, G. T.; Sushama, L.; Huziy, O.
2018-04-01
The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating temperature extreme characteristics.
Time Scales and Sources of European Temperature Variability
NASA Astrophysics Data System (ADS)
Årthun, Marius; Kolstad, Erik W.; Eldevik, Tor; Keenlyside, Noel S.
2018-04-01
Skillful predictions of continental climate would be of great practical benefit for society and stakeholders. It nevertheless remains fundamentally unresolved to what extent climate is predictable, for what features, at what time scales, and by which mechanisms. Here we identify the dominant time scales and sources of European surface air temperature (SAT) variability during the cold season using a coupled climate reanalysis, and a statistical method that estimates SAT variability due to atmospheric circulation anomalies. We find that eastern Europe is dominated by subdecadal SAT variability associated with the North Atlantic Oscillation, whereas interdecadal and multidecadal SAT variability over northern and southern Europe are thermodynamically driven by ocean temperature anomalies. Our results provide evidence that temperature anomalies in the North Atlantic Ocean are advected over land by the mean westerly winds and, hence, provide a mechanism through which ocean temperature controls the variability and provides predictability of European SAT.
An assessment of precipitation and surface air temperature over China by regional climate models
NASA Astrophysics Data System (ADS)
Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu
2016-12-01
An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.
Gilman, Sarah E; Wethey, David S; Helmuth, Brian
2006-06-20
Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.
Peng, Dai-liang; Huang, Jing-feng; Huete, Alfredo R.; Yang, Tai-ming; Gao, Ping; Chen, Yan-chun; Chen, Hui; Li, Jun; Liu, Zhan-yu
2010-01-01
We developed a sophisticated method to depict the spatial and seasonal characterization of net primary productivity (NPP) and climate variables. The role of climate variability in the seasonal variation of NPP exerts delayed and continuous effects. This study expands on this by mapping the seasonal characterization of NPP and climate variables from space using geographic information system (GIS) technology at the pixel level. Our approach was developed in southeastern China using moderate-resolution imaging spectroradiometer (MODIS) data. The results showed that air temperature, precipitation and sunshine percentage contributed significantly to seasonal variation of NPP. In the northern portion of the study area, a significant positive 32-d lagged correlation was observed between seasonal variation of NPP and climate (P<0.01), and the influences of changing climate on NPP lasted for 48 d or 64 d. In central southeastern China, NPP showed 16-d, 48-d, and 96-d lagged correlation with air temperature, precipitation, and sunshine percentage, respectively (P<0.01); the influences of air temperature and precipitation on NPP lasted for 48 d or 64 d, while sunshine influence on NPP only persisted for 16 d. Due to complex topography and vegetation distribution in the southern part of the study region, the spatial patterns of vegetation-climate relationship became complicated and diversiform, especially for precipitation influences on NPP. In the northern part of the study area, all vegetation NPP had an almost similar response to seasonal variation of air temperature except for broad crops. The impacts of seasonal variation of precipitation and sunshine on broad and cereal crop NPP were slightly different from other vegetation NPP. PMID:20349524
40 CFR 53.55 - Test for effect of variations in power line voltage and ambient temperature.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient air temperature... line voltage and ambient temperature. 53.55 Section 53.55 Protection of Environment ENVIRONMENTAL... power line voltage and ambient temperature. (a) Overview. (1) This test procedure is a combined...
NASA Astrophysics Data System (ADS)
Jiang, S.; Wang, K.
2016-12-01
During national holiday and weekend, human activity and anthropogenic emission are expected to be much less than those during workday. Therefore, the contrast of environmental factors (i.e., air temperature and air quality) between national holiday (or weekend) and workday has been attributed to anthropogenic impact. For example, daily maximum (Tmax), minimum (Tmin) and mean (Tmean) air temperatures during the Chinese Spring Festival holiday were found to be 0. 6°C less than those of nearby workdays. We evaluated the contrasts using daily meteorological observations collected at 2479 stations in China from 1961 to 2015. The contrasts were evaluated with two methods. The first directly compared air temperatures between Chinese Spring Festival holiday and nearby workdays. The second first composited a daily climatology of air temperatures centered on the first day of Chinese Spring Festival holiday, and the seasonal cycles of air temperatures were then removed using polynomial regressions. The average of the derived daily deviation of air temperatures can be regarded as anthropogenic impact of Chinese Spring Festival holiday. We found that these two methods obtained nearly the same results. However, we found that the so-called anthropogenic impact during Chinese Spring Festival was not unique because the daily deviations of air temperatures had obvious weekly oscillations. The daily deviations of air temperature had periods of 7 days and 9 days, which explain 60% of the variance of daily deviations of Tmax, Tmin, and Tmean. These results indicate that the so-called anthropogenic impacts are primarily caused by natural variability, i.e., weekly oscillations of the air temperatures. This study also has great implication for the studies on weekend effect of the environmental factors.
Lorenzon, S; Giulianini, P G; Martinis, M; Ferrero, E A
2007-05-01
Homarus americanus is an important commercial species that can survive 2-3 days out of water if kept cool and humid. Once caught for commercial purpose and shipped around the world, a lobster is likely to be subjected to a number of stressors, including emersion and air exposure, hypoxia, temperature changes and handling. This study focused on the effect of transport stress and specifically at different animal body temperature (6 and 15 degrees C) and air exposure during commercial transport and recovery process in water. Animals were monitored, by hemolymph bleeding, at different times: 0 h (arrival time at plant) 3 h, 12 h, 24 h and 96 h after immersion in the stocking tank with a water temperature of 6.5+/-1.5 degrees C. We analysed the effects by testing some physiological variables of the hemolymph: glucose, cHH, lactate, total protein, cholesterol, triglycerides, chloride and calcium concentration, pH and density. All these variables appeared to be influenced negatively by high temperature both in average of alteration from the physiological value and in recovering time. Blood glucose, lactate, total protein, cholesterol were significantly higher in the group with high body temperature compared to those with low temperature until 96 h after immersion in the recovery tank.
Effects of Northern Hemisphere Sea Surface Temperature Changes on the Global Air Quality
NASA Astrophysics Data System (ADS)
Yi, K.; Liu, J.
2017-12-01
The roles of regional sea surface temperature (SST) variability on modulating the climate system and consequently the air quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing air pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the air temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of air pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional air quality, which can help local air quality management.
NASA Astrophysics Data System (ADS)
García-García, A.; Cuesta-Valero, F. J.; Beltrami, H.; Smerdon, J. E.
2017-12-01
The relationships between air and ground surface temperatures across North America are examined in the historical and future projection simulations from 32 General Circulation Models (GCMs) included in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The covariability between surface air (2 m) and ground surface temperatures (10 cm) is affected by simulated snow cover, vegetation cover and precipitation through changes in soil moisture at the surface. At high latitudes, the differences between air and ground surface temperatures, for all CMIP5 simulations, are related to the insulating effect of snow cover and soil freezing phenomena. At low latitudes, the differences between the two temperatures, for the majority of simulations, are inversely proportional to leaf area index and precipitation, likely due to induced-changes in latent and sensible heat fluxes at the ground surface. Our results show that the transport of energy across the air-ground interface differs from observations and among GCM simulations, by amounts that depend on the components of the land-surface models that they include. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model, illustrate the need for improving the representation of processes controlling the coupling of the lower atmosphere and the land surface in GCMs as a means of reducing the variability in their representation of weather and climate phenomena, with potentially important implications for positive climate feedbacks such as permafrost and soil carbon stability.
NASA Astrophysics Data System (ADS)
Walikewitz, Nadine; Jänicke, Britta; Langner, Marcel; Endlicher, Wilfried
2018-01-01
Humans spend most of their time in confined spaces and are hence primarily exposed to the direct influence of indoor climate. The Universal Thermal Climate Index (UTCI) was obtained in 31 rooms (eight buildings) in Berlin, Germany, during summer 2013 and 2014. The indoor UTCI was determined from measurements of both air temperature and relative humidity and from data of mean radiant temperature and air velocity, which were either measured or modeled. The associated outdoor UTCI was obtained through facade measurements of air temperature and relative humidity, simulation of mean radiant temperature, and wind data from a central weather station. The results show that all rooms experienced heat stress according to UTCI levels, especially during heat waves. Indoor UTCI varied up to 6.6 K within the city and up to 7 K within building. Heat stress either during day or at night occurred on 35 % of all days. By comparing the day and night thermal loads, we identified maximum values above the 32 °C threshold for strong heat stress during the nighttime. Outdoor UTCI based on facade measurements provided no better explanation of indoor UTCI variability than the central weather station. In contrast, we found a stronger relationship of outdoor air temperature and indoor air temperature. Building characteristics, such as the floor level or window area, influenced indoor heat stress ambiguously. We conclude that indoor heat stress is a major hazard, and more effort toward understanding the causes and creating effective countermeasures is needed.
Sukumprasertsri, Monton; Unrean, Pornkamol; Pimsamarn, Jindarat; Kitsubun, Panit; Tongta, Anan
2013-03-01
In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.
Corrosion detector apparatus for universal assessment of pollution in data centers
Hamann, Hendrik F.; Klein, Levente I.
2015-08-18
A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.
Northern Russian chironomid-based modern summer temperature data set and inference models
NASA Astrophysics Data System (ADS)
Nazarova, Larisa; Self, Angela E.; Brooks, Stephen J.; van Hardenbroek, Maarten; Herzschuh, Ulrike; Diekmann, Bernhard
2015-11-01
West and East Siberian data sets and 55 new sites were merged based on the high taxonomic similarity, and the strong relationship between mean July air temperature and the distribution of chironomid taxa in both data sets compared with other environmental parameters. Multivariate statistical analysis of chironomid and environmental data from the combined data set consisting of 268 lakes, located in northern Russia, suggests that mean July air temperature explains the greatest amount of variance in chironomid distribution compared with other measured variables (latitude, longitude, altitude, water depth, lake surface area, pH, conductivity, mean January air temperature, mean July air temperature, and continentality). We established two robust inference models to reconstruct mean summer air temperatures from subfossil chironomids based on ecological and geographical approaches. The North Russian 2-component WA-PLS model (RMSEPJack = 1.35 °C, rJack2 = 0.87) can be recommended for application in palaeoclimatic studies in northern Russia. Based on distinctive chironomid fauna and climatic regimes of Kamchatka the Far East 2-component WAPLS model (RMSEPJack = 1.3 °C, rJack2 = 0.81) has potentially better applicability in Kamchatka.
Modarres, Reza; Ouarda, Taha B M J; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMAX-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56% of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
NASA Astrophysics Data System (ADS)
Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
Validation of China-wide interpolated daily climate variables from 1960 to 2011
NASA Astrophysics Data System (ADS)
Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang
2015-02-01
Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.
Grossi, C; Ballester, J; Serrano, I; Galmarini, S; Camacho, A; Curcoll, R; Morguí, J A; Rodò, X; Duch, M A
2016-12-01
The variability of the atmospheric concentration of the 7 Be and 210 Pb radionuclides is strongly linked to the origin of air masses, the strength of their sources and the processes of wet and dry deposition. It has been shown how these processes and their variability are strongly affected by climate change. Thus, a deeper knowledge of the relationship between the atmospheric radionuclides variability measured close to the ground and these atmospheric processes could help in the analysis of climate scenarios. In the present study, we analyze the atmospheric variability of a 14-year time series of 7 Be and 210 Pb in a Mediterranean coastal city using a synergy of different indicators and tools such as: the local meteorological conditions, global and regional climate indexes and a lagrangian atmospheric transport model. We particularly focus on the relationships between the main pathways of air masses and sun spots occurrence, the variability of the local relative humidity and temperature conditions, and the main modes of regional climate variability, such as the North Atlantic Oscillation (NAO) and the Western Mediterranean Oscillation (WeMO). The variability of the observed atmospheric concentrations of both 7 Be and 210 Pb radionuclides was found to be mainly positively associated to the local climate conditions of temperature and to the pathways of air masses arriving at the station. Measured radionuclide concentrations significantly increase when air masses travel at low tropospheric levels from central Europe and the western part of the Iberian Peninsula, while low concentrations are associated with westerly air masses. We found a significant negative correlation between the WeMO index and the atmospheric variability of both radionuclides and no significant association was observed for the NAO index. Copyright © 2016 Elsevier Ltd. All rights reserved.
An analysis of spatial representativeness of air temperature monitoring stations
NASA Astrophysics Data System (ADS)
Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen
2018-05-01
Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.
NASA Astrophysics Data System (ADS)
Jung, C. G.; Jiang, L.; Luo, Y.
2017-12-01
Understanding net primary production (NPP) response to the key climatic variables, temperature and precipitation, is essential since the response could be represented by one of future consequences from ecosystem responses. Under future climatic warming, fluctuating precipitation is expected. In addition, NPP solely could not explain whole ecosystem response; therefore, not only NPP, but also above- and below-ground NPP (ANPP and BNPP, respectively) need to be examined. This examination needs to include how the plant productions response along temperature and precipitation gradients. Several studies have examined the response of NPP against each of single climatic variable, but understanding the response of ANPP and BNPP to the multiple variables is notably poor. In this study, we used the plant productions data (NPP, ANPP, and BNPP) with climatic variables, i.e., air temperature and precipitation, from 1999 to 2015 under warming and clipping treatments (mimicking hay-harvesting) in C4-grass dominant ecosystem located in central Oklahoma, United States. Firstly, we examined the nonlinear relationships with the climatic variables for NPP, ANPP and BNPP; and then predicted possible responses in the temperature - precipitation space by using a linear mixed effect model. Nonlinearities of NPP, ANPP and BNPP to the climatic variables have been found to show unimodal curves, and nonlinear models have better goodness of fit as shown lower Akaike information criterion (AIC) than linear models. Optimum condition for NPP is represented at high temperature and precipitation level whereas BNPP is maximized at moderate precipitation levels while ANPP has same range of NPP's optimum condition. Clipping significantly reduced ANPP while there was no clipping effect on NPP and BNPP. Furthermore, inclining NPP and ANPP have shown in a range from moderate to high precipitation level with increasing temperature while inclining pattern for BNPP was observed in moderate precipitation level. Overall, the C4-grass dominant ecosystem has a potential for considerable increases in NPP in hotter and wetter conditions as shown a range from moderate to high temperature and precipitation levels; ANPP has peaked at the high temperature and precipitation level, but maximum BNPP needs moderate precipitation level and high temperature.
Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine
Huntington, T.G.; Hodgkins, G.A.; Dudley, R.W.
2003-01-01
We analyzed long-term records of ice thickness on the Piscataquis River in central Maine and air temperature in Maine to determine whether there were temporal trends that were associated with climate warming. The trend in ice thickness was compared and correlated with regional time series of winter air temperature, heating degree days (HDD), date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan. to 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 February decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7??C and HDD decreased by about 7.5%. Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.21 days yr-1 over the period 1931 to 2002, and the SCVD advanced by 0.11 days yr-1 over the period 1903 to 2001. Ice thickness was significantly correlated (P-value < 0.01) with winter air temperature, HDD, river ice-out, and SCVD. These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing.
Liquid Jets in Crossflow at Elevated Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Amighi, Amirreza
An experimental study on the characterization of liquid jets injected into subsonic air crossflows is conducted. The aim of the study is to relate the droplet size and other attributes of the spray, such as breakup length, position, plume width, and time to flow parameters, including jet and air velocities, pressure and temperature as well as non-dimensional variables. Furthermore, multiple expressions are defined that would summarize the general behavior of the spray. For this purpose, an experimental setup is developed, which could withstand high temperatures and pressures to simulate conditions close to those experienced inside gas turbine engines. Images are captured using a laser based shadowgraphy system similar to a 2D PIV system. Image processing is extensively used to measure droplet size and boundaries of the spray. In total 209 different conditions are tested and over 72,000 images are captured and processed. The crossflow air temperatures are 25°C, 200°C, and 300°C; absolute crossflow air pressures are 2.1, 3.8, and 5.2 bars. Various liquid and gas velocities are tested for each given temperature and pressure in order to study the breakup mechanisms and regimes. Effects of dimensional and non-dimensional variables on droplet size are presented in detail. Several correlations for the mean droplet size, which are generated in this process, are presented. In addition, the influence of non-dimensional variables on the breakup length, time, plume area, angle, width and mean jet surface thickness are discussed and individual correlations are provided for each parameter. The influence of each individual parameter on the droplet sizes is discussed for a better understanding of the fragmentation process. Finally, new correlations for the centerline, windward and leeward trajectories are presented and compared to the previously reported correlations.
Optimization of intermittent microwave–convective drying using response surface methodology
Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid
2015-01-01
In this study, response surface methodology was used for optimization of intermittent microwave–convective air drying (IMWC) parameters with employing desirability function. Optimization factors were air temperature (40–80°C), air velocity (1–2 m/sec), pulse ratio) PR ((2–6), and microwave power (200–600 W) while responses were rehydration ratio, bulk density, total phenol content (TPC), color change, and energy consumption. Minimum color change, bulk density, energy consumption, maximum rehydration ratio, and TPC were assumed as criteria for optimizing drying conditions of apple slices in IMWC. The optimum values of process variables were 1.78 m/sec air velocity, 40°C air temperature, PR 4.48, and 600 W microwave power that characterized by maximum desirability function (0.792) using Design expert 8.0. The air temperature and microwave power had significant effect on total responses, but the role of air velocity can be ignored. Generally, the results indicated that it was possible to obtain a higher desirability value if the microwave power and temperature, respectively, increase and decrease. PMID:26286706
Bassuoni, M M
2014-03-01
The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.
Impact of Air Temperature and SST Variability on Cholera Incidence in Southeastern Africa, 1971-2006
NASA Astrophysics Data System (ADS)
Paz, Shlomit
2010-05-01
The most important climatic parameter related to cholera outbreaks is the temperature, especially of the water bodies and the aquatic environment. This factor governs the survival and growth of V. cholerae, since it has a direct influence on its abundance in the environment, or alternatively, through its indirect influence on other aquatic organisms to which the pathogen is found to attach. Thus, the potential for cholera outbreaks may rise, parallel to the increase in ocean surface temperature. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. Africa is vulnerable to climate variability. According to the recent IPCC report on Africa, the air temperature has indicated a significant warming trend since the 1960s. In recent years, most of the research into disease vectors in Africa related to climate variability has focused on malaria. The IPCC indicated that the need exists to examine the vulnerabilities and impacts of climatic factors on cholera in Africa. In light of this, the study uses a Poisson Regression Model to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971-2006. Data description is as follows: Number of cholera cases per year in Uganda, Kenya, Rwanda, Burundi, Tanzania, Malawi, Zambia and Mozambique. Source: WHO Global Health Atlas - cholera. Seasonal and annual temperature time series: Regional scale: a) Air temperature for southeastern Africa (30° E-36° E, 5° S-17° S), source: NOAA NCEP-NCAR; b) Sea surface temperature, for the western Indian Ocean (0-20° S, 40° E-45° E), source: NOAA, Kaplan SST dataset. Hemispheric scale (for the whole Southern Hemisphere): a) Air temperature anomaly; b) Sea surface temperature anomaly. Source: CRU, University of East Anglia. The following Poisson regression model is suggested: log{E(CHOLt)} = b0+b1×Xt+b2×Xt-1 where: CHOLt = the number of new cases of cholera in year t Xt / Xt-1 = the climate covariate measured in year t/t-1. (b0,b1) = the coefficients. A first order autocorrelation, AR1 = cor(Yt, Yt-1) is taken into account in the estimation using Generalized Estimating Equations. b1 and b2 quantify the association of CHOL and X, i.e. if Xt or Xt-1 increase by one unit, the mean of Yt is expected to increase in exp{b1} or exp{b2} times, respectively (multiplicative model). The results showed a significant exponential increase of cholera rates in humans during the study period, with an estimate of exp(b1)=1.08 (p-value = 0.02). Associations have been found between the annual increase of the air temperature in southeastern Africa and the cholera incidence in the same area. Linkages were found also for a wider scale, with the air temperature anomaly of the Southern Hemisphere, with an estimate of exp(b1)=1.18 (p-value = 0.04) and exp(b1)=1.26 (p-value = 0.006) for the previous year. Significant linkages were detected between the annual cholera rate and the annual western Indian Ocean' SST , with exp(b1) = 1.31 (p-value = 0.01) for the current year and exp(b1) = 1.23 (p-value = 0.05) for the previous year. Linkages were found also for the hemispheric scale, with the SST anomaly. The increase of global temperature may influence the temporal fluctuations of cholera, as well as potentially increasing the frequency and duration of its outbreaks. Despite future uncertainty, the climate variability has to be considered in predicting further cholera outbreaks in Africa. This may help to promote better, more efficient preparedness. For more details: Paz, S. 2010. Impact of Temperature Variability on Cholera Incidence in Southeastern Africa, 1971-2006. EcoHealth, in press.
Yamamoto, Ayako; Palter, Jaime B
2016-03-15
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.
Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.
2017-01-01
Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.
NASA Technical Reports Server (NTRS)
Graves, M. E.; King, R. L.; Brown, S. C.
1973-01-01
Extreme values, median values, and nine percentile values are tabulated for eight meteorological variables at Cape Kennedy, Florida and at Vandenberg Air Force Base, California. The variables are temperature, relative humidity, station pressure, water vapor pressure, water vapor mixing ratio, density, and enthalpy. For each month eight hours are tabulated, namely, 0100, 0400, 0700, 1000, 1300, 1600, 1900, and 2200 local time. These statistics are intended for general use for the space shuttle design trade-off analysis and are not to be used for specific design values.
Development of a distributed air pollutant dry deposition modeling framework
Satoshi Hirabayashi; Charles N. Kroll; David J. Nowak
2012-01-01
A distributed air pollutant dry deposition modeling systemwas developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry...
Summer U.S. Surface Air Temperature Variability: Controlling Factors and AMIP Simulation Biases
NASA Astrophysics Data System (ADS)
Merrifield, A.; Xie, S. P.
2016-02-01
This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental U.S. in the Coupled Model Intercomparison Project (CMIP5) Atmospheric Model Intercomparison Project (AMIP). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-year period (1979-2008). In observations, regions of high SAT variability are closely associated with midtropospheric highs and subsidence, consistent with adiabatic theory (Meehl and Tebaldi 2004, Lau and Nath 2012). Preliminary analysis shows the majority of the AMIP models feature high SAT variability over the central U.S., displaced south and/or west of observed centers of action (COAs). SAT COAs in models tend to be concomitant with regions of high sensible heat flux variability, suggesting an excessive land surface feedback in these models modulate U.S. summer SAT. Additionally, tropical sea surface temperatures (SSTs) play a role in forcing the leading EOF mode for summer SAT, in concert with internal atmospheric variability. There is evidence that models respond to different SST patterns than observed. Addressing issues with the bulk land surface feedback and the SST-forced component of atmospheric variability may be key to improving model skill in simulating summer SAT variability over the U.S.
Combustion in a Bomb with a Fuel-Injection System
NASA Technical Reports Server (NTRS)
Cohn, Mildred; Spencer, Robert C
1935-01-01
Fuel injected into a spherical bomb filled with air at a desired density and temperature could be ignited with a spark a few thousandths of a second after injection, an interval comparable with the ignition lag in fuel-injection engines. The effect of several variables on the extent and rate of combustion was investigated: time intervals between injection and ignition of fuel of 0.003 to 0.06 second and one of 5 minutes; initial air temperatures of 100 degrees C. to 250 degrees C.; initial air densities equivalent to 5, 10, and 15 absolute atmospheres pressure at 100 degrees C.; and air-fuel ratios of 5 to 25.
NASA Astrophysics Data System (ADS)
Soon, Willie W.-H.
2005-08-01
This letter offers new evidence motivating a more serious consideration of the potential Arctic temperature responses as a consequence of the decadal, multidecadal and longer-term persistent forcing by the ever-changing solar irradiance both in terms of total solar irradiance (TSI, i.e., integrated over all wavelengths) and the related UV irradiance. The support for such a solar modulator can be minimally derived from the large (>75%) explained variance for the decadally-smoothed Arctic surface air temperatures (SATs) by TSI and from the time-frequency structures of the TSI and Arctic SAT variability as examined by wavelet analyses. The reconstructed Arctic SAT time series based on the inverse wavelet transform, which includes decadal (5-15 years) and multidecadal (40-80 years) variations and a longer-term trend, contains nonstationary but persistent features that are highly correlated with the Sun's intrinsic magnetic variability especially on multidecadal time scales.
Linking North American Summer Ozone Pollution Episodes to Subseasonal Atmospheric Variability
NASA Astrophysics Data System (ADS)
White, E. C.; Watt-Meyer, O.; Kushner, P. J.; Jones, D. B. A.
2017-12-01
Ozone concentrations in the planetary boundary layer (PBL) are positively correlated with surface air temperature due to shared influences including incident solar radiation and PBL stagnancy, as well as the temperature-sensitive emission of ozone precursor compounds. While previous studies have linked heat waves in North America to modes of subseasonal atmospheric variability, such analyses have not been applied to summertime ozone pollution episodes. This study investigates a possible link between subseasonal atmospheric variability in reanalysis data and summertime ozone pollution episodes identified in almost thirty years of in-situ measurements from the Air Quality System (AQS) network in the United States. AQS stations are grouped into regions likely to experience simultaneous extreme ozone concentrations using statistical clustering methods. Composite meteorological patterns are calculated for ozone episodes in each of these regions. The same analysis is applied to heat waves identified in AQS temperature records for comparison. Local meteorological features during typical ozone episodes include extreme temperatures and reduced cloud cover related to anomalous synoptic-scale anticyclonic circulation aloft. These anticyclonic anomalies are typically embedded in wave trains extending from the North Pacific to North Atlantic. Spectral analysis of these wave trains reveals that low-frequency standing waves play a prominent role. These long-lived circulation patterns may provide a means to increase air quality prediction lead-times and to estimate the frequency of ozone pollution episodes under climate change.
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability
NASA Astrophysics Data System (ADS)
Tokinaga, H.; Xie, S. P.; Mukougawa, H.
2017-12-01
We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.
NASA Astrophysics Data System (ADS)
Shen, L.; Mickley, L. J.
2016-12-01
Atlantic sea surface temperatures have a significant influence on the summertime meteorology and air quality in the eastern United States. In this study, we investigate the effect of the Atlantic Multidecadal Oscillation (AMO) on two key air pollutants, surface ozone and PM2.5, over the eastern United States. The shift of AMO from cold to warm phase increases surface air temperatures by 0.5 K across the East and reduces precipitation, resulting in a warmer and drier summer. By applying observed, present-day relationships between these pollutants and meteorological variables to a variety of observations and historical reanalysis datasets, we calculate the impacts of AMO on U.S. air quality. Our study reveals a multidecadal variability in mean summertime (JJA) maximum daily 8-hour (MDA8) ozone and surface PM2.5 concentrations in the eastern United States. In one-half cycle ( 30 years) of the AMO from negative to positive phase with constant anthropogenic emissions, JJA MDA8 ozone concentrations increase by 1-3 ppbv in the Northeast and 2-5 ppbv in the Great Plains; JJA PM2.5 concentrations increase by 0.8-1.2 μg m-3 in the Northeast and Southeast. The resulting impact on mortality rates is 4000 excess deaths per half cycle of AMO. We suggest that a complete picture of air quality management in coming decades requires consideration of the AMO influence.
Zhu, Hui; Wang, Hanqing; Liu, Zhiqiang; Li, Duanru; Kou, Guangxiao; Li, Can
2018-03-01
In order to study the human thermal comfort under different environments, the electrocardiogram (ECG) data of 6 subjects were recorded continuously under 60 environments composed by different air temperature, relative humidity and air speed that were created by an environmental chamber. Based on the ECG data, the frequency-domain method was adopted to obtain the heart rate variability (HRV) results. Among the HRV indices, the ratio of the low frequency power and high frequency power of the HRV analysis results (LF/HF), which reflects the balance of the autonomic nervous system, was selected as an indicator of the thermal comfort in the study. And the effects of air temperature, relative humidity and air speed on LF/HF were scrutinized. Meanwhile, a questionnaire survey was conducted during the experiment to evaluate the thermal comfort of the subjects. And the relationships between mean LF/HF and thermal sensation, mean thermal comfort were established based on the survey. The results showed that different LF/HF was observed under different environments, and that the air temperature had the most significant effects on LF/HF. The changes in the air temperature could easily lead to the excitation of the sympathetic nerve that could promote the activities of the thermoregulatory effectors thus thermal discomfort. Additionally, the fitting curves illustrating the relationships between LF/HF and thermal sensation and thermal comfort showed that the higher LF/HF yielded thermal discomfort, while the low LF/HF indicated a thermally acceptable state. Copyright © 2017 Elsevier B.V. All rights reserved.
Gestro, Massimo; Condemi, Vincenzo; Bardi, Luisella; Fantino, Claudio; Solimene, Umberto
2017-10-01
AbstractOtitis media (OM) is a very common disease in children, which results in a significant economic burden to the healthcare system for hospital-based outpatient departments, emergency departments (EDs), unscheduled medical examinations, and antibiotic prescriptions. The aim of this retrospective observational study is to investigate the association between climate variables, air pollutants, and OM visits observed in the 2007-2010 period at the ED of Cuneo, Italy. Measures of meteorological parameters (temperature, humidity, atmospheric pressure, wind) and outdoor air pollutants (particulate matter, ozone, nitrous dioxide) were analyzed at two statistical stages and in several specific steps (crude and adjusted models) according to Poisson's regression. Response variables included daily examinations for age groups 0-3, 0-6, and 0-18. Control variables included upper respiratory infections (URI), flu (FLU), and several calendar factors. A statistical procedure was implemented to capture any delayed effects. Results show a moderate association for temperature (T), age 0-3, and 0-6 with P < 0.05, as well as nitrous dioxide (NO 2 ) with P < 0.005 at age 0-18. Results of subsequent models point out to URI as an important control variable. No statistical association was observed for other pollutants and meteorological variables. The dose-response models (DLNM-final stage) implemented separately on a daily and hourly basis point out to an association between temperature (daily model) and RR 1.44 at age 0-3, CI 1.11-1.88 (lag time 0-1 days) and RR 1.43, CI 1.05-1.94 (lag time 0-3 days). The hourly model confirms a specific dose-response effect for T with RR 1.20, CI 1.04-1.38 (lag time range from 0 to 11 to 0-15 h) and for NO 2 with RR 1.03, CI 1.01-1.05 (lag time range from 0 to 8 to 0-15 h). These results support the hypothesis that the clinical context of URI may be an important risk factor in the onset of OM diagnosed at ED level. The study highlights the relevance of URI as a control variable to be included in the statistical analysis in association with meteorological factors and air pollutants. The study also points out to a moderate association of OM with low temperatures and NO 2 , with specific risk factors for this variable early in life. Further studies are needed to confirm these findings, particularly with respect to air pollutants in larger urban environments.
NASA Astrophysics Data System (ADS)
Gestro, Massimo; Condemi, Vincenzo; Bardi, Luisella; Fantino, Claudio; Solimene, Umberto
2017-10-01
Abstract Otitis media (OM) is a very common disease in children, which results in a significant economic burden to the healthcare system for hospital-based outpatient departments, emergency departments (EDs), unscheduled medical examinations, and antibiotic prescriptions. The aim of this retrospective observational study is to investigate the association between climate variables, air pollutants, and OM visits observed in the 2007-2010 period at the ED of Cuneo, Italy. Measures of meteorological parameters (temperature, humidity, atmospheric pressure, wind) and outdoor air pollutants (particulate matter, ozone, nitrous dioxide) were analyzed at two statistical stages and in several specific steps (crude and adjusted models) according to Poisson's regression. Response variables included daily examinations for age groups 0-3, 0-6, and 0-18. Control variables included upper respiratory infections (URI), flu (FLU), and several calendar factors. A statistical procedure was implemented to capture any delayed effects. Results show a moderate association for temperature ( T), age 0-3, and 0-6 with P < 0.05, as well as nitrous dioxide (NO2) with P < 0.005 at age 0-18. Results of subsequent models point out to URI as an important control variable. No statistical association was observed for other pollutants and meteorological variables. The dose-response models (DLNM—final stage) implemented separately on a daily and hourly basis point out to an association between temperature (daily model) and RR 1.44 at age 0-3, CI 1.11-1.88 (lag time 0-1 days) and RR 1.43, CI 1.05-1.94 (lag time 0-3 days). The hourly model confirms a specific dose-response effect for T with RR 1.20, CI 1.04-1.38 (lag time range from 0 to 11 to 0-15 h) and for NO2 with RR 1.03, CI 1.01-1.05 (lag time range from 0 to 8 to 0-15 h). These results support the hypothesis that the clinical context of URI may be an important risk factor in the onset of OM diagnosed at ED level. The study highlights the relevance of URI as a control variable to be included in the statistical analysis in association with meteorological factors and air pollutants. The study also points out to a moderate association of OM with low temperatures and NO2, with specific risk factors for this variable early in life. Further studies are needed to confirm these findings, particularly with respect to air pollutants in larger urban environments.
Drivers of River Water Temperature Space-time Variability in Northeast Greenland
NASA Astrophysics Data System (ADS)
Hannah, D. M.; Docherty, C.; Milner, A.
2015-12-01
Water temperature plays an important role in stream ecosystem functioning; however, water temperature dynamics in high Arctic environments have received relatively little attention. Given that global climate is predicted to change most at high latitudes, it is vital we broaden our knowledge of space-time variability in Arctic river temperature to understand controlling processes and potential consequences of climate change. To address this gap, our research aims: (1) to characterise seasonal and diel patterns of variability over three summer and two winter seasons with contrasting hydrometeorological conditions, (2) to unravel the key drivers influencing thermal regimes and (3) to place these results in the context of other snow/ glacier-melt dominated environments. Fieldwork was undertaken in July-September 2013, 2014 and 2015 close to the Zackenberg Research Station in Northeast Greenland - an area of continuous permafrost with a mean July air temperature of 6 °C. Five streams were chosen that drain different water source contributions (glacier melt, snow melt, groundwater). Data were collected at 30 minute intervals using micro-dataloggers. Air temperature data were collected within 7km by the Greenland Survey. Weather conditions were highly variable between field campaigns, with 2013 experiencing below average, and 2014 and 2015 above average, snowfall. Summer water temperatures appear to be high in comparison to some Arctic streams in Alaska and in Svalbard. Winter snowfall extent decreases stream water temperature; and water temperature increases with atmospheric exposure time (distance from source) - illustrating the intertwined controls of water and heat fluxes. These Greenland streams are most strongly influenced by snowmelt, but groundwater contributions could increase with a changing climate due to increased active layer thickness, which may result in increased river temperature with implications for aquatic biodiversity and ecosystem functioning.
NASA Astrophysics Data System (ADS)
Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.
2016-09-01
Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely offset temperature-related yield losses in irrigated maize.
Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.
Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C
2003-01-01
BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548
Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes
Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.
2013-01-01
Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.
NASA Astrophysics Data System (ADS)
Lenters, J. D.; Read, J. S.; Sharma, S.; O'Reilly, C.; Hampton, S. E.; Gray, D.; McIntyre, P. B.; Hook, S. J.; Schneider, P.; Soylu, M. E.; Barabás, N.; Lofton, D. D.
2014-12-01
Global and regional changes in climate have important implications for terrestrial and aquatic ecosystems. Recent studies, for example, have revealed significant warming of inland water bodies throughout the world. To better understand the global patterns, physical mechanisms, and ecological implications of lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 300 lakes, with some in situ records extending back more than 100 years. Here, we present an analysis of the long-term warming trends, interdecadal variability, and a direct comparison between in situ and remotely sensed lake surface temperature for the 3-month summer period July-September (January-March for some lakes). The overall results show consistent, long-term trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade. Both satellite and in situ data show a similar distribution of warming trends, and a direct comparison at lake sites that have both types of data reveals a close correspondence in mean summer water temperature, interannual variability, and long-term trends. Finally, we examine standardized lake surface temperature anomalies across the full 100-year period (1910-2009), and in conjunction with similar timeseries of air temperature. The results reveal a close correspondence between summer air temperature and lake surface temperature on interannual and interdecadal timescales, but with many lakes warming more rapidly than the ambient air temperature over 25- to 100-year periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je; Yoon, Hyun; Im, Piljae
This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less
Lee, Je; Yoon, Hyun; Im, Piljae; ...
2017-12-27
This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less
A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino, M
1999-07-14
An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic,more » high pressure, air, wind tunnel, ground testing]« less
Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest
Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell
2014-01-01
Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...
Surface Temperature variability from AIRS.
NASA Astrophysics Data System (ADS)
Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.
2015-12-01
To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Heat-transfer processes in air-cooled engine cylinders
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin
1938-01-01
From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.
Bassuoni, M.M.
2013-01-01
The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485
Factors affecting viability of Bifidobacterium bifidum during spray drying.
Shokri, Zahra; Fazeli, Mohammad Reza; Ardjmand, Mehdi; Mousavi, Seyyed Mohammad; Gilani, Kambiz
2015-01-25
There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing nutritional protective agents.
HIGH REACTIVITY SORBENTS FOR SO2 CONTROL
The paper discusses studies, relating to air pollution control from coal-fired utility boilers, that show that the primary variable affecting sorbent reactivity at high temperature or at low temperature with water droplets is surface area. For the development of high surface area...
Zhaohua Dai; Carl C. Trettin; Devendra M. Amatya
2013-01-01
Long-term weather and hydrology data from the Santee Experimental Forest were used to assess trends in air temperature, precipitation, and the water balance in gauged watersheds over a 63-year period. Since 1946, the mean annual air temperature has increased at a rate of 0.19 °C per decade, a rate higher than the global mean for the same period. Total annual...
NASA Astrophysics Data System (ADS)
Tawatsupa, Benjawan; Dear, Keith; Kjellstrom, Tord; Sleigh, Adrian
2014-03-01
We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31 °C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4 °C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13 % unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, J.F.; Warren, M.L.
