Sample records for air toxics modeling

  1. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  2. POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY

    EPA Science Inventory

    The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...

  3. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. © 2011 Society for Risk Analysis.

  4. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  5. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  6. Air quality modeling of selected aromatic and non-aromatic air toxics in the Houston urban and industrial airshed

    NASA Astrophysics Data System (ADS)

    Coarfa, Violeta Florentina

    2007-12-01

    Air toxics, also called hazardous air pollutants (HAPs), pose a serious threat to human health and the environment. Their study is important in the Houston area, where point sources, mostly located along the Ship Channel, mobile and area sources contribute to large emissions of such toxic pollutants. Previous studies carried out in this area found dangerous levels of different HAPs in the atmosphere. This thesis presents several studies that were performed for the aromatic and non-aromatic air toxics in the HGA. For these studies we developed several tools: (1) a refined chemical mechanism, which explicitly represents 18 aromatic air toxics that were lumped under two model species by the previous version, based on their reactivity with the hydroxyl radical; (2) an engineering version of an existing air toxics photochemical model that enables us to perform much faster long-term simulations compared to the original model, that leads to a 8--9 times improvement in the running time across different computing platforms; (3) a combined emission inventory based on the available emission databases. Using the developed tools, we quantified the mobile source impact on a few selected air toxics, and analyzed the temporal and spatial variation of selected aromatic and non-aromatic air toxics in a few regions within the Houston area; these regions were characterized by different emissions and environmental conditions.

  7. NATIONAL-SCALE ASSESSMENT OF AIR TOXICS RISKS ...

    EPA Pesticide Factsheets

    The national-scale assessment of air toxics risks is a modeling assessment which combines emission inventory development, atmospheric fate and transport modeling, exposure modeling, and risk assessment to characterize the risk associated with inhaling air toxics from outdoor sources. This national-scale effort will be initiated for the base year 1996 and repeated every three years thereafter to track trends and inform program development. Provide broad-scale understanding of inhalation risks for a subset of atmospherically-emitted air toxics to inform further data-gathering efforts and priority-setting for the EPA's Air Toxics Programs.

  8. Stochastic Human Exposure and Dose Simulation for Air Toxics

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) is a multimedia, multipathway population-based exposure and dose model for air toxics developed by the US EPA's National Exposure Research Laboratory (NERL). SHEDS-AirToxics uses a probabili...

  9. CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY

    EPA Science Inventory

    Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...

  10. APPLICATION OF FINE SCALE AIR TOXICS MODELING WITH CMAQ TO HAPEM5

    EPA Science Inventory

    This paper provides a preliminary demonstration of the EPA neighborhood scale modeling paradigm for air toxics by linking concentration from the Community Multiscale Air Quality (CMAQ) modeling system to the fifth version of the Hazardous Pollutant Exposure Model (HAPEM5). For t...

  11. National-scale Assessment of Air Toxics Risks

    EPA Science Inventory

    The national-scale assessment of air toxics risks is a modeling assessment which combines emission inventory development, atmospheric fate and transport modeling, exposure modeling, and risk assessment to characterize the risk associated with inhaling air toxics from outdoor sour...

  12. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  13. RESOLVING FINE SCALE IN AIR TOXICS MODELING AND THE IMPORTANCE OF ITS SUB-GRID VARIABILITY FOR EXPOSURE ESTIMATES

    EPA Science Inventory

    This presentation explains the importance of the fine-scale features for air toxics exposure modeling. The paper presents a new approach to combine local-scale and regional model results for the National Air Toxic Assessment. The technique has been evaluated with a chemical tra...

  14. MODELING AIR TOXICS AND PM 2.5 CONCENTRATION FIELDS AS A MEANS FOR FACILITATING HUMAN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    The capability of the US EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system is extended to provide gridded ambient air quality concentration fields at fine scales. These fields will drive human exposure to air toxics and fine particulate matter (PM2.5) models...

  15. Hybrid Modeling Approach to Estimate Exposures of Hazardous Air Pollutants (HAPs) for the National Air Toxics Assessment (NATA).

    PubMed

    Scheffe, Richard D; Strum, Madeleine; Phillips, Sharon B; Thurman, James; Eyth, Alison; Fudge, Steve; Morris, Mark; Palma, Ted; Cook, Richard

    2016-11-15

    A hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community. The hybrid design exhibits improved performance relative to the stand alone CTM and dispersion model. However, model performance varies widely across pollutant categories and quantifiably definitive performance assessments are hampered by a limited observation base and challenged by the multiple physical and chemical attributes of HAPs. Formaldehyde and acetaldehyde are the dominant HAP concentration and cancer risk drivers, characterized by strong regional signals associated with naturally emitted carbonyl precursors enhanced in urban transport corridors with strong mobile source sector emissions. The multiple pollutant emission characteristics of combustion dominated source sectors creates largely similar concentration patterns across the majority of HAPs. However, reactive carbonyls exhibit significantly less spatial variability relative to nonreactive HAPs across the CONUS.

  16. HUMAN EXPOSURE MEASUREMENTS OF AIR TOXICS

    EPA Science Inventory

    EPA's air toxics program is moving toward a risk-based focus. The framework for such a focus was laid out in the National Air Toxics Program: Integrated Urban Strategy which included the requirement for EPA to conduct a National-Scale Air Toxics Assessment (NATA) of human expos...

  17. National Air Toxics Assessment (NATA)

    EPA Pesticide Factsheets

    NATA provides estimates of the risk of cancer and other serious health effects from inhaling air toxics in order to inform both national and more localized efforts to identify and prioritize air toxics, emission source types.