1988-09-01
This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one of the fastest economic and energy consumption growth rates in the world. The work reported here is aimed at estimating the conservation potential derived from good design and control of air conditioning systems in commercial buildings. To test the performance of different air conditioning system types and control options, whole building energy performance was simulated using DOE-2. The 5100 m/sup 2/ (50,000 ft/sup 2/)more » prototype office building module was previously used in earlier commercial building energy standards analysis for Malaysia and Singapore. In general, the weather pattern for ASEAN countries is uniform, with hot and humid air masses known as ''monsoons'' dictating the weather patterns. Since a concentration of cities occurs near the tip of the Malay peninsula, hourly temperature, humidity, and wind speed data for Kuala Lumpur was used for the analysis. Because of the absence of heating loads in ASEAN regions, we have limited air conditioning configurations to two pipe fan coil, constant volume, variable air volume, powered induction, and ceiling bypass configurations. Control strategies were varied to determine the conservation potential in both energy use and peak electric power demands. Sensitivities including fan control, pre-cooling and night ventilation, supply air temperature control, zone temperature set point, ventilation and infiltration, daylighting and internal gains, and system sizing were examined and compared with a base case which was a variable air volume system with no reheat or economizer. Comfort issues, such as over-cooling and space humidity, were also examined.« less
Analysis of The Surface Radiative Budget Using ATLAS Data for San Juan, Puerto Rico
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, D. L.; Gonzalez, J.; Comarazamy, Daniel; Picon, Ana
2007-01-01
The additional beating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. The NASA Airborne Thermal and Land Applications Sensor (ATLAS) operates in the visual and IR bands was used in February 2004 to collect data from San Juan, Puerto Rico with the main objective of investigating the Urban Heat Island (UHI) in tropical cities.
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Olsen, Edward T.
2012-01-01
The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.
The impact of environmental factors on marine turtle stranding rates
Flint, Mark; Limpus, Colin J.; Mills, Paul C.
2017-01-01
Globally, tropical and subtropical regions have experienced an increased frequency and intensity in extreme weather events, ranging from severe drought to protracted rain depressions and cyclones, these coincided with an increased number of marine turtles subsequently reported stranded. This study investigated the relationship between environmental variables and marine turtle stranding. The environmental variables examined in this study, in descending order of importance, were freshwater discharge, monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall for the latitudinal hotspots (-27°, -25°, -23°, -19°) along the Queensland coast as well as for major embayments within these blocks. This study found that marine turtle strandings can be linked to these environmental variables at different lag times (3–12 months), and that cumulative (months added together for maximum lag) and non-cumulative (single month only) effects cause different responses. Different latitudes also showed different responses of marine turtle strandings, both in response direction and timing.Cumulative effects of freshwater discharge in all latitudes resulted in increased strandings 10–12 months later. For latitudes -27°, -25° and -23° non-cumulative effects for discharge resulted in increased strandings 7–12 months later. Latitude -19° had different results for the non-cumulative bay with strandings reported earlier (3–6 months). Monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall had varying results for each examined latitude. This study will allow first responders and resource managers to be better equipped to deal with increased marine turtle stranding rates following extreme weather events. PMID:28771635
40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., engine displacement, transmission class and configuration, interior volume, climate control system type... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...
Effect of the environmental stimuli upon the human body in winter outdoor thermal environment.
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.
NASA Astrophysics Data System (ADS)
Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin
2017-04-01
Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were evaluated and the relative importance of individual predictors was examined via averaging over orderings (for MLR) and permutation importance (for RF) respectively. The results indicate that MLR is superior to RF with mean squared skill scores reaching up to 0.85 and R2 in leave-one-out cross validation up to 65% for individual situations and setups. The best performing models are obtained for situations with low to medium wind velocities before sunrise and after sunset. Important predictor variables for these situations are percentage of built-up area, sky view factor, and distance from the city centre.
Variability of growing degree days in Poland in response to ongoing climate changes in Europe.
Wypych, Agnieszka; Sulikowska, Agnieszka; Ustrnul, Zbigniew; Czekierda, Danuta
2017-01-01
An observed increase in air temperature can lead to significant changes in the phenology of plants and, consequently, changes in agricultural production. The aim of the study was to evaluate the spatial differentiation of thermal resources in Poland and their variability during a period of changing thermal conditions in Europe. Since the variability of thermal conditions is of paramount importance for perennial crops, the study focused on apple, plum, and cherry orchard regions in Poland. The analysis was conducted for the period of 1951-2010 using air temperature daily data. Thermal resources have been defined using the growing degree days (GDD) index calculated independently for the whole year and during in frost-free season for three air temperature thresholds: 0, 5, and 10 °C, which determine the non-winter period, growing season, and the period of full plant growth, respectively. In addition, due to the high significance for perennials in particular, the incidence and intensity of frost during flowering were calculated. In this study, a detailed analysis of the spatial differentiation of thermal resources was first performed, followed by an evaluation of long-term variability and associated change patterns. The obtained results confirmed an increase in thermal resources in Poland as a consequence of the lengthening of the growing season. However, the frequency and intensity of spring frost, especially during flowering or even during ripening of plants, remain a threat to harvests in both the eastern and western parts of the country.
NASA Astrophysics Data System (ADS)
Boissard, C.; Chervier, F.; Dutot, A. L.
2007-08-01
Using a statistical approach based on artificial neural networks, an emission algorithm (ISO_LF) accounting for high (instantaneous) to low (seasonal) frequency variations was developed for isoprene. ISO_LF was optimised using an isoprene emission data base (ISO-DB) specifically designed for this work. ISO-DB consists of 1321 emission rates collected in the literature, together with 34 environmental variables, measured or assessed using NCDC (National Climatic Data Center) or NCEP (National Centers for Environmental Predictions) meteorological databases. ISO-DB covers a large variety of emitters (25 species) and environmental conditions (10° S to 60° N). When only instantaneous environmental regressors (air temperature and photosynthetic active radiation, PAR) were used, a maximum of 60% of the overall isoprene variability was assessed and the highest emissions were underestimated. Considering a total of 9 high (instantaneous) to low (up to 3 weeks) frequency regressors, ISO_LF accounts for up to 91% of the isoprene emission variability, whatever the emission range, species or climate. Diurnal and seasonal variations are correctly reproduced for textit{Ulex europaeus} with a maximum factor of discrepancy of 4. ISO-LF was found to be mainly sensitive to air temperature cumulated over 3 weeks T21 and to instantaneous light L0 and air temperature T0 variations. T21, T0 and L0 only accounts for 76% of the overall variability. The use of ISO-LF for non stored monoterpene emissions was shown to give poor results.
AIRS Version 6 Products and Data Services at NASA GES DISC
NASA Astrophysics Data System (ADS)
Ding, F.; Savtchenko, A. K.; Hearty, T. J.; Theobald, M. L.; Vollmer, B.; Esfandiari, E.
2013-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the Atmospheric Infrared Sounder (AIRS) mission. The AIRS mission is entering its 11th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released data from the Version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. Among the most substantial advances are: improved soundings of Tropospheric and Sea Surface Temperatures; larger improvements with increasing cloud cover; improved retrievals of surface spectral emissivity; near-complete removal of spurious temperature bias trends seen in earlier versions; substantially improved retrieval yield (i.e., number of soundings accepted for output) for climate studies; AIRS-Only retrievals with comparable accuracy to AIRS+AMSU (Advanced Microwave Sounding Unit) retrievals; and more realistic hemispheric seasonal variability and global distribution of carbon monoxide. The GES DISC is working to bring the distribution services up-to-date with these new developments. Our focus is on popular services, like variable subsetting and quality screening, which are impacted by the new elements in Version 6. Other developments in visualization services, such as Giovanni, Near-Real Time imagery, and a granule-map viewer, are progressing along with the introduction of the new data; each service presents its own challenge. This presentation will demonstrate the most significant improvements in Version 6 AIRS products, such as newly added variables (higher resolution outgoing longwave radiation, new cloud property products, etc.), the new quality control schema, and improved retrieval yields. We will also demonstrate the various distribution and visualization services for AIRS data products. The cloud properties, model physics, and water and energy cycles research communities are invited to take advantage of the improvements in Version 6 AIRS products and the various services at GES DISC which provide them.
THE INFLUENCE OF THE SPATIAL DISTRIBUTION OF SNOW ON BASIN-AVERAGED SNOWMELT. (R824784)
Spatial variability in snow accumulation and melt owing to topographic effects on solar radiation, snow drifting, air temperature and precipitation is important in determining the timing of snowmelt releases. Precipitation and temperature effects related to topography affect snow...
Association Between Air Temperature and Cancer Death Rates in Florida: An Ecological Study.
Hart, John
2015-01-01
Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory - that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings.
Association Between Air Temperature and Cancer Death Rates in Florida
2015-01-01
Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory – that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings. PMID:26674418
Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman; Susskind, Joel
1999-01-01
This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.
Recent recovery of surface wind speed after decadal decrease: a focus on South Korea
NASA Astrophysics Data System (ADS)
Kim, JongChun; Paik, Kyungrock
2015-09-01
We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.
NASA Astrophysics Data System (ADS)
Hoyer, J.; Madsen, K. S.; Englyst, P. N.
2017-12-01
Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over ice from satellites.
Bradly A. Trumbo; Keith H. Nislow; Jonathan Stallings; Mark Hudy; Eric P. Smith; Dong-Yun Kim; Bruce Wiggins; Charles A. Dolloff
2014-01-01
Models based on simple air temperatureâwater temperature relationships have been useful in highlighting potential threats to coldwater-dependent species such as Brook Trout Salvelinus fontinalis by predicting major losses of habitat and substantial reductions in geographic distribution. However, spatial variability in the relationship between changes...
Luo, Kai; Li, Runkui; Wang, Zongshuang; Zhang, Ruiming; Xu, Qun
2017-11-01
There is limited evidence showing the mortality effects of temperature variability (TV) on cardiovascular diseases. The joint effects between TV and air pollutants are also less well-established. This study aims to assess the effect modification of TV-cardiovascular mortality by air pollutants in three Chinese cities (Beijing, Nanjing and Chengdu). Data of daily mortality, air pollutants and meteorological factors from 2008 to 2011 was collected from each city. TV was calculated as the standard deviation of daily maximum and minimum temperatures over exposure days. The city-specific effect estimates of TV on cardiovascular mortality were calculated using a quasi-Poisson regression model, adjusting for potential confounders (e.g., seasonality and temperature). An interaction term of TV and a three-level air pollutants stratum indicator was included in the models. Effect modifications by air pollutants were assessed by comparing the estimates of TV's effect between pollutant stratums and calculating the corresponding 95% confidential interval of the differences. Multivariate meta-analysis was conducted to obtain the pooled estimates. The data showed that TV was associated with increased risk of cardiovascular mortality, especially for longer TV exposure days (0-8 days, TV08). This association was still observed after adjusting for air pollutants on current day or the previous two days. Stronger estimates were observed in females, but no significant difference between males and females was detected, indicating the absence of evidence of effect modification by gender. Estimates of TV-cardiovascular mortality varied across two season periods (warm and cool season) and age groups, but the evidence of effect modification by age and seasons was absent. Regarding the effect modification of TV-cardiovascular mortality association by air pollutants, a significant effect modification was identified for PM 10, but not for NO 2 and SO 2 in the whole population for all TV exposure days. This finding also persisted in subgroups, specifically in females and the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haramoto, Ken-Ichi
In general, air conditioning control in a building is operated mainly by indoor air temperature control. Although the operators of the machine in the building accepted a claim for indoor air temperature presented by the building inhabitants, the indoor conditions have been often too cool or warm. Therefore, in an attempt to create better thermal environments, the author paid attention to the PMV that is a thermal comfort index. And then, the possibility of air conditioning control using the PMV directly as the set point was verified by employing actual equipment in an air conditioning testing room and an office building. Prior to the execution of this control, the operation program of the PMV was installed in a DDC controller for the air conditioning control. And information from indoor sensors and so on was inputted to the controller, and the computed PMV was used as the feedback variable.
ERIC Educational Resources Information Center
Charnock, H.
1980-01-01
Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…
Quantification of the heat exchange of chicken eggs.
Van Brecht, A; Hens, H; Lemaire, J L; Aerts, J M; Degraeve, P; Berckmans, D
2005-03-01
In the incubation process of domestic avian eggs, the development of the embryo is mainly influenced by the physical microenvironment around the egg. Only small spatiotemporal deviations in the optimal incubator air temperature are allowed to optimize hatchability and hatchling quality. The temperature of the embryo depends on 3 factors: (1) the air temperature, (2) the exchange of heat between the egg and its microenvironment and (3) the time-variable heat production of the embryo. Theoretical estimates on the heat exchange between an egg and its physical microenvironment are approximated using equations that assume an approximate spherical shape for eggs. The objective of this research was to determine the heat transfer between the eggshell and its microenvironment and then compare this value to various theoretical estimates. By using experimental data, the overall and the convective heat transfer coefficients were determined as a function of heat production, air humidity, air speed, and air temperature. Heat transfer was not affected by air humidity but solely by air temperature, embryonic heat generation, and air speed and flow around eggs. Also, heat transfer in forced-air incubators occurs mainly by convective heat loss, which is dependent on the speed of airflow. A vertical airflow is more efficient than a horizontal airflow in transferring heat from the egg. We showed that describing an egg as a sphere underestimated convective heat transfer by 33% and was, therefore, too simplistic to accurately assess actual heat transfer from real eggs.
An analysis of surface air temperature trends and variability along the Andes
NASA Astrophysics Data System (ADS)
Franquist, Eric S.
Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of greenhouse gas emissions as the most likely cause.
NASA Astrophysics Data System (ADS)
Sicart, J.; Essery, R.; Pomeroy, J.
2004-12-01
At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.
NASA Technical Reports Server (NTRS)
Hilado, C. J.
1976-01-01
Relative toxicity data for a large number of natural and synthetic polymeric materials are presented which were obtained by 11 pyrolysis and three flaming-combustion test methods. The materials tested include flexible and rigid polyurethane foams, different kinds of fabrics and woods, and a variety of commodity polymers such as polyethylene. Animal exposure chambers of different volumes containing mice, rats, or rabbits were used in the tests, which were performed over the temperature range from ambient to 800 C with and without air flow or recirculation. The test results are found to be sensitive to such variables as exposure mode, temperature, air flow and dilution, material concentration, and animal species, but relative toxicity rankings appear to be similar for many methods and materials. It is concluded that times to incapacitance and to death provide a more suitable basis for relative toxicity rankings than percent mortality alone, that temperature is the most important variable in the tests reported, and that variables such as chamber volume and animal species may not significantly affect the rankings.
NASA Astrophysics Data System (ADS)
Lee, J.; Waliser, D. E.; Lee, H.; Loikith, P. C.; Kunkel, K.
2017-12-01
Monitoring temporal changes in key climate variables, such as surface air temperature and precipitation, is an integral part of the ongoing efforts of the United States National Climate Assessment (NCA). Climate models participating in CMIP5 provide future trends for four different emissions scenarios. In order to have confidence in the future projections of surface air temperature and precipitation, it is crucial to evaluate the ability of CMIP5 models to reproduce observed trends for three different time periods (1895-1939, 1940-1979, and 1980-2005). Towards this goal, trends in surface air temperature and precipitation obtained from the NOAA nClimGrid 5 km gridded station observation-based product are compared during all three time periods to the 206 CMIP5 historical simulations from 48 unique GCMs and their multi-model ensemble (MME) for NCA-defined climate regions during summer (JJA) and winter (DJF). This evaluation quantitatively examines the biases of simulated trends of the spatially averaged temperature and precipitation in the NCA climate regions. The CMIP5 MME reproduces historical surface air temperature trends for JJA for all time period and all regions, except the Northern Great Plains from 1895-1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical surface air temperature trends across all time periods over all regions except the Southeast from 1895-1939 and the Midwest during 1940-1979. The Regional Climate Model Evaluation System (RCMES), an analysis tool which supports the NCA by providing access to data and tools for regional climate model validation, facilitates the comparisons between the models and observation. The RCMES Toolkit is designed to assist in the analysis of climate variables and the procedure of the evaluation of climate projection models to support the decision-making processes. This tool is used in conjunction with the above analysis and results will be presented to demonstrate its capability to access observation and model datasets, calculate evaluation metrics, and visualize the results. Several other examples of the RCMES capabilities can be found at https://rcmes.jpl.nasa.gov.
Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting
NASA Astrophysics Data System (ADS)
Zhou, Y.; Kumar, M.; Link, T. E.
2017-12-01
Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.
Nassiri, Parvin; Monazzam, Mohammad Reza; Golbabaei, Farideh; Dehghan, Somayeh Farhang; Rafieepour, Athena; Mortezapour, Ali Reza; Asghari, Mehdi
2017-10-07
The purpose of this article is to examine the applicability of Universal Thermal Climate Index (UTCI) index as an innovative index for evaluating of occupational heat stress in outdoor environments. 175 workers of 12 open-pit mines in Tehran, Iran were selected for this research study. First, the environmental variables such as air temperature, wet-bulb temperature, globe temperature, relative humidity and air flow rate were measured; then UTCI, wet-bulb globe temperature (WBGT) and heat stress index (HSI) indices were calculated. Simultaneously, physiological parameters including heart rate, oral temperature, tympanic temperature and skin temperature of workers were measured. UTCI and WBGT are positively significantly correlated with all environmental parameters (p<0.03), except for air velocity (r<-0.39; p>0.05). Moreover, a strong significant relationship was found between UTCI and WBGT (r=0.95; p<0.001). The significant positive correlations exist between physiological parameters including oral temperature, tympanic and skin temperatures and heart rate and both the UTCI and WBGT indices (p<0.029). The highest correlation coefficient has been found between the UTCI and physiological parameters. Due to the low humidity and air velocity (~<1 m/s) in understudied mines, UTCI index appears to be appropriate to assess the occupational heat stress in these outdoor workplaces.
Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
NASA Astrophysics Data System (ADS)
Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan
2018-01-01
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.
Method and apparatus for checking fire detectors
NASA Technical Reports Server (NTRS)
Clawson, G. T. (Inventor)
1974-01-01
A fire detector checking method and device are disclosed for nondestructively verifying the operation of installed fire detectors of the type which operate on the principle of detecting the rate of temperature rise of the ambient air to sound an alarm and/or which sound an alarm when the temperature of the ambient air reaches a preset level. The fire alarm checker uses the principle of effecting a controlled simulated alarm condition to ascertain wheather or not the detector will respond. The checker comprises a hand-held instrument employing a controlled heat source, e.g., an electric lamp having a variable input, for heating at a controlled rate an enclosed mass of air in a first compartment, which air mass is then disposed about the fire detector to be checked. A second compartment of the device houses an electronic circuit to sense and adjust the temperature level and heating rate of the heat source.
NASA Astrophysics Data System (ADS)
Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.
2017-12-01
Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.
NASA Technical Reports Server (NTRS)
Callis, S. L.; Sakamoto, C.
1984-01-01
Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.
NASA Technical Reports Server (NTRS)
Donoughe, Patrick L; Livingood, John N B
1955-01-01
Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.
Relation between inflammables and ignition sources in aircraft environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1951-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and discussed. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings through which flame will not propagate are presented and discussed. Ignition temperatures and limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressures and minimum size of opening for flame propagation in gasoline-air mixtures are included; inerting of gasoline-air mixtures is discussed.
Impacts of Climate Change and Variability on Water Resources in the Southeast USA
Ge Sun; Peter V. Caldwell; Steven G. McNulty; Aris P. Georgakakos; Sankar Arumugam; James Cruise; Richard T. McNider; Adam Terando; Paul A. Conrads; John Feldt; Vasu Misra; Luigi Romolo; Todd C. Rasmussen; Daniel A. Marion
2013-01-01
Key FindingsClimate change is affecting the southeastern USA, particularly increases in rainfall variability and air temperature, which have resulted in more frequent hydrologic extremes, such as high‐intensity storms (tropical storms and hurricanes), flooding, and drought events.Future climate warming likely will...
A model for evaluating stream temperature response to climate change scenarios in Wisconsin
Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven
2010-01-01
Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.
NASA Astrophysics Data System (ADS)
Akers, Pete D.; Welker, Jeffrey M.; Brook, George A.
2017-09-01
Air temperature is correlated with precipitation oxygen isotope (δ18Oprcp) variability for much of the eastern and central United States, but the nature of this δ18Oprcp-temperature relationship is largely based on data coarsely aggregated at a monthly resolution. We constructed a database of 6177 weeks of isotope and precipitation-day air temperature data from 25 sites to determine how more precise data change our understanding of this classic relationship. Because the δ18Oprcp-temperature relationship is not perfectly linear, trends in the regression residuals suggest the influence of additional environmental factors such as moisture recycling and extratropical cyclone interactions. Additionally, the temporal relationships between δ18Oprcp and temperature observed in the weekly data at individual sites can explain broader spatial patterns observed across the study region. For 20 of 25 sites, the δ18Oprcp-temperature relationship slope is higher for colder precipitation than for warmer precipitation. Accordingly, northern and western sites with relatively more cold precipitation events have steeper overall relationships with higher slope values than southeastern sites that have more warm precipitation events. Although the magnitude of δ18Oprcp variability increases to the north and west, the fraction of δ18Oprcp variability explained by temperature increases due to wider annual temperature ranges, producing stronger relationships in these regions. When our δ18Oprcp-temperature data are grouped by month, we observe significant variations in the relationship from month to month. This argues against a principal causative role for temperature and suggests the existence of an alternative environmental control on δ18Oprcp values that simply covaries seasonally with temperature.
Daily Air Temperature and Electricity Load in Spain.
NASA Astrophysics Data System (ADS)
Valor, Enric; Meneu, Vicente; Caselles, Vicente
2001-08-01
Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.
Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik
2008-07-01
Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.
Tawatsupa, Benjawan; Dear, Keith; Kjellstrom, Tord; Sleigh, Adrian
2014-03-01
We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31 °C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4 °C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13 % unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.
NASA Astrophysics Data System (ADS)
Zhang, Ziran; Glaser, Steven D.; Bales, Roger C.; Conklin, Martha; Rice, Robert; Marks, Danny G.
2017-05-01
A network of sensors for spatially representative water-balance measurements was developed and deployed across the 2000 km2 snow-dominated portion of the upper American River basin, primarily to measure changes in snowpack and soil-water storage, air temperature, and humidity. This wireless sensor network (WSN) consists of 14 sensor clusters, each with 10 measurement nodes that were strategically placed within a 1 km2 area, across different elevations, aspects, slopes, and canopy covers. Compared to existing operational sensor installations, the WSN reduces hydrologic uncertainty in at least three ways. First, redundant measurements improved estimation of lapse rates for air and dew-point temperature. Second, distributed measurements captured local variability and constrained uncertainty in air and dew-point temperature, snow accumulation, and derived hydrologic attributes important for modeling and prediction. Third, the distributed relative-humidity measurements offer a unique capability to monitor upper-basin patterns in dew-point temperature and characterize elevation gradient of water vapor-pressure deficit across steep, variable topography. Network statistics during the first year of operation demonstrated that the WSN was robust for cold, wet, and windy conditions in the basin. The electronic technology used in the WSN-reduced adverse effects, such as high current consumption, multipath signal fading, and clock drift, seen in previous remote WSNs.
A physically based analytical spatial air temperature and humidity model
NASA Astrophysics Data System (ADS)
Yang, Yang; Endreny, Theodore A.; Nowak, David J.
2013-09-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.
Near-continuous thermal monitoring of a diverse tropical forest canopy
NASA Astrophysics Data System (ADS)
Pau, S.; Still, C. J.; Kim, Y.; Detto, M.
2015-12-01
Tropical species may be highly sensitive to temperature increases associated with climate change because of their narrow thermal tolerances. Recent work has highlighted the importance of temperature in tropical forest function, however most studies use air temperature measurements from sparse meteorological stations even though surface temperatures are known to deviate from air temperatures. Tropical organisms exist in microclimates that are highly variable in space and time and not easily measured in natural environments. This is in part because of the complex structure of tropical forests and the potential for organisms themselves to modify their own environment. In the case of plants, leaf temperature is linked to the water and surface energy balance of their microenvironment. Here we present results from near-continuous thermal camera monitoring of the forest canopy in Barro Colorado Island, Panama (5-minute intervals for approximately 9 months). We compare daytime (maximum) vs. nighttime (minimum) differences between canopy temperature and air temperature, relative humidity, solar radiation, and precipitation. On average, canopy temperatures are consistently ~2 degrees Celsius higher than air temperatures. These data can paired with flux tower data on-site and used to advance understanding of temperature controls on the structure and function of tropical forests, such as carbon assimilation, phenology, and habitat monitoring, and can be integrated into models to improve predictions of tropical forest response to future climate change.
Climate-induced changes in river water temperature in North Iberian Peninsula
NASA Astrophysics Data System (ADS)
Soto, Benedicto
2017-06-01
This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990-2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2-3.1 °C for 2061-2090 relative to 1961-1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061-2090 while in 1961-1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000-2014).
40 CFR 53.56 - Test for effect of variations in ambient pressure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement accuracy. (iv) Coefficient of variability measurement accuracy. (v) Ambient pressure measurement... through the sample filter, measured in actual volume units at the temperature and pressure of the air as... volumetric flow rate corrections are made based on measurements of actual ambient temperature and pressure...
Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes
NASA Astrophysics Data System (ADS)
Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.
2017-12-01
Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme conditions had a dramatic effect on forest carbon and energy exchanges: the canopy switched from daytime net carbon uptake prior to the heatwave to net carbon release during and immediately after the heat wave. The latent heat flux from evapotranspiration increased during the heat wave, while sensible heat fluxes were lower.
Multiple jet study data correlations. [data correlation for jet mixing flow of air jets
NASA Technical Reports Server (NTRS)
Walker, R. E.; Eberhardt, R. G.
1975-01-01
Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.
Global lake response to the recent warming hiatus
NASA Astrophysics Data System (ADS)
Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.
2018-05-01
Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.
Laureano-Rosario, Abdiel E; Garcia-Rejon, Julian E; Gomez-Carro, Salvador; Farfan-Ale, Jose A; Muller-Karger, Frank E
2017-08-01
Accurately predicting vector-borne diseases, such as dengue fever, is essential for communities worldwide. Changes in environmental parameters such as precipitation, air temperature, and humidity are known to influence dengue fever dynamics. Furthermore, previous studies have shown how oceanographic variables, such as El Niño Southern Oscillation (ENSO)-related sea surface temperature from the Pacific Ocean, influences dengue fever in the Americas. However, literature is lacking on the use of regional-scale satellite-derived sea surface temperature (SST) to assess its relationship with dengue fever in coastal areas. Data on confirmed dengue cases, demographics, precipitation, and air temperature were collected. Incidence of weekly dengue cases was examined. Stepwise multiple regression analyses (AIC model selection) were used to assess which environmental variables best explained increased dengue incidence rates. SST, minimum air temperature, precipitation, and humidity substantially explained 42% of the observed variation (r 2 =0.42). Infectious diseases are characterized by the influence of past cases on current cases and results show that previous dengue cases alone explained 89% of the variation. Ordinary least-squares analyses showed a positive trend of 0.20±0.03°C in SST from 2006 to 2015. An important element of this study is to help develop strategic recommendations for public health officials in Mexico by providing a simple early warning capability for dengue incidence. Copyright © 2017 Elsevier B.V. All rights reserved.
Mitigation of building-related polychlorinated biphenyls in indoor air of a school
2012-01-01
Background Sealants and other building materials sold in the U.S. from 1958 - 1971 were commonly manufactured with polychlorinated biphenyls (PCBs) at percent quantities by weight. Volatilization of PCBs from construction materials has been reported to produce PCB levels in indoor air that exceed health protective guideline values. The discovery of PCBs in indoor air of schools can produce numerous complications including disruption of normal operations and potential risks to health. Understanding the dynamics of building-related PCBs in indoor air is needed to identify effective strategies for managing potential exposures and risks. This paper reports on the efficacy of selected engineering controls implemented to mitigate concentrations of PCBs in indoor air. Methods Three interventions (ventilation, contact encapsulation, and physical barriers) were evaluated in an elementary school with PCB-containing caulk and elevated PCB concentrations in indoor air. Fluorescent light ballasts did not contain PCBs. Following implementation of the final intervention, measurements obtained over 14 months were used to assess the efficacy of the mitigation methods over time as well as temporal variability of PCBs in indoor air. Results Controlling for air exchange rates and temperature, the interventions produced statistically significant (p < 0.05) reductions in concentrations of PCBs in indoor air of the school. The mitigation measures remained effective over the course of the entire follow-up period. After all interventions were implemented, PCB levels in indoor air were associated with indoor temperature. In a "broken-stick" regression model with a node at 20°C, temperature explained 79% of the variability of indoor PCB concentrations over time (p < 0.001). Conclusions Increasing outdoor air ventilation, encapsulating caulk, and constructing a physical barrier over the encapsulated material were shown to be effective at reducing exposure concentrations of PCBs in indoor air of a school and also preventing direct contact with PCB caulk. In-place management methods such as these avoid the disruption and higher costs of demolition, disposal and reconstruction required when PCB-containing building materials are removed from a school. Because of the influence of temperature on indoor air PCB levels, risk assessment results based on short-term measurements, e.g., a single day or season, may be erroneous and could lead to sub-optimal allocation of resources. PMID:22490055
Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...
NASA Astrophysics Data System (ADS)
Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.
2010-09-01
Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.
NASA Technical Reports Server (NTRS)
Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.
1995-01-01
Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root-mean-square errors (rmse's) were over 3 C for GHCN models and over 2 C for COOP models for winter months, and near 2 C for GHCN models and near 1.5 C for COOP models for summer months.
Climatic variability in Princess Elizabeth Land (East Antarctica) over the last 350 years
NASA Astrophysics Data System (ADS)
Ekaykin, Alexey A.; Vladimirova, Diana O.; Lipenkov, Vladimir Y.; Masson-Delmotte, Valérie
2017-01-01
We use isotopic composition (δD) data from six sites in Princess Elizabeth Land (PEL) in order to reconstruct air temperature variability in this sector of East Antarctica over the last 350 years. First, we use the present-day instrumental mean annual surface air temperature data to demonstrate that the studied region (between Russia's Progress, Vostok and Mirny research stations) is characterized by uniform temperature variability. We thus construct a stacked record of the temperature anomaly for the whole sector for the period of 1958-2015. A comparison of this series with the Southern Hemisphere climatic indices shows that the short-term inter-annual temperature variability is primarily governed by the Antarctic Oscillation (AAO) and Interdecadal Pacific Oscillation (IPO) modes of atmospheric variability. However, the low-frequency temperature variability (with period > 27 years) is mainly related to the anomalies of the Indian Ocean Dipole (IOD) mode. We then construct a stacked record of δD for the PEL for the period of 1654-2009 from individual normalized and filtered isotopic records obtained at six different sites (PEL2016
stacked record). We use a linear regression of this record and the stacked PEL temperature record (with an apparent slope of 9 ± 5.4 ‰ °C-1) to convert PEL2016 into a temperature scale. Analysis of PEL2016 shows a 1 ± 0.6 °C warming in this region over the last 3 centuries, with a particularly cold period from the mid-18th to the mid-19th century. A peak of cooling occurred in the 1840s - a feature previously observed in other Antarctic records. We reveal that PEL2016 correlates with a low-frequency component of IOD and suggest that the IOD mode influences the Antarctic climate by modulating the activity of cyclones that bring heat and moisture to Antarctica. We also compare PEL2016 with other Antarctic stacked isotopic records. This work is a contribution to the PAGES (Past Global Changes) and IPICS (International Partnerships in Ice Core Sciences) Antarctica 2k projects.
NASA Astrophysics Data System (ADS)
Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.
2015-12-01
The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.
NASA Astrophysics Data System (ADS)
Nazarova, Larisa; Diekmann, Bernhard; Pestrjakova, Ludmila; Herzschuh, Ulrike; Subetto, Dmitry
2010-05-01
Yakutia (Russia, northeastern part of Eurasia) represents one of Earths most extreme climatic settings in the world with deep-reaching frozen ground and a semiarid continental climate with highest seasonal temperature contrasts in the northern hemisphere. The amplitude of temperature variations around the year sometimes exceeds 100oC. There are few examples of quantitative palaeoecological studies in Siberia and these data have to be tested by quantitative studies from other sites in this region, inferred from different proxies and using regional calibration datasets and temperature models that are still lacking. Chironomid midges (Insecta, Diptera, Chironomidae) have been widely used to reconstruct past climate variability in many areas of Western Europe and North America. A chironomid-mean July air temperature inference model has been developed, based on a modern calibration set of 200 lakes sampled along a transect from 110° to 159° E and 61° to73° N in northern Russia. The inference model was applied to sediment cores from 2 lakes in the Central Yakutia in order to reconstruct past July air temperatures. The lacustrine records span mid- to late Holocene. The downcore variability in the chironomid assemblages and the composition of organic matter give evidence of climate-driven and interrelated changes in biological productivity, lacustrine trophic states, and lake-level fluctuations. Three phases of the climate development in Central Yakutia can be derived from the geochemical composition of the lake cores and according to the inferred from chironomid assemblages mean July air ToC. Content of organic matters reached maximal values in the period between 7000-4500 yBP. Sedimentation rate is especially high, numerous molluscs shells are found in sediments. All this along with the reconstructed air temperature confirmed that Mid Holocene optimum in Central Yakutia took place in this period with the maximal temperatures up to 4oC above present day ToC. Strong faunistic changes take place after 4500 yBP. Temperature reconstruction has shown that around 4500 ka BP air temperature went down up to 2oC below modern temperature. These observations confirm end of Holocene climate optimum at this time. The lake status record reveals a long-term trend towards lake-level lowering in the course of climate deterioration after 4.2 cal. ka BP and reduced evaporation as well as progressive sediment infill. This long-term trend is overprinted by short-term fluctuations at centennial time scales with high lake levels and decreased biological productivity during cool climate spells with reduced evaporation, as also observed in modern thermokarst lakes of Central Yakutia.
Mast, M. Alisa
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.
Shallow bedrock limits groundwater seepage-based headwater climate refugia
Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.
2018-01-01
Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger-scale climate refugia for cold water fish species, even with strong groundwater discharge.
Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691
Evaluation of Deterministic Models for Near Surface Soil Moisture Prediction
1988-05-01
soil hydrological properties (max of 3) ’ . 30. mean length of segment (hWen) 31. cmax of each layer ( cmax I (k,j), k= kno, j=1,jno) 32. porosity of...kelvin Variable name: tac Subroutines: ’bevapor’ Description: air temperature in celsius • * Variable name: tak Subroutines: ’bevapor’ Description: air...3 C - 1 *’ C GET-TABLE-VALUES assign 9865 to i9930 goto 9930 9865 cloud-yn takc-ta tac-( tak -273.15) ea-6. 108*rh*exp( (ac*tac)/ ( tak -bc)) alphi
Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi
2016-02-15
Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Seasonal variation, weather and behavior in day-care children: a multilevel approach
NASA Astrophysics Data System (ADS)
Ciucci, Enrica; Calussi, Pamela; Menesini, Ersilia; Mattei, Alessandra; Petralli, Martina; Orlandini, Simone
2013-11-01
This study analyzes the effect of weather variables, such as solar radiation, indoor and outdoor air temperature, relative humidity and time spent outdoor, on the behavior of 2-year-old children and their affects across different seasons: winter, spring and summer. Participants were a group of 61 children (33 males and 28 females) attending four day-care centers in Florence (Central Italy). Mean age of children at the beginning of the study was 24.1 months ( SD = 3.6). We used multilevel linear analyses to account for the hierarchical structure of our data. The study analyzed the following behavioral variables: Activity Level, Attentional Focusing, Frustration, and Aggression. Results showed a different impact of some weather variables on children’s behavior across seasons, indicating that the weather variable that affects children’s behavior is usually the one that shows extreme values during the studied seasons, such as air temperature and relative humidity in winter and summer. Studying children and their reactions to weather conditions could have potentially wide-reaching implications for parenting and teaching practices, as well as for researchers studying social relationships development.
NASA Astrophysics Data System (ADS)
Palus, Milan; Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, Sergey; Tsonis, Anastasios
2016-04-01
Complexity of the climate system stems not only from the fact that it is variable over a huge range of spatial and temporal scales, but also from the nonlinear character of the climate system that leads to interactions of dynamics across scales. The dynamical processes on large time scales influence variability on shorter time scales. This nonlinear phenomenon of cross-scale causal interactions can be observed due to the recently introduced methodology [1] which starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited bandwidth, described using their instantaneous phases and amplitudes. Then their statistical associations are tested in order to search for interactions across time scales. An information-theoretic formulation of the generalized, nonlinear Granger causality [2] uncovers causal influence and information transfer from large-scale modes of climate variability with characteristic time scales from years to almost a decade to regional temperature variability on short time scales. In analyses of air temperature records from various European locations, a quasioscillatory phenomenon with the period around 7-8 years has been identified as the factor influencing variability of surface air temperature (SAT) on shorter time scales. Its influence on the amplitude of the SAT annual cycle was estimated in the range 0.7-1.4 °C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7 °C in the annual SATA means. The strongest effect of the 7-8 year cycle was observed in the winter SATA means where it reaches 4-5 °C in central European station and reanalysis data [3]. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) [2] M. Palus, M. Vejmelka, Phys. Rev. E 75, 056211 (2007) [3] N. Jajcay, J. Hlinka, S. Kravtsov, A. A. Tsonis, M. Palus, Time-scales of the European surface air temperature variability: The role of the 7-8 year cycle. Geophys. Res. Lett., in press, DOI: 10.1002/2015GL067325
Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland
2011-10-01
We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO(x) and O(3) concentrations had only a marginal influence. The influence of SO(2) concentration was negligible. Although our data analysis suggests a relationship between SLA and NO(x)/O(3) concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Observed Decrease of North American Winter Temperature Variability
NASA Astrophysics Data System (ADS)
Rhines, A. N.; Tingley, M.; McKinnon, K. A.; Huybers, P. J.
2015-12-01
There is considerable interest in determining whether temperature variability has changed in recent decades. Model ensembles project that extratropical land temperature variance will detectably decrease by 2070. We use quantile regression of station observations to show that decreasing variability is already robustly detectable for North American winter during 1979--2014. Pointwise trends from GHCND stations are mapped into a continuous spatial field using thin-plate spline regression, resolving small-scales while providing uncertainties accounting for spatial covariance and varying station density. We find that variability of daily temperatures, as measured by the difference between the 95th and 5th percentiles, has decreased markedly in winter for both daily minima and maxima. Composites indicate that the reduced spread of winter temperatures primarily results from Arctic amplification decreasing the meridional temperature gradient. Greater observed warming in the 5th relative to the 95th percentile stems from asymmetric effects of advection during cold versus warm days; cold air advection is generally from northerly regions that have experienced greater warming than western or southwestern regions that are generally sourced during warm days.
Assessment of Air Temperature Trends in the Source Region of Yellow River and Its Sub-Basins, China
NASA Astrophysics Data System (ADS)
Iqbal, Mudassar; Wen, Jun; Wang, Xin; Lan, Yongchao; Tian, Hui; Anjum, Muhammad Naveed; Adnan, Muhammad
2018-02-01
Changes in climatic variables at the sub-basins scale (having different features of land cover) are crucial for planning, development and designing of water resources infrastructure in the context of climate change. Accordingly, to explore the features of climate changes in sub-basins of the Source Region of Yellow River (SRYR), absolute changes and trends of temperature variables, maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tavg) and diurnal temperature range (DTR), were analyzed annually and seasonally by using daily observed air temperature dataset from 1965 to 2014. Results showed that annual Tmax, Tmin and Tavg for the SRYR were experiencing warming trends respectively at the rate of 0.28, 0.36 and 0.31°C (10 yr)-1. In comparison with the 1st period (1965-1989), more absolute changes and trends towards increasing were observed during the 2nd period (1990-2014). Apart from Tangnaihai (a low altitude sub-basin), these increasing trends and changes seemed more significant in other basins with highest magnitude during winter. Among sub-basins the increasing trends were more dominant in Huangheyan compared to other sub-basins. The largest increase magnitude of Tmin, 1.24 and 1.18°C (10 yr)-1, occurred in high altitude sub-basins Jimai and Huangheyan, respectively, while the smallest increase magnitude of 0.23°C (10 yr)-1 occurred in a low altitude sub-basin Tangnaihai. The high elevation difference in Tangnaihai probably was the main reason for the less increase in the magnitude of Tmin. In the last decade, smaller magnitude of trend for all temperature variables signified the signal of cooling in the region. Overall, changes of temperature variables had significant spatial and seasonal variations. It implies that seasonal variations of runoff might be greater or different for each sub-basin.
Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.
2005-01-01
The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.
Change in the magnitude and mechanisms of global temperature variability with warming.
Brown, Patrick T; Ming, Yi; Li, Wenhong; Hill, Spencer A
2017-01-01
Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.
Change in the Magnitude and Mechanisms of Global Temperature Variability with Warming
NASA Astrophysics Data System (ADS)
Brown, P. T.; Ming, Y.; Li, W.; Hill, S. A.
2017-12-01
Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.
Spatial variability of chilling temperature in Turkey and its effect on human comfort
NASA Astrophysics Data System (ADS)
Toros, H.; Deniz, A.; Şaylan, L.; Şen, O.; Baloğlu, M.
2005-03-01
Air temperature, absolute humidity and wind speed are the most important meteorological parameters that affect human thermal comfort. Because of heat loss, the human body feels air temperatures different to actual temperatures. Wind speed is the most practical element for consideration in terms of human comfort. In winter, due to the strong wind speeds, the sensible temperature is generally colder than the air temperature. This uncomfortable condition can cause problems related to tourism, heating and cooling. In this study, the spatial and temporal distributions of cooling temperatures and Wind Chill Index (WCI) are analyzed for Turkey, and their effect on the human body is considered. In this paper, monthly cooling temperatures between October and March in the years 1929 to 1990 are calculated by using measured temperature and wind speed at 79 stations in Turkey. The influence of wind chill is especially observed in the regions of the Aegean, west and middle Black Sea and east and central Anatolia. The wind chill in these regions has an uncomfortable effect on the human body. Usually, the WCI value is higher in western, northern and central Anatolia than in other regions.
Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years
NASA Astrophysics Data System (ADS)
Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.
2014-03-01
We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.
Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort
NASA Astrophysics Data System (ADS)
López-Moreno, Juan Ignacio; Navarro-Serrano, F.; Azorín-Molina, C.; Sánchez-Navarrete, P.; Alonso-González, E.; Rico, I.; Morán-Tejeda, E.; Buisan, S.; Revuelto, J.; Pons, M.; Vicente-Serrano, S. M.
2018-03-01
A set of 17 air temperature and relative humidity sensors were used to analyze the temporal variability of surface air temperature (Tair), wet bulb temperature (Twb), and daily snowmaking hours (SM, number of hours per day with Twb < - 2 °C), lapse rates, and the occurrence of thermal inversions at the Formigal ski resort (Spanish Pyrenees) from December to March during three consecutive ski seasons (2012-2013, 2013-2014, and 2014-2015). The Tair and Twb lapse rates showed strong hourly and daily variability, with both exhibiting almost identical temporal fluctuations. The Twb exhibited average lapse rates that were slightly steeper (- 5.2 °C/km) than those observed for Tair (- 4.9 °C/km). The less steep lapse rates and most thermal inversions were observed in December. Days having less (more) steep Tair and Twb lapse rates were observed under low (high) wind speeds and high (low) relative humidity and air pressure. The temporal dynamics of the SM lapse rates was more complex, as this involved consideration of the average Tair in the ski resort, in addition to the driving factors of the spatio-temporal variability of Twb. Thus, on a number of cold (warm) days, snowmaking was feasible at all elevations at the ski resort, independently of the slopes of the lapse rates. The SM exhibited an average daily lapse rate of 8.2 h/km, with a progressive trend of increase from December to March. Weather types over the Iberian Peninsula tightly control the driving factors of the Tair, Twb, and SM lapse rates (wind speed, relative humidity, and Tair), so the slopes of the lapse rates and the frequency of inversions in relation to elevation for the three variables are very dependent on the occurrence of specific weather types. The less steep lapse rates occurred associated with advections from the southeast, although low lapse rates also occurred during advections from the east and south, and under anticyclonic conditions. The steepest Tair and Twb lapse rates were observed during north and northwest advections, while the steepest rates for SM were observed during days of cyclonic circulation and advections from the northeast.
Potential solar radiation and land cover contributions to digital climate surface modeling
NASA Astrophysics Data System (ADS)
Puig, Pol; Batalla, Meritxell; Pesquer, Lluís; Ninyerola, Miquel
2016-04-01
Overview: We have designed a series of ad-hoc experiments to study the role of factors that a priori have a strong weight in developing digital models of temperature and precipitation, such as solar radiation and land cover. Empirical test beds have been designed to improve climate (mean air temperature and total precipitation) digital models using statistical general techniques (multiple regression) with residual correction (interpolated with inverse weighting distance). Aim: Understand what roles these two factors (solar radiation and land cover) play to incorporate them into the process of generating mapping of temperature and rainfall. Study area: The Iberian Peninsula and supported in this, Catalonia and the Catalan Pyrenees. Data: The dependent variables used in all experiments relate to data from meteorological stations precipitation (PL), mean temperature (MT), average temperature minimum (MN) and maximum average temperature (MX). These data were obtained monthly from the AEMET (Agencia Estatal de Meteorología). Data series of stations covers the period between 1950 to 2010. Methodology: The idea is to design ad hoc, based on a sample of more equitable space statistician, to detect the role of radiation. Based on the influence of solar radiation on the temperature of the air from a quantitative point of view, the difficulty in answering this lies in the fact that there are lots of weather stations located in areas where solar radiation is similar. This suggests that the role of the radiation variable remains "off" when, instead, we intuitively think that would strongly influence the temperature. We have developed a multiple regression analysis between these meteorological variables as the dependent ones (Temperature and rainfall), and some geographical variables: altitude (ALT), latitude (LAT), continentality (CON) and solar radiation (RAD) as the independent ones. In case of the experiment with land covers, we have used the NDVI index as a proxy of land covers and added this variable in to the independents to improve the models. Results: The role of solar radiation does not improve models only under certain conditions and areas, especially in the Pyrennes. The vegetation index NDVI and therefore the land cover on which the station is located, helps improve rainfall and temperature patterns, obtaining various degrees of improvement in terms of molded variables and months.
Hot-salt stress-corrosion of titanium alloys as related to turbine operation
NASA Technical Reports Server (NTRS)
Gray, H. R.
1972-01-01
In an effort to simulate typical compressor operating conditions of current turbine engines, special test facilities were designed. Air velocity, air pressure, air dewpoint, salt deposition temperature, salt concentration, and specimen surface condition were systematically controlled and their influence on hot-salt stress-corrosion evaluated. The influence of both continuous and cyclic stress-temperature exposures was determined. The relative susceptibility of a variety of titanium alloys in commonly used heat-treated conditions was determined. The effects of both environmental and material variables were used to interpret the behavior of titanium alloys under hot-salt stress-corrosion conditions found in jet engines and to appraise their future potential under such conditions.
Relation Between Inflammables and Ignition Sources in Aircraft Environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1950-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
An index of anomalous convective instability to detect tornadic and hail storms
NASA Astrophysics Data System (ADS)
Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong
2017-12-01
In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential tornadic and hail storms in order to understand the environmental conditions affecting severe weather in analytical and model output datasets.
NASA Astrophysics Data System (ADS)
Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos
2011-09-01
Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.
Transpiration rates of urban trees, Aesculus chinensis.
Wang, Hua; Wang, Xiaoke; Zhao, Ping; Zheng, Hua; Ren, Yufen; Gao, Fuyuan; Ouyang, Zhiyun
2012-01-01
Transpiration patterns of Aesculus chinensis in relation to explanatory variables in the microclimatic, air quality, and biological phenomena categories were measured in Beijing, China using the thermal dissipation method. The highest transpiration rate measured as the sap flux density of the trees took place from 10:00 am to 13:00 pm in the summer and the lowest was found during nighttime in the winter. To sort out co-linearity, principal component analysis and variation and hierarchical partitioning methods were employed in data analyses. The evaporative demand index (EDI) consisting of air temperature, soil temperature, total radiation, vapor pressure deficit, and atmospheric ozone (O3), explained 68% and 80% of the hourly and daily variations of the tree transpiration, respectively. The independent and joint effects of EDI variables together with a three-variable joint effect exerted the greatest influences on the variance of transpiration rates. The independent effects of leaf area index and atmospheric O3 and their combined effect exhibited minor yet significant influences on tree transpiration rates.
Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro
2018-06-05
By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.
Eisenman, David P; Wilhalme, Holly; Tseng, Chi-Hong; Chester, Mikhail; English, Paul; Pincetl, Stephanie; Fraser, Andrew; Vangala, Sitaram; Dhaliwal, Satvinder K
2016-09-01
In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and whether these relationships are sensitive to temperature. Using Poisson regression modeling with heat-related mortality as the outcome, we assessed the interaction of increasing temperature with social vulnerability, access to publicly available air conditioned space, home air conditioning and the thermal properties of residences. As temperatures increase, mortality from heat-related illness increases less in census tracts with more publicly accessible cooled spaces. Mortality from all internal causes of death did not have this association. Building thermal protection was not associated with mortality. Social vulnerability was still associated with mortality after adjusting for the infrastructure variables. To reduce heat-related mortality, the use of public cooled spaces might be expanded to target the most vulnerable. Copyright © 2016 Elsevier Ltd. All rights reserved.
North Atlantic sub-decadal variability in climate models
NASA Astrophysics Data System (ADS)
Reintges, Annika; Martin, Thomas; Latif, Mojib; Park, Wonsun
2017-04-01
The North Atlantic Oscillation (NAO) is the dominant variability mode for the winter climate of the North Atlantic sector. During a positive (negative) NAO phase, the sea level pressure (SLP) difference between the subtropical Azores high and the subpolar Icelandic low is anomalously strong (weak). This affects, for example, temperature, precipitation, wind, and surface heat flux over the North Atlantic, and over large parts of Europe. In observations we find enhanced sub-decadal variability of the NAO index that goes along with a dipolar sea surface temperature (SST) pattern. The corresponding SLP and SST patterns are reproduced in a control experiment of the Kiel Climate Model (KCM). Large-scale air-sea interaction is suggested to be essential for the North Atlantic sub-decadal variability in the KCM. The Atlantic Meridional Overturning Circulation (AMOC) plays a key role, setting the timescale of the variability by providing a delayed negative feedback to the NAO. The interplay of the NAO and the AMOC on the sub-decadal timescale is further investigated in the CMIP5 model ensemble. For example, the average CMIP5 model AMOC pattern associated with sub-decadal variability is characterized by a deep-reaching dipolar structure, similar to the KCM's sub-decadal AMOC variability pattern. The results suggest that dynamical air-sea interactions are crucial to generate enhanced sub-decadal variability in the North Atlantic climate.
Solar and atmospheric forcing on mountain lakes.
Luoto, Tomi P; Nevalainen, Liisa
2016-10-01
We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of atmospheric energy transport on amplification of winter warming in the Arctic
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Kuzmina, Svetlana; Urazgildeeva, Aleksandra; Bobylev, Leonid
2016-04-01
The study was performed on base reanalysis ERA/Interim to discover the link between amplified warming in the high Arctic and the atmospheric transport of heat and water vapor through the 70 ° N. The partitioning transports across the Atlantic and Pacific "gates" is established the link between variations of atmospheric flux through the "gates" and a larger part of the variability of the average surface air temperature, water vapor content and its trends in the winter 1980-2014. Influence of winter (December-February) atmospheric transport across the Atlantic "gate" at the 1000 hPa on variability of average for January-February surface air temperature to north 70° N is estimated correlation coefficient 0.75 and contribution to the temperature trend 40%. These results for the first time denote the leading role of increasing atmospheric transport on the amplification of winter warming in the high Arctic. The investigation is supported with RFBR project 15-05-03512.
Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M
2016-01-01
Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.
NASA Technical Reports Server (NTRS)
Won, Young-In; Vollimer, Bruce; Theobald, Mike; Hua, Xin-Min
2008-01-01
The Atmospheric Infrared Sounder (AIRS) instrument suite is designed to observe and characterize the entire atmospheric column from the surface to the top of the atmosphere in terms of surface emissivity and temperature, atmospheric temperature and humidity profiles, cloud amount and height, and the spectral outgoing infrared radiation on a global scale. The AIRS Data Support Team at the GES DISC provides data support to assist others in understanding, retrieving and extracting information from the AIRS/AMSU/HSB data products. Because a number of years has passed since its operation started, the amount of data has reached a certain level of maturity where we can address the climate change study utilizing AIRS data, In this presentation we will list various service we provide and to demonstrate how to utilize/apply the existing service to long-term and short-term variability study.
NASA Astrophysics Data System (ADS)
Cho, K. H.; Chang, E. C.
2017-12-01
In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.
O'Connor, Rory S; Hails, Rosemary S; Thomas, Jeremy A
2014-04-01
The dramatic recovery of three species of grassland specialist butterfly threatened with extinction at their high latitude range limits in the 1980s has been attributed to two factors: increased grazing on calcareous grassland sites and warmer air temperatures. Both result in the warming of soil surface temperatures, favourable to the larvae of these species. We address the influence of both of these factors on the habitat usage of the butterfly Polyommatus bellargus, undergoing recovery at its northern range edge. We test the hypothesis that the larval niche of P. bellargus has become less constrained in the past three decades, whilst controlling for changes in habitat structure. Once habitat change has been accounted for we find no evidence for a broadening of the larval niche of P. bellargus. Further, we show that coincident with the recovery of P. bellargus there have been drastic reductions in average turf height across UK chalk grasslands, but changes in air temperature have been highly variable. We conclude that changes to soil surface temperatures caused by reducing turf heights will have been a more consistent influence than air temperature increases, and so habitat improvements through increased grazing will have been the major driver of recovery in P. bellargus. We consider the need to account for changes in habitat when exploring the impacts of recent climate change on local habitats in thermophilous species, and emphasise the continued importance of habitat management to support such species under variable local climates.
NASA Astrophysics Data System (ADS)
AL, R.
2016-12-01
It has been widely recognized that western Himalayan region depends heavily on glacier and snow melt for its water needs. This is true especially for the Chenab sub-basin and more generally for other sub-catchments of the mighty Indus catering to the water demands of millions of stake holders who depend on this water resource. However, there are very few studies available to understand high altitude glaciated catchments, the climatic controls over their flow regimes, and their dependency on glacier mass balances, mainly because of poor access. Hence, the proglacial stream discharges from Chhota Shigri Glacier, a representative glacier of western Himalayan region has been analyzed for understanding the impact of rising air temperatures and highly variable summer precipitation events on discharges that are sourced majorly from snow melt and glacier wastage. This study, for the first time attempts to understand the factors influencing the interannual, subseasonal, and the diurnal variability observed in this representative catchment over four ablation seasons (2010-2013), by monitoring solar radiation, air temperature, summer precipitation, albedo and transient snow cover. The proglacial discharge is governed by air temperatures and albedo-enhancing summer precipitation events, which also enhances transient snow cover. While, the positive mass balance years gave rise to lesser proglacial discharges in comparison to negative mass balance years, lesser winter accumulation was compensated by the lower ablation resulting summer snowfall events in some years. While rising summer air temperatures give rise to glacier wastage, the role of melting transient snow cover on stream discharge is highly significant, especially for positive mass balance years. The pronounced interannual variations and the decreased proglacial discharge in comparison to 1980s suggest that Chhota Shigri Glacier is possibly wasting its way to reach equilibrium to the changed climatic conditions of the 21st century; however these findings need to be corroborated with runoff modeling.
Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale
NASA Astrophysics Data System (ADS)
Tanaka, Hiroshi L.; Tamura, Mina
2016-09-01
In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.
NASA Astrophysics Data System (ADS)
Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.
2013-12-01
Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow and heat transport model (HydroGeoSphere). Subsequently, time series of vertical groundwater fluxes were computed based on the high-resolution vertical streambed sediment temperature profiles by coupling the model with PEST. The calculated vertical flux time series show spatial differences in discharge between the two HR-DTS sites. A similar temporal variability in vertical fluxes at the two test sites can also be observed, most likely linked to rainfall-runoff processes. The effect of solar radiation as streambed conduction is visible both at the exposed and shaded test site in form of increased diel temperature oscillations up to 14 cm depth from the streambed surface, with the test site exposed to solar radiation showing larger diel temperature oscillations.
Effects of the 7-8-year cycle in daily mean air temperature as a cross-scale information transfer
NASA Astrophysics Data System (ADS)
Jajcay, Nikola; Hlinka, Jaroslav; Paluš, Milan
2015-04-01
Using a novel nonlinear time-series analysis method, an information transfer from larger to smaller scales of the air temperature variability has been observed in daily mean surface air temperature (SAT) data from European stations as the influence of the phase of slow oscillatory phenomena with periods around 6-11 years on amplitudes of the variability characterized by smaller temporal scales from a few months to 4-5 years [1]. The strongest effect is exerted by an oscillatory mode with the period close to 8 years and its influence can be seen in 1-2 °C differences of the conditional SAT means taken conditionally on the phase of the 8-year cycle. The size of this effect, however, changes in space and time. The changes in time are studied using sliding window technique, showing that the effect evolves in time, and during the last decades the effect is stronger and significant. Sliding window technique was used along with seasonal division of the data, and it has been found that the cycle is most pronounced in the winter season. Different types of surrogate data are applied in order to establish statistical significance and distinguish the effect of the 7-8-yr cycle from climate variability on shorter time scales. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001.
Saenz, Daniel L; Kirby, Neil; Gutiérrez, Alonso N
2016-07-01
Temperature and pressure corrections are necessary to account for the varying mass of air in the sensitive volume of a vented ionization chamber (IC) when performing absolute dose measurements. Locations commonly used to measure the presumed IC air temperature may not accurately represent the chamber cavity air temperature, and phantoms undergoing temperature changes further compound the problem. Prior studies have characterized thermal equilibrium in separate phantoms for Farmer chambers alone. However, the purpose of this study was to characterize the cavity air temperature dependence on changes in the ambient temperature and phantom geometry configuration for a wider and more modern variety of chambers to determine if previously published wait times apply to these chambers as well. Thermal conduction properties were experimentally investigated by modifying a PTW 0.3 cm(3) Semiflex IC with a thermocouple replacing the central electrode. Air cavity temperature versus time was recorded in three phantom geometries characteristic of common absolute dose measurements. The phantoms were (15 ± 1) °C before measurement with an IC at the treatment vault temperature of (21 ± 1) °C. Simulations were conducted to provide a theoretical basis for the measurements and to simulate temperature response of a PTW PinPoint® and Farmer chamber. The simulation methods were first validated by comparison with measured Semiflex chamber thermal response curves before extension to the other chambers. Two thermal equilibria curves were recorded on different time scales. IC temperature initially dropped to the colder phantom temperature but subsequently increased as the phantom itself equilibrated with the warmer room temperature. In a large phantom of dimensions (25.5 × 25.5 × 23.4) cm(3), 3 min was required before the IC temperature reached within 0.5 °C of its equilibrium within the phantom. Similarly, wait times of 2 min were needed for 7.5 and 2 cm slab phantoms. Recording of temperature in the phantom was deemed far more accurate than measurement in ambient air due to the air cavity thermally equilibrating with phantom temperature instead of the vented ambient air. Wait times of 3 and 2 min are needed for a cube and 7.5 cm slab phantom, respectively, to achieve 0.2% dosimetric accuracy (temperature accuracy of 0.5 °C). Chamber volume alone did not determine wait times, as a 0.3 cm(3) IC required a longer wait time than a Farmer chamber, suggesting wall thickness as an important variable as well.
Spatiotemporal Variability and in Snow Phenology over Eurasian Continent druing 1966-2012
NASA Astrophysics Data System (ADS)
Zhong, X.; Zhang, T.; Wang, K.; Zheng, L.; Wang, H.
2016-12-01
Snow cover is a key part of the cryosphere, which is a critical component of the global climate system. Snow cover phenology critically effects on the surface energy budget, the surface albedo and hydrological processes. In this study, the climatology and spatiotemporal variability of snow cover phenology were investigated using the long-term (1966-2012) ground-based measurements of daily snow depth from 1103 stations across the Eurasian Continent. The results showed that the distributions of the first date, last date, snow cover duration and number of snow cover days generally represented the latitudinal zonality over the Eurasian Continent, and there were significant elevation gradient patterns in the Tibetan Plateau. The first date of snow cover delayed by about 1.2 day decade-1, the last date of snow cover advanced with the rate of -1.2 day decade-1, snow cover duration and number of snow cover days shortened by about 2.7and 0.6 day decade-1, respectively, from 1966 through 2012. Compared with precipitation, the correlation between snow cover phenology and air temperature was more significant. The changes in snow cover duration were mainly controlled by the changes of air temperature in autumn and spring. The shortened number of snow cover days was affected by rising temperature during the cold season except for the air temperature in autumn and spring.
Morphological variation of stimuli-responsive polypeptide at air-water interface
NASA Astrophysics Data System (ADS)
Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho
2016-12-01
The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.
Temperature-precipitation relationship of the Common Era in northern Europe
NASA Astrophysics Data System (ADS)
Luoto, Tomi P.; Nevalainen, Liisa
2018-05-01
Due to the lack of knowledge on dynamics of the North Atlantic Oscillation (NAO) prior to the last millennium, synchronized records of air temperature and precipitation variability are needed to understand large-scale drivers of the hydroclimate. Here, we use completely synchronized paleolimnological proxy-based records of air temperature and effective precipitation from two Scandinavian lakes with ˜2000-year sediment profiles. We show that the relationship between air temperature and precipitation (T/P ratio) is synchronous in both study sites throughout the records suggesting warm and dry conditions at ˜300-1100 CE and cold and wet conditions at ˜1200-1900 CE. Owing to the significantly increased air temperatures, the most recent T/P ratio has again turned positive. During the first millennium of the Common Era, the T/P mimics patterns in Southern Oscillation index, whereas the second millennium shows response to the NAO index but is also concurrent with solar irradiance shifts. Since our T/P reconstruction is mostly linked with the NAO, we propose the T/P ratio as an indicator of the NAO. Our results from the coherent records provide first-time knowledge on the long-term temperature-precipitation relationship in Northern Europe that increase understanding of the comprehensive hydroclimate system in the region and the NAO dynamics also further back in time.
Microwave sounding units and global warming
NASA Technical Reports Server (NTRS)
Gary, Bruce L.; Keihm, Stephen J.
1991-01-01
A recent work of Spencer and Christy (1990) on precise monitoring of global temperature trends from satellites is critically examined. It is tentatively concluded in the present comment that remote sensing using satellite microwave radiometers can in fact provide a means for the monitoring of troposphere-averaged air temperature. However, for this to be successful more than one decade of data will be required to overcome the apparent inherent variability of global average air temperature. It is argued that the data set reported by Spencer and Christy should be subjected to careful review before it is interpreted as evidence of the presence or absence of global warming. In a reply, Christy provides specific responses to the commenters' objections.
Kim, Young-Min; Kim, Jihyun; Han, Youngshin; Jeon, Byoung-Hak; Cheong, Hae-Kwan; Ahn, Kangmo
2017-01-01
The effects of weather and air pollution on the severity and persistence of atopic dermatitis (AD) are important issues that have not been investigated in detail. The objective of our study was to determine the short-term effects of meteorological variables and air pollution on AD symptoms in children. We enrolled 177 AD patients with 5 years or younger from the Seoul Metropolitan Area, Korea, and followed for 17 months between August 2013 and December 2014. Symptoms records of 35,158 person-days, including itching, sleep disturbance, erythema, dry skin, oozing, and edema, were obtained. We estimated the effect of meteorological variables including daily mean temperature, relative humidity (RH), diurnal temperature range (DTR), rainfall and air pollutants including particulate matter with an aerodynamic diameter ≤10 μm (PM10), nitrogen dioxide (NO2), and tropospheric ozone (O3) on AD symptoms using a generalized linear mixed model with adjustment for related confounding factors. A 5°C increase in outdoor temperature and a 5% increase in outdoor RH was associated with 12.8% (95% confidence intervals (CI): 10.5, 15.2) and 3.3% (95% CI: 1.7, 4.7) decrease in AD symptoms, respectively, on the same day. An increase of rainfall by 5 mm increased AD symptoms by 7.3% (95% CI: 3.6, 11.1) for the days with <40 mm rainfall. The risk of AD symptoms increased by 284.9% (95% CI: 67.6, 784.2) according to a 5°C increase in DTR when it was >14°C. An increase in PM10, NO2, and O3 by 10 units increased the risk of AD symptoms on the same day by 3.2% (95% CI: 1.5, 4.9), 5.0% (95% CI: 1.4, 8.8), and 6.1% (95% CI: 3.2, 9.0), respectively. Exposure to meteorological variables and air pollutants are associated with AD symptoms in young children.
High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine
NASA Technical Reports Server (NTRS)
Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton
1947-01-01
An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.
NASA Astrophysics Data System (ADS)
Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.
2017-12-01
The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes
(i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (SM). SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and SM). This is particularly marked in regions with high variability in minimum and maximum θe, where more complex models built using ANN with multiple hidden layers are better able to capture the day-to-day variability in θe and the occurrence of extreme maximum θe. Over the entire domain, the ANN with three hidden layers exhibits high accuracy in predicting maximum θe > 347 K. The median hit rate for maximum θe > 347 K is > 0.60, while the median false alarm rate is ≈ 0.08.
Christensen, L.; Tague, C.L.; Baron, Jill S.
2008-01-01
Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0.32 and 0.29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200-1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800-2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150-2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600-4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright ?? 2008 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ding, F.; Hearty, T. J., III; Theobald, M.; Vollmer, B.; Wei, J.
2017-12-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been the home of processing, archiving, and distribution services for the Atmospheric Infrared Sounder (AIRS) mission since its launch in 2002 for the global observations of the atmospheric state. Giovanni, a web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases, from version 6 AIRS product are available on Giovanni. The AIRS is an instrument suite comprised of a hyperspectral infrared instrument AIRS and two multichannel microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). As the HSB ceased operation in very early stage of AIRS mission, the AIRS project operates two parallel retrieval algorithms: one using both IR and MW measurements (AIRS+AMSU) and the other using only IR measurements (AIRS-only) for the most time of the mission. The AIRS+AMSU product is better and the variables on Giovanni are from it. However, the generation of AIRS+AMSU product has been suspended since the AMSU instrument anomaly occurred in late 2016. To continue exploring up-to-date AIRS observations, the same set of variables from the AIRS-only product are added on Giovanni by the GES DSIC. This will also support the comparison of AIRS-only with AIRS+AMSU retrievals. In the presentation, we will demonstrate the visualization of AIRS-only product and the plots/statistics of comparison with AIRS+AMSU product using Giovanni.
NASA Technical Reports Server (NTRS)
Ding, Feng; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Wei, Jennifer
2017-01-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been the home of processing, archiving, and distribution services for the Atmospheric Infrared Sounder (AIRS) mission since its launch in 2002 for global observations of the atmospheric state. Giovanni, a Web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important AIRS variables, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases, are available in Giovanni. AIRS is an instrument suite comprised of a hyperspectral infrared instrument (AIRS) and two multichannel microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). As HSB ceased operation in the very early stages of the AIRS mission, the AIRS project operates two parallel retrieval algorithms: one using both IR and MW measurements (AIRS+AMSU) and the other using only IR measurements (AIRS-only), which covers most of the mission duration. The AIRS+AMSU product is better quality, and the variables in Giovanni are from this product. However, generation of the AIRS+AMSU product has been suspended since the AMSU instrument anomaly occurred in late September 2016. To continue exploring up-to-date AIRS observations, the same set of variables from the AIRS-only product have been added to Giovanni by the GES DSIC. This will also support comparison of AIRS-only with AIRS+AMSU retrievals. In this presentation, we demonstrate the visualization of the AIRS-only product and plots/statistics of comparison with AIRS+AMSU product using Giovanni.
NASA Astrophysics Data System (ADS)
Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung
2018-05-01
Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in influencing surface air quality, pinpointing the significant and unique associations between meteorological variables at higher altitudes and surface air quality.
USDA-ARS?s Scientific Manuscript database
Previous studies suggest that the intraspecific variability of rice yield response to rising carbon dioxide concentration, [CO2], could serve as a basis of selection to improve genotypes for future high CO2 conditions. However, assessment of responses to elevated [CO2] must consider air temperature,...
Using smartphone batteries as an urban thermometer
NASA Astrophysics Data System (ADS)
Droste, Arjan; Pape, Jan-Jaap; Overeem, Aart; Leijnse, Hidde; Steeneveld, Gert-Jan; Van Delden, Aarnout; Uijlenhoet, Remko
2017-04-01
Taking meteorological measurements in the urban environment is notoriously difficult due to the complex geometry at street and neighbourhood level. Traditional weather stations are absent in cities because of WMO regulations, so urban data has to come from typically expensive measurement-networks, or short intensive campaigns. While traditional measurements are scarce, there is an abundance of smart devices in cities: the well-known Internet of Things. It is for these reasons that crowdsourcing data has an enormous potential in cities, to deliver vast quantities of data without the maintenance costs of a measurement network. A promising source of potentially valuable data is the smartphone, because of its ubiquity and the many sensors most newer phone models now possess. Since most people nowadays have a smartphone, and carry it around wherever they go, data logged by the phone can be used to estimate the urban air temperature. A persistent log taken by nearly all smartphone models, even those without air temperature sensors, is the smartphone's battery temperature. The free OpenSignal smartphone application logs this battery temperature (among many other variables) and the position of the smartphone, which makes it possible to estimate the urban air temperature through a straightforward heat transfer model relating battery temperature to air and body temperature. The obtained urban temperatures are accurate within 1 to 2 degrees of certified measurement stations, proving the huge potential of this innovative method. This poster focuses on describing how thousands of daily smartphone battery temperature measurements can be translated to a relatively robust estimation of an urban air temperature, using 2 years of data from São Paulo in Brazil. Analysis of the results is presented in a separate session.
Antarctic Sea ice variations and seasonal air temperature relationships
NASA Technical Reports Server (NTRS)
Weatherly, John W.; Walsh, John E.; Zwally, H. J.
1991-01-01
Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2014-01-01
In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.
Hydrothermal extremes at the South-West Pribaikalie during the current climate changes
NASA Astrophysics Data System (ADS)
Voropay, Nadezhda
2017-04-01
Climatic extremes of air temperature and precipitation were analyzed for the Tunka Intermountain Depression (South-West Pribaikalie, Buryatia, Russian Federation). Intermountain depressions occupy a quarter of the territory of the Baikal region. The specific climatic conditions in the depressions are formed due to the geographic location and the influence of latitudinal zonation and altitudinal gradients. Air temperature and precipitation data records from at weather stations for the period 1940-2015 were analyzed. Long-term average annual temperature is negative and varies from -0.8 °C to -2.4 °C. Air temperature absolute minimum is -48 °C, absolute maximum is +36 °C. The long-term average annual precipitation is 370-480 mm, but in some years annual precipitation reach 760 mm. The summer months have about 70% of the total annual precipitation, in July and August the sum may reach 340 mm. Maximum daily sum of rainfalls is 80 mm. The contribution of the global and regional circulation characteristics into the variability of regional climatic characteristics was estimated.
METEOROLOGICAL AND TRANSPORT MODELING
Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Signorini, Sergio
2002-01-01
Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.
NASA Astrophysics Data System (ADS)
Hu, Guojie; Wu, Xiaodong; Zhao, Lin; Li, Ren; Wu, Tonghua; Xie, Changwei; Pang, Qiangqiang; Cheng, Guodong
2017-08-01
Soil temperature plays a key role in hydro-thermal processes in environments and is a critical variable linking surface structure to soil processes. There is a need for more accurate temperature simulation models, particularly in Qinghai-Xizang (Tibet) Plateau (QXP). In this study, a model was developed for the simulation of hourly soil surface temperatures with air temperatures. The model incorporated the thermal properties of the soil, vegetation cover, solar radiation, and water flux density and utilized field data collected from Qinghai-Xizang (Tibet) Plateau (QXP). The model was used to simulate the thermal regime at soil depths of 5 cm, 10 cm and 20 cm and results were compared with those from previous models and with experimental measurements of ground temperature at two different locations. The analysis showed that the newly developed model provided better estimates of observed field temperatures, with an average mean absolute error (MAE), root mean square error (RMSE), and the normalized standard error (NSEE) of 1.17 °C, 1.30 °C and 13.84 %, 0.41 °C, 0.49 °C and 5.45 %, 0.13 °C, 0.18 °C and 2.23 % at 5 cm, 10 cm and 20 cm depths, respectively. These findings provide a useful reference for simulating soil temperature and may be incorporated into other ecosystem models requiring soil temperature as an input variable for modeling permafrost changes under global warming.
Resilience of a High Latitude Red Sea Frining Corals Exposed to Extreme Temperatures
NASA Astrophysics Data System (ADS)
Moustafa, M.; Moustafa, M. S.; Moustafa, S.; Moustafa, Z. D.
2013-05-01
Since 2004, multi-year study set out to establish linkages between fringing coral reefs in the northern Gulf of Suez, Red Sea, and local weather. Insight into local meteorological processes may provide a better understanding of the direct influence weather has on a fringing coral reef. To establish trends, seawater temperature and meteorological record were collected at a small fringing coral reef (Zaki's Reef), located near Ein Sokhna, Egypt (29.5oN & 32.4oE). Monitoring air and water temperature provides evidence of seasonality and interannual variability and may reveal correlations between reef health and climate conditions in this region. Prior to this study, there were no known long-term studies investigating coral reefs in this region. Approximately 35 coral taxa are known to survive the extreme temperature and salinity regime found here, yet only six corals compose 94% of coral cover on Zaki's Reef. Dominant corals include: Acropora humilis, A. microclados, A. hemprichii, Litophyton arboretum, Stylophora pistillata, Porites columna, and P. plantulata. Seawater temperatures were collected at 30 minutes intervals at 5 locations. Seawater temperature data indicate that corals experience 4-6.5oC daily temperature variations and seasonal variations that exceed 29oC. Air temperatures were collected just landward of the reef were compared to Hurghada and Ismailia 400 and 200 km south and north of the study site, respectively. Time series analysis results indicate that air temperature dominant frequencies are half-daily, daily, and yearly cycles, while water temperatures show yearly cycles. A comparison of air temperature with neighboring locations indicates that air temperatures at Ein Sokhna ranged between near 0o C to an excess of 55o C, yet, daily means for Ein Sokhna and Hurghada were very similar (24.2o C and. 25.2o C, respectively). Maximum daily air temperatures at the study site exceeded maximum air temperature at Hurghada (400 km south) by almost 7o C, while minimum daily means at Ein Sokhna were almost equal to those at Ismailia (200 km north). These trends were opposite to what was expected considering each stations geographical locations. The unexpected temperature trends, the daily/half daily dominant frequencies, and the short distance between the mountain range and Zaki's Reef vs. Hurghada (0.5 vs. 35 km), prompted us to hypothesize that a Foehn wind may be responsible for the high air temperatures observed at Ein Sokhna. We applied NOAA's HYSPLIT model to explore local circulation patterns, which suggest that the high mountain range blocks the year-round trade wind and forces it to climb up the western slope, where it loses moisture and reduces its temperature. As this cool, denser air reaches the mountain top, the air parcel starts rolling down the eastern slopes, which causes air temperature to rise and result in an increase in local air temperatures. These warmer than normal air temperatures measured here may aid in securing these northernmost reefs survival. Further scrutiny of the mechanisms by which area reefs are able to thrive extreme environmental conditions continues to be investigated.
Use of Chemi-Ionization to Calculate Temperature of Hydrocarbon Flame
NASA Astrophysics Data System (ADS)
Shaikin, A. P.; Galiev, I. R.
2018-04-01
In the present paper, we have experimentally studied the dependences of the maximum temperature of the hydrocarbon flame on the electron current (due to the flame chemi-ionization), the width of the turbulent combustion zone, and the amount and composition of the air-fuel mixture in the combustion chamber of variable volume. Based on the proposed formula, we have been also able to estimate the temperature and compare with its experimental value showing that the convergence has been more than 85% at an excess air factor value ranging from 0.8 to 1.15. The obtained results can be used to predict and monitor the maximum flame temperature in the combustion chamber of an internal combustion engine and other power plants by using the ionization probe.
NASA Astrophysics Data System (ADS)
Bernhardt, Jase; Carleton, Andrew M.
2018-05-01
The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.
Numerical simulation of humidification and heating during inspiration within an adult nose.
Sommer, F; Kroger, R; Lindemann, J
2012-06-01
The temperature of inhaled air is highly relevant for the humidification process. Narrow anatomical conditions limit possibilities for in vivo measurements. Numerical simulations offer a great potential to examine the function of the human nose. In the present study, the nasal humidification of inhaled air was simulated simultaneously with temperature distribution during a respiratory cycle. A realistic nose model based on a multislice CT scan was created. The simulation was performed by the Software Fluent(r). Boundary conditions were based on previous in vivo measurements. Inhaled air had a temperature of 20(deg)C and relative humidity of 30%. The wall temperature was assumed to be variable from 34(deg)C to 30(deg)C with constant humidity saturation of 100% during the respiratory cycle. A substantial increase in temperature and humidity can be observed after passing the nasal valve area. Areas with high speed air flow, e.g. the space around the turbinates, show an intensive humidification and heating potential. Inspired air reaches 95% humidity and 28(deg)C within the nasopharynx. The human nose features an enormous humidification and heating capability. Warming and humidification are dependent on each other and show a similar spacial pattern. Concerning the climatisation function, the middle turbinate is of high importance. In contrast to in vivo measurements, numerical simulations can explore the impact of airflow distribution on nasal air conditioning. They are an effective method to investigate nasal pathologies and impacts of surgical procedures.
Globally-Gridded Interpolated Night-Time Marine Air Temperatures 1900-2014
NASA Astrophysics Data System (ADS)
Junod, R.; Christy, J. R.
2016-12-01
Over the past century, climate records have pointed to an increase in global near-surface average temperature. Near-surface air temperature over the oceans is a relatively unused parameter in understanding the current state of climate, but is useful as an independent temperature metric over the oceans and serves as a geographical and physical complement to near-surface air temperature over land. Though versions of this dataset exist (i.e. HadMAT1 and HadNMAT2), it has been strongly recommended that various groups generate climate records independently. This University of Alabama in Huntsville (UAH) study began with the construction of monthly night-time marine air temperature (UAHNMAT) values from the early-twentieth century through to the present era. Data from the International Comprehensive Ocean and Atmosphere Data Set (ICOADS) were used to compile a time series of gridded UAHNMAT, (20S-70N). This time series was homogenized to correct for the many biases such as increasing ship height, solar deck heating, etc. The time series of UAHNMAT, once adjusted to a standard reference height, is gridded to 1.25° pentad grid boxes and interpolated using the kriging interpolation technique. This study will present results which quantify the variability and trends and compare to current trends of other related datasets that include HadNMAT2 and sea-surface temperatures (HadISST & ERSSTv4).
Alexander, P
2013-01-01
This work aims to study associations between monthly averages of meteorological variables and monthly frequencies of diverse diseases in the calls to the public ambulance emergency service of the city of Buenos Aires during the years 1999-2004. Throughout this time period no changes were made in the classification codes of the illnesses. Heart disease, arrhythmia, heart failure, cardiopulmonary arrest, angina pectoris, psychiatric diseases, stroke, transient ischemic attack, syncope and the total number of calls were analyzed against 11 weather variables and the four seasons. All illnesses exhibited some seasonal behavior, except cardiorespiratory arrest and angina pectoris. The largest frequencies of illnesses that exhibited some association with the meteorological variables used to occur in winter, except the psychiatric cases. Heart failure, stroke, psychiatric diseases and the total number of calls showed significant correlations with the 11 meteorological variables considered, and the largest indices (absolute values above 0.6) were found for the former two pathologies. On the other side, cardiorespiratory arrest and angina pectoris revealed no significant correlations and nearly null indices. Variables associated with temperature were the meteorological proxies with the largest correlations against diseases. Pressure and humidity mostly exhibited positive correlations, which is the opposite of variables related to temperature. Contrary to all other diseases, psychiatric pathologies showed a clear predominance of positive correlations. Finally, the association degree of the medical dataset with recurrent patterns was further evaluated through Fourier analysis, to assess the presence of statistically significant behavior. In the Northern Hemisphere high morbidity and mortality rates in December are usually assigned to diverse factors in relation to the holidays, but such an effect is not observed in the present analysis. There seems to be no clearly preferred meteorological proxy among the different types of temperatures used. It is shown that the amount of occurrences depends mainly on season rather on its strength quantified by temperature.
NASA Astrophysics Data System (ADS)
Alexander, P.
2013-01-01
This work aims to study associations between monthly averages of meteorological variables and monthly frequencies of diverse diseases in the calls to the public ambulance emergency service of the city of Buenos Aires during the years 1999-2004. Throughout this time period no changes were made in the classification codes of the illnesses. Heart disease, arrhythmia, heart failure, cardiopulmonary arrest, angina pectoris, psychiatric diseases, stroke, transient ischemic attack, syncope and the total number of calls were analyzed against 11 weather variables and the four seasons. All illnesses exhibited some seasonal behavior, except cardiorespiratory arrest and angina pectoris. The largest frequencies of illnesses that exhibited some association with the meteorological variables used to occur in winter, except the psychiatric cases. Heart failure, stroke, psychiatric diseases and the total number of calls showed significant correlations with the 11 meteorological variables considered, and the largest indices (absolute values above 0.6) were found for the former two pathologies. On the other side, cardiorespiratory arrest and angina pectoris revealed no significant correlations and nearly null indices. Variables associated with temperature were the meteorological proxies with the largest correlations against diseases. Pressure and humidity mostly exhibited positive correlations, which is the opposite of variables related to temperature. Contrary to all other diseases, psychiatric pathologies showed a clear predominance of positive correlations. Finally, the association degree of the medical dataset with recurrent patterns was further evaluated through Fourier analysis, to assess the presence of statistically significant behavior. In the Northern Hemisphere high morbidity and mortality rates in December are usually assigned to diverse factors in relation to the holidays, but such an effect is not observed in the present analysis. There seems to be no clearly preferred meteorological proxy among the different types of temperatures used. It is shown that the amount of occurrences depends mainly on season rather on its strength quantified by temperature.
NASA Astrophysics Data System (ADS)
Heiri, O.; Birks, H. J. B.; Brooks, S. J.; Velle, G.; Willassen, E.
An important aspect when applying organism-based palaeolimnological methods to sediment cores is the inherent variability of fossil assemblages within a lake basin. Subfossil chironomids in lake sediments have been used extensively to quantify past summer air and water temperatures. However, little is known on how heterogeneous fossil distribution affects these estimates. In an effort to assess this variability we took a total of 20 surface sediment samples each in three small and shallow (7-9 m wa- ter depth) Norwegian lakes. In every lake two transects of seven samples were taken from the centre of the lake towards the littoral and six samples in the deepest part of the lake basin. Although the fossil assemblages were generally very similar within a lake basin, there was - in all three lakes - a distinct shift in the abundances of chi- ronomid taxa towards the littoral (water depth explaining 10-18% of the total variance in the percentage data as assessed by a Detrended Canonical Correspondence Anal- ysis). When we applied to our data a quantitative chironomid-July air temperature transfer-function based on surface sediments from the deepest parts of 153 Norwegian lakes, the variability of reconstructed temperatures in our three study lakes was only slightly smaller in the 6 deep-water samples (standard deviations (SD) of 0.48, 0.52 and 0.58C) than in all the 20 samples (SD of 0.55, 0.56 and 0.59 C). Our results suggest that within-lake variability of subfossil chironomid assemblages can account for a significant part of the overall prediction error of the chironomid-July air tempera- ture model of 1.03C. Furthermore, the lack of a clear trend in inferred values towards the littoral and the similar standard deviation of the total samples as compared to the deep-water samples suggest that the Norwegian transfer-function, though calibrated on samples from the deepest part of the lake, may also be applicable to sediment cores from closer to the lake shore. It remains to be tested, however, if this holds true in deeper lakes than the ones sampled in our study.
Flint, Lorraine E.; Flint, Alan L.
2012-01-01
Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature projections for the 21st century could be underestimating the actual change.
NASA Astrophysics Data System (ADS)
Deng, Qimin; Nian, Da; Fu, Zuntao
2018-02-01
Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.
The effects of hot nights on mortality in Barcelona, Spain
NASA Astrophysics Data System (ADS)
Royé, D.
2017-12-01
Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.
NASA Astrophysics Data System (ADS)
Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei
2017-08-01
Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.
NDVI dynamics of the taiga zone in connection with modern climate changes
NASA Astrophysics Data System (ADS)
Bobkov, A.; Panidi, E.; Torlopova, N.; Tsepelev, V.
2015-04-01
This research is dedicated to the investigation of the relations between the XXI century climate changes and Normalized Difference Vegetation Index (NDVI) variability of the taiga zone. For this purposes was used the observations of vegetation variability on the test area located nearby Syktyvkar city (Komi Republic, Russia), 16-day averages of NDVI data derived from TERRA/MODIS space imagery (spatial resolution is about 250 meters), and the air temperature and precipitation observations from Syktyvkar meteorological station. The research results confirmed the statistically significant positive correlation between NDVI and air temperature for all vegetation types of the test area, for both spring and autumn seasons. The weakest correlation was found for coniferous forest, namely, pine forest on poor soils, and the strongest correlation was found for meadows and bogs. Additionally the map of NDVI trends of the test area shows that the sectors of greatest positive trend located on the territories with non-forest cover, and as a result, the positive trend of air temperature is indicated most brightly on vegetation of non-forest lands. Thereby these lands can serve as climate changes indicator in the investigated region. The study was partially supported by Russian Foundation for Basic Research (RFBR), research project No. 14-05-00858 a.
NASA Astrophysics Data System (ADS)
Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin
2018-05-01
Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.
Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system
NASA Astrophysics Data System (ADS)
Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.
2016-02-01
This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.
NASA Astrophysics Data System (ADS)
Shreve, Cheney
2010-12-01
With more than sixty free and publicly available high-quality datasets, including ecosystem variables, radiation budget variables, and land cover products, the MODIS instrument and the MODIS scientific team have contributed significantly to scientific investigations of ecosystems across the globe. The MODIS instrument, launched in December 1999, has 36 spectral bands, a viewing swath of 2330 km, and acquires data at 250 m, 500 m, and 1000 m spatial resolution every one to two days. Radiation budget variables include surface reflectance, skin temperature, emissivity, and albedo, to list a few. Ecosystem variables include several vegetation indices and productivity measures. Land cover characteristics encompass land cover classifications as well as model parameters and vegetation classifications. Many of these products are instrumental in constraining global climate models and climate change studies, as well as monitoring events such as the recent flooding in Pakistan, the unprecedented oil spill in the Gulf of Mexico, or phytoplankton bloom in the Barents Sea. While product validation efforts by the MODIS scientific team are both vigorous and continually improving, validation is unquestionably one of the most difficult tasks when dealing with remotely derived datasets, especially at the global scale. The quality and availability of MODIS data have led to widespread usage in the scientific community that has further contributed to validation and development of the MODIS products. In their recent paper entitled 'Land surface skin temperature climatology: benefitting from the strengths of satellite observations', Jin and Dickinson review the scientific theory behind, and demonstrate application of, a MODIS temperature product: surface skin temperature. Utilizing datasets from the Global Historical Climatological Network (GHCN), daily skin and air temperature from the Atmospheric Radiation Measurement (ARM) program, and MODIS products (skin temperature, albedo, land cover, water vapor, cloud cover), they show that skin temperature is clearly a different physical parameter from air temperature and varies from air temperature in magnitude, response to atmospheric conditions, and diurnal phase. Although the accuracy of skin temperature (Tskin) algorithms has improved to within 0.5-1°C for field measurements and clear-sky satellite observations (Becker and Li 1995, Goetz et al 1995, Wan and Dozier 1996), general confusion regarding the physical definition of 'surface temperature' and how it can be used for climate studies has persisted throughout the scientific community and limited the applications of these data (Jin and Dickinson 2010). For example, satellite sea surface temperature was used as evidence of global climate change instead of skin temperature in the IPCC 2001 and 2007 reports (Jin and Dickinson 2010). This work provides clarity in the theoretical definition of temperature variables, demonstrates the difference between air and skin temperature, and aids the understanding of the MODIS Tskin product, which could be very beneficial for future climate studies. As outlined by Jin and Dickinson, 'surface temperature' is a vague term commonly used in reference to air temperature, aerodynamic temperature, and skin temperature. Air temperature (Tair), or thermodynamic temperature, is measured by an in situ instrument usually 1.5-2 m above the ground. Aerodynamic temperature (Taero) refers to the temperature at the height of the roughness length of heat. Satellite derived skin temperature (Tskin) is the radiometric temperature derived from the inverse of Planck's function. While these different temperature variables are typically correlated, they differ as a result of environmental conditions (e.g. land cover and sky conditions; Jin and Dickinson 2010). With an extensive network of Tair measurements, some have questioned the benefits of using Tskin at all (Peterson et al 1997, 1998). Tskin and Tair can vary depending on land cover or sky conditions and variations may be large, e.g., for sparsely vegetated areas where net radiation is largely balanced by sensible heat flux (Hall et al 1992, Sun and Mahrt 1995, Jin et al 1997). Tskin can be higher than Taero at midday and lower at night (Sun and Mahrt 1995) and some models use Taero to approximate surface radiative temperature (Hubband and Monteith 1986). One of the strengths of the MODIS instrument is the simultaneous collection of surface and atmospheric conditions. By incorporating a range of MODIS variables in their comparison to Tskin, the authors examine the relationship of Tskin to atmospheric and surface conditions. Results from their global evaluation of Tskin highlight its variability on an inter-annual basis, its variation with solar zenith angle, and diurnal variations, which are not achievable with Tair measurements. Comparison with land cover type illustrates the seasonality of Tskin for different land covers. Comparison with the enhanced vegetation index (EVI) suggests more vegetation reduces skin temperature. Using the MODIS albedo, they demonstrate a clear relationship between yearly averaged Tskin and land surface albedo. Lastly, their examination of water vapor and cloud cover in comparison to Tskin suggests similar seasonality between these two variables. The MODIS Tskin product is not without uncertainty; retrieving Tskin requires a calculation of radiative transfer to account for atmospheric emission and molecular absorption, which is time and resource intensive (Jin and Dickinson 2010). Additionally, surface emissivity, instrument noise, and view angle geometry contribute to error in Tskin estimations (Jin and Dickinson 2010). The transparency of the scientific theory underlying this work, and the clear demonstration of the distinction between temperature measures on varying scales, demonstrates the usefulness of Tskin despite the uncertainties. Perhaps equally as important is the tone; in a time when the controversy surrounding climate change is peaking and the very ethics of the scientific community are being questioned, it is more critical than ever to be transparent in one's work and to assist the scientific community in understanding the tools we have available to us for investigating climate change. References Becker F and Li Z-L 1995 Surface temperature and emissivity at different scales: definition, measurement and related problems Remote Sensing Rev. 12 225-53 Goetz S J, Halthore R, Hall F G and Markham B L 1995 Surface temperature retrieval in a temperate grassland with multi-resolution sensors J. Geophys. Res. Atmos. 100 25397-410 Hall F G, Huemmrich K F, Goetz P J, Sellers P J and Nickeson J E 1992 Satellite remote sensing of the surface energy balance: success, failures and unresolved issues in FIFE J. Geophys. Res. Atmos. 97 19061-90 Jin M and Dickinson R E 2010 Land surface skin temperature climatology: benefitting from the strengths of satellite observations Environ. Res. Lett. 5 044004 Jin M, Dickinson R E and Vogelmann A M 1997 A comparison of CCM2/BATS skin temperature and surface-air temperature with satellite and surface observations J. Climate 10 1505-24 Hubband N D S and Monteith J L 1986 Radiative surface temperature and energy balance of a wheat canopy Boundary Layer Meteorol. 36 107-16 Peterson T C and Vose R S 1997 An overview of the Global Historical Climatology Network temperature data base Bull. Am. Meteorol. Soc. 78 2837-49 Peterson T C, Karl T R, Jamason P F, Knight R and Easterling D R 1998 The first difference method: maximizing station density for the calculation of long-term global temperature change J. Geophys. Res. Atmos. 103 25967-74 Sun J and Mahrt L 1995 Determination of surface fluxes from the surface radiative temperature Atmos. Sci. 52 1096-106 Wan Z and Dozier J 1996 A generalized split-window algorithm for retrieving land-surface temperature from space IEEE Trans. Geosci. Remote Sensing 34 892-905
Analysis and modeling of daily air pollutants in the city of Ruse, Bulgaria
NASA Astrophysics Data System (ADS)
Zheleva, I.; Veleva, E.; Filipova, M.
2017-10-01
The city of Ruse is situated in the north-eastern part of Bulgaria. The northern boundary of Ruse region goes along the Danube river valley and coincides with the state boundary of the Republic of Bulgaria and the Republic of Romania. The climate of the region of Ruse is temperate continental, characterized by cold winters and dry, warm summers. Spring and autumn are short. In our previous work we studied information from 40 years period measurements [6] of temperature, air humidity and atmospheric pressure in Ruse region, Bulgaria. It was shown that mean values of the temperature in Ruse region are slightly goes up for the last 10 years and they are bigger than the mean temperature for Bulgaria. This could be a proof for climate change in Ruse region of Bulgaria. The most variable atmospheric parameter is air humidity during the spring seasons. The hardest change of temperature and atmospheric pressure is during January. Temperature has biggest change in January and smallest - in July. Humidity has biggest change in April and smallest - in October. Atmospheric pressure has biggest change in January and smallest - in July [5]. Air pollution maybe affects temperature, atmospheric pressure and humidity. All this in our opinion may be a reason for the increase in average temperatures for the period examined. This paper is devoted to examine air pollution in the Ruse region. It presents a statistical analysis of the level of air pollution in Ruse on data from the monitoring stations in the city. The measurements cover the period from 2015 including up to now. For the most dangerous pollutant PM10 we create an ARIMA model which is in a good agreement with the PM10 measurements.
Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit
NASA Astrophysics Data System (ADS)
Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong
When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.
Occupant perception of indoor air and comfort in four hospitality environments.
Moschandreas, D J; Chu, P
2002-01-01
This article reports on a survey of customer and staff perceptions of indoor air quality at two restaurants, a billiard hall, and a casino. The survey was conducted at each environment for 8 days: 2 weekend days on 2 consecutive weekends and 4 weekdays. Before and during the survey, each hospitality environment satisfied ventilation requirements set in ASHRAE Standard 62-1999, Ventilation for Acceptable Indoor Air. An objective of this study was to test the hypothesis: If a hospitality environment satisfies ASHRAE ventilation requirements, then the indoor air is acceptable, that is, fewer than 20% of the exposed occupants perceive the environment as unacceptable. A second objective was to develop a multiple regression model that predicts the dependent variable, the environment is acceptable, as a function of a number of independent perception variables. Occupant perception of environmental, comfort, and physical variables was measured using a questionnaire. This instrument was designed to be efficient and unobtrusive; subjects could complete it within 3 min. Significant differences of occupant environment perception were identified among customers and staff. The dependent variable, the environment is acceptable, is affected by temperature, occupant density, and occupant smoking status, odor perception, health conditions, sensitivity to chemicals, and enjoyment of activities. Depending on the hospitality environment, variation of independent variables explains as much as 77% of the variation of the dependent variable.
An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior
NASA Astrophysics Data System (ADS)
Brubaker, Kaye L.; Entekhabi, Dara
1995-03-01
A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.
America's Urban Forests: Keeping Our Cities Cool
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.
1997-01-01
The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Tree canopies can reduce the urban heat island effect by dissipating the solar energy received by transpiring water from leaf surfaces which cools the air by taking "heat" from the air to evaporate the water and by shading surfaces like asphalt, roofs, and concrete parking lots which prevents initial heating and storage of heat. It is difficult to take enough temperature measurements over a large city area to characterize the surface temperature variability and quantify the temperature reduction effects of tree canopies. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville AL were performed in September 1994 and over Atlanta in May 1997. In this article we will examine the techniques of analyzing remotely sensed data for measuring the effect of tree canopies in reducing the urban heat island effect.
Trends in Surface Temperature from AIRS.
NASA Astrophysics Data System (ADS)
Ruzmaikin, A.; Aumann, H. H.
2014-12-01
To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.
2015-01-01
Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions should be useful as a basis for ecological fire management of humid savanna-grassland landscapes worldwide. PMID:25574667
Platt, William J; Orzell, Steve L; Slocum, Matthew G
2015-01-01
Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993-2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997-2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions should be useful as a basis for ecological fire management of humid savanna-grassland landscapes worldwide.
Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability
NASA Astrophysics Data System (ADS)
Rai, Archana; Saha, Subodh K.; Pokhrel, Samir; Sujith, K.; Halder, Subhadeep
2015-05-01
A possible link between preonset land atmospheric conditions and the Indian summer monsoon rainfall (ISMR) is explored. It is shown that, the preonset positive (negative) rainfall anomaly over northwest India, Pakistan, Afghanistan, and Iran is associated with decrease (increase) in ISMR, primarily in the months of June and July, which in turn affects the seasonal mean. ISMR in the months of June and July is also strongly linked with the preonset 2 m air temperature over the same regions. The preonset rainfall/2 m air temperature variability is linked with stationary Rossby wave response, which is clearly evident in the wave activity flux diagnostics. As the predictability of Indian summer monsoon relies mainly on the El Niño-Southern Oscillation (ENSO), the found link may further enhance our ability to predict the monsoon, particularly during a non-ENSO year.
Artificial neural networks for the performance prediction of heat pump hot water heaters
NASA Astrophysics Data System (ADS)
Mathioulakis, E.; Panaras, G.; Belessiotis, V.
2018-02-01
The rapid progression in the use of heat pumps, due to the decrease in the equipment cost, together with the favourable economics of the consumed electrical energy, has been combined with the wide dissemination of air-to-water heat pumps (AWHPs) in the residential sector. The entrance of the respective systems in the commercial sector has made important the modelling of the processes. In this work, the suitability of artificial neural networks (ANN) in the modelling of AWHPs is investigated. The ambient air temperature in the evaporator inlet and the water temperature in the condenser inlet have been selected as the input variables; energy performance indices and quantities characterising the operation of the system have been selected as output variables. The results verify that the, easy-to-implement, trained ANN can represent an effective tool for the prediction of the AWHP performance in various operation conditions and the parametrical investigation of their behaviour.
NASA Astrophysics Data System (ADS)
Painter, Thomas H.; Skiles, S. McKenzie; Deems, Jeffrey S.; Brandt, W. Tyler; Dozier, Jeff
2018-01-01
Common practice and conventional wisdom hold that fluctuations in air temperature control interannual variability in snowmelt and subsequent river runoff. However, recent observations in the Upper Colorado River Basin confirm that net solar radiation and by extension radiative forcing by dust deposited on snow cover exerts the primary forcing on snowmelt. We show that the variation in the shape of the rising limb of the annual hydrograph is controlled by variability in dust radiative forcing and surprisingly is independent of variations in winter and spring air temperatures. These observations suggest that hydroclimatic modeling must be improved to account for aerosol forcings of the water cycle. Anthropogenic climate change will likely reduce total snow accumulations and cause snowmelt runoff to occur earlier. However, dust radiative forcing of snowmelt is likely consuming important adaptive capacity that would allow human and natural systems to be more resilient to changing hydroclimatic conditions.
Solid precipitation measurement intercomparison in Bismarck, North Dakota, from 1988 through 1997
Ryberg, Karen R.; Emerson, Douglas G.; Macek-Rowland, Kathleen M.
2009-01-01
A solid precipitation measurement intercomparison was recommended by the World Meteorological Organization (WMO) and was initiated after approval by the ninth session of the Commission for Instruments and Methods of Observation. The goal of the intercomparison was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. A field study was started in Bismarck, N. Dak., during the 1988-89 winter as part of the intercomparison. The last official field season of the WMO intercomparison was 1992-93; however, the Bismarck site continued to operate through the winter of 1996-97. Precipitation events at Bismarck were categorized as snow, mixed, or rain on the basis of descriptive notes recorded as part of the solid precipitation intercomparison. The rain events were not further analyzed in this study. Catch ratios (CRs) - the ratio of the precipitation catch at each gage to the true precipitation measurement (the corrected double fence intercomparison reference) - were calculated. Then, regression analysis was used to develop equations that model the snow and mixed precipitation CRs at each gage as functions of wind speed and temperature. Wind speed at the gages, functions of temperature, and upper air conditions (wind speed and air temperature at 700 millibars pressure) were used as possible explanatory variables in the multiple regression analysis done for this study. The CRs were modeled by using multiple regression analysis for the Tretyakov gage, national shielded gage, national unshielded gage, AeroChem gage, national gage with double fence, and national gage with Wyoming windshield. As in earlier studies by the WMO, wind speed and air temperature were found to influence the CR of the Tretyakov gage. However, in this study, the temperature variable represented the average upper air temperature over the duration of the event. The WMO did not use upper air conditions in its analysis. The national shielded and unshielded gages where found to be influenced by functions of wind speed only, as in other studies, but the upper air wind speed was used as an explanatory variable in this study. The AeroChem gage was not used in the WMO intercomparison study for 1987-93. The AeroChem gage had a highly varied CR at Bismarck, and a number of variables related to wind speed and temperature were used in the model for the CR. Despite extensive efforts to find a model for the national gage with double fence, no statistically significant regression model was found at the 0.05 level of statistical significance. The national gage with Wyoming windshield had a CR modeled by temperature and wind speed variables, and the regression relation had the highest coefficient of determination (R2 = 0.572) and adjusted coefficient of multiple determination (R2a = 0.476) of all of the models identified for any gage. Three of the gage CRs evaluated could be compared with those in the WMO intercomparison study for 1987-93. The WMO intercomparison had the advantage of a much larger dataset than this study. However, the data in this study represented a longer time period. Snow precipitation catch is highly varied depending on the equipment used and the weather conditions. Much of the variation is not accounted for in the WMO equations or in the equations developed in this study, particularly for unshielded gages. Extensive attempts at regression analysis were made with the mixed precipitation data, but it was concluded that the sample sizes were not large enough to model the CRs. However, the data could be used to test the WMO intercomparison equations. The mixed precipitation equations for the Tretyakov and national shielded gages are similar to those for snow in that they are more likely to underestimate precipitation when observed amounts were small and overestimate precipitation when observed amounts were relatively large. Mixed precipitation is underestimated by the WMO adjustment and t
NASA Astrophysics Data System (ADS)
Yang Kam Wing, G.; Sushama, L.; Diro, G. T.
2016-12-01
This study investigates the intraannual variability of soil moisture-temperature coupling over North America. To this effect, coupled and uncoupled simulations are performed with the fifth-generation Canadian Regional Climate Model (CRCM5), driven by ERA-Interim. In coupled simulations, land and atmosphere interact freely; in uncoupled simulations, the interannual variability of soil moisture is suppressed by prescribing climatological values for soil liquid and frozen water contents. The study also explores projected changes to coupling by comparing coupled and uncoupled CRCM5 simulations for current (1981-2010) and future (2071-2100) periods, driven by the Canadian Earth System Model. Coupling differs for the northern and southern parts of North America. Over the southern half, it is persistent throughout the year while for the northern half, strongly coupled regions generally follow the freezing line during the cold months. Detailed analysis of the southern Canadian Prairies reveals seasonal differences in the underlying coupling mechanism. During spring and fall, as opposed to summer, the interactive soil moisture phase impacts the snow depth and surface albedo, which further impacts the surface energy budget and thus the surface air temperature; the air temperature then influences the snow depth in a feedback loop. Projected changes to coupling are also season specific: relatively drier soil conditions strengthen coupling during summer, while changes in soil moisture phase, snow depth, and cloud cover impact coupling during colder months. Furthermore, results demonstrate that soil moisture variability amplifies the frequency of temperature extremes over regions of strong coupling in current and future climates.
NASA Astrophysics Data System (ADS)
Aumann, H. H.; Ruzmaikin, A.
2014-12-01
Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the Artic between 2002 and 2007, which has since level off, but no significant trend in the Antarctic. The AIRS results since 2002 are confirmed by IASI data since 2007. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Measurement and simulation of evapotranspiration at a wetland site in the New Jersey Pinelands
Sumner, David M.; Nicholson, Robert S.; Clark, Kenneth L.
2012-01-01
Evapotranspiration (ET) was monitored above a wetland forest canopy dominated by pitch-pine in the New Jersey Pinelands during November 10, 2004-February 20, 2007, using an eddy-covariance method. Twelve-month ET totals ranged from 786 to 821 millimeters (mm). Minimum and maximum ET rates occurred during December-February and in July, respectively. Relations between ET and several environmental variables (incoming solar radiation, air temperature, relative humidity, soil moisture, and net radiation) were explored. Net radiation (r = 0.72) and air temperature (r = 0.73) were the dominant explanatory variables for daily ET. Air temperature was the dominant control on evaporative fraction with relatively more radiant energy used for ET at higher temperatures. Soil moisture was shown to limit ET during extended dry periods. With volumetric soil moisture below a threshold of about 0.15, the evaporative fraction decreased until rain ended the dry period, and the evaporative fraction sharply recovered. A modified Hargreaves ET model, requiring only easily obtainable daily temperature data, was shown to be effective at simulating measured ET values and has the potential for estimating historical or real-time ET at the wetland site. The average annual ET measured at the wetland site during 2005-06 (801 mm/yr) is about 32 percent higher than previously reported ET for three nearby upland sites during 2005-09. Periodic disturbance by fire and insect defoliation at the upland sites reduced ET. When only undisturbed periods were considered, the wetland ET was 17 percent higher than the undisturbed upland ET. Interannual variability in wetlands ET may be lower than that of uplands ET because the upland stands are more susceptible to periodic drought conditions, disturbance by fire, and insect defoliation. Precipitation during the study period at the nearby Indian Mills weather station was slightly higher than the long-term (1902-2011) annual mean of 1,173 millimeters (mm), with 1,325 and 1,396 mm of precipitation in 2005 and 2006, respectively.
Change in the magnitude and mechanisms of global temperature variability with warming
Brown, Patrick T.; Ming, Yi; Li, Wenhong; Hill, Spencer A.
2017-01-01
Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future. PMID:29391875
AIRS Data Subsetting Service at the Goddard Earth Sciences (GES) DISC/DAAC
NASA Technical Reports Server (NTRS)
Vicente, Gilberto A.; Qin, Jianchun; Li, Jason; Gerasimov, Irina; Savtchenko, Andrey
2004-01-01
The AIRS mission, as a combination of the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), brings climate research and weather prediction into 21st century. From NASA' Aqua spacecraft, the AIRS/AMSU/HSB instruments measure humidity, temperature, cloud properties and the amounts of greenhouse gases. The AIRS also reveals land and sea- surface temperatures. Measurements from these three instruments are analyzed . jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, they constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to better server its users, the GES DISC/DAAC, provider of long-term archives and distribution services as well science support for the AIRS/AMSU/HSB data products, has developed various tools for performing channels, variables, parameter, spatial and derived products subsetting, resampling and reformatting operations. This presentation mainly describes the web-enabled subsetting services currently available at the GES DISC/DAAC that provide subsetting functions for all the Level 1B and Level 2 data products from the AIRS/AMSU/HSB instruments.
NASA Astrophysics Data System (ADS)
Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor
2015-09-01
The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.
Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor
2015-09-01
The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.
NASA Technical Reports Server (NTRS)
Linthicum, Kenneth J.; Anyamba, Assaf; Killenbeck, Bradley; Lee, Won-Ja; Lee, Hee Choon S.; Klein, Terry A.; Kim, Heung-Chul; Pavlin, Julie A.; Britch, Seth C.; Small, Jennifer;
2014-01-01
Plasmodium vivax malaria reemerged in the Republic of Korea in 1993 after it had been declared malaria free in 1979. Malaria rapidly increased and peaked in 2000 with 4,142 cases with lower but variable numbers of cases reported through 2011. We examined the association of regional climate trends over the Korean Peninsula relative to malaria cases in U.S. military and Republic of Korea soldiers, veterans, and civilians from 1950 to 2011. Temperatures and anomaly trends in air temperature associated with satellite remotely sensed outgoing long-wave radiation were used to observe temporal changes. These changes, particularly increasing air temperatures, in combination with moderate rains throughout the malaria season, and distribution of malaria vectors, likely supported the 1993 reemergence and peaks in malaria incidence that occurred through 2011 by accelerating the rate of parasite development in mosquitoes and increased numbers as a result of an expansion of larval habitat, thereby increasing the vectorial capacity of Anopheles vectors. High malaria rates associated with a favorable climate were similarly observed during the Korean War. These findings support the need for increased investigations into malaria predictive models using climate-related variables.
Borgman, Corrie C; Wolf, Blair O
2016-01-01
The deserts of the southwestern US are experiencing rapid warming, and climate models predict declining winter precipitation. The combined effects of higher air temperatures and drought are a reduction in productivity, which may importantly impact reproduction in consumers. Here, we investigate the effects of warming and drought on the reproductive timing and output in loggerhead shrikes (Lanius ludovicianus) in central New Mexico from 2007 to 2012. We found increases in air temperature of 3 °C during the breeding season (March-July) and highly variable winter and annual precipitation. With increasing spring temperatures, shrikes advanced nesting phenology by 20 days over 6 years, a much higher rate than is reported for any other bird species. During this period, the number of breeding pairs also increased from 25 to 37, and clutch size and the number offspring produced per successful nest did not vary. Nest success, however, was often very low and ranged from 11 to 46%. Although our models indicated that low nest success was driven by precipitation and temperature, it was mediated indirectly through increased predation rates during the hot and dry periods.
Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.
2016-01-01
Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.
Body condition of Morelet’s Crocodiles (Crocodylus moreletii) from northern Belize
Mazzotti, Frank J.; Cherkiss, Michael S.; Brandt, Laura A.; Fujisaki, Ikuko; Hart, Kristen; Jeffery, Brian; McMurry, Scott T.; Platt, Steven G.; Rainwater, Thomas R.; Vinci, Joy
2012-01-01
Body condition factors have been used as an indicator of health and well-being of crocodilians. We evaluated body condition of Morelet's Crocodiles (Crocodylus moreletii) in northern Belize in relation to biotic (size, sex, and habitat) and abiotic (location, water level, and air temperature) factors. We also tested the hypothesis that high water levels and warm temperatures combine or interact to result in a decrease in body condition. Size class, temperature, and water level explained 20% of the variability in condition of Morelet's Crocodiles in this study. We found that adult crocodiles had higher condition scores than juveniles/subadults but that sex, habitat, and site had no effect. We confirmed our hypothesis that warm temperatures and high water levels interact to decrease body condition. We related body condition of Morelet's Crocodiles to natural fluctuations in air temperatures and water levels in northern Belize, providing baseline conditions for population and ecosystem monitoring.
Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon
2018-05-18
We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
NASA Astrophysics Data System (ADS)
Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.
2016-08-01
Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.
Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun
2018-01-23
Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.
Ganendran, L B; Sidhu, L A; Catchpole, E A; Chambers, L E; Dann, P
2016-08-01
Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.
Effects of weather on survival in populations of boreal toads in Colorado
Scherer, R. D.; Muths, E.; Lambert, B.A.
2008-01-01
Understanding the relationships between animal population demography and the abiotic and biotic elements of the environments in which they live is a central objective in population ecology. For example, correlations between weather variables and the probability of survival in populations of temperate zone amphibians may be broadly applicable to several species if such correlations can be validated for multiple situations. This study focuses on the probability of survival and evaluates hypotheses based on six weather variables in three populations of Boreal Toads (Bufo boreas) from central Colorado over eight years. In addition to suggesting a relationship between some weather variables and survival probability in Boreal Toad populations, this study uses robust methods and highlights the need for demographic estimates that are precise and have minimal bias. Capture-recapture methods were used to collect the data, and the Cormack-Jolly-Seber model in program MARK was used for analysis. The top models included minimum daily winter air temperature, and the sum of the model weights for these models was 0.956. Weaker support was found for the importance of snow depth and the amount of environmental moisture in winter in modeling survival probability. Minimum daily winter air temperature was positively correlated with the probability of survival in Boreal Toads at other sites in Colorado and has been identified as an important covariate in studies in other parts of the world. If air temperatures are an important component of survival for Boreal Toads or other amphibians, changes in climate may have profound impacts on populations. Copyright 2008 Society for the Study of Amphibians and Reptiles.
Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas
2018-01-01
Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.
NASA Astrophysics Data System (ADS)
Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas
2018-01-01
Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.
Developing Real-Time Emissions Estimates for Enhanced Air Quality Forecasting
Exploring the relationship between ambient temperature, energy demand, and electric generating unit point source emissions and potential techniques for incorporating real-time information on the modulating effects of these variables using the Mid-Atlantic/Northeast Visibility Uni...
Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon
NASA Astrophysics Data System (ADS)
da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente
2015-09-01
The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation ( P < 0.01) was found between the new indices and the physiological and climatic variables, which indicated that these may be used in pairs to diagnose thermal stress in buffaloes reared in the Amazon.
Thermal comfort indices of female Murrah buffaloes reared in the Eastern Amazon.
da Silva, Jamile Andréa Rodrigues; de Araújo, Airton Alencar; Lourenço Júnior, José de Brito; dos Santos, Núbia de Fátima Alves; Garcia, Alexandre Rossetto; de Oliveira, Raimundo Parente
2015-09-01
The study aimed to develop new and more specific thermal comfort indices for buffaloes reared in the Amazon region. Twenty female Murrah buffaloes were studied for a year. The animals were fed in pasture with drinking water and mineral supplementation ad libitum. The following parameters were measured twice a week in the morning (7 AM) and afternoon (1 PM): air temperature (AT), relative air humidity (RH), dew point temperature (DPT), wet bulb temperature (WBT), black globe temperature (BGT), rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST). The temperature and humidity index (THI), globe temperature and humidity index (GTHI), Benezra's comfort index (BTCI), and Ibéria's heat tolerance index (IHTI) were calculated so they could be compared to the new indices. Multivariate regression analyses were carried out using the canonical correlation model, and all indices were correlated with the physiological and climatic variables. Three pairs of indices (general, effective, and practical) were determined comprising the buffalo comfort climatic condition index (BCCCI) and the buffalo environmental comfort index (BECI). The indices were validated and a great agreement was found among the BCCCIs (general, effective, and practical), with 98.3 % between general and effective a.nd 92.6 % between general and practical. A significant correlation (P < 0.01) was found between the new indices and the physiological and climatic variables, which indicated that these may be used in pairs to diagnose thermal stress in buffaloes reared in the Amazon.
Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas
NASA Technical Reports Server (NTRS)
Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)
1981-01-01
Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.
Computational study of the heat transfer of an avian egg in a tray.
Eren Ozcan, S; Andriessens, S; Berckmans, D
2010-04-01
The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.
Simulated permafrost soil thermal dynamics during 1960-2009 in eight offline processed-based models
NASA Astrophysics Data System (ADS)
Peng, S.; Gouttevin, I.; Krinner, G.; Ciais, P.
2013-12-01
Permafrost soil thermal dynamics not only determine the status of permafrost, but also have large impacts on permafrost organic carbon decomposition. Here, we used eight processed based models that participated in the Vulnerability Permafrost Carbon Research Coordination Network (RCN) project to investigate: (1) the trends in soil temperature at different depths over the northern hemisphere permafrost region during the past five decades, and (2) which factors drive trends and inter-annual variability of permafrost soil temperature? The simulated annual soil temperature at 20cm increases by ~0.02 °C per year from 1960 to 2009 (ranging from 0.00 °C per year in CoLM to 0.04 °C per year in ISBA). Most models simulated more warming of soil in spring and winter than in summer and autumn, although there were different seasonal trends in different models. Trends in soil temperature decrease with soil depth in all models. To quantify the contributions of various factors (air temperature, precipitation, downward longwave radiation etc.) to trends and inter-annual variation in soil temperature, we ran offline models with detrended air temperature, precipitation, downward longwave radiation, respectively. Our results suggest that both annual air temperature and downward longwave radiation significantly correlate with annual soil temperature. Moreover, trend in air temperature and downward longwave radiation contribute 30% and 60% to trends in soil temperature (0 - 200cm), respectively, during the period 1960-2009. Spatial distributions of trend in annual soil temperature at 20cm from R01 simulations of (a) CLM4, (b) CoLM, (c) ISBA, (d) JULES, (e) LPJ_GUESS, (f) ORCHIDEE, (g) UVic and (h) UW-VIC during the period 1960-2009.
Response of seasonal soil freeze depth to climate change across China
NASA Astrophysics Data System (ADS)
Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui
2017-05-01
The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.
Effects of climate change on residential infiltration and air pollution exposure.
Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley
2017-01-01
Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
Understanding Arctic surface temperature differences in reanalyses
NASA Astrophysics Data System (ADS)
Cullather, R. I.; Zhao, B.; Shuman, C. A.; Nowicki, S.
2017-12-01
Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. For example, the 1980-2009 mean surface air temperature for the north polar cap (70°N-90°N) among global reanalyses span a range of 2.4 K, which approximates the average warming trend from these reanalyses over the 30-year period of 2.1 K. Understanding these differences requires evaluation over the three principal surface domains of the Arctic: glaciated land, the unglaciated terrestrial surface, and sea ice/ocean. An examination is conducted of contemporary global reanalyses of the ECMWF Interim project, NASA MERRA, MERRA-2, JRA-55, and NOAA CFSR using available in situ data and assessments of the surface energy budget. Overly-simplistic representations of the Greenland Ice Sheet surface are found to be associated with local warm air temperature biases in winter. A review of progress made in the development of the MERRA-2 land-ice representation is presented. Large uncertainty is also found in temperatures over the Arctic tundra and boreal forest zone. But a key focus of temperature differences for northern high latitudes is the Arctic Ocean. Near-surface air temperature differences over the Arctic Ocean are found to be related to discrepancies in sea ice and sea surface temperature boundary data, which are severely compromised in current reanalyses. Issues with the modeled representation of sea ice cover are an additional factor in reanalysis temperature trends. Differences in the representation of the surface energy budget among the various reanalyses are also reviewed.
Understanding Arctic Surface Temperature Differences in Reanalyses
NASA Technical Reports Server (NTRS)
Cullather, Richard; Zhao, Bin; Shuman, Christopher; Nowicki, Sophie
2017-01-01
Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. For example, the 1980-2009 mean surface air temperature for the north polar cap (70ÂdegN-90ÂdegN) among global reanalyses span a range of 2.4 K, which approximates the average warming trend from these reanalyses over the 30-year period of 2.1 K. Understanding these differences requires evaluation over the three principal surface domains of the Arctic: glaciated land, the unglaciated terrestrial surface, and sea ice/ocean. An examination is conducted of contemporary global reanalyses of the ECMWF Interim project, NASA MERRA, MERRA-2, JRA-55, and NOAA CFSR using available in situ data and assessments of the surface energy budget. Overly-simplistic representations of the Greenland Ice Sheet surface are found to be associated with local warm air temperature biases in winter. A review of progress made in the development of the MERRA-2 land-ice representation is presented. Large uncertainty is also found in temperatures over the Arctic tundra and boreal forest zone. But a key focus of temperature differences for northern high latitudes is the Arctic Ocean. Near-surface air temperature differences over the Arctic Ocean are found to be related to discrepancies in sea ice and sea surface temperature boundary data, which are severely compromised in current reanalyses. Issues with the modeled representation of sea ice cover are an additional factor in reanalysis temperature trends. Differences in the representation of the surface energy budget among the various reanalyses are also reviewed.
NASA Astrophysics Data System (ADS)
Kim, J.; Guan, B.; Waliser, D. E.; Ferraro, R.
2016-12-01
Landfalling atmospheric rivers (ARs) affect the wintertime surface air temperatures as shown in earlier studies. The AR-related surface air temperatures can exert significant influence on the hydrology in the US Pacific coast region especially through rainfall-snowfall partitioning and the snowpack in high elevation watersheds as they are directly related with the freezing-level altitudes. These effects of temperature perturbations can in turn affect hydrologic events of various time scales such as flash flooding by the combined effects of rainfall and snowmelt, and the warm season runoff from melting snowpack, especially in conjunction with the AR effects on winter precipitation and rain-on-snow events in WUS. Thus, understanding the effects of AR landfalls on the surface temperatures and examining the capability of climate models in simulating these effects are an important practical concern for WUS. This study aims to understand the effects of AR landfalls on the characteristics of surface air temperatures in WUS, especially seasonal means and PDFs and to evaluate the fidelity of model data produced in the NASA downscaling experiment for the 10 winters from Nov. 1999 to Mar. 2010 using an AR-landfall chronology based on the vertically-integrated water vapor flux calculated from the MERRA2 reanalysis. Model skill is measured using metrics including regional means, a skill score based on correlations and mean-square errors, the similarity between two PDF shapes, and Taylor diagrams. Results show that the AR landfalls are related with higher surface air temperatures in WUS, especially in inland regions. The AR landfalls also reduce the range of surface air temperature PDF, largely by reducing the events in the lower temperature range. The shift in the surface air temperature PDF is consistent with the positive anomalies in the winter-mean temperature. Model data from the NASA downscaling experiment reproduce the AR effects on the temperature PDF, at least qualitatively; however, the skill in representing the spatial variations in the temperature anomalies is low. The skill of these model data also varies according to regions and the configuration of simulations. It was also found that the variations in model skill in simulating the spatial variability according to the model resolution is not systematic.
Goldberg, Mark S; Wheeler, Amanda J; Burnett, Richard T; Mayo, Nancy E; Valois, Marie-France; Brophy, James M; Giannetti, Nadia
2015-01-01
We carried out this daily diary panel study in Montreal, Quebec, to determine whether oxygen saturation, pulse rate, blood pressure, self-rated health, and shortness of breath at night were associated with concentrations of indoor carbon monoxide (CO), and indoor and outdoor fine particles (PM2.5), temperature, and relative humidity. Over a 2-month consecutive period between 2008 and 2010, we measured daily indoor and outdoor levels of the air pollutants and weather variables and 55 subjects measured their daily health and other variables. To estimate the associations between the health outcomes and the environmental exposures, we used a mixed effects regression model using an autoregressive model of order-one and we adjusted for month and day and personal variables. The general pattern of associations can be summarized as follows: oxygen saturation was reduced for increases in indoor- and outdoor-PM2.5 and temperature. Pulse rate increased on the concurrent day for increases in indoor CO and PM2.5. Diastolic blood pressure increased with increasing indoor and outdoor PM2.5 and relative humidity. Systolic blood pressure increased with indoor PM2.5 and decreased with increasing indoor and outdoor temperature. Self-rated health diminished with increases in outdoor PM2.5 and indoor and outdoor temperature. Self-reported shortness of breath at night increased with increasing indoor and outdoor temperatures. Health in heart failure is affected in the short term by personal and environmental conditions that are manifest in intermediate physiological parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Drew Adam; Backhaus, Scott N.
Control of consumer electrical devices for providing electrical grid services is expanding in both the scope and the diversity of loads that are engaged in control, but there are few experimentally-based models of these devices suitable for control designs and for assessing the cost of control. A laboratory-scale test system is developed to experimentally evaluate the use of a simple window-mount air conditioner for electrical grid regulation services. The experimental test bed is a single, isolated air conditioner embedded in a test system that both emulates the thermodynamics of an air conditioned room and also isolates the air conditioner frommore » the real-world external environmental and human variables that perturb the careful measurements required to capture a model that fully characterizes both the control response functions and the cost of control. The control response functions and cost of control are measured using harmonic perturbation of the temperature set point and a test protocol that further isolates the air conditioner from low frequency environmental variability.« less
Stability of athlete blood passport parameters during air freight.
Ashenden, M; Sharpe, K; Plowman, J; Allbon, G; Lobigs, L; Baron, A; Gore, C J
2014-10-01
Fluctuations in ambient temperature and pressure, as well as physical jostling, may affect the stability of whole blood samples transported by air freight. The aim of this study was to characterize the stability of key blood variables during air freight and to investigate whether vibration or reduced pressure alone affected results. Over a 72-h interval, we evaluated the stability of full blood count indices (plus reticulocytes) in tubes that were air-freighted a total of 2, 10 and 28 h. We also examined the impact of 24 h of reduced atmospheric pressure (750 hpa or approximately 2500 m.a.s.l) and vibration (5 Hz). Samples were measured on a Sysmex XT-2000i instrument. The two key variables in the context of antidoping (haemoglobin concentration, reticulocytes) remained stable over a 72-h period regardless of the duration of air freight. Atmospheric pressure and vibration had no discernible effect. Whole blood samples stored in NanoCool devices can be relied upon to remain stable for at least 72 h despite interim air freight. © 2013 John Wiley & Sons Ltd.
Meteorological conditions during the summer 1986 CITE 2 flight series
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott
1990-01-01
An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.
Emissions of nitrogen oxides from an experimental hydrogen-fueled gas turbine combustor
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1974-01-01
The effect of operating variables of a hydrogen fueled combustor on exhaust concentrations of total oxides of nitrogen was determined at inlet-air temperature levels up to 810 K, pressure of 414,000N/sa m, and reference velocity of 21.3 m/sec. The combustor, which was originally designed for hydrocarbon fuel produced a NO(x) concentration of 380 ppm with hydrogen at 810 K inlet-air temperature. A reduction in NO(x) of about 30 % was obtained by modification to a lean or rich primary zone. The lowest NO(x) levels obtained with hydrogen were equivalent to those of the reference combustor burning hydrocarbon fuels.
NASA Astrophysics Data System (ADS)
Mora, Carla
2010-05-01
Occurrence, formation, spatial patterns and intensity of cold air pools/lakes were studied in the Serra da Estrela (40° 20'N 7° 35'W, 1993m, Central Portugal) from January to December 2000. Data was collected using a network of air temperature dataloggers installed at different topographic positions (interfluves, valley floors and slopes) recording at 2-h intervals. A k-means classification was applied to the dataset of instantaneous air temperatures, and 3 types of thermal patterns were identified. Type 1 (66% cases) shows events with decreasing air temperatures with altitude. Type 2 (27% cases) shows accumulation of cold air in the valleys with higher valley floors showing the lowest temperatures. Type 3 (7% cases) show accumulation of cold air, but with lowest air temperatures in the valleys at lower altitudes. Causal factors for the occurrence of the patterns were studied by applying discriminant analysis on meteorological and topographical variables. Type 1 occurs under atmospheric instability conditions, while types 2 and 3 relate to atmospheric stability. Types 2 and 3 are controlled by seasonality and local insolation/shadowing effects. For the detailed study of cold air accumulations, two approaches were followed: the analysis of temperature differences between a station in a crest and a station in a glacial cirque floor; and, the analysis of 5-min interval temperature data along a transect in the Zêzere valley.The differences in air temperature between the glacier cirque floor (Covão Cimeiro, 1620m) and the crest (Cântaro Gordo, 1870m) were classified into 9 types of regime. Thermal inversions in the cirque were found in 6 types (48%). These are characterized in detail and the geographical and meteorological controlling factors are analyzed using one-way ANOVA and discriminant analysis. The 6 types show different daily regimes and inversion intensities, as well as a seasonal trend. The maximum inversion intensity was 9 °C, and the minimum temperature -17 °C at the cirque floor. Simultaneoulsy, the ridge showed -9 °C. Thermal inversions show atmospheric stability with low wind speed and low cloudiness. The sequence of patterns throughout the year is controlled by topographic factors and insolation at the cirque floor. The formation of thermal inversions in a NNE-SSW direction valley (Zêzere valley), their durationand dissipation were studied in detail during 5 days of atmospheric stability using air temperature recorded at 5-min intervals. During the day, air temperature decreased with altitude (-0.7 °C/100m to -1 °C/100m), and during the night, the valley floor showed lower temperatures than the mountain summit. During the night a thermal belt formed and the valley floor was 3 °C colder than the top of the inversion layer. During the day there was an asymmetry in the distribution of temperatures along the valley controlled by solar radiation. Air temperatures ranged from -5 °C to 16 °C. The results show the effect of topography on air temperatures in situations of atmospheric stability and can be extrapolated to the mountains with similar climatic and topographic conditions. The identification of the shadowing effect induced by valleys and its impact on the maintenance of cold air lakes during the morning in the valleys of North-South orientation can be of special interest for planning and environmental impact studies.
Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin
NASA Astrophysics Data System (ADS)
Tang, C.; Cooter, E. J.
2017-12-01
Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.
Meteorological variables and bacillary dysentery cases in Changsha City, China.
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa
2014-04-01
This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.
Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa
2014-01-01
This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature. PMID:24591435
NASA Astrophysics Data System (ADS)
Park, Jun; Hwang, Seung-On
2017-11-01
The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.
Karthikeya Sharma, T
2015-11-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.
Should anthropogenic warming lead to more frequent cold air outbreaks over the northeastern U.S.?
NASA Astrophysics Data System (ADS)
Nicholas, R.
2014-12-01
For the northeastern United States, Winter 2013-14 was the coldest winter since the late 1970s and perhaps the coldest on record relative to prevailing climatic conditions. Frequent snowstorms and cold air outbreaks led to considerable press coverage and heated scholarly debate over the possible role of anthropogenic climate change in modulating wintertime variability in the northern hemisphere polar jet. While mechanisms have been proposed, to date, the observational record offers no definitive evidence for such a relationship, nor does it conclusively exclude one. To further explore this question, we employ a large, initial conditions ensemble of the Community Earth System Model forced with historical and RCP8.5 emissions. The ensemble effectively samples internal variability in the climate system and is used to assess the potential for forced changes in polar jet variability and the frequency of cold air outbreaks over the northeastern U.S. with projected increases in global mean temperature during the 21st century.
Karthikeya Sharma, T.
2014-01-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918
Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming
Clow, David W.
2010-01-01
Trends in the timing of snowmelt and associated runoff in Colorado were evaluated for the 1978-2007 water years using the regional Kendall test (RKT) on daily snow-water equivalent (SWE) data from snowpack telemetry (SNOTEL) sites and daily streamflow data from headwater streams. The RKT is a robust, nonparametric test that provides an increased power of trend detection by grouping data from multiple sites within a given geographic region. The RKT analyses indicated strong, pervasive trends in snowmelt and streamflow timing, which have shifted toward earlier in the year by a median of 2-3 weeks over the 29-yr study period. In contrast, relatively few statistically significant trends were detected using simple linear regression. RKT analyses also indicated that November-May air temperatures increased by a median of 0.9 degrees C decade-1, while 1 April SWE and maximum SWE declined by a median of 4.1 and 3.6 cm decade-1, respectively. Multiple linear regression models were created, using monthly air temperatures, snowfall, latitude, and elevation as explanatory variables to identify major controlling factors on snowmelt timing. The models accounted for 45% of the variance in snowmelt onset, and 78% of the variance in the snowmelt center of mass (when half the snowpack had melted). Variations in springtime air temperature and SWE explained most of the interannual variability in snowmelt timing. Regression coefficients for air temperature were negative, indicating that warm temperatures promote early melt. Regression coefficients for SWE, latitude, and elevation were positive, indicating that abundant snowfall tends to delay snowmelt, and snowmelt tends to occur later at northern latitudes and high elevations. Results from this study indicate that even the mountains of Colorado, with their high elevations and cold snowpacks, are experiencing substantial shifts in the timing of snowmelt and snowmelt runoff toward earlier in the year.
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
NASA Astrophysics Data System (ADS)
Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2015-03-01
We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.
The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas
NASA Astrophysics Data System (ADS)
Yashayaev, Igor; Seidov, Dan
2015-03-01
The focus of this work is on the temporal and spatial variability of the Atlantic Water (AW). We analyze the existing historic hydrographic data from the World Ocean Database to document the long-term variability of the AW throughflow across the Norwegian Sea to the western Barents Sea. Interannual-to-multidecadal variability of water temperature, salinity and density are analyzed along six composite sections crossing the AW flow and coastal currents at six selected locations. The stations are lined up from southwest to northeast - from the northern North Sea (69°N) throughout the Norwegian Sea to the Kola Section in the Barents Sea (33°30‧E). The changing volume and characteristics of the AW throughflow dominate the hydrographic variability on decadal and longer time scales in the studied area. We examine the role of fluctuations of the volume of inflow versus the variable local factors, such as the air-sea interaction and mixing with the fresh coastal and cold Arctic waters, in controlling the long-term regional variability. It is shown that the volume of the AW, passing through the area and affecting the position of the outer edge of the warm and saline core, correlates well with temperature and salinity averaged over the central portions of the studied sections. The coastal flow (mostly associated with the Norwegian Coastal Current flowing over the continental shelf) is largely controlled by seasonal local heat and freshwater impacts. Temperature records at all six lines show a warming trend superimposed on a series of relatively warm and cold periods, which in most cases follow, with a delay of four to five years, the periods of relatively low and high North Atlantic Oscillation (NAO), and the periods of relatively high and low Atlantic Multidecadal Oscillation (AMO), respectively. In general, there is a relatively high correlation between the year-to-year changes of the NAO and AMO indices, which is to some extent reflected in the (delayed) AW temperature fluctuations. It takes about two years for freshening and salinification events and a much shorter time (of about a year or less) for cooling and warming episodes to propagate or spread across the region. This significant difference in the propagation rates of salinity and temperature anomalies is explained by the leading role of horizontal advection in the propagation of salinity anomalies, whereas temperature is also controlled by the competing air-sea interaction along the AW throughflow. Therefore, although a water parcel moves within the flow as a whole, the temperature, salinity and density anomalies split and propagate separately, with the temperature and density signals leading relative to the salinity signal. A new hydrographic index, coastal-to-offshore density step, is introduced to capture variability in the strength of the AW volume transport. This index shows the same cycles of variability as observed in temperature, NAO and AMO but without an obvious trend.
Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables
NASA Astrophysics Data System (ADS)
Jones, Philip D.; Harpham, Colin; Troccoli, Alberto; Gschwind, Benoit; Ranchin, Thierry; Wald, Lucien; Goodess, Clare M.; Dorling, Stephen
2017-07-01
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979-2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against gridded observational fields.
Potential impacts of climate variability on respiratory morbidity in children, infants, and adults.
Souza, Amaury de; Fernandes, Widinei Alves; Pavão, Hamilton Germano; Lastoria, Giancarlo; Albrez, Edilce do Amaral
2012-01-01
To determine whether climate variability influences the number of hospitalizations for respiratory diseases in infants, children, and adults in the city of Campo Grande, Brazil. We used daily data on admissions for respiratory diseases, precipitation, air temperature, humidity, and wind speed for the 2004-2008 period. We calculated the thermal comfort index, effective temperature, and effective temperature with wind speed (wind-chill or heat index) using the meteorological data obtained. Generalized linear models, with Poisson multiple regression, were used in order to predict hospitalizations for respiratory disease. The variables studied were (collectively) found to show relatively high correlation coefficients in relation to hospital admission for pneumonia in children (R² = 68.4%), infants (R² = 71.8%), and adults (R² = 81.8%). Our results indicate a quantitative risk for an increase in the number of hospitalizations of children, infants, and adults, according to the increase or decrease in temperature, humidity, precipitation, wind speed, and thermal comfort index in the city under study.
Lake Stability and Winter-Spring Transitions: Decoupled Ice Duration and Winter Stratification
NASA Astrophysics Data System (ADS)
Daly, J.; Dana, S.; Neal, B.
2016-12-01
Ice-out is an important historical record demonstrating the impact of warmer air temperatures on lake ice. To better understand regional differences in ice-out trends, to characterize the thermal dynamics of smaller mountain lakes, and to develop baseline data for Maine's high elevations landscapes, sub-hourly water temperatures have been collected in over a dozen of Maine's mountain lakes since 2010. Both surface water and hypolimnion temperature data are recorded year-round, facilitating the determination of ice-in, ice-out, and the duration of winter stratification. The multi-year record from sites across as 250 km transect allows us to compare spatial variability related to lake morphometry and location with inter-annual variability related to local weather. All of the study lakes are large enough to stratify during the summer and mix extensively during the fall. Most years, our data show that the onset of winter stratification is nearly synchronous across the study area and is associated with cold air temperatures. Winter stratification can begin days to weeks before ice-in; the timing of ice-in shows more variability, with both elevation and basin aspect influencing the timing. Ice-out shows both the anticipated spatial and interannual variability; some years there is strong coherence between locations while other years show high variability, possibly a function of differences in snowpack. Ice-out is not always immediately followed by the end of winter stratification, there is sometimes a lag of days to weeks before the lakes mix. If the warm temperatures that lead to ice-out are followed by calm days without significant wind, the surface of some lakes begins to warm quickly maintaining the density difference and prolonging winter stratification. The longer the lag time, the stronger the density difference becomes which may also result in a very brief period of mixing in the spring prior to set-up of summer stratification. This year's El Niño event resulted in very late ice-in, leading to an unusually short ice duration period at most sites. However, ice-out for these sites was within the range observed previous years and there may not be a significant impact on summer water temperatures.
O'Donnell, Margaret A; Whitfield, Justin
The purpose of this study was to determine whether the temperature in medication storage compartments in air medical helicopters was within United States Pharmacopeia (USP)-defined limits for controlled room temperature. This was a prospective study using data obtained from a continuous temperature monitoring device. A total of 4 monitors were placed within 2 medication storage locations in 2 identical helicopters. The data collection period lasted 2 weeks during the summer and winter seasons. Data retrieved from monitors were compared against USP parameters for proper medication storage. Results documented temperatures outside the acceptable range a majority of the time with temperatures above the high limit during summer and below the low limit during winter. The study determined that compartments used for medication storage frequently fell outside of the range for USP-defined limits for medication storage. Flight programs should monitor storage areas, carefully taking actions to keep medication within defined ranges. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process
NASA Astrophysics Data System (ADS)
Gokon, Nobuyuki; Yamaguchi, Tomoya; Cho, Hyun-seok; Bellan, Selvan; Hatamachi, Tsuyoshi; Kodama, Tatsuya
2017-06-01
The present authors (Niigata University, Japan) have developed a tubular reactor system using novel "double-walled" reactor/receiver tubes with carbonate molten-salt thermal storage as a phase change material (PCM) for solar reforming of natural gas and with Al-Si alloy thermal storage as a PCM for solar air receiver to produce high-temperature air. For both of the cases, the high heat capacity and large latent heat (heat of solidification) of the PCM phase circumvents the rapid temperature change of the reactor/receiver tubes at high temperatures under variable and uncontinuous characteristics of solar radiation. In this study, we examined cyclic properties of thermal storage/discharge for Cu-Si alloy in air stream in order to evaluate a potentiality of Cu-Si alloy as a PCM thermal storage material. Temperature-increasing performances of Cu-Si alloy are measured during thermal storage (or heat-charge) mode and during cooling (or heat-discharge) mode. A oxidation state of the Cu-Si alloy after the cyclic reaction was evaluated by using electron probe micro analyzer (EPMA).
Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation
NASA Astrophysics Data System (ADS)
Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette
2016-04-01
The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m-3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.
NASA Astrophysics Data System (ADS)
Schwindt, Daniel; Kneisel, Christof
2010-05-01
Discontinuous alpine permafrost is expected to exist at altitudes above 2400m a.s.l. at mean annual air temperatures (MAAT) of less than -1°C. Below timberline only a few sites are known, where sporadic permafrost exists in vegetated talus slopes with positive MAAT. Aim of the study is to characterize permafrost-humus interaction, the thermal regime and its influence on temporal and spatial permafrost variability. Results of geophysical and thermal measurements from three talus slopes, located in the Swiss Alps (Engadin, Appenzell) at elevations between 1200 and 1800m a.s.l. with MAAT between 2.8°C and 5.5°C are presented. Parent rock-material of the slopes are granite (Bever Valley, Engadin) and dolomite (Susauna Valley, Engadin; Brüeltobel, Appenzell). Joint application of electrical resistivity tomography (ERT) and refraction seismic tomography (RST) is used to detect and characterize permafrost. To observe temporal and spatial variability in ice content and characteristics year-around geoelectrical monitoring and quasi-3D ERT are used. A forward modeling approach has been applied to validate the results of geoelectrical monitoring. A number of temperature data loggers were installed in different depth of the humus layer and in different positions of the slope to monitor the ground thermal regime. Isolated permafrost has been detected by the combination of ERT and RST in the lower parts of the investigated talus slopes. Results from geophysical measurements and monitoring indicate a high spatial and temporal variability in ice content and ice characteristics (temperature, density, content of unfrozen water) for all sites. A distinct rise of resistivities between November and December indicates a decrease of unfrozen water content, caused by a pronounced cooling in the lower parts of the slope. Decreasing ice content and extent of the permafrost lenses can be observed in decreasing seismic velocities from 2600m/sec in spring to only 1500m/sec in October. Ice characteristics, ice content and extent of permafrost lenses depend on the thermal regime, induced by characteristics of surface (humus, vegetation) and subsurface (parental rock material) material as well as thermal effects, with an inversive air flow inside the talus slope of cold air inflow in winter in the lower parts and cold air outflow in summer through the same vents (chimney effect), a theory that has been proven by temperature measurements in the Brüeltobel and the Susauna Valley. While the dolomitic talus slopes are relatively homogenous concerning surface and subsurface material, showing a consistent thick humus cover, the granitic site shows a small-scale heterogeneity of different humus forms and thicknesses as well as size of granitic boulders, influencing the thermal regime. Temperatures in the humus profile are very constant for the dolomitic sites, reflecting the insulation capability of the humus cover, with temperatures in August around 3°C at 30cm depth (mean air temperature in August 12°C). Humus temperatures (30cm depth) in the Bever Valley vary strongly between areas with consistent humus cover (1-2°C in August) and areas with coarse, uncovered boulders, where temperatures show a stronger coupling to air temperatures. While the chimney effect has strong influence on the ground thermal regime of the dolomitic sites, for some parts of the granitic slope in the Bever Valley the theory has to be expanded towards a continuous air exchange with the atmosphere, for areas where the insulation capability of the humus cover is highly disturbed along large parts of the talus slope.
Isolating the anthropogenic component of Arctic warming
Chylek, Petr; Hengartner, Nicholas; Lesins, Glen; ...
2014-05-28
Structural equation modeling is used in statistical applications as both confirmatory and exploratory modeling to test models and to suggest the most plausible explanation for a relationship between the independent and the dependent variables. Although structural analysis cannot prove causation, it can suggest the most plausible set of factors that influence the observed variable. Here, we apply structural model analysis to the annual mean Arctic surface air temperature from 1900 to 2012 to find the most effective set of predictors and to isolate the anthropogenic component of the recent Arctic warming by subtracting the effects of natural forcing and variabilitymore » from the observed temperature. We also find that anthropogenic greenhouse gases and aerosols radiative forcing and the Atlantic Multidecadal Oscillation internal mode dominate Arctic temperature variability. Finally, our structural model analysis of observational data suggests that about half of the recent Arctic warming of 0.64 K/decade may have anthropogenic causes.« less
Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques
NASA Astrophysics Data System (ADS)
El Kenawy, A.
2009-09-01
This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.
The energetic and carbon economic origins of leaf thermoregulation.
Michaletz, Sean T; Weiser, Michael D; McDowell, Nate G; Zhou, Jizhong; Kaspari, Michael; Helliker, Brent R; Enquist, Brian J
2016-08-22
Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of ∼60 °C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models.
Variations in incubator temperature and humidity management: a survey of current practice.
Deguines, C; Décima, P; Pelletier, A; Dégrugilliers, L; Ghyselen, L; Tourneux, P
2012-03-01
To describe and assess routine procedures and practices for incubator temperature and humidity management in France in 2009. A questionnaire was sent to all the 186 neonatal care units in France. The questionnaire return rate was 86%. Seventy-five per cent of the units preferred skin servo-control to air temperature control in routine practice. Air temperature control was mainly used for infants with a gestational age of more than 28 weeks and aged over 7 days of life. In general, thermal management decisions did not depend on the infant's age but were based on a protocol applied specifically by each unit. All units humidified the incubator air, but there was a large difference between the lowest and highest reported humidity values (45% and 100% assumed to be a maximal value, respectively). More than 65% of the units used a fixed humidity value, rather than a variable, protocol-derived value. We observed large variations in incubator temperature and humidity management approaches from one neonatal care unit to another. There is a need for more evidence to better inform practice. A task force should be formed to guide clinical practice. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Sullivan, C. W.
1986-01-01
The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.
Field test and simulation evaluation of variable refrigerant flow systems performance
Lee, Je Hyeon; Im, Piljae; Song, Young-hak
2017-10-24
Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating operation. As a result, energy consumption of the VRF system was reduced by more than that of the RTU by 55% approximately.« less
Field test and simulation evaluation of variable refrigerant flow systems performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je Hyeon; Im, Piljae; Song, Young-hak
Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating operation. As a result, energy consumption of the VRF system was reduced by more than that of the RTU by 55% approximately.« less
Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.
2016-07-01
Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.
NASA Technical Reports Server (NTRS)
Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.
2010-01-01
Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.
Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.
2014-01-01
Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.
Kamińska, Joanna A
2018-07-01
Random forests, an advanced data mining method, are used here to model the regression relationships between concentrations of the pollutants NO 2 , NO x and PM 2.5 , and nine variables describing meteorological conditions, temporal conditions and traffic flow. The study was based on hourly values of wind speed, wind direction, temperature, air pressure and relative humidity, temporal variables, and finally traffic flow, in the two years 2015 and 2016. An air quality measurement station was selected on a main road, located a short distance (40 m) from a large intersection equipped with a traffic flow measurement system. Nine different time subsets were defined, based among other things on the climatic conditions in Wrocław. An analysis was made of the fit of models created for those subsets, and of the importance of the predictors. Both the fit and the importance of particular predictors were found to be dependent on season. The best fit was obtained for models created for the six-month warm season (April-September) and for the summer season (June-August). The most important explanatory variable in the models of concentrations of nitrogen oxides was traffic flow, while in the case of PM 2.5 the most important were meteorological conditions, in particular temperature, wind speed and wind direction. Temporal variables (except for month in the case of PM 2.5 ) were found to have no significant effect on the concentrations of the studied pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Still, C. J.; Kim, Y.; Hanson, C. V.; Law, B. E.; Kwon, H.; Schulze, M.; Pau, S.; Detto, M.
2015-12-01
Temperature is a primary environmental control on plant processes at a range of spatial and temporal scales, affecting enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with environmental drivers, and can be used to examine forest responses to stresses like droughts and heat waves. Direct measurements of plant canopy temperatures using thermocouple sensors have been challenging and offer limited information. Such measurements are usually conducted over short periods of time and a limited spatial extent of the canopy. By contrast, thermal infrared (TIR) imaging allows for extensive temporal and spatial measurement of canopy temperature regimes. We present results of TIR imaging of forest canopies at a range of well-studied forest sites in the United States and Panama. These forest types include temperate rainforests, a semiarid pine forest, and a semideciduous tropical forest. Canopy temperature regimes at these sites are highly variable spatially and temporally and display frequent departures from air temperature, particularly during clear sky conditions. Canopy tissue temperatures are often warmer (daytime) and colder (nighttime) than air temperature, and canopy structure seems to have a large influence on the thermal regime. Additionally, comparison of canopy temperatures to eddy covariance fluxes of carbon dioxide, water vapor, and energy reveals relationships not apparent using air temperature. Initial comparisons between our forest canopy temperatures and remotely sensed skin temperature using Landsat and MODIS data show reasonably good agreement. We conclude that temporal and spatial changes in canopy temperature and its relationship to biological and environmental factors can improve our understanding of how climate change is affecting forest function, and argue for wider deployment of thermal cameras in other ecosystems.
NASA Astrophysics Data System (ADS)
Mazon Hernandez, Rocio
The aim is to analyse the negative influence of high panel temperatures on electrical production when they are placed on steel roofs of industrial buildings and greenhouse roofs. Different configurations have been tested in order to allow cooling of photovoltaic panels to decrease panel temperature and improve electrical performance. To research this problem two experimental facilities have been built. The first facility includes two panels fixed on a structure. A panel is integrated on a parallel steel plate which does not allow sufficient cooling. Between both surfaces, there is an open air channel in which an air flow is created by the chimney effect thus cooling the panel by natural convection or inducing air, using a fan, by forced convection. The other panel has not any plate underneath it and is used as a referent. The electrical behaviour of the integrated panel has been studied for different air gaps and induced velocities, being also compared with the reference panel. An experimental model was developed to establish correlations which allow determine the panel temperature depending on the influential variables on the cooling ability. This research also analyses the data of a working solar plant, with the same panel model, obtaining the correlations between electrical variables and panel temperature. A comparison with the electrical behaviour in the experimental facility and the solar plant is also presented. The second experimental facility is a replica of a photovoltaic greenhouse. It consists of four photovoltaic panels placed on the plastic roof, providing an open and divergent channel between both surfaces thus creating an air flow by natural convection. This research studies the effect of high temperatures within the greenhouse which is transferred by the roof and thus affects the electrical production. In addition, two air gaps were used and the effect of adding insulating material to the plastic roof was studied. The electrical variables of the panels are analysed to compare and select the best configuration. The presented research provides a deep knowledge of how they work as well as information and results for an improvement in future designs of building integrated photovoltaic systems. Este estudio se centra en analizar la influencia negativa de la temperatura en la produccion electrica de paneles fotovoltaicos al estar emplazados sobre cubierta de acero, como sucede en naves industriales y sobre un invernadero. Se estudian diferentes configuraciones que permitan refrigerar los paneles, reduciendo su temperatura y mejorar su rendimiento. Para abordar este problema, se han construido dos instalaciones experimentales, fieles a plantas solares en funcionamiento. Una instalacion engloba dos paneles fotovoltaicos sobre estructura fija al suelo. Uno de los paneles esta integrado sobre una superficie paralela y metalica. Entre ambas superficies existe un espacio que posibilita circular aire, permitiendo refrigerar el panel por conveccion natural, o conveccion forzada impulsando el aire con un ventilador. El otro panel, libre por su cara posterior y se ha considerado de referencia. Se ha estudiado el comportamiento del panel integrado sobre cubierta para diferentes secciones de aire y velocidades inducidas, comparandolo con el panel de referencia. Se ha desarrollado un modelo experimental que nos permite determinar la temperatura del panel en funcion de las variables que influyen en su refrigeracion. Adicionalmente, se han analizado los datos de una planta solar en funcionamiento, con paneles de igual caracteristicas, obteniendo correlaciones entre la temperatura del panel y las variables electricas y comparandolos con las obtenidas en la instalacion experimental. La segunda instalacion experimental reproduce parte de una instalacion solar sobre un invernadero, formada por cuatro paneles fotovoltaicos colocados sobre el plastico del invernadero, existiendo un canal divergente entre ambas superficies. Se estudia la influencia de las altas temperaturas en el interior del invernadero sobre la produccion electrica de los paneles, decido a la transferencia de calor del interior del invernadero. Ademas, se han ensayado dos separaciones diferentes y para cada una se ha comparado con la misma, utilizando un aislante sobre la cubierta. El estudio realizado sobre ambas instalaciones ha proporcionado un conocimiento profundo del funcionamiento de cada una de ellas, asi como informacion valida para una mejora de futuros disenos de instalaciones fotovoltaicas sobre cubiertas.
NASA Astrophysics Data System (ADS)
Tomczyk, Arkadiusz M.; Szyga-Pluta, Katarzyna
2018-03-01
The aim of the study was to identify the thermal and precipitation conditions and their changes in the growing season in Poland in the years 1966-2015. Data on average daily air temperature and daily precipitation totals for 30 stations from the period of 1966-2015 were used. The data were obtained from the collections of the Institute of Meteorology and Water Management—National Research Institute. The growing season was defined as the period of average daily air temperature ≥ 5 °C. The mathematical formulas proposed by Gumiński (1948) were used to determine its start and end dates. In the growing season in Poland in the years 1966-2015, there were more significant changes in the thermal conditions than there were in the precipitation conditions. In terms of long-term trends over the study period, thermal conditions during the growing season are characterised by an increase in mean air temperature, an increase in the sum of air temperatures and an increasing occurrence of seasons classified as above-normal seasons. Precipitation conditions of the growing season show large temporal and spatial variations in precipitation and a predominance of normal conditions. The changes in precipitation were not statistically significant, except for Świnoujście.
Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera.
Harrison, Jon F; Fewell, Jennifer H
2002-10-01
Flying honey bees demonstrate highly variable metabolic rates. The lowest reported values (approximately 0.3 Wg(-1)) occur in tethered bees generating the minimum lift to support their body weight, free-flying 2-day old bees, winter bees, or bees flying at high air temperatures (45 degrees C). The highest values (approximately 0.8 Wg(-1)) occur in foragers that are heavily loaded or flying in low-density air. In different studies, flight metabolic rate has increased, decreased, or remained constant with air temperature. Current research collectively suggests that this variation occurs because flight metabolic rates decrease at thorax temperatures above or below 38 degrees C. At 30 degrees C, approximately 30% of colonial energy is spent during typical foraging, so variation in flight metabolic rate can strongly affect colony-level energy balance. Higher air temperatures tend to increase colonial net gain rates, efficiencies and honey storage rates due to lower metabolic rates during flight and in the hive. Variation in flight metabolism has a clear genetic basis. Different genetic strains of honey bees often differ in flight metabolic rate, and these differences in flight physiology can be correlated with foraging effort, suggesting a possible pathway for selection effects on flight metabolism.
Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R
2017-07-15
The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.
Mitchell, D A; von Meien, O F
2000-04-20
Zymotis bioreactors for solid-state fermentation (SSF) are packed-bed bioreactors with internal cooling plates. This design has potential to overcome the problem of heat removal, which is one of the main challenges in SSF. In ordinary packed-bed bioreactors, which lack internal plates, large axial temperature gradients arise, leading to poor microbial growth in the end of the bed near the air outlet. The Zymotis design is suitable for SSF processes in which the substrate bed must be maintained static, but little is known about how to design and operate Zymotis bioreactors. We use a two-dimensional heat transfer model, describing the growth of Aspergillus niger on a starchy substrate, to provide guidelines for the optimum design and operation of Zymotis bioreactors. As for ordinary packed-beds, the superficial velocity of the process air is a key variable. However, the Zymotis design introduces other important variables, namely, the spacing between the internal cooling plates and the temperature of the cooling water. High productivities can be achieved at large scale, but only if small spacings between the cooling plates are used, and if the cooling water temperature is varied during the fermentation in response to bed temperatures. Copyright 2000 John Wiley & Sons, Inc.
Drach, Patricia; Krüger, Eduardo L; Emmanuel, Rohinton
2018-06-15
This study investigates the joint effect of atmospheric conditions and urban morphology, expressed as the Sky View Factor (SVF), on intra-urban variability. The study has been carried out in Glasgow, UK, a shrinking city with a maritime temperate climate type, and findings could guide future climate adaptation plans in terms of morphology and services provided by the municipality to overcome thermal discomfort in outdoor settings. In this case, SVF has been used as an indicator of urban morphology. The modified Pasquill-Gifford-Turner (PGT) classification system was adopted for classifying the temperature monitoring periods according to atmospheric stability conditions. Thirty two locations were selected on the basis of SVF with a wide variety of urban shapes (narrow streets, neighbourhood green spaces, urban parks, street canyons and public squares) and compared to a reference weather station during a total of twenty three transects during late spring and summer in 2013. Maximum daytime intra-urban temperature differences were found to be strongly correlated with atmospheric stability classes. Furthermore, differences in air temperature are noticeable in urban canyons, with a direct correlation to the site's SVF (or sky openness) and with an inverse trend under open-air conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Linthicum, Kenneth J; Anyamba, Assaf; Killenbeck, Bradley; Lee, Won-Ja; Lee, Hee Choon S; Klein, Terry A; Kim, Heung-Chul; Pavlin, Julie A; Britch, Seth C; Small, Jennifer; Tucker, Compton J; Gaydos, Joel C
2014-07-01
Plasmodium vivax malaria reemerged in the Republic of Korea in 1993 after it had been declared malaria free in 1979. Malaria rapidly increased and peaked in 2000 with 4,142 cases with lower but variable numbers of cases reported through 2011. We examined the association of regional climate trends over the Korean Peninsula relative to malaria cases in U.S. military and Republic of Korea soldiers, veterans, and civilians from 1950 to 2011. Temperatures and anomaly trends in air temperature associated with satellite remotely sensed outgoing long-wave radiation were used to observe temporal changes. These changes, particularly increasing air temperatures, in combination with moderate rains throughout the malaria season, and distribution of malaria vectors, likely supported the 1993 reemergence and peaks in malaria incidence that occurred through 2011 by accelerating the rate of parasite development in mosquitoes and increased numbers as a result of an expansion of larval habitat, thereby increasing the vectorial capacity of Anopheles vectors. High malaria rates associated with a favorable climate were similarly observed during the Korean War. These findings support the need for increased investigations into malaria predictive models using climate-related variables. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Human-modified temperatures induce species changes: Joint attribution.
Root, Terry L; MacMynowski, Dena P; Mastrandrea, Michael D; Schneider, Stephen H
2005-05-24
Average global surface-air temperature is increasing. Contention exists over relative contributions by natural and anthropogenic forcings. Ecological studies attribute plant and animal changes to observed warming. Until now, temperature-species connections have not been statistically attributed directly to anthropogenic climatic change. Using modeled climatic variables and observed species data, which are independent of thermometer records and paleoclimatic proxies, we demonstrate statistically significant "joint attribution," a two-step linkage: human activities contribute significantly to temperature changes and human-changed temperatures are associated with discernible changes in plant and animal traits. Additionally, our analyses provide independent testing of grid-box-scale temperature projections from a general circulation model (HadCM3).
The Tropical Upper Troposphere and Lower Stratosphere in the GEOS-2 GCM
NASA Technical Reports Server (NTRS)
Pawson, S.; Takacs, L.; Molod, A.; Nebuda, S.; Chen, M.; Rood, R.; Read, W. L.; Fiorino, M.
1999-01-01
The structure of the tropical upper troposphere and lower stratosphere in the GEOS-2 General Circulation Model (GCM) is discussed. The emphasis of this study is on the reality of monthly-mean temperature and water vapor distributions in the model, compared to reasonable observational estimates. It is shown that although the zonal-mean temperature is in good agreement with observations, the GCM supports an excessive zonal asymmetry near the tropopause compared to the ECMWF Reanalyses. In reality there is a QBO-related variability in the zonally averaged lower stratospheric temperature which is not captured by the model. The observed upper tropospheric temperature and humidity fields show variations related to those in the sea surface temperature, which are not incorporated in the GCM; nevertheless, there is some interannual variability in the GCM, indicating a component arising from internal processes. The model is too moist in the middle troposphere (500 hPa) but too dry in the upper troposphere, suggesting that there is too little vertical transport or too much drying in the GCM. Transport into the stratosphere shows a pronounced annual cycle, with drier air entering the tropical stratosphere when the tropopause is coldest in northern winter; while the alternating dry and moist air masses can be traced ascending through the tropical lower stratosphere, the progression of the anomalies is too rapid.
Multi-model attribution of upper-ocean temperature changes using an isothermal approach.
Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook
2016-06-01
Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.
Multi-model attribution of upper-ocean temperature changes using an isothermal approach
NASA Astrophysics Data System (ADS)
Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook
2016-06-01
Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.
Nutrient status: a missing factor in phenological and pollen research?
Jochner, Susanne; Höfler, Josef; Beck, Isabelle; Göttlein, Axel; Ankerst, Donna Pauler; Traidl-Hoffmann, Claudia; Menzel, Annette
2013-01-01
Phenology ranks among the best ecosystem processes for fingerprinting climate change since temperature explains a high percentage of the interannual or spatial variation in phenological onset dates. However, roles of other environmental variables, such as foliar nutrient concentrations, are far from adequately understood. This observational study examined the effects of air temperature and 11 nutrients on spring phenology of Betula pendula Roth (birch) along an urban–rural gradient in Munich, Germany, during the years 2010/2011. Moreover, the influence of temperature, nutrients, and air pollutants (NO2 and O3) on the amounts of pollen and catkin biomass in 2010 was evaluated. In addition to the influence of higher temperatures advancing phenological onset dates, higher foliar concentrations of potassium, boron, zinc, and calcium were statistically significantly linked to earlier onset dates. Since flushing of leaves is a turgor-driven process and all the influential nutrients are involved in cell extension, membrane function, and stability, there might be a reasonable physiological interpretation of the observed association. The amounts of pollen were negatively correlated with temperature, atmospheric NO2, and foliar iron concentration, suggesting that these variables restrict pollen production. The results of this study suggested an influence of nutritional status on both phenology and pollen production. The interaction of urbanization and climate change should be considered in the assessment of the impact of global warming on ecosystems and human health. PMID:23630329
Internal variability of a dynamically downscaled climate over North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 km and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemblemore » during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late 21st century. However, the IV is larger than the projected changes in precipitation for the mid- and late 21st century.« less
Internal variability of a dynamically downscaled climate over North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble duringmore » the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.« less
Internal variability of a dynamically downscaled climate over North America
NASA Astrophysics Data System (ADS)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth
2018-06-01
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.
Internal variability of a dynamically downscaled climate over North America
NASA Astrophysics Data System (ADS)
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth
2017-09-01
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1982-01-01
Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.
The GCOS Reference Upper-Air Network (GRUAN)
NASA Astrophysics Data System (ADS)
Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.
2009-04-01
While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.
NASA Astrophysics Data System (ADS)
Murphy, P. C.; Lerner, B. M.; Williams, E. J.
2003-12-01
Air measurements of CO2 were made with a LI-COR LI-7000 CO2/H2O analyzer on the NOAA ship Ronald H. Brown during the New England Air Quality Study (NEAQS 2002) field campaign. This instrument is an improved version of the older model LI-6262 CO2/H2O analyzer, which uses a non-dispersive IR radiation absorption technique. During NEAQS, we operated the LI-7000 without temperature regulation, using a simple 2-point calibration scheme. An intercomparison between our measurements of atmospheric CO2 mixing ratios and those measured by a more sophisticated method, using temperature-regulation and a multipoint calibration with a LI-6252 CO2 analyzer (operated by AOML) shows generally good results ([CO2]AL = [CO2]AOML x 1.015 (0.010) - 5.7 (3.8) ppmv; R2 = 0.9889) in highly variable air masses. During subsequent laboratory studies, we evaluated the instrument for the manufacturer's claims of improvement in signal noise, sample gas temperature equilibration and zero drift with temperature. Further work examined the instrument's susceptibility to rapid temperature changes, which has been previously demonstrated to introduce error of several ppmv ° C-1 in the LI-6252. A change in the LI-7000 optical bench temperature of 12 ° C in 1 hour caused a sampling error of ˜3 ppmv CO2. Therefore, our lab investigations indicate that the LI-7000 would benefit from a temperature-controlled enclosure, as is used by the AOML group.
Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem
2007-04-01
Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.
Aircraft Engine Sump Fire Mitigation
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1973-01-01
An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.
A hybrid model for river water temperature as a function of air temperature and discharge
NASA Astrophysics Data System (ADS)
Toffolon, Marco; Piccolroaz, Sebastiano
2015-11-01
Water temperature controls many biochemical and ecological processes in rivers, and theoretically depends on multiple factors. Here we formulate a model to predict daily averaged river water temperature as a function of air temperature and discharge, with the latter variable being more relevant in some specific cases (e.g., snowmelt-fed rivers, rivers impacted by hydropower production). The model uses a hybrid formulation characterized by a physically based structure associated with a stochastic calibration of the parameters. The interpretation of the parameter values allows for better understanding of river thermal dynamics and the identification of the most relevant factors affecting it. The satisfactory agreement of different versions of the model with measurements in three different rivers (root mean square error smaller than 1oC, at a daily timescale) suggests that the proposed model can represent a useful tool to synthetically describe medium- and long-term behavior, and capture the changes induced by varying external conditions.
Investigating the variability in brown carbon light-absorption properties
NASA Astrophysics Data System (ADS)
Saleh, R.; Cheng, Z.; Atwi, K.
2017-12-01
Combustion of biomass fuels contributes a significant portion of brown carbon (BrC), the light-absorbing fraction of organic aerosols. BrC exhibits highly variable light-absorption properties, with imaginary part of the refractive indices (k) reported in the literature varying over two orders of magnitude. This high variability in k is attributed to the chaotic nature of combustion; however, there is a major gap in the fundamental understanding of this variability. To address this gap, we hypothesize that BrC is comprised of black carbon (BC) precursors whose transformation to BC has not seen fruition. Depending on the combustion conditions, these BC precursors exhibit different maturity levels which dictate their light-absorption properties (k). The more mature are the precursors, the more absorptive (or BC-like) they are. Therefore, k of BrC obtained from a certain measurement depends on the specific combustion conditions associated with the measurement, leading to the aforementioned variability in the literature. To test this hypothesis, we performed controlled combustion experiments in which the combustion conditions (temperature and air/fuel ratio) were varied and k was retrieved from real-time multi-wavelength light-absorption measurements at each condition. We used benzene, the inception of which during combustion is the initial critical step leading to BC formation, as a model fuel. By varying the combustion conditions from relatively inefficient (low temperature and/or air/fuel ratio) to relatively efficient (high temperature and/or air/fuel ratio), we isolated BrC components with progressively increasing k, spanning the wide range reported in the literature. We also performed thermodenuder measurements to constrain the volatility of the BrC, as well as laser desorption ionization mass spectrometry analysis to constrain its molecular mass. We found that as the combustion conditions approached the BC-formation threshold, the increase in k was associated with an increase in molecular mass and decrease in volatility. This confirms our hypothesis, since the BC precursors are expected to grow in size and become less volatile as they mature. These results provide the first correlation between the BrC physical, chemical, and consequent light-absorption properties.
Coutinho, Paulo Eduardo Guzzo; Candido, Luiz Antonio; Tadei, Wanderli Pedro; da Silva Junior, Urbano Lopes; Correa, Honorly Katia Mestre
2018-04-26
A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.
A Study of Variations in Atmospheric Turbulence Kinetic Energy on a Sandy Beach
NASA Astrophysics Data System (ADS)
Koscinski, J. S.; MacMahan, J. H.; Wang, Q.; Thornton, E. B.
2016-12-01
A 6-m high, meteorological tower consisting six evenly spaced ultrasonic anemometers and temperature-relative humidity sensors was deployed at the high tide line on sandy, wave-dissipative, meso-tidal beach in southern Monterey Bay, CA in October 2015. The micro-meteorology study focus is to explore the momentum fluxes and turbulent kinetic energy influenced by the interaction between an intensive wave-breaking surf zone and a sandy beach associated with onshore & cross-shore winds, diurnal heating, and differences in ocean-air temperatures. The tower was deployed for approximately 1-month and experienced diurnal wind variations and synoptic storm events with winds measuring up to 10 m/s and an air temperature range of 5-28 oC. This beach environment was found to be primarily unstable in thermal stratification indicating that the air temperature is colder than underlying surface, either the ocean or the sandy beach. The drag coefficient was found to be dependent upon the atmospheric stability. Direct-estimates of atmospheric stability were obtained with the sonic anemometer. The direct estimates are a ratio of w*/u*, where the w*, vertically scaled buoyancy velocity, is greater than u*, horizontally scaled friction velocity. Hypotheses for the enhanced buoyancy are 1) diurnal heating of the sandy beach, 2) warmer ocean temperatures relative to air temperatures, and 3) the wave breaking within the surf zone. Further exploration into these hypotheses is conducted by using vertical tower sensor pairs for estimating the temporal variability of the mechanical shear production and buoyancy production terms in turbulent kinetic energy budget. These results are part of the Coastal Land Air Sea Interaction (CLASI) experiment.
NASA Technical Reports Server (NTRS)
Wilson, Robert W.; Richard, Paul H.; Brown, Kenneth D.
1945-01-01
Variable charge-air flow, cooling-air pressure drop, and fuel-air ration investigations were conducted to determine the cooling characteristics of a full-scale air-cooled single cylinder on a CUE setup. The data are compared with similar data that were available for the same model multicylinder engine tested in flight in a four-engine airplane. The cylinder-head cooling correlations were the same for both the single-cylinder and the flight engine. The cooling correlations for the barrels differed slightly in that the barrel of the single-cylinder engine runs cooler than the barrel of te flight engine for the same head temperatures and engine conditions.
More Frequent Weak Stratospheric Polar Vortex States Linked to Cold Extremes
NASA Astrophysics Data System (ADS)
Kretschmer, M.; Coumou, D.; Agel, L. A.; Barlow, M. A.; Tziperman, E.; Cohen, J. L.
2016-12-01
The extra-tropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, referred to as the stratospheric polar vortex (SPV) which confines cold temperatures at high latitudes. Previous studies showed that a weak SPV can lead to cold-air outbreaks in the mid-latitudes but the exact relationships and mechanisms are still unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in Central and eastern Asia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid to late winter (January and February) has increased significantly accompanied by subsequent cold surface temperatures in the mid-latitudes. Furthermore, we show that stratospheric and El Niño/Southern Oscillation (ENSO) variability can explain most of the observed spatially heterogenic winter temperature trends in the era of Arctic amplification but the contribution of ENSO is less important. We show that the weakening of the SPV was related to a strengthening Siberian high and poleward heat flux. These findings support the hypothesis that a warming Arctic has weakened the SPV and thereby increased the frequency of cold-air outbreaks.
Evaluation of surface energy and radiation balance systems for FIFE
NASA Technical Reports Server (NTRS)
Fritschen, Leo J.; Qian, Ping
1988-01-01
The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.
NASA Astrophysics Data System (ADS)
Shea, J. M.; Harder, P.; Pomeroy, J. W.; Kraaijenbrink, P. D. A.
2017-12-01
Mountain snowpacks represent a critical seasonal reservoir of water for downstream needs, and snowmelt is a significant component of mountain hydrological budgets. Ground-based point measurements are unable to describe the full spatial variability of snow accumulation and melt rates, and repeat Unmanned Air Vehicle (UAV) surveys provide an unparalleled opportunity to measure snow accumulation, redistribution and melt in alpine environments. This study presents results from a UAV-based observation campaign conducted at the Fortress Mountain Snow Laboratory in the Canadian Rockies in 2017. Seven survey flights were conducted between April (maximum snow accumulation) and mid-July (bare ground) to collect imagery with both an RGB camera and thermal infrared imager with the sensefly eBee RTK platform. UAV imagery are processed with structure from motion techniques, and orthoimages, digital elevation models, and surface temperature maps are validated against concurrent ground observations of snow depth, snow water equivalent, and snow surface temperature. We examine the seasonal evolution of snow depth and snow surface temperature, and explore the spatial covariances of these variables with respect to topographic factors and snow ablation rates. Our results have direct implications for scaling snow ablation calculations and model resolution and discretization.
Goldberg, M S; Giannetti, N; Burnett, R T; Mayo, N E; Valois, M-F; Brophy, J M
2008-10-01
Recent studies suggest that persons with congestive heart failure (CHF) may be at higher risk for short-term effects of air pollution. This daily diary panel study in Montreal, Quebec, was carried out to determine whether oxygen saturation and pulse rate were associated with selected personal factors, weather conditions and air pollution. Thirty-one subjects with CHF participated in this study in 2002 and 2003. Over a 2-month period, the investigators measured their oxygen saturation, pulse rate, weight and temperature each morning and recorded these and other data in a daily diary. Air pollution and weather conditions were obtained from fixed-site monitoring stations. The study made use of mixed regression models, adjusting for within-subject serial correlation and temporal trends, to determine the association between oxygen saturation and pulse rate and personal and environmental variables. Depending on the model, we accounted for the effects of a variety of personal variables (eg, body temperature, salt consumption) as well as nitrogen dioxide (NO2), ozone, maximum temperature and change in barometric pressure at 8:00 from the previous day. In multivariable analyses, the study found that oxygen saturation was reduced when subjects reported that they were ill, consumed salt, or drank liquids on the previous day and had higher body temperatures on the concurrent day (only the latter was statistically significant). Relative humidity and decreased atmospheric pressure from the previous day were associated with oxygen saturation. In univariate analyses, there was negative associations with concentrations of fine particulates, ozone, and sulphur dioxide (SO2), but only SO2 was significant after adjustment for the effects of weather. For pulse rate, no associations were found for the personal variables and in univariate analyses the study found positive associations with NO(2), fine particulates (aerodynamic diameter of 2.5 microm or under, PM(2.5)), SO2, and maximum temperature, although only the latter two were significant after adjustment for environmental effects. The findings from the present investigation suggest that personal and environmental conditions affect intermediate physiological parameters that may affect the health of CHF patients.
NASA Technical Reports Server (NTRS)
Yanke, Anne
2004-01-01
PS304 is a high temperature solid lubricant coating comprised of a nickel-chrome binder, chrome oxide hardener, barium-calcium fluoride high temperature lubricant, and silver as the low temperature lubricant. This coating is used to lubricate Oil-Free Foil Air Bearings as they experience friction and wear during start up and shut down. The coating deposition process begins with undercutting the shaft. This area is then sandblasted to provide a rough surface for the coating to adhere to. The coating powder is then sent through the plasma spray gun and a reasonably thick layer is applied to the undercut area of the shaft. The coating is then ground down even with the surface of the shaft and gets a nice polished finish. The foil air bearings use the solid lubricant, as mentioned above, during start up and shut down. During normal operating conditions, generally above 2000RPM, the bearings utilize air as their lubricant. Foil air bearings are comprised of a thin top foil and a corrugated bump foil. They have an interference fit with the shaft before operation. As the air gets "trapped" between the top foil and the shaft, it presses the top foil against the bump foil, in turn compressing the bumps. As the bumps compress, it allows for the air to separate the top foil from the shaft, therefore, utilizing the trapped air as its lubricant.
Kamra, Leena
2015-11-01
Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.
2010-11-15
Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less
Petrie, Matthew; Wildeman, A.M.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.
2016-01-01
The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling emergence and/or establishment and one or more independent variables of air temperature, soil temperature, precipitation and moisture availability. Our review suggests that seedling emergence and establishment for both species is highest at intermediate temperatures (20 to 25 °C), and higher precipitation and higher moisture availability support a higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodgepole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing temperatures and declining moisture availability may hinder forest persistence by limiting seedling processes. Yet, only 23 studies in our review investigated the effects of driving climate and environmental variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of many driving variables on seedling processes remain largely inconclusive. Our review stresses the need for additional field and laboratory studies to better elucidate the effects of driving climate and environmental variables on seedling emergence and establishment for ponderosa and lodgepole pine.
Total ozone and surface temperature correlations during 1972 - 1981
NASA Technical Reports Server (NTRS)
Parsons, C. L.
1983-01-01
Ten years of Dobson spectrophotometer total ozone measurements and surface temperature observations were used to construct monthly mean values of the two parameters. The variability of both parameters is greatest in the months of January and February. Indeed, in January there is an apparent correlation between high total ozone values and abnormally low surface temperatures. However, the correlation does not hold in February. By reviewing the history of stratospheric warmings during this period, it is argued that the ozone and surface temperature correlation is influenced by the advection or lack of advection of ozone rich arctic air resulting from sudden stratospheric warmings.
Brandon, Caitlin A; Gill, Dawn P; Speechley, Mark; Gilliland, Jason; Jones, Gareth R
2009-04-01
Adequate daily physical activity (PA) is important for maintaining functional capacity and independence in older adults. However, most older adults in Canada do not engage in enough PA to sustain fitness and functional independence. Environmental influences, such as warmer daytime temperatures, may influence PA participation; however, few studies have examined the effect of summertime temperatures on PA levels in older adults. This investigation measured the influence of summertime weather variables on PA in 48 community-dwelling older adults who were randomly recruited from a local seniors' community centre. Each participant wore an accelerometer for a single 7-consecutive-day period (between 30 May and 9 August 2006) during waking hours, and completed a PA logbook to remark on major daily PA events. Local weather variables were collected from a national weather service and compared with PA counts per minute. Regression analysis revealed a curvilinear relationship between log-transformed PA and mean daily temperature (r2 = 0.025; p < 0.05). Linear mixed effects models that accounted for repeated measures nested within individuals were performed for monthly periods, meteorological variables, sex, age, and estimated maximal oxygen consumption, with PA as the dependent variable. Age and Air Quality Index remained significant variables within the model. Higher fitness levels had no effect on allowing individuals to perform more vigorous PA in warmer temperatures.
NASA Astrophysics Data System (ADS)
Jung, Y.; Kim, J.; Cho, H.; Lee, B.
2006-12-01
The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.
Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Gao, Meng; Yin, Liting; Ning, Jicai
2018-07-01
Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.
The Extremely Warm Early Winter 2000 in Europe: What is the Forcing
NASA Technical Reports Server (NTRS)
Otterman, J.; Angell, J. K.; Atlas, R.; Ardizzone, J.; Demaree, G.; Jusem, J. C.; Koslowsky, D.; Terry, J.; Einaudi, Franco (Technical Monitor)
2001-01-01
High variability characterizes the winter climate of central Europe: interannual fluctuations in the surface-air temperature as large as 18 C over large areas are fairly common. The extraordinary early-winter 2000 in Europe appears to be a departure to an unprecedented extreme of the existing climate patterns. Such anomalous events affect agriculture, forestry, fuel consumption, etc., and thus deserve in-depth analysis. Our analysis indicates that the high anomalies of the surface-air temperature are predominantly due to the southwesterly flow from the eastern North Atlantic, with a weak contribution by southerly flow from the western Mediterranean. Backward trajectories based on the SSM/I and NCEP Reanalysis datasets traced from west-central Europe indicate that the warm air masses flowing into Europe originate in the southern North Atlantic, where the surface-air temperatures exceed by 15c or more the climatic norms in Europe for late-November or early-December. Because such large ocean-to-continent temperature differences characterize the winter conditions, we refer to this episode which started in late November as occurring in the early winter. In this season, with the sun low over the horizon in Europe, absorption of insolation by the surface has little significance. The effect of cloudiness, a corollary to the low-level maritime-air advection, is a warming by a reduction of heat loss (greenhouse effect). In contrast, in the summer, clouds, by reducing absorption of insolation, produce a cooling, effect at the surface.
Validation of Atmospheric Forcing Data for PIPS 3
2001-09-30
members shortly. RESULTS Surface Temperature: Figure 1 shows a comparison of surface air temperatures from the NOGAPS model , the IABP and the NCEP...with some 8,000 daily velocity observations from the IABP buoys shows that the sea-ice model performs better when driven with NOGAPS surface stresses...forcing variables, surface radiative fluxes, surface winds, and precipitation estimates to be used in the development and operation of the PIPS 3.0 model
Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium
NASA Astrophysics Data System (ADS)
Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan
2017-12-01
A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.
Volcanic influence on centennial to millennial Holocene Greenland temperature change.
Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu
2017-05-03
Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.
Snow depth evolution on sea ice from Snow Buoy measurement
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.
2016-12-01
Snow cover is an Essential Climate Variable. On sea ice, snow dominates the energy and momentum exchanges across the atmosphere-ice-ocean interfaces, and actively contributes to sea ice mass balance. Yet, snow depth on sea ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and air temperature evolution on Arctic and Antarctic sea ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and air temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast sea ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell Sea. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell Sea, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic sea ice in September 2015. Their air temperature record revealed exceptionally high air temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic sea ice will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.
NASA Astrophysics Data System (ADS)
Hofer, M.; Kaser, G.; Mölg, T.; Juen, I.; Wagnon, P.
2009-04-01
Glaciers in the outer tropical Cordillera Blanca (Peru, South America) are of major socio-economic importance, since glacier runoff represents the primary water source during the dry season, when little or no rainfall occurs. Due to their location at high elevations, the glaciers moreover provide important information about climate change in the tropical troposphere, where measurements are sparse. This study targets the local reconstruction of air temperature, specific humidity and wind speed above the surface of an outer tropical glacier from NCEP/NCAR reanalysis data as large scale predictors. Since a farther scope is to provide input data for process based glacier mass balance modelling, the reconstruction pursues a high temporal resolution. Hence an empirical downscaling scheme is developed, based on a few years' time series of hourly observations from automatic weather stations, located at the glacier Artesonraju and nearby moraines (Northern Cordillera Blanca). Principal component and multiple regression analyses are applied to define the appropriate spatial downscaling domain, suitable predictor variables, and the statistical transfer functions. The model performance is verified using an independent data set. The best predictors are lower tropospheric air temperature and specific humidity, at reanalysis model grid points that represent the Bolivian Altiplano, located in the South of the Cordillera Blanca. The developed downscaling model explaines a considerable portion (more than 60%) of the diurnal variance of air temperature and specific humidity at the moraine stations, and air temperature above the glacier surface. Specific humidity above the glacier surface, however, can be reconstructed well in the seasonal, but not in the required diurnal time resolution. Wind speed can only be poorly determined by the large scale predictors (r² lower than 0.3) at both sites. We assume a complex local interaction between valley and glacier wind system to be the main cause for the differences between model and observations.
Intraseasonal Characteristics Of North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Bojariu, R.; Gimeno, L..; de La Torre, L.; Nieto, R.
There is evidence of a temporal structure of regional response to the NAO variability in the cold season (e.g. NAO-related climate fluctuations reveal their strongest signal in January). To document the details of NAO intraseasonal characteristics we anal- ysed surface and upper air variables (air surface temperature, sea-ice concentration, sea surface temperature, and sea level pressure and geopotential heights at 700 hPa level) in individual months, from November to April. The data consist of 40 years of monthly reanalyses (1961-2000) extracted from the NCAR-NCEP data set. In ad- dition, snow cover data are used (monthly snow cover frequencies from the Climate Prediction Centre and number of days with snow cover from the Former Soviet Union Hydrological Snow Surveys available at the National Snow and Ice Data Centre). A NAO-related signal with predictive potential has been identified in November air surface temperature over Europe and SLP and geopotential heights over Eurasia. Neg- ative thermal anomalies over the Central Europe and positive geopotential anomalies at 700 hPa over a latitudinal belt from Arabic Peninsula to Pacific Ocean are associated with a high NAO index in the following winter. The November thermal anomalies that seem to be related to the NAO interannual persistence are also linked with the fluctu- ations of snow cover over Europe. Both tropical and high latitude influences may play a role in the onset of the November signal and in further NAO development.
Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.
1983-01-01
The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.
Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes
NASA Technical Reports Server (NTRS)
Frankignoul, C.
1985-01-01
Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.
Potential Predictability of U.S. Summer Climate with "Perfect" Soil Moisture
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Kumar, Arun; Lau, K.-M.
2004-01-01
The potential predictability of surface-air temperature and precipitation over the United States continent was assessed for a GCM forced by observed sea surface temperatures and an estimate of observed ground soil moisture contents. The latter was obtained by substituting the GCM simulated precipitation, which is used to drive the GCM's land-surface component, with observed pentad-mean precipitation at each time step of the model's integration. With this substitution, the simulated soil moisture correlates well with an independent estimate of observed soil moisture in all seasons over the entire US continent. Significant enhancements on the predictability of surface-air temperature and precipitation were found in boreal late spring and summer over the US continent. Anomalous pattern correlations of precipitation and surface-air temperature over the US continent in the June-July-August season averaged for the 1979-2000 period increased from 0.01 and 0.06 for the GCM simulations without precipitation substitution to 0.23 and 0.3 1, respectively, for the simulations with precipitation substitution. Results provide an estimate for the limits of potential predictability if soil moisture variability is to be perfectly predicted. However, this estimate may be model dependent, and needs to be substantiated by other modeling groups.
Analysis of chosen urban bioclimatic conditions in Upper Silesian Industrial Region, Poland
NASA Astrophysics Data System (ADS)
Zimnol, Jan
2013-04-01
Due to the increasing urbanization, people spend more and more time in cities. Because of that fact during the last century the human bioclimatological approach had an important influence on the applied urban bioclimatology. The aim of the study was to analyze chosen thermal bioclimatic conditions in urban area of Upper Silesian Industrial Region in connection with the atmospheric circulation and air masses. The study was focused on the thermal conditions that are important for the bioclimatological research on human thermal comfort. They were the basis for making study on how to show the influence of the air masses and circulations types on frequency and variability of the chosen bioclimate indexes. That research was based on data (2004 - 2008) acquired by the Silesian University (Faculty of Earth Sciences) meteorological station located in the city of Sosnowiec (50°17'N, 19°08'E, h=263 m a.s.l.). The temperature measurements were made automatically every 10 minutes on the 2 meters above the ground level. Previous research showed that the station is a good representation of the local urban climate conditions in Upper Silesian Industrial Region. In the study the following air temperatures were taken into consideration: average day temperature, maximum day temperature, minimum day temperature and the average air temperature at 12 UTC. They were associated with atmospheric circulation types and masses typical for the region. Using the data mentioned above I conducted a classification to divide days into following objective categories: cool, cold, comfortable, hot, warm and very hot in the seasonal depiction. The final stage of the work was to find the answer to the following question: "When and how do the strong air masses and air circulations types modify bioclimatic conditions in the study area?" Answer to that question together with further results of the research will be presented on my poster.
[Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].
Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua
2015-04-01
SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) < 15%, correlation coefficient (R2) > 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate variability, we need to pay attention to strong rainfall forecasts, optimization of land use structure and spatial distribution, which could reduce the negative hydrological effects (such as floods) induced by climate change.
The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation
NASA Astrophysics Data System (ADS)
Olvera Alvarez, Hector A.; Myers, Orrin B.; Weigel, Margaret; Armijos, Rodrigo X.
2018-06-01
A yearlong air monitoring campaign was conducted to assess the impact of local temperature, relative humidity, and wind speed on the temporal and spatial variability of PM2.5 in El Paso, Texas. Monitoring was conducted at four sites purposely selected to capture the local traffic variability. Effects of meteorological events on seasonal PM2.5 variability were identified. For instance, in winter low-wind and low-temperature conditions were associated with high PM2.5 events that contributed to elevated seasonal PM2.5 levels. Similarly, in spring, high PM2.5 events were associated with high-wind and low-relative humidity conditions. Correlation coefficients between meteorological variables and PM2.5 fluctuated drastically across seasons. Specifically, it was observed that for most sites correlations between PM2.5 and meteorological variables either changed from positive to negative or dissolved depending on the season. Overall, the results suggest that mixed effects analysis with season and site as fixed factors and meteorological variables as covariates could increase the explanatory value of LUR models for PM2.5.
NASA Astrophysics Data System (ADS)
Satish Jeyashekar, Nigil; Seiner, John
2006-11-01
The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.
Seasonal Mixed Layer Heat Budget in the Southeast Tropical Atlantic
NASA Astrophysics Data System (ADS)
Scannell, H. A.; McPhaden, M. J.
2016-12-01
We analyze a mixed layer heat budget at 6ºS, 8ºE from a moored buoy of the Prediction and Research Moored Array in the Atlantic (PIRATA) to better understand the causes of seasonal mixed layer temperature variability in the southeast tropical Atlantic. This region is of interest because it is susceptible to warm biases in coupled global climate models and has historically been poorly sampled. Previous work suggests that thermodynamic changes in both latent heat loss and absorbed solar radiation dominate mixed layer properties away from the equator in the tropical Atlantic, while advection and entrainment are more important near the equator. Changes in mixed layer salinity can also influence temperature through the formation of barrier layers and density gradients. Freshwater flux from the Congo River, migration of the Intertropical Convergence Zone and advection of water masses are considered important contributors to mixed layer salinity variability in our study region. We analyze ocean temperature, salinity and meteorological data beginning in 2013 using mooring, Argo, and satellite platforms to study how seasonal temperature variability in the mixed layer is influenced by air-sea interactions and ocean dynamics.
Westhoff, Jacob T.; Paukert, Craig P.
2014-01-01
Climate change is predicted to increase water temperatures in many lotic systems, but little is known about how changes in air temperature affect lotic systems heavily influenced by groundwater. Our objectives were to document spatial variation in temperature for spring-fed Ozark streams in Southern Missouri USA, create a spatially explicit model of mean daily water temperature, and use downscaled climate models to predict the number of days meeting suitable stream temperature for three aquatic species of concern to conservation and management. Longitudinal temperature transects and stationary temperature loggers were used in the Current and Jacks Fork Rivers during 2012 to determine spatial and temporal variability of water temperature. Groundwater spring influence affected river water temperatures in both winter and summer, but springs that contributed less than 5% of the main stem discharge did not affect river temperatures beyond a few hundred meters downstream. A multiple regression model using variables related to season, mean daily air temperature, and a spatial influence factor (metric to account for groundwater influence) was a strong predictor of mean daily water temperature (r2 = 0.98; RMSE = 0.82). Data from two downscaled climate simulations under the A2 emissions scenario were used to predict daily water temperatures for time steps of 1995, 2040, 2060, and 2080. By 2080, peak numbers of optimal growth temperature days for smallmouth bass are expected to shift to areas with more spring influence, largemouth bass are expected to experience more optimal growth days (21 – 317% increase) regardless of spring influence, and Ozark hellbenders may experience a reduction in the number of optimal growth days in areas with the highest spring influence. Our results provide a framework for assessing fine-scale (10 s m) thermal heterogeneity and predict shifts in thermal conditions at the watershed and reach scale. PMID:25356982
NASA Astrophysics Data System (ADS)
Falk, Ulrike; López, Damián A.; Silva-Busso, Adrián
2018-04-01
The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K (100 m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to
NASA Astrophysics Data System (ADS)
Koutzoukis, S.; Jenerette, D.; Chandler, M.; Wang, J.; Ge, C.; Ripplinger, J.
2017-12-01
Urban air quality and climate directly affect resident health. The Los Angeles (LA) Basin is a highly populated metropolitan area, with widespread point sources of ozone (O3) precursors (NOx , Volatile Organic Compounds, CO) from fossil fuel combustion. The LA basin exists on a coast-to-mountain gradient, with increasing temperatures towards the Transverse Ranges, which rise to 1700m. Frequently not compliant with 8-hour O3 standards, the LA and South Coast Air Basins are designated as severe and extreme non-attainment areas. Summer weather in the LA basin is characterized by a persistent high pressure system, creating an inversion that traps air pollutants, including O3 precursors, coupled with physical geography that blocks prevailing upper atmosphere air flow. These interactions make neighborhood-level O3 levels more variable than common regional models. Over the summer of 2017, we investigated the importance of local meteorology, wind patterns and air temperature, in transporting and mixing ozone precursors from point sources along the coast-to-mountain gradient. We deployed a network of six EPA federal equivalent method ozone and meteorological sensors in three campaigns in the LA basin along the coast-to-mountain transect. Each campaign, we collaborated with citizen scientists to deploy three sensor stations in two, 4 km2 quadrats, for a total of six high-resolution 4 km2 pixels. O3 concentrations vary greatly along the transect. At the coastal sites, daily O3 ranges from 0ppm to 60ppm and the range increases at the inland sites, to 100ppm. At all sites, there was a positive relationship between wind speed, air temperature, and O3 concentration, with increasing correlation inland. The Pearson correlation coefficient between wind speed and O3 concentration doubles from the coast to inland, and triples between air temperature and O3. The site-specific relationships between O3 and wind direction and temperature vary, suggesting neighborhood-effects from local point sources.
Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers
Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.
2015-01-01
Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.
40 CFR 63.137 - Process wastewater provisions-oil-water separators.
Code of Federal Regulations, 2010 CFR
2010-07-01
... separators. 63.137 Section 63.137 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for other emission variables such as temperature and barometric pressure, or (ii) An engineering...)(1) and the schedule specified in paragraphs (c)(1) and (c)(2) of this section. (1) Measurement of...
EDUCATION, CHILDREN AND COMFORT.
ERIC Educational Resources Information Center
Iowa Univ., Iowa City.
TWO SIMILAR CLASSROOMS WERE SET UP IN THE LENNOX LIVING LABORATORY, DES MOINES, IOWA, ONE FOR EXPERIMENTAL GROUPS AND ONE FOR CONTROL GROUPS. TEMPERATURE, AIR CIRCULATION AND HUMIDITY CAN BE CONTROLLED AND MEASURED IN BOTH ROOMS. THE ROOMS ARE OF SIMILAR SIZE, LAYOUT AND CONSTRUCTION, THE THERMAL ENVIRONMENT BEING THE ONLY VARIABLE. THE FOLLOWING…
Macroscale hydrologic modeling of ecologically relevant flow metrics
Seth J. Wenger; Charles H. Luce; Alan F. Hamlet; Daniel J. Isaak; Helen M. Neville
2010-01-01
Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe...
USDA-ARS?s Scientific Manuscript database
A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...
NASA Astrophysics Data System (ADS)
Odabasi, Mustafa; Adali, Mutlu
2016-12-01
The Henry's law constant (H) is a crucial variable to investigate the air-water exchange of persistent organic pollutants. H values for 32 polychlorinated naphthalene (PCN) congeners were measured using an inert gas-stripping technique at five temperatures ranging between 5 and 35 °C. H values in deionized water (at 25 °C) varied between 0.28 ± 0.08 Pa m3 mol-1 (PCN-73) and 18.01 ± 0.69 Pa m3 mol-1 (PCN-42). The agreement between the measured and estimated H values from the octanol-water and octanol-air partition coefficients was good (measured/estimated ratio = 1.00 ± 0.41, average ± SD). The calculated phase change enthalpies (ΔHH) were within the interval previously determined for other several semivolatile organic compounds (42.0-106.4 kJ mol-1). Measured H values, paired atmospheric and aqueous concentrations and meteorological variables were also used to reveal the level and direction of air-sea exchange fluxes of PCNs at the coast of Izmir Bay, Turkey. The net PCN air-sea exchange flux varied from -0.55 (volatilization, PCN-24/14) to 2.05 (deposition, PCN-23) ng m-2 day-1. PCN-19, PCN-24/14, PCN-42, and PCN-33/34/37 were mainly volatilized from seawater while the remaining congeners were mainly deposited. The overall number of the cases showing deposition was higher (67.9%) compared to volatilization (21.4%) and near equilibrium (10.7%).
Physical Mechanisms of Rapid Lake Warming
NASA Astrophysics Data System (ADS)
Lenters, J. D.
2016-12-01
Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.
Weather types and strokes in the Augsburg region (Southern Germany)
NASA Astrophysics Data System (ADS)
Beck, Christoph; Ertl, Michael; Giemsa, Esther; Jacobeit, Jucundus; Naumann, Markus; Seubert, Stefanie
2017-04-01
Strokes are one of the leading causes of morbidity and mortality worldwide and the main reason for longterm care dependency in Germany. Concerning the economical impact on patients and healthcare systems it is of particular importance to prevent this disease as well as to improve the outcome of the affected persons. Beside the primary well-known risk factors like hypertension, cigarette smoking, physical inactivity and others, also weather seems to have pronounced influence on the occurrence and frequency of strokes. Previous studies most often focused on effects of singular meteorological variables like ambient air temperature, air pressure or humidity. An advanced approach is to link the entire suite of daily weather elements classified to air mass- or weather types to cerebrovascular morbidity or mortality. In a joint pilot study bringing together climatologists, environmental scientists and physicians from the University of Augsburg and the clinical centre Augsburg, we analysed relationships between singular meteorological parameters as well as combined weather effects (e.g. weather types) and strokes in the urban area of Augsburg and the surrounding rural region. A total of 17.501 stroke admissions to Neurological Clinic and Clinical Neurophysiology at Klinikum Augsburg between 2006 and 2015 are classified to either "ischaemic" (16.354) or "haemorrhagic" (1.147) subtype according to etiology (based on the International Classification of Diseases - 10th Revision). Spearman correlations between daily frequencies of ischaemic and haemorrhagic strokes and singular atmospheric parameters (T, Tmin, Tmax, air pressure, humidity etc.) measured at the DWD (German weather service) meteorological station at Augsburg Muehlhausen are rather low. However, higher correlations are achieved when considering sub-samples of "homogenous weather conditions" derived from synoptic circulation classifications: e.g. within almost all of 10 types arising from a classification of central European mean sea level pressure fields into "Großwettertypes" (Beck 2000) the relationships between meteorological variables and stroke frequencies are increasing. Mainly temperature variables (Tmin, Tmax, Tmean) appear to be important particularly in winter and summer. Moreover distinct correlations of similar magnitude are obtained with other variables like wind speed or precipitation for specific weather types (e.g. westerly type). In how far these initial findings do really point to additional health impacts beyond temperature effects is subject of ongoing work.
Managing fish habitat for flow and temperature extremes ...
Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2016-01-01
We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
NASA Astrophysics Data System (ADS)
Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2016-02-01
We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Kukal, M.; Irmak, S.
2016-11-01
Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development of holistic strategies to address water supply and demand challenges under changing climate. These strategies can consist of, but not limited to, advancing water, crop and soil management, and genetic improvements and their relationships with the climatic variables on large scales.
Predicting the Spatial Variability of Fuel Moisture Content in Mountainous Eucalyptus Forests
NASA Astrophysics Data System (ADS)
Sheridan, G. J.; Nyman, P.; Lane, P. N. J.; Metzen, D.
2014-12-01
In steep mountainous landscapes, topographic aspect can play a significant role in small-scale (ie. scales in the order of 10's ha) variability in surface fuel moisture. Experimental sites for monitoring microclimate variables and moisture content in litter and in near-surface soils were established at a control site and on four contrasting aspects (north, south, east and west) in southeast Australia. At each of the four microclimate sites sensors are arranged to measure the soil moisture (2 replicates), surface fuel moisture at 2.5cm depth (12 replicates), precipitation throughfall (3 replicates), radiation (3 replicates), and screen level relative humidity, air temperature, leaf wetness, and wind speed (1 replicate of each). Temperature and relative humidity are also measured within the dead fine surface fuel using Ibutton's (4 replicates). All measurements are logged continuously at 15 min intervals. The moisture content of the surface fuel is estimated using a novel method involving high-replication of low-cost continuous soil moisture sensors placed at the centre of a 5cm deep sample of fine dead surface fuel, referred to here as "litter-packs". The litter-packs were constructed from fuels collected from the area surrounding the microclimate site. The initial results show the moisture regime on the forest floor was highly sensitive to the incoming shortwave radiation, which was up to 6 times higher in the north-facing (equatorial) slopes due to slope orientation and the sparse vegetation compared to vegetation on the south-facing (polar facing) slopes. Differences in shortwave radiation resulted in peak temperatures within the litter that were up to 2 times higher on the equatorial-facing site than those on the polar-facing site. For instance, on a day in November 2013 with maximum open air temperature of 35o C, the temperatures within the litter layer at the north-facing and south-facing sites were 54o C and 32o C, respectively, despite air temperature at the two sites differing by less than 2o C. The minimum gravimetric water content in the litter layer on the same day was 21% on the equatorial-facing slope and 85% on the polar-facing slope. The experimental data has been used to calibrate a topographic downscaling algorithm, yielding estimates of surface fuel moisture at 20m resolution.
NASA Astrophysics Data System (ADS)
Ahmad, J. A.; Forman, B. A.
2017-12-01
High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.
Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD
NASA Astrophysics Data System (ADS)
Iannelli, Joe
2003-10-01
This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.
Nájera, S; Gil-Martínez, M; Zambrano, J A
2015-01-01
The aim of this paper is to establish and quantify different operational goals and control strategies in autothermal thermophilic aerobic digestion (ATAD). This technology appears as an alternative to conventional sludge digestion systems. During the batch-mode reaction, high temperatures promote sludge stabilization and pasteurization. The digester temperature is usually the only online, robust, measurable variable. The average temperature can be regulated by manipulating both the air injection and the sludge retention time. An improved performance of diverse biochemical variables can be achieved through proper manipulation of these inputs. However, a better quality of treated sludge usually implies major operating costs or a lower production rate. Thus, quality, production and cost indices are defined to quantify the outcomes of the treatment. Based on these, tradeoff control strategies are proposed and illustrated through some examples. This paper's results are relevant to guide plant operators, to design automatic control systems and to compare or evaluate the control performance on ATAD systems.
NASA Astrophysics Data System (ADS)
Gawuć, Lech
2017-04-01
Urban Heat Island (UHI) is a direct consequence of altered energy balance in urban areas (Oke 1982). There has been a significant effort put into an understanding of air temperature variability in urban areas and underlying mechanisms (Arnfield 2003, Grimmond 2006, Stewart 2011, Barlow 2014). However, studies that are concerned on surface temperature are less frequent. Therefore, Voogt & Oke (2003) proposed term "Surface Urban Heat Island (SUHI)", which is analogical to UHI and it is defined as a difference in land surface temperature (LST) between urban and rural areas. SUHI is a phenomenon that is not only concerned with high spatial variability, but also with high temporal variability (Weng and Fu 2014). In spite of the fact that satellite remote sensing techniques give a full spatial pattern over a vast area, such measurements are strictly limited to cloudless conditions during a satellite overpass (Sobrino et al., 2012). This significantly reduces the availability and applicability of satellite LST observations, especially over areas and seasons with high cloudiness occurrence. Also, the surface temperature is influenced by synoptic conditions (e.g., wind and humidity) (Gawuc & Struzewska 2016). Hence, utilising single observations is not sufficient to obtain a full image of spatiotemporal variability of urban LST and SUHI intensity (Gawuc & Struzewska 2016). One of the possible solutions would be a utilisation of time-series of LST data, which could be useful to monitor the UHI growth of individual cities and thus, to reveal the impact of urbanisation on local climate (Tran et al., 2006). The relationship between UHI and synoptic conditions have been summarised by Arnfield (2003). However, similar analyses conducted for urban LST and SUHI are lacking. We will present analyses of the relationship between time series of remotely-sensed LST and SUHI intensity and in-situ meteorological observations collected by road weather stations network, namely: road surface kinetic temperature, wind speed, air temperature, soil temperature at a depth of 30 cm, road surface condition, relative humidity. Also, as there are wind speed and temperature observations at different heights available, we will calculate sensible heat flux in order to relate it to the intensity of SUHI.
Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma
NASA Astrophysics Data System (ADS)
Troutt, C.; Levetin, E.
Different spore types are abundant in the atmosphere depending on the weather conditions. Ascospores generally follow precipitation, while spore types such as Alternaria and Cladosporium are abundant in dry conditions. This project attempted to correlate fungal spore concentrations with meteorological data from Tulsa, Oklahoma during May 1998 and May 1999. Air samples were collected and analyzed by the 12-traverse method. The spore types included were Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, and other spores. Weather variables included precipitation levels, temperature, dew point, air pressure, wind speed, wind direction and wind gusts. There were over 242.57 mm of rainfall in May 1999 and only 64.01 mm in May 1998. The most abundant spore types during May 1998 and May 1999 were Cladosporium, ascospores, and basidiospores. Results showed that there were significant differences in the dry-air spora between May 1998 and May 1999. There were twice as many Cladosporium in May 1998 as in May 1999; both ascospores and basidiospores showed little change. Multiple regression analysis was used to determine which meteorological variables influenced spore concentrations. Results showed that there was no single model for all spore types. Different combinations of factors were predictors of concentration for the various fungi examined; however, temperature and dew point seemed to be the most important meteorological factors.
Methane flux across the air-water interface - Air velocity effects
NASA Technical Reports Server (NTRS)
Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.
1983-01-01
Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.
Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.
2006-01-01
Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.
Working Characteristics of Variable Intake Valve in Compressed Air Engine
Yu, Qihui; Shi, Yan; Cai, Maolin
2014-01-01
A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536
Working characteristics of variable intake valve in compressed air engine.
Yu, Qihui; Shi, Yan; Cai, Maolin
2014-01-01
A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.
Cryan, P.M.; Wolf, B. O.
2003-01-01
This study quantifies sex differences in thermoregulation and water loss of a small (20-35 g) insectivorous heterothermic mammal, the hoary bat Lasiurus cinereus, during its spring migration. We measured body temperature, metabolic rate and evaporative water loss, and calculated wet thermal conductance, for bats exposed to air temperatures ranging from 0 to 40°C for periods of 2-5 h. Pregnant females maintained normothermic body temperatures (35.7±0.7°C; mean ± s.e.m.) independent of air temperature. In contrast, males became torpid during the majority (68%) of exposures to air temperatures <25°C. The thermal neutral zone (TNZ) ranged between approximately 30°C and 34°C in both sexes and, within the TNZ, females had lower mass-specific metabolic rates (6.1±0.2 mW g-1) than males (9.0±0.9 mW g-1). Wet thermal conductance values in torpid bats (0.7±0.5 mW g-1 deg.-1) were lower than those of normothermic individuals (1.1±0.3 mW g-1 deg.-1). Mass-specific rates of evaporative water loss in males were consistently higher than in females at most air temperatures and rates of water loss in torpid bats were 63±6% of normothermic values. These results suggest that male and pregnant female L. cinereus employ different thermoregulatory strategies during their spring migration. Females defend normothermic body temperatures, presumably to expedite embryonic growth, while males use torpor, presumably to minimize energy and water deficits. These variable thermoregulatory strategies may reflect continental differences in the summer distribution of the sexes.
Observational Evidence of Changes in Soil Temperatures across Eurasian Continent
NASA Astrophysics Data System (ADS)
Zhang, T.
2015-12-01
Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.
Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation
NASA Technical Reports Server (NTRS)
Taylor, E S; Leary, W A; Diver, J R
1940-01-01
An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.
PROGRESS ON THE STUDY OF BETA TREATMENT OF URANIUM, APRIL 1, 1961 TO JULY 31, 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.; Wolff, A.K.
Progress on the work on the effect of variables affecting the beta treatment of uranium is described. Included are results on the effect of beta time and temperature on the as-quenched grain size, the influence of air delay before quenching, and the growth index of metal isothermally transformed at different temperatures. The relative effects of both size and cooling medium on the radial growth index are summarized. (auth)
Errors of five-day mean surface wind and temperature conditions due to inadequate sampling
NASA Technical Reports Server (NTRS)
Legler, David M.
1991-01-01
Surface meteorological reports of wind components, wind speed, air temperature, and sea-surface temperature from buoys located in equatorial and midlatitude regions are used in a simulation of random sampling to determine errors of the calculated means due to inadequate sampling. Subsampling the data with several different sample sizes leads to estimates of the accuracy of the subsampled means. The number N of random observations needed to compute mean winds with chosen accuracies of 0.5 (N sub 0.5) and 1.0 (N sub 1,0) m/s and mean air and sea surface temperatures with chosen accuracies of 0.1 (N sub 0.1) and 0.2 (N sub 0.2) C were calculated for each 5-day and 30-day period in the buoy datasets. Mean values of N for the various accuracies and datasets are given. A second-order polynomial relation is established between N and the variability of the data record. This relationship demonstrates that for the same accuracy, N increases as the variability of the data record increases. The relationship is also independent of the data source. Volunteer-observing ship data do not satisfy the recommended minimum number of observations for obtaining 0.5 m/s and 0.2 C accuracy for most locations. The effect of having remotely sensed data is discussed.
A Tibetan lake sediment record of Holocene Indian summer monsoon variability
NASA Astrophysics Data System (ADS)
Bird, Broxton W.; Polisar, Pratigya J.; Lei, Yanbin; Thompson, Lonnie G.; Yao, Tandong; Finney, Bruce P.; Bain, Daniel J.; Pompeani, David P.; Steinman, Byron A.
2014-08-01
Sedimentological data and hydrogen isotopic measurements of leaf wax long-chain n-alkanes (δDwax) from an alpine lake sediment archive on the southeastern Tibetan Plateau (Paru Co) provide a Holocene perspective of Indian summer monsoon (ISM) activity. The sedimentological data reflect variations in lake level and erosion related to local ISM rainfall over the Paru Co catchment, whereas δDwax reflects integrated, synoptic-scale ISM dynamics. Our results indicate that maximum ISM rainfall occurred between 10.1 and ˜5.2 ka, during which time there were five century-scale high and low lake stands. After 5.2 ka, the ISM trended toward drier conditions to the present, with the exception of a pluvial event centered at 0.9 ka. The Paru Co results share similarities with paleoclimate records from across the Tibetan Plateau, suggesting millennial-scale ISM dynamics were expressed coherently. These millennial variations largely track gradual decreases in orbital insolation, the southward migration of the Intertropical Convergence Zone (ITCZ), decreasing zonal Pacific sea surface temperature (SST) gradients and cooling surface air temperatures on the Tibetan Plateau. Centennial ISM and lake-level variability at Paru Co closely track reconstructed surface air temperatures on the Tibetan Plateau, but may also reflect Indian Ocean Dipole events, particularly during the early Holocene when ENSO variability was attenuated. Variations in the latitude of the ITCZ during the early and late Holocene also appear to have exerted an influence on centennial ISM rainfall.
Klimienė, Asta; Vainorienė, Rimanta; Klimas, Ramutis
2017-02-01
Šiauliai University Botanical Garden is a member of the International Phenological Garden network since 2005. It is the only one botanical garden in the East Europe that participated in the programme. In 2015, 18 species were observed. For research, data of 14 plants was used. The aim of this study is to estimate the responsiveness of the species of plants of the phenological garden to annual and monthly precipitation and temperature of the air. The main variables in this investigation were growing season length and the beginning of the growing season. In the period 2006-2015, the lowest annual air temperature was in 2010 (6.0 °C), and the highest was in 2015 (8.9 °C). The lowest precipitation was in 2015 (37.3 mm), and the highest was in 2012 (63.5 mm). The leanest regression among growing length, average annual precipitation, and air temperature showed that statistically significant correlation between growing length and average annual air temperature was found for nine plants, between growing length and precipitation was found for three plants, and between growing length and both factors was found for one plant, Salix smithiana, only. Due to the short evaluating period (2007-2015), consistent regression of the length of the growing season could not be found. The growing length of Betula pubescens sequentially increased. The average growing season of 14 plants starts on April 27 (±3), but for Corylus avellana, it is on April 26 (±3). Longevity of the growing season was the most related with precipitation for C. avellana in summer, autumn, and winter and with air temperature, Ribes alpinum and Salix acutifolia in summer and in autumn.
Shimizu, S; Kagawa, J; Ishiguro, M
2001-07-01
The number of nocturnal visits of asthmatic attack patients to the emergency room of Yokohama Medical Association's Clinic from January 1990 to December 1991 was compared to daily levels of air pollution (NO, NO2, SO2 and SPM) and weather (temperature and relative humidity) variables measured in Yokohama City. Trend-cycle components (Trend) that control for the weekly effects, other irregular variance for asthmatic attack incidence and environmental parameter measurements were estimated from the original data series using the method of Akaike and Ishiguro (1980). The rate of increase for each environmental parameter was then calculated from its trend-cycle components. We classified the data into four stages on the basis of rising and falling temperature and humidity. For each stage of temperature and humidity, fluctuation we estimated correlations between the number of asthmatic attack visits and original data series measurements, estimated trend-cycle components, and calculated rates of increase for each of the air pollutants. The daily number of asthmatic attack visits was negatively correlated to the daily mean values of all air pollutants, but positively correlated to the daily mean temperature and relative humidity. The trend-cycle components of the air pollutants were also negatively correlated to the frequencies of asthmatic attacks (p < 0.01 for all pollutants except NO2). In contrast, the number of asthmatic attack visits were in general positively correlated with increasing levels of pollutants. Furthermore, when both temperature and relative humidity decreased, significant correlations (r > 0.31, p < 0.001) between the number of asthmatic attacks and increased rates of all air pollutants were observed (r: NO2 > NO > SO2 > SPM).
NASA Technical Reports Server (NTRS)
Molnar, Gyula; Susskind, Joel; Iredell, Lena
2010-01-01
The ROBUST nature (biases are not as important as previous GCM-evaluations suggest) of the AIRS-observations-generated ARC-maps and ATs as well as their interrelations suggest that they could be a useful tool to select CGCMs which may be considered the reliable, i.e., to be trusted even for longer-term climate drift/change predictions (even on the regional scale). Get monthly gridded CGCM time-series of atmospheric variables coinciding with the timeframe of the AIRS analyses for at least 5-6 years and do the actual evaluations of ARC-maps and ATs for the coinciding time periods.
Meteotsunami Detection with ASOS data
NASA Astrophysics Data System (ADS)
Kim, Y. Y.; Angove, M.
2017-12-01
A meteotsunami can strike almost any coast. Recent researches have shown that meteotsunamis are more common than previously thought and suggest that some past events may have been mistaken for other types of coastal floods, such as storm surges or seiches. In the United States, conditions for destructive meteotsunamis are most favorable along the East Coast, Gulf of Mexico, and in the Great Lakes, where they may pose a greater threat than earthquake-generated tsunamis. It is evident that meteotsunamis are strongly related to a mesoscale convective system or derecho of sufficient intensity and translational speed. Meteotsunamis are generated by pressure and wind disturbances related to the convective system above continental shelf area of the ocean. In this study it is noted that air pressure, wind gust speed, and air temperature display specific simultaneous changes favorable for meteotsunami development. Sudden wind gust rise, air pressure rise, and air temperature drop occur due to gust front related to cloud downdrafts. Therefore, we suggest that such a consistent tendency of wind gust speed, air pressure, and air temperature associated with mesoscale convective system capable of generating meteotsunami can be used for meteotsunami detection about one or two days before the event in the ocean. It was applied for the June 13, 2013 meteotsunami with automated surface observing systems (ASOS) meteorological data. For operational use of the detection of potential for meteotsunami development at U.S. East or Gulf of Mexico coasts in waters, detection threshold values for the three variables are also discussed.
Human influence on sub-regional surface air temperature change over India.
Dileepkumar, R; AchutaRao, Krishna; Arulalan, T
2018-06-12
Human activities have been implicated in the observed increase in Global Mean Surface Temperature. Over regional scales where climatic changes determine societal impacts and drive adaptation related decisions, detection and attribution (D&A) of climate change can be challenging due to the greater contribution of internal variability, greater uncertainty in regionally important forcings, greater errors in climate models, and larger observational uncertainty in many regions of the world. We examine the causes of annual and seasonal surface air temperature (TAS) changes over sub-regions (based on a demarcation of homogeneous temperature zones) of India using two observational datasets together with results from a multimodel archive of forced and unforced simulations. Our D&A analysis examines sensitivity of the results to a variety of optimal fingerprint methods and temporal-averaging choices. We can robustly attribute TAS changes over India between 1956-2005 to anthropogenic forcing mostly by greenhouse gases and partially offset by other anthropogenic forcings including aerosols and land use land cover change.
Decadal power in land air temperatures: Is it statistically significant?
NASA Astrophysics Data System (ADS)
Thejll, Peter A.
2001-12-01
The geographical distribution and properties of the well-known 10-11 year signal in terrestrial temperature records is investigated. By analyzing the Global Historical Climate Network data for surface air temperatures we verify that the signal is strongest in North America and is similar in nature to that reported earlier by R. G. Currie. The decadal signal is statistically significant for individual stations, but it is not possible to show that the signal is statistically significant globally, using strict tests. In North America, during the twentieth century, the decadal variability in the solar activity cycle is associated with the decadal part of the North Atlantic Oscillation index series in such a way that both of these signals correspond to the same spatial pattern of cooling and warming. A method for testing statistical results with Monte Carlo trials on data fields with specified temporal structure and specific spatial correlation retained is presented.
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).
Tremolada, Paolo; Guazzoni, Niccolò; Comolli, Roberto; Parolini, Marco; Lazzaro, Serena; Binelli, Andrea
2015-12-01
This study analyses the seasonal trend of polychlorinated biphenyls (PCB) concentrations in air and soil from a high-altitude mountain pasture in the Italian Alps. PCB concentrations in soil were generally comparable to background levels and were lower than those previously measured in the same area. Only CB-209 unexpectedly showed high concentrations with respect to the other congeners. GC-MS-MS identification was very clear, rising a new problem of increasing PCB contamination concerning only CB-209, which is not present in commercial mixtures used in the past in Italy and Europe. Considering all of the congeners, seasonal PCB trends were observed both in air and in soil that were related to the temperature and precipitation measured specifically in the study area. Highly significant relationships were found between the temperature-normalised concentrations in soil and the precipitation amounts. A north/south enrichment factor was present only in soil with rapid early summer re-volatilisation kinetics from soil to air and autumn re-deposition events from air to soil. Fugacity ratio calculations confirmed these trends. Surface soils respond rapidly to meteorological variables, while subsurface soils respond much more slowly. Seasonal trends were different for the northern and southern sides of the mountain. A detailed picture of the interactions among temperature, precipitation, mountain aspects and soil features was obtained.
Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard
NASA Astrophysics Data System (ADS)
Ortega, Zaida; Pérez-Mellado, Valentín
2016-11-01
In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also changed between seasons. Hence, environmental constraints were the main forces driving seasonal changes in microhabitat selection.
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr
2013-12-01
Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.
Okada, Masahiro; Kakehashi, Masayuki
2014-01-01
The influences of body weight and air temperature on the autonomic response to food intake have not been clarified. We measured heart rate variability before and after lunch, as well as the effects of outdoor temperature and increased body mass index (BMI), in healthy young Japanese women. We studied 55 healthy young female university students. Heart rate variability was measured before lunch, immediately after lunch, 30 min after lunch, and 1 h after lunch to determine any correlations between heart rate variability, outdoor temperature, and BMI. In addition, multiple regression analysis was performed to elucidate the relationship between heart rate variability and outdoor temperature before and after lunch. A simple slope test was conducted to show the relationship between the low-to-high frequency ratio (1 h after lunch) and outdoor temperature. Subjects were divided into a low BMI group (range: 16.6-20.3) and a high BMI group (range: 20.4-32.9). The very low frequency component of heart rate variability, an index of thermoregulatory vasomotor control exerted by the sympathetic nervous system, was significantly diminished after lunch in the high BMI group (P < 0.01). A significant decrease in the low-to-high frequency (LF/HF) ratio, which represents the balance between the parasympathetic and sympathetic nervous systems, was evident in the low BMI group after lunch, indicating parasympathetic system dominance (P = 0.001). In addition, a significant association was found between the LF/HF ratio and outdoor temperature after lunch with a lower BMI (P = 0.002), but this association disappeared with higher BMIs. Autonomic responses to eating showed clear differences according to BMI, indicating that the sensitivity of the autonomic nervous system may change with increases in BMI.
Seasonal and spatial variation in broadleaf forest model parameters
NASA Astrophysics Data System (ADS)
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and vapour pressure deficit.
Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain).
Arroyo, Virginia; Díaz, Julio; Ortiz, Cristina; Carmona, Rocío; Sáez, Marc; Linares, Cristina
2016-02-01
Preterm birth (PTB) refers to delivery before 37 weeks of gestation and represents the leading cause of early-life mortality and morbidity in developed countries. PTB can lead to serious infant health outcomes. The etiology of PTB remains uncertain, but epidemiologic studies have consistently shown elevated risks with different environmental variables as traffic-related air pollution (TRAP). The aim of the study was to evaluate with time series methodology the short-term effect of air pollutants, noise levels and ambient temperature on the number of births and preterm births occurred in Madrid City during the 2001-2009 period. A time-series analysis was performed to assess the short term impact of daily mean concentrations (µg/m(3)) of PM2.5 and PM10, O3 and NO2. Measurements of Acoustic Pollution in dB(A) analyzed were: Leqd, equivalent diurnal noise level and Leqn, equivalent nocturnal noise level. Maximum and Minimum daily temperature (°C), mean Humidity in the air (%) and Atmospheric Pressure (HPa), were included too. Linear trends, seasonality, as well as the autoregressive nature of the series itself were controlled. We added as covariate the day of the week too. Autoregressive over-dispersed Poisson regression models were performed and the environmental variables were included with short-term lags (from 0 to 7 days) in reference to the date of birth. Firstly, simple models for the total number of births and preterm births were done separately. In a second stage, a model for total births adjusted for preterm births was performed. A total of 298,705 births were analyzed. The results of the final models were expressed in relative risks (RRs) for interquartile increase. We observed evidence of a short term effect at Lag 0, for the following environmental variables analyzed, PM2.5 (RR: 1.020; 95% CI:(1.008 1.032)) and O3 (RR: 1.012; 95% CI:(1.002 1.022)) concentrations and Leqd (RR: 1.139; 95% CI:( (1.124 1.154)) for the total number of births, and besides these, heat temperatures at Lag 1 (RR: 1.055; 95% CI:( (1.018 1.092)) on preterm births in Madrid City during the studied period. In the model adjusted for preterm births, similar RR was obtained for the same environmental variables. Especially PM2.5, diurnal noise levels and O3 have a short-term impact on total births and heat temperatures on preterm births in Madrid City during the studied period. Our results suggest that, given the widespread exposure of the population to the environmental factors analyzed and the possible effects on long-term health associated to low birth weight. There is a clear need to minimize this exposure through the decrease of air pollution and noise levels and through the behavior modification of the mothers. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Noi Phan, Thanh; Kappas, Martin; Degener, Jan
2017-04-01
Land air temperature (Ta) with high spatial and temporal resolution plays an important role in various applications, such as: crop growth monitoring and simulations, environmental risk models, weather forecasting, land use cover change, urban heat islands, etc. Daily Ta (including Ta-max, Ta-min, and Ta-mean) is usually measured by weather stations (often at 2 m above the ground); thus, Ta is limited in spatial coverage. Satellite data, especially MODIS land surface temperature (LST) data at 1 kilometre and high temporal resolution (4 times per day, combining TERRA and AQUA) are free available and easily to access. However, there is a difference between Ta and LST because of the complex surface energy budget and multiple related variables between them. Several researches states that the Ta could be estimated using MODIS LST data with accurate of 2-4oC. However, there are only a handful of studies using dynamically combining of four MODIS LST data for Ta estimation. In this study, we evaluated all 15 - possible - combinations of four MODIS LST using support vector machine (SVM) and random forests (RFs) models. MODIS LST and Ta data was extracted from 4 weather stations in rural area in North West Vietnam from 2010 to 2012 (three years). Our results indicated that the accuracy of Ta estimation was affected by the different combination and the combined data (multiple variables) gave better results than those of single LST (solely variable), the best result was achieved (coefficient of determination (R2) = 0.95, 0.97, 0.97; root mean square error (RMSE) =1.7, 1.4, 1.2 oC for Ta-min, Ta-max, Ta-mean respectively) when all four LSTs were combined and RFs performed better than SVM.
Petrich, Nicholas T.; Spak, Scott N.; Carmichael, Gregory R.; Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C.
2013-01-01
Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semi-volatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semi-volatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations; simulates nonlinear PUF uptake; and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, Illinois during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds, and confirming quasi-linear uptake. Results indicate hourly, daily and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%). PMID:23837599
Investigation of JP-8 Autoignition Under Vitiated Combustion Conditions
2011-01-01
no less than 1.5 times the dew point temperature of the mixture for all test cases that involved H2O. The flow path and apparatus for the steam...Variable m Interaction Effect of Design Variables m and n R Universal Gas Constant [cal/mol-K] E Activation Energy of Ignition Process [cal/mol] T...combustion including CO2, CO, H2O, and NOX. Vitiated conditions are often the result of flue or exhaust gas recirculation (EGR) into a fresh air stream
Greenland ice sheet melt from MODIS and associated atmospheric variability.
Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E
2014-03-16
Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blijderveen, Maarten van; University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede; Bramer, Eddy A.
Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of themore » used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.« less
Regional climate change study requires new temperature datasets
NASA Astrophysics Data System (ADS)
Wang, K.; Zhou, C.
2016-12-01
Analyses of global mean air temperature (Ta), i. e., NCDC GHCN, GISS, and CRUTEM4, are the fundamental datasets for climate change study and provide key evidence for global warming. All of the global temperature analyses over land are primarily based on meteorological observations of the daily maximum and minimum temperatures (Tmax and Tmin) and their averages (T2) because in most weather stations, the measurements of Tmax and Tmin may be the only choice for a homogenous century-long analysis of mean temperature. Our studies show that these datasets are suitable for long-term global warming studies. However, they may introduce substantial bias in quantifying local and regional warming rates, i.e., with a root mean square error of more than 25% at 5°x 5° grids. From 1973 to 1997, the current datasets tend to significantly underestimate the warming rate over the central U.S. and overestimate the warming rate over the northern high latitudes. Similar results revealed during the period 1998-2013, the warming hiatus period, indicate the use of T2 enlarges the spatial contrast of temperature trends. This because T2 over land only sample air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. For better regional climate change detection and attribution, we suggest creating new global mean air temperature datasets based on the recently available high spatiotemporal resolution meteorological observations, i.e., daily four observations weather station since 1960s, These datasets will not only help investigate dynamical processes on temperature variances but also help better evaluate the reanalyzed and modeled simulations of temperature and make some substantial improvements for other related climate variables in models, especially over regional and seasonal aspects.
Regional climate change study requires new temperature datasets
NASA Astrophysics Data System (ADS)
Wang, Kaicun; Zhou, Chunlüe
2017-04-01
Analyses of global mean air temperature (Ta), i. e., NCDC GHCN, GISS, and CRUTEM4, are the fundamental datasets for climate change study and provide key evidence for global warming. All of the global temperature analyses over land are primarily based on meteorological observations of the daily maximum and minimum temperatures (Tmax and Tmin) and their averages (T2) because in most weather stations, the measurements of Tmax and Tmin may be the only choice for a homogenous century-long analysis of mean temperature. Our studies show that these datasets are suitable for long-term global warming studies. However, they may have substantial biases in quantifying local and regional warming rates, i.e., with a root mean square error of more than 25% at 5 degree grids. From 1973 to 1997, the current datasets tend to significantly underestimate the warming rate over the central U.S. and overestimate the warming rate over the northern high latitudes. Similar results revealed during the period 1998-2013, the warming hiatus period, indicate the use of T2 enlarges the spatial contrast of temperature trends. This is because T2 over land only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. For better regional climate change detection and attribution, we suggest creating new global mean air temperature datasets based on the recently available high spatiotemporal resolution meteorological observations, i.e., daily four observations weather station since 1960s. These datasets will not only help investigate dynamical processes on temperature variances but also help better evaluate the reanalyzed and modeled simulations of temperature and make some substantial improvements for other related climate variables in models, especially over regional and seasonal aspects.
Climate Change Impacts on the Hydrology and Productivity of a Pine Plantation
Ge Sun; Devendra M. Amatya; Steven G. McNulty; R. Wayne Skaggs; Joseph H. Hughes
2000-01-01
There are increasing concerns in the forestry community about global climate change and variability associated with elevated atmospheric CO2. Changes in precipitation and increases in air temperature could impose additional stress on forests during the next century. For a study site in Carteret County, North Carolina, the General Circulation...
USDA-ARS?s Scientific Manuscript database
Precipitation, soil moisture, and air temperature are the most commonly used climate variables to monitor drought, however other climatic factors such as solar radiation, wind speed, and specific humidity can be important drivers in the depletion of soil moisture and evolution and persistence of dro...
Human thermal comfort in urban outdoor spaces
Lee P. Herrington; J. S. Vittum
1977-01-01
Measurements of the physical environment of urban open spaces in Syracuse, New York, were used to compute the physiological responses of human users of the spaces. These calculations were then used to determine what environmental variables were both important to human comfort and susceptible to control by site design. Although air temperature and humidity are important...
PROGRESS ON THE STUDY OF BETA TREATMENT OF URANIUM, DECEMBER 1, 1960-MARCH 30, 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, R.B.
The variables affecting the beta treatment of uranium are described. Results are included on the effects of time at beta temperature, the influence of air delay before quenching, and the effects of 800 l C annealing. A description of x-ray automation equipment is presented. (N.W.R.)
Shi, Kun; Zhang, Yunlin; Zhou, Yongqiang; Liu, Xiaohan; Zhu, Guangwei; Qin, Boqiang; Gao, Guang
2017-01-01
We developed and validated an empirical model for estimating chlorophyll a concentrations (Chla) in Lake Taihu to generate a long-term Chla and algal bloom area time series from MODIS-Aqua observations for 2003 to 2013. Then, based on the long-term time series data, we quantified the responses of cyanobacterial dynamics to nutrient enrichment and climatic conditions. Chla showed substantial spatial and temporal variability. In addition, the annual mean cyanobacterial surface bloom area exhibited an increasing trend across the entire lake from 2003 to 2013, with the exception of 2006 and 2007. High air temperature and phosphorus levels in the spring can prompt cyanobacterial growth, and low wind speeds and low atmospheric pressure levels favor cyanobacterial surface bloom formation. The sensitivity of cyanobacterial dynamics to climatic conditions was found to vary by region. Our results indicate that temperature is the most important factor controlling Chla inter-annual variability followed by phosphorus and that air pressure is the most important factor controlling cyanobacterial surface bloom formation followed by wind speeds in Lake Taihu. PMID:28074871
Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier
NASA Astrophysics Data System (ADS)
Ahmed, R.; Sinnathambi, C. M.
2013-06-01
In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.
Air quality and acute deaths in California, 2000-2012.
Young, S Stanley; Smith, Richard L; Lopiano, Keneth K
2017-08-01
Many studies have shown an association between air quality and acute deaths, and such associations are widely interpreted as causal. Several factors call causation and even association into question, for example multiple testing and multiple modeling, publication bias and confirmation bias. Many published studies are difficult or impossible to reproduce because of lack of access to confidential data sources. Here we make publically available a dataset containing daily air quality levels, PM 2.5 and ozone, daily temperature levels, minimum and maximum and daily maximum relative humidity levels for the eight most populous California air basins, thirteen years, >2M deaths, over 37,000 exposure days. The data are analyzed using standard time series analysis, and a sensitivity analysis is computed varying model parameters, locations and years. Our analysis finds little evidence for association between air quality and acute deaths. These results are consistent with those for the widely cited NMMAPS dataset when the latter are restricted to California. The daily death variability was mostly explained by time of year or weather variables; Neither PM 2.5 nor ozone added appreciably to the prediction of daily deaths. These results call into question the widespread belief that association between air quality and acute deaths is causal/near-universal. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
England, Matthew H.
2015-04-01
Various explanations have been proposed for the recent slowdown in global surface air temperature (SAT) rise, either involving enhanced ocean heat uptake or reduced radiation reaching Earth's surface. Among the mechanisms postulated involving enhanced ocean heat uptake, past work has argued for both a Pacific and Atlantic origin, with additional contributions from the Southern Ocean. Here we examine the mechanisms driving 'hiatus' periods originating out of the Atlantic Ocean. We show that while Atlantic-driven hiatuses are entirely plausible and consistent with known climate feedbacks associated with variability in the Atlantic Meridional Overturning Circulation (AMOC), the present climate state is configured to enhance global-average SAT, not reduce it. We show that Atlantic hiatuses are instead characterised by anomalously cool fresh oceanic conditions in the North Atlantic, with the atmosphere advecting the cool temperature signature zonally. Compared to the 1980s and 1990s, however, the mean climate since 2001 has been characterised by a warm saline North Atlantic, suggesting the AMOC cannot be implicated as a direct driver of the current hiatus. We further discuss the impacts of a warm tropical Atlantic on the unprecedented trade wind acceleration in the Pacific Ocean, and propose that this is the main way that the Atlantic has contributed to the present "false pause" in global warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.H.
Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that theymore » are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.« less
The Greenland Sea Odden: Intra- and inter-annual variability
Russell, C.A.; Fischer, K.W.; Shuchman, R.A.; Josberger, E.G.
1997-01-01
The "Odden" is a large sea ice feature that forms in the East Greenland Sea which generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter, the outer edge of the Odden may advance and retreat by several hundred kilometers on time scales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. The 17 year record shows both strong inter- and intra-annual variations in Odden extent and temporal behavior. An analysis of the satellite passive microwave derived ice area and extent time series along with meteorological data from the Arctic Drifting Buoy Network determined the meteorological forcing required for Odden growth, maintenance and decay. The key meteorological parameters which cause the rapid ice formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Atmospheric pressure was found not to play a significant role in the Odden events. Air temperature and wind direction are the dominant variables with temperatures below -9.5??C and winds from the west required to trigger significant Odden ice formation events. ??2004 Copyright SPIE - The International Society for Optical Engineering.
NASA Astrophysics Data System (ADS)
Alvares, Clayton Alcarde; Sentelhas, Paulo César; Stape, José Luiz
2017-09-01
Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p < 0.001), presenting adjusted R 2 between 0.69 and 0.90. Center-Southern Brazil is mainly hit by frosts from mid-fall (April) to mid-spring (October). The period from November to March is considered as frost-free, being very rare a frost day within that period. Monthly F MET and F AGR presented significant sigmoidal relationships with T MN (p < 0.0001), with adjusted R 2 above of 0.82. The residuals of the frost day models were random, which means that the sigmoidal models performed quite well for interpreting the frost day variability throughout the study area. The highlands of Santa Catarina, Rio Grande do Sul, São Paulo, and Minas Gerais had in average more than 25 and 13 frosts per year, respectively, for F MET and F AGR. The F MET and F AGR maps developed in this study for Center-Southern Brazil is a useful tool for farmers, foresters, and researchers, since they contribute to reduce frost spatial and temporal uncertainty, helping in planning project for strategic purposes. Furthermore, the monthly F MET and F AGR maps for this Brazilian region are the first zoning of these variables for the country.
Temporal distribution of air quality related to meteorology and road traffic in Madrid.
Perez-Martinez, Pedro J; Miranda, Regina M
2015-04-01
The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.
Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad
2018-06-01
The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.
TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavic, I.; Szymakowski, J.; Stachorska, D.
1961-03-01
A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less
Mountain Permafrost in the Yukon Territory, Canada: Mapping and Modelling
NASA Astrophysics Data System (ADS)
Lewkowicz, A. G.; Bonnaventure, P.; Schultz, E.; Etzelmuller, B.
2006-12-01
The distribution and characteristics of mountain permafrost in North America are poorly known compared to lowland permafrost, and predictions of climatic change impacts are therefore subject to a higher degree of uncertainty. Recent DC resistivity soundings in association with borehole temperature information in the Yukon Territory, show the wide range of permafrost conditions that can exist at sites separated by short distances. To provide baseline information for future modelling, efforts are underway to produce a detailed map of permafrost probability in the mountains of the southern half of the Yukon Territory (60-65°N), an area greater than 200 x 103km2. The methodology is based on the Basal Temperature of Snow (BTS) technique, first developed in the European Alps. Ground surface temperatures measured at the base of snow > 80 cm thick in late winter are an indicator of permafrost presence or absence. We have used this method successfully in three study areas of about 200 km2: first, Wolf Creek basin near Whitehorse (Lewkowicz and Ednie, 2004) and now the western side of the Ruby Range adjacent to Kluane Lake, and the Haines Summit area in northwestern British Columbia. In each area, (1) we installed miniature temperature loggers at the ground surface and in the air to check on the timing of the BTS measurements; (2) we measured BTS values in the elevation zone across which permafrost was expected to become widespread; (3) we modelled the BTS spatial field using elevation (from a 30 m DEM) and potential incoming solar radiation (PISR) as the independent variables; and (4) we used logistic regression to compare the modelled BTS values with pit observations made in late-summer of the presence or absence of frozen ground. Both elevation and PISR were significant in the Wolf Creek and Ruby Range sites which have relatively continental climates and fall within the Upper Yukon-Stikine Basin climatic region (Wahl et al., 1987). For the Haines Summit area, however, PISR was not significant, likely reflecting the much more maritime climate of this area and the frequent fogs that are present. More than 50 new air and ground temperature monitoring stations were installed in spring 2006 as the first step to extend the modelling to the remaining mountainous parts of the Yukon Territory. We selected sites within the four climatic regions encompassing discontinuous permafrost that we had not previously sampled: the Faro area (Central Yukon Basin region, extensive discontinuous zone), Johnson's Crossing (Pelly-Cassiar Mountains region, sporadic discontinuous zone), Sa Dena Hes mine (Liard Basin region, extensive discontinuous zone) and the Keno area (Ogilvie-Mackenzie Mountains region, extensive discontinuous zone). Each of the stations is equipped to measure air temperature, ground surface temperature, ground temperature at a depth of 1 m (to evaluate the thermal offset), and snow depth (interpreted from I-button miniature loggers installed on a stake). These measurements will not only be used for permafrost modelling but will generate a unique data-set of air and ground surface temperatures which will be employed to investigate the frequency of air temperature inversions, their relation to topography and their effect on permafrost. The first complete monthly results (July 2006) demonstrate the expected wide variability in air and ground surface temperatures at both regional and local scales that makes modelling mountain permafrost so challenging.
Thermal comfort in naturally ventilated buildings in Maceio, Brazil
NASA Astrophysics Data System (ADS)
Djamila, Harimi
2017-11-01
This article presents the results from thermal comfort survey carried out in classrooms over two different seasons in Maceio, Brazil. The secondary data were collected from thermal comfort field study conducted in naturally ventilated classrooms. Objective and subjective parameters were explored to evaluate thermal comfort conditions. The potential effect of air movement on subjects' vote under neutrality was evaluated. Overall, the indoor climate of the surveyed location was classified warm and humid. Conflicting results were depicted when analyzing the effect of air movements on subjects' vote. The mean air temperature for subjects feeling hot was found to be lower than those feeling warm. A reasonable approach to tackle these two unpredictable results was suggested. Correlation matrix between selected thermal comfort variables was developed. Globe temperature recorded the highest correlation with subjects' response on ASHRAE seven-point scale. The correlation was significant at the 0.01 level. On the other hand, the correlation between air movement and subjects' response on ASHRAE seven-point scale was weak but significant. Further field studies on the current topic were recommended.
Hori, Aya; Hashizume, Masahiro; Tsuda, Yoko; Tsukahara, Teruomi; Nomiyama, Tetsuo
2012-01-01
We examined the effect of ambient temperature, air pressure and air pollutants on daily emergency admissions by identifying the cause of admission for each type of stroke and cardiovascular disease using generalized linear Poisson regression models allowing for overdispersion, and controlling for seasonal and inter-annual variations, days of the week and public holidays, levels of influenza and respiratory syncytial viruses. Every 1°C decrease in mean temperature was associated with an increase in the daily number of emergency admissions by 7.83% (95% CI 2.06-13.25) for acute coronary syndrome (ACS) and heart failure, by 35.57% (95% CI 15.59-59.02) for intracerebral haemorrhage (ICH) and by 11.71% (95% CI 4.1-19.89) for cerebral infarction. An increase of emergency admissions due to ICH (3.25% (95% CI 0.94-5.51)), heart failure (3.56% (95% CI 1.09-5.96)) was observed at every 1 hPa decrease in air pressure from the previous days. We found stronger detrimental effect of cold on stroke than cardiovascular disease.
Fuel effects on soot formation in turbojet engines. Final report, September 15, 1983-March 14, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, R.J.; Olson, D.B.
1985-08-01
The results of tests on how fuel composition affects the performance of three Navy aircraft engine combustors, the TF30, T56, and T53, were analyzed. The objective of this analysis was to identify which fuel property best correlated with the smoke-related measurements: radiation flux, liner temperature rise, smoke number, and smoke emissions. The effects of fuel composition were investigated by using a series of ten Naval Air Propulsion Center jet fuels with various properties, such as hydrogen contents of 12.83 to 13.82% and total aromatic hydrocarbon contents of 15.9 to 28.5%. Several laboratory combustion characteristics of these fuels were measured andmore » these characteristics were used in analysis. Altogether, 15 fuel parameters were used to correlate the 45 combustor test results. The reported operating conditions of the tests, such as inlet air pressure, inlet air temperature, or fuel/air ratio, were also used as correlating parameters to determine whether variations in these variables, nearly constant for individual tests, also affected the smoke-related test results.« less
Reactions of Fe+ and FeO+ with C2H2, C2H4, and C2H6: Temperature-Dependent Kinetics
2013-09-12
studies to lead to the development of efficient quantum chemical calculation methods by offering benchmarks for testing and refinement. Due to the...EXPERIMENTAL METHODS All measurements were performed on the Air Force Research Laboratory’s variable temperature selected ion flow tube (VT- SIFT) instrument...correct within error, indicating that they are in the low-pressure limit,52,53 and the termolecular rate constant is obtained from the slope. In contrast
Contrasting responses of the extended Gulf Stream to severe winter forcing
NASA Astrophysics Data System (ADS)
Jacobs, Z.; Grist, J. P.; Marsh, R.; Josey, S. A.; Sinha, B.
2015-12-01
Changes in the path and strength of the extended Gulf Stream, downstream of Cape Hatteras, and the North Atlantic Current (GSNAC), are associated with strong wintertime air-sea interactions that can further influence the atmospheric storm track. The GSNAC response to anomalous air-sea heat fluxes in particular is dependent on the location of excess heat loss, in turn related to meteorological circumstances. Outbreaks of cold continental air may lead to excess cooling over the Sargasso Sea, as in 1976-77. Under these circumstances, the Gulf Stream may intensify through a steepening of cross-stream density gradients. An alternative scenario prevailed during the cold outbreak of 2013-14 where excess cooling occurred over the central subpolar gyre and may have influenced the extreme storminess experienced in western Europe. An objectively-analysed temperature and salinity product (EN4) is used to investigate the variability of the GSNAC. Temperature and salinity profiles are used to obtain geostrophic transport at selected GSNAC transects, confirming strong horizontal temperature gradients and a positive geostrophic velocity anomaly at 70oW in spring 1977, the strongest spring transport seen in the 1970s at this location. In addition to observations, an eddy-resolving model hindcast spanning 1970-2013, is used to further characterise GSNAC transport variability, allowing a fuller assessment of the relationship between the winter surface heat flux, end-of-winter mixed layer depth, subtropical mode water volume and GSNAC transports. Preliminary results reveal a significant negative correlation between the winter surface heat flux over the Sargasso Sea and the GSNAC transport in the following spring.
Sensitivity of simulated South America Climate to the Land Surface Schemes in RegCM4
NASA Astrophysics Data System (ADS)
Llopart, Marta; da Rocha, Rosmeri; Reboita, Michelle; Cuadra, Santiago
2017-04-01
This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with Biosphere-Atmosphere Transfer Scheme (RegBATS) and Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, concerning the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is in general, wetter) over most of SA. RegCLM also provides smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer and make it reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.
Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake
Snortheim, Craig A.; Hanson, Paul C.; McMahon, Katherine D.; Read, Jordan S.; Carey, Cayelan C.; Dugan, Hilary
2017-01-01
Oxygen concentration is both an indicator and driver of water quality in lakes. Decreases in oxygen concentration leads to altered ecosystem function as well as harmful consequences for aquatic biota, such as fishes. The responses of oxygen dynamics in lakes to climate-related drivers, such as temperature and wind speed, are well documented for lake surface waters. However, much less is known about how the oxic environment of bottom waters, especially the timing and magnitude of anoxia in eutrophic lakes, responds to changes in climate drivers. Understanding how important ecosystem states, such as hypolimnetic anoxia, may respond to differing climate scenarios requires a model that couples physical-biological conditions and sufficiently captures the density stratification that leads to strong oxygen gradients. Here, we analyzed the effects of changes in three important meteorological drivers (air temperature, wind speed, and relative humidity) on hypolimnetic anoxia in a eutrophic, north temperate lake using the anoxic factor as an index that captures both the temporal and spatial extent of anoxia. Air temperature and relative humidity were found to have a positive correlation with anoxic factor, while wind speed had a negative correlation. Air temperature was found to have the greatest potential impact of the three drivers on the anoxic factor, followed by wind speed and then relative humidity. Across the scenarios of climate variability, variation in the simulated anoxic factor was primarily due to changes in the timing of onset and decay of stratification. Given the potential for future changes in climate, especially increases in air temperature, this study provides important insight into how these changes will alter lake water quality.
Libert, J P; Bach, V; Farges, G
1997-01-01
Low-birth-weight neonates should be nursed at thermoneutrality inside incubators. Thermoneutrality control is essential to enhance body growth and to reduce neonatal illnesses and mortality. Guidelines have been published to provide the thermoneutral range, but the recommendations did not always take into account all ambient and physiological parameters influencing thermoneutrality. In most marketed incubators, the heat supply is controlled through convective air flow (closed incubators) or through radiant power density (radiant warmer beds). The heating unit (on/off cycling or adjustable proportional control) is activated by an error signal calculated from the difference between a controlled temperature and a reference value preset by the clinician. The controlled variable can be either the incubator air or the skin temperature of the anterior abdominal region of the neonate. The neonate's size, thermal properties of the mattress and of incubator walls, air temperature and humidity, air velocity, incubator wall temperatures all influence the heat exchanges between the neonate and the surroundings, and, consequently, modify the obtention of thermoneutrality. Moreover, studies of the physiological mechanisms by which the neonate regulates body heat storage suggest that metabolic rate, behavior, vigilance level, nursing care, and heater control processes should also be taken into account. Little attention has been paid to these factors, and incubator performances are often disappointing. This article reviews the different factors that modify thermoneutral condition. An attempt is made to suggest new ways to design equipment incorporating these factors in algorithms controlling heater processes in order to reach the optimal thermal environment in which the neonate should be nursed.
Microstructure and optical properties of black chrome befor and after exposure to high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, C.M.; Washburn, J.
1979-01-01
the chemical and microstructural stability of the CHROM-ONYX type of black chrome solar coating was investigated at different temperatures and atmospheres. This was done to give a better understanding of the mechanism of solar energy selectivity and its variability when subjected to short term heat treatments. The as-plated structure was found to consist of a suspension of metallic chromium particles within the size range of 100A in a amorphous oxide matrix. this assembly was in turn formed into larger particles within the size range of 0.05 to 0.30 microns. Short term high temperature heat treatments were used to simulate stagnationmore » conditions. Samples were annealed in both air and vacuum, which resulted in similar characteristics. Annealing in air appeared to mildly accelerate optical degradation at high temperatures. For short term heat treatments below 300/sup 0/C the reflective and microstructural properties appeared to be unchanged. By in situ vacuum annealing of the coating above 400/sup 0/C microscrystalline Cr/sub 2/O/sub 3/ was identified. By observation of diffraction patterns it was concluded that a-Cr/sub 2/O/sub 3/ was transformed into crystalline Cr/sub 2/O/sub 3/. The Cr/sub 2/O/sub 3/ phase continued to grow at higher temperatures at the expense of chromium content. At temperatures above 500/sup 0/C in vacuum, a new phase identified as Cr/sub 3/O/sub 4/ formed. It was found that black chrome failed optically between 500 to 600/sup 0/C for 1 hour heat treatments in both air and vacuum; also the coating heated in air failed mechanically by peeling at 600/sup 0/C.« less
Microstructure and optical properties of black chrome before and after exposure to high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, C.M.; Washburn, J.
1979-01-01
The chemical and microstructural stability of the CHROM-ONYX type of black chrome solar coating was investigated at different temperatures and atmospheres. This was done to give a better understanding of the mechanism of solar energy selectivity and its variability when subjected to short term heat treatments. The as-plated structure was found to consist of a suspension of metallic chromium particles within the size range of 100A in an amorphous oxide matrix. This assembly was in turn formed into larger particles within the size range of 0.05-0.30 microns. Short term high temperature heat treatments were used to simulate stagnation conditions. Samplesmore » were annealed in both air and vacuum, which resulted in similar characteristics. Annealing in air appeared to mildly accelerate optical degradation at high temperatures. For short term heat treatments below 300/sup 0/C the reflective and microstructural properties appeared to be unchanged. By in situ vacuum annealing of the coating above 400/sup 0/C microcrystalline Cr/sub 2/O/sub 3/ was identified. By observation of diffraction patterns it was concluded that a-Cr/sub 2/O/sub 3/ was transformed into crystalline Cr/sub 2/O/sub 3/. The Cr/sub 2/O/sub 3/ phase continued to grow at higher temperatures at the expense of chromium content. At temperatures above 500/sup 0/C in vacuum, a new phase identified as NiCr/sub 2/O/sub 4/ formed. It was found that black chrome failed optically between 500-600/sup 0/C for 1 hour heat treatments in both air and vacuum; also the coating heated in air failed mechanically by peeling at 600/sup 0/C.« less
Zeigler, Matthew P.; Todd, Andrew S.; Caldwell, Colleen A.
2012-01-01
Evidence of anthropogenically influenced climate change has motivated natural resource managers to incorporate adaptive measures to minimize risks to sensitive and threatened species. Detecting trends in climate variables (i.e., air temperature and hydrology) can serve as a valuable management tool for protecting vulnerable species by increasing our understanding of localized conditions and trends. The Rio Grande cutthroat trout Oncorhynchus clarkii virginalis has suffered a severe decline in its historical distribution, with the majority of current populations persisting in isolated headwater streams. To evaluate recent climate change within the subspecies' historical range, we examined trends in average air temperatures, biologically important hydrological variables (timing of snowmelt and seasonal flows), and the April 1 snow water equivalent over the last 45 years (1963–2007). While rates of change in all three metrics were variable across sites, rangewide patterns were evident. Across the subspecies' historical range, average annual air temperatures increased (0.29°C per decade) and the timing of snowmelt shifted 10.6 d earlier in the year (2.3 d/decade). Flows increased during biologically important periods, including winter (January 1–March 31; 6.6% increase per decade), prespawning (April 1–May 14; 6.9% increase per decade), and spawning (May 15–June 15; 4.2% increase per decade) and decreased in summer (June 16–September 15; 1.9% decrease per decade). Evidence of decreasing April 1 snow water equivalent (5.3% per decade) was also observed. While the impacts of these changes at the population level are equivocal, it is likely that negative effects would influence the subspecies by altering its distribution, decreasing available habitat, and altering the timing of important life history components. Continued monitoring and proactive management will be required to increase the resiliency of remaining populations to ensure long-term persistence and protection in a changing climate.
NASA Astrophysics Data System (ADS)
Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.
2014-12-01
Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryner, Elliott; Brun, Klaus; Coogan, Shane
The objective of this project is to increase Concentrated Solar Power (CSP) tower air receiver and gas turbine temperature capabilities to 1,000ºC by the development of a novel gas turbine combustor, which can be integrated on a megawatt-scale gas turbine, such as the Solar Turbines Mercury 50™. No combustor technology currently available is compatible with the CSP application target inlet air temperature of 1,000°C. Autoignition and flashback at this temperature prevent the use of conventional lean pre-mix injectors that are currently employed to manage NOx emissions. Additional challenges are introduced by the variability of the high-temperature heat source provided bymore » the field of solar collectors, the heliostat in CSP plants. For optimum energy generation from the power turbine, the turbine rotor inlet temperature (TRIT) should remain constant. As a result of changing heat load provided to the solar collector from the heliostat, the amount of energy input required from the combustion system must be adjusted to compensate. A novel multi-bank lean micro-mix injector has been designed and built to address the challenges of high-temperature combustion found in CSP applications. The multi-bank arrangement of the micro-mix injector selectively injects fuel to meet the heat addition requirements to maintain constant TRIT with changing solar load. To validate the design, operation, and performance of the multi-bank lean micro-mix injector, a novel combustion test facility has been designed and built at Southwest Research Institute® (SwRI®) in San Antonio, TX. This facility, located in the Turbomachinery Research Facility, provides in excess of two kilograms per second of compressed air at nearly eight bar pressure. A two-megawatt electric heater raises the inlet temperature to 800°C while a secondary gas-fired heater extends the operational temperature range of the facility to 1,000°C. A combustor test rig connected to the heater has been designed and built to test the multi-bank lean micro-mix injector over the range of CSP operating conditions. The fuel is controlled and selectively delivered to the banks of the injector based on combustor inlet conditions that correspond to turbine operating points. The combustor rig is equipped with a data acquisition system and a suite of instrumentation for measuring temperature, pressure, and species concentration. This unique test facility has been built and commissioned and a prototype of the multi-bank lean micro-mix injector design has been tested. Operation of the combustor and injector has been demonstrated over the full range of CSP inlet conditions and for the range of turbine load conditions specified. The multi-bank operation of the injector has been proven to be an effective design for managing the variable flow rates of air and fuel due to changing inlet conditions from the solar field and turbine loads.« less
Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory
NASA Astrophysics Data System (ADS)
Roadhouse, Emily A.
The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely related to the winter air temperatures. The application of n-factor modeling techniques within the permafrost region, and the verification of these techniques for a range of natural surfaces, is essential to the determination of the thermal and physical response to potential climate warming in permafrost regions. The presence of temperature inversions presents a unique challenge to permafrost probability mapping in mountainous terrain. While elsewhere the existence of permafrost can be linearly related to elevation, the presence of frequent inversions challenges this assumption, affecting permafrost distribution in ways that the current modeling techniques cannot accurately predict. At sites across the Yukon, inversion-prone sites were predominantly situated in U-shaped valleys, although open slopes, mid-slope ridges and plains were also identified. Within the Wolf Creek basin and surrounding area, inversion episodes have a measurable effect on local air temperatures, occurring during the fall and winter seasons along the Mount Sima trail, and year-round in the palsa valley. Within the discontinuous permafrost zone, where average surface temperatures are often close to zero, even a relatively small change in temperature in the context of future climate change could have a widespread impact on permafrost distribution.
Johnson, Ted; Myers, Jeffrey; Kelly, Thomas; Wisbith, Anthony; Ollison, Will
2004-01-01
A pilot study was conducted using an occupied, single-family test house in Columbus, OH, to determine whether a script-based protocol could be used to obtain data useful in identifying the key factors affecting air-exchange rate (AER) and the relationship between indoor and outdoor concentrations of selected traffic-related air pollutants. The test script called for hourly changes to elements of the test house considered likely to influence air flow and AER, including the position (open or closed) of each window and door and the operation (on/off) of the furnace, air conditioner, and ceiling fans. The script was implemented over a 3-day period (January 30-February 1, 2002) during which technicians collected hourly-average data for AER, indoor, and outdoor air concentrations for six pollutants (benzene, formaldehyde (HCHO), polycyclic aromatic hydrocarbons (PAH), carbon monoxide (CO), nitric oxide (NO), and nitrogen oxides (NO(x))), and selected meteorological variables. Consistent with expectations, AER tended to increase with the number of open exterior windows and doors. The 39 AER values measured during the study when all exterior doors and windows were closed varied from 0.36 to 2.29 h(-1) with a geometric mean (GM) of 0.77 h(-1) and a geometric standard deviation (GSD) of 1.435. The 27 AER values measured when at least one exterior door or window was opened varied from 0.50 to 15.8 h(-1) with a GM of 1.98 h(-1) and a GSD of 1.902. AER was also affected by temperature and wind speed, most noticeably when exterior windows and doors were closed. Results of a series of stepwise linear regression analyses suggest that (1) outdoor pollutant concentration and (2) indoor pollutant concentration during the preceding hour were the "variables of choice" for predicting indoor pollutant concentration in the test house under the conditions of this study. Depending on the pollutant and ventilation conditions, one or more of the following variables produced a small, but significant increase in the explained variance (R(2)-value) of the regression equations: AER, number and location of apertures, wind speed, air-conditioning operation, indoor temperature, outdoor temperature, and relative humidity. The indoor concentrations of CO, PAH, NO, and NO(x) were highly correlated with the corresponding outdoor concentrations. The indoor benzene concentrations showed only moderate correlation with outdoor benzene levels, possibly due to a weak indoor source. Indoor formaldehyde concentrations always exceeded outdoor levels, and the correlation between indoor and outdoor concentrations was not statistically significant, indicating the presence of a strong indoor source.
Gruber, Andreas; Baumgartner, Daniel; Zimmermann, Jolanda; Oberhuber, Walter
2009-06-01
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
NASA Astrophysics Data System (ADS)
Bendl, Jan; Hovorka, Jan
2017-12-01
The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant influence on air quality due to inversion cap over the valley. Nevertheless, formation of an inversion showed strong diurnal variability. For example, on the 18th Feb. early morning shallow inversion quickly disappeared within less than 2 hours. According to this study tethered balloon measurements has proved to be a good tool for completion comprehensive ground air quality measurements.
The use of auxiliary variables in capture-recapture and removal experiments
Pollock, K.H.; Hines, J.E.; Nichols, J.D.
1984-01-01
The dependence of animal capture probabilities on auxiliary variables is an important practical problem which has not been considered in the development of estimation procedures for capture-recapture and removal experiments. In this paper the linear logistic binary regression model is used to relate the probability of capture to continuous auxiliary variables. The auxiliary variables could be environmental quantities such as air or water temperature, or characteristics of individual animals, such as body length or weight. Maximum likelihood estimators of the population parameters are considered for a variety of models which all assume a closed population. Testing between models is also considered. The models can also be used when one auxiliary variable is a measure of the effort expended in obtaining the sample.
NASA Astrophysics Data System (ADS)
Scott, A.; Kelley, C.; Azdoud, Y.; Ambikapathi, R.; Hobson, M.; Lehman, A.; Ghugare, P.; He, C.; Zaitchik, B. F.; Waugh, D.; McCormack, M.; Baja, K.
2017-12-01
Anthropogenic activities alter the urban surface and surface atmosphere, generating heat and pollutants that have known detrimental impacts on health. Monitoring these environmental variables in urban environments is made difficult by the spatial heterogeneity of urban environments, meaning that two nearby locations may have significantly different temperatures, humidities, or gas concentrations. Thus, urban monitoring often requires more densely placed monitors than current standards or budgets allow. Recent advances in low-cost sensors and Internet of Things (IoT) enabled hardware offer possible solutions. We present an autonomous wireless, open-source, IoT-enabled environmental monitor called a WeatherCube, developed for the Greater Baltimore Open Air project, funded in part by the EPA SmartCity Challenge. The WeatherCube is suitable for urban monitoring and capable of measuring meteorological variables (temperature and humidity) as well as air quality (ozone, nitrogen dioxide, and sulfur dioxide). The WeatherCube devices were built in collaboration with Johns Hopkins University, local government, and community members, including through an innovative job training program. Monitors are hosted by community partners and libraries throughout Baltimore city and surrounding communities. We present the first wave of data collected by the Greater Baltimore Open Air project and compare it to data collected by the Maryland Department of the Environment (MDE). Additionally, we will provide an overview of our experience engaging with the local makers, citizen scientists, and environmental groups to improve their urban environmental monitoring. By developing low-cost devices tailored for urban environmental monitoring, we present an innovative model for both conducting research and community outreach.
Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E
NASA Astrophysics Data System (ADS)
Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.
2007-12-01
Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Horecka, Hannah M.; Thomas, Andrew C.; Weatherbee, Ryan A.
2014-05-01
The Gulf of Maine experiences annual closures of shellfish harvesting due to the accumulation of toxins produced by dinoflagellates of the genus Alexandrium. Factors controlling the timing, location, and magnitude of these events in eastern Maine remain poorly understood. Previous work identified possible linkages between interannual variability of oceanographic variables and shellfish toxicity along the western Maine coastline but no such linkages were evident along the eastern Maine coast in the vicinity of Cobscook Bay, where strong tidal mixing tends to reduce seasonal variability in oceanographic properties. Using 21 years (1985-2005) of shellfish toxicity data, interannual variability in two metrics of annual toxicity, maximum magnitude and total annual toxicity, from stations in the Cobscook Bay region are examined for relationships to a suite of available environmental variables. Consistent with earlier work, no (or only weak) correlations were found between toxicity and oceanographic variables, even those very proximate to the stations such as local sea surface temperature. Similarly no correlations were evident between toxicity and air temperature, precipitation or relative humidity. The data suggest possible connections to local river discharge, but plausible mechanisms are not obvious. Correlations between toxicity and two variables indicative of local meteorological conditions, dew point and atmospheric pressure, both suggest a link between increased toxicity in these eastern Maine stations and weather conditions characterized by clearer skies/drier air (or less stormy/humid conditions). As no correlation of opposite sign was evident between toxicity and local precipitation, one plausible link is through light availability and its positive impact on phytoplankton production in this persistently foggy section of coast. These preliminary findings point to both the value of maintaining long-term shellfish toxicity sampling and a need for inclusion of weather variability in future modeling studies aimed at development of a more mechanistic understanding of factors controlling interannual differences in eastern Gulf of Maine shellfish toxicity.
Skin Temperature Processes in the Presence of Sea Ice
NASA Astrophysics Data System (ADS)
Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.
2013-12-01
Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence may affect the dissipation of turbulent kinetic energy.
Premix fuels study applicable to duct burner conditions for a variable cycle engine
NASA Technical Reports Server (NTRS)
Venkataramani, K. S.
1978-01-01
Emission levels and performance of a premixing Jet-A/air duct burner were measured at reference conditions representative of take-off and cruise for a variable cycle engine. In a parametric variation sequence of tests, data were obtained at inlet temperatures of 400, 500 and 600K at equivalence ratios varying from 0.9 to the lean stability limit. Ignition was achieved at all the reference conditions although the CO levels were very high. Significant nonuniformity across the combustor was observed for the emissions at the take-off condition. At a reference Mach number of 0.117 and an inlet temperature of 600K, corresponding to a simulated cruise condition, the NOx emission level was approximately 1 gm/kg-fuel.
NASA Astrophysics Data System (ADS)
Rowe, H. D.; Dunbar, R. B.
2004-09-01
A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.
The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes
NASA Astrophysics Data System (ADS)
Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.
2018-02-01
The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.
Flores, María Elena Báez; Medina, Pável Gaxiola; Camacho, Sylvia Páz Díaz; de Jesús Uribe Beltrán, Magdalena; De la Cruz Otero, María del Carmen; Ramírez, Ignacio Osuna; Hernández, Martín Ernesto Tiznado
2014-08-01
The fungal spore concentration (FSC) in the air poses a risk for human health. This work studied the FSC in university libraries and how it is affected by environmental factors. A total of 347 samples were obtained using a Microbio MB2(®) Aerosol Sampler. The wind speed (WS), cross wind (CW), temperature (T), relative humidity (HR), barometric pressure (BP) and dew point (DP) were recorded using a Kestrel(®) 4500 weather station. The median indoor/outdoor FSC was 360/1230 CFU m(-3). FSC correlated inversely with BP, HR and DP; and positively with WS and CW; whereas T showed negative or positive correlation with FSC, depending on the region or sampling time. Eleven fungal genera were found and the dominant isolates were identified as Aspergillus niger, Aspergillus tamarii and Aspergillus oryzae. All fungi identified are known to be allergenic. It was concluded that environmental variables can influence the air FSC in different ways.
Acute childhood asthma in Galway city from 1985-2005: relationship to air pollution and climate.
Loftus, A; Loftus, B G; Muircheartaigh, I O; Newell, J; Scarrott, C; Jennings, S
2014-01-01
We examine the relationship of air pollution and climatic variables to asthma admission rates of children in Galway city over a 21 year period. Paediatric asthma admissions were recorded from 1985-2005, and admission rates per thousand calculated for pre-school (1-4 years), school aged (5-14 years) and all children (1-14 years) on a monthly and annual basis. These data were compared to average monthly and annual climatic variables (rainfall, humidity, sunshine, wind speed and temperature) and black smoke levels for the city. Simple correlation and Poisson Generalized Additive Models (GAM) were used. Admission rates each month are significantly correlated with smoke levels (p = 0.007). Poisson GAM also shows a relationship between admissions and pollution (p = 0.07). Annual smoke levels impact more on admission rates of preschoolers (p = 0.04) than school age children (p = 0.10). These data suggest that air pollution is an important factor in the epidemiology of acute childhood asthma.
Dorota, Myszkowska
2013-03-01
The aim of the study was to construct the model forecasting the birch pollen season characteristics in Cracow on the basis of an 18-year data series. The study was performed using the volumetric method (Lanzoni/Burkard trap). The 98/95 % method was used to calculate the pollen season. The Spearman's correlation test was applied to find the relationship between the meteorological parameters and pollen season characteristics. To construct the predictive model, the backward stepwise multiple regression analysis was used including the multi-collinearity of variables. The predictive models best fitted the pollen season start and end, especially models containing two independent variables. The peak concentration value was predicted with the higher prediction error. Also the accuracy of the models predicting the pollen season characteristics in 2009 was higher in comparison with 2010. Both, the multi-variable model and one-variable model for the beginning of the pollen season included air temperature during the last 10 days of February, while the multi-variable model also included humidity at the beginning of April. The models forecasting the end of the pollen season were based on temperature in March-April, while the peak day was predicted using the temperature during the last 10 days of March.
NASA Astrophysics Data System (ADS)
Perrimond, B.; Bigot, S.; Quénol, H.; Spielgelberger, T.; Baudry, J.
2012-04-01
Climate and vegetation are linked all over the world. In this study, we work on a seasonal weather classification based on air temperature and precipitation to deduce a link with different phenological stage (greening up, senescence, ...) over a 12 year period (1998-2009) for two different domains in France (Alps and Brittany). In temperate land, the main climatic variable with a potential effect on vegetation is the mean temperature followed by the rainfall deficit. A better understanding in season and their climatic characteristic is need to establish link between climate and phenology; so a weather classification is proposed based on empirical orthogonal functions and ascending hierarchical classification on atmospheric variables. This classification allows us to exhibit the inter-annual and intra-seasonal climatic spatiotemporal variability for both experimental site. Relationships between climate and phenology consist in a comparison between advance and delay in phenological stage and weather type issue from the classification. Experiment field are two french Long Term Ecological Research (LTER). The first one (LTER 'Alps' ) have mountain characteristics about 1000 to 4780 m ASL, ~65% of forest occupation ; the second one (LTER Armorique) is an Atlantic coastal landscape, 0-360 m ASL, ~70% of agricultural field. Climatic data are SAFRAN-France reanalysis which are developed to run SVAT model and come from the French meteorological service 'Météo-France'. All atmospheric variable needed to run a hydrological model are available (air temperature, rainfall/snowfall, wind speed, relative humidity, incoming/outcoming radiation) at a 8-8 km2 space resolution and with a daily time resolution. The phenological data are extracted from SPOT-VGT product 1-1 km2 space resolution and 10 days time resolution) by time series analysis process. Such of study is particularly important to understand relationships between environmental and ecological variables and it will allow to better predict ecological reaction under climate change constraint.
NASA Technical Reports Server (NTRS)
Goldstein, D.; Magnotti, F.; Chinitz, W.
1983-01-01
Reaction rates in turbulent, reacting flows are reviewed. Assumed probability density functions (pdf) modeling of reaction rates is being investigated in relation to a three variable pdf employing a 'most likely pdf' model. Chemical kinetic mechanisms treating hydrogen air combustion is studied. Perfectly stirred reactor modeling of flame stabilizing recirculation regions was used to investigate the stable flame regions for silane, hydrogen, methane, and propane, and for certain mixtures thereof. It is concluded that in general, silane can be counted upon to stabilize flames only when the overall fuel air ratio is close to or greater than unity. For lean flames, silane may tend to destabilize the flame. Other factors favoring stable flames are high initial reactant temperatures and system pressure.
Integrated thermal and energy management of plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard
2012-10-01
In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.
Climate influence on dengue epidemics in Puerto Rico.
Jury, Mark R
2008-10-01
The variability of the insect-borne disease dengue in Puerto Rico was studied in relation to climatic variables in the period 1979-2005. Annual and monthly reported dengue cases were compared with precipitation and temperature data. Results show that the incidence of dengue in Puerto Rico was relatively constant over time despite global warming, possibly due to the offsetting effects of declining rainfall, improving health care and little change in population. Seasonal fluctuations of dengue were driven by rainfall increases from May to November. Year-to-year variability in dengue cases was positively related to temperature, but only weakly associated with local rainfall and an index of El Nino Southern Oscillation (ENSO). Climatic conditions were mapped with respect to dengue cases and patterns in high and low years were compared. During epidemics, a low pressure system east of Florida draws warm humid air over the northwestern Caribbean. Long-term trends in past observed and future projected rainfall and temperatures were studied. Rainfall has declined slowly, but temperatures in the Caribbean are rising with the influence of global warming. Thus, dengue may increase in the future, and it will be necessary to anticipate dengue epidemics using climate forecasts, to reduce adverse health impacts.
da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista
2017-07-01
The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m 2 h -1 ). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.
NASA Astrophysics Data System (ADS)
da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista
2017-07-01
The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m2 h-1). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.