  18. National Air Toxic Assessments (NATA) Results

    EPA Pesticide Factsheets

    The National Air Toxics Assessment was conducted by EPA in 2002 to assess air toxics emissions in order to identify and prioritize air toxics, emission source types and locations which are of greatest potential concern in terms of contributing to population risk. This data source provides downloadable information on emissions at the state, county and census tract level.

  19. GIS Modeling of Air Toxics Releases from TRI-Reporting and Non-TRI-Reporting Facilities: Impacts for Environmental Justice

    PubMed Central

    Dolinoy, Dana C.; Miranda, Marie Lynn

    2004-01-01

    The Toxics Release Inventory (TRI) requires facilities with 10 or more full-time employees that process > 25,000 pounds in aggregate or use > 10,000 pounds of any one TRI chemical to report releases annually. However, little is known about releases from non-TRI-reporting facilities, nor has attention been given to the very localized equity impacts associated with air toxics releases. Using geographic information systems and industrial source complex dispersion modeling, we developed methods for characterizing air releases from TRI-reporting as well as non-TRI-reporting facilities at four levels of geographic resolution. We characterized the spatial distribution and concentration of air releases from one representative industry in Durham County, North Carolina (USA). Inclusive modeling of all facilities rather than modeling of TRI sites alone significantly alters the magnitude and spatial distribution of modeled air concentrations. Modeling exposure receptors at more refined levels of geographic resolution reveals localized, neighborhood-level exposure hot spots that are not apparent at coarser geographic scales. Multivariate analysis indicates that inclusive facility modeling at fine levels of geographic resolution reveals exposure disparities by income and race. These new methods significantly enhance the ability to model air toxics, perform equity analysis, and clarify conflicts in the literature regarding environmental justice findings. This work has substantial implications for how to structure TRI reporting requirements, as well as methods and types of analysis that will successfully elucidate the spatial distribution of exposure potentials across geographic, income, and racial lines. PMID:15579419

  20. FURTHER REFINEMENTS AND TESTING OF APEX3.0: EPA'S POPULATION EXPOSURE MODEL FOR CRITERIA AND AIR TOXIC INHALATION

    EPA Science Inventory

    The Air Pollutants Exposure Model (APEX(3.0)) is a PC-based model that was derived from the probabilistic NAAQS Exposure Model for carbon monoxide (pNEM/CO). APEX will be one of the tools used to estimate human population exposure for criteria and air toxic pollutants as part ...

  1. LINKING AIR TOXIC CONCENTRATIONS FROM CMAQ TO THE HAPEM5 EXPOSURE MODEL AT NEIGHORHOOD SCALES FOR THE PHILADELPHIA AREA

    EPA Science Inventory

    This paper provides a preliminary demonstration of the EPA neighborhood scale modeling paradigm for air toxics by linking concentration from the Community Multi-scale Air Quality (CMAQ) modeling system to the fifth version of the Hazardous Pollutant Exposure Model (HAPEM5). For ...

  2. AIR TOXICS MODELING FROM LOCAL TO REGIONAL SCALES TO SUPPORT THE 2002 MULTIPOLLUTANT ASSESSMENT

    EPA Science Inventory

    This research focuses on developing models that can describe the chemical and physical processes affecting concentrations of toxic air pollutants in the atmosphere, at spatial scales, ranging from local (< 1 km) to regional (36 km). One objective of this task is to extend the ca...

  3. Final Recommendations of the Air Toxics Work Group

    EPA Pesticide Factsheets

    The Air Toxics Workgroup was organized under the Clean Air Act Advisory Committee for the purpose of discussing and identifying recommendations related to Urban Air Toxics. The workgroup is part of the Permits, New Source Review and Toxics Subcommittee.

  4. Assessing the Influence of Traffic-related Air Pollution on Risk of Term Low Birth Weight on the Basis of Land-Use-based Regression Models and Measures of Air Toxics

    PubMed Central

    Ghosh, Jo Kay C.; Wilhelm, Michelle; Su, Jason; Goldberg, Daniel; Cockburn, Myles; Jerrett, Michael; Ritz, Beate

    2012-01-01

    Few studies have examined associations of birth outcomes with toxic air pollutants (air toxics) in traffic exhaust. This study included 8,181 term low birth weight (LBW) children and 370,922 term normal-weight children born between January 1, 1995, and December 31, 2006, to women residing within 5 miles (8 km) of an air toxics monitoring station in Los Angeles County, California. Additionally, land-use-based regression (LUR)-modeled estimates of levels of nitric oxide, nitrogen dioxide, and nitrogen oxides were used to assess the influence of small-area variations in traffic pollution. The authors examined associations with term LBW (≥37 weeks’ completed gestation and birth weight <2,500 g) using logistic regression adjusted for maternal age, race/ethnicity, education, parity, infant gestational age, and gestational age squared. Odds of term LBW increased 2%–5% (95% confidence intervals ranged from 1.00 to 1.09) per interquartile-range increase in LUR-modeled estimates and monitoring-based air toxics exposure estimates in the entire pregnancy, the third trimester, and the last month of pregnancy. Models stratified by monitoring station (to investigate air toxics associations based solely on temporal variations) resulted in 2%–5% increased odds per interquartile-range increase in third-trimester benzene, toluene, ethyl benzene, and xylene exposures, with some confidence intervals containing the null value. This analysis highlights the importance of both spatial and temporal contributions to air pollution in epidemiologic birth outcome studies. PMID:22586068

  5. Assessing the influence of traffic-related air pollution on risk of term low birth weight on the basis of land-use-based regression models and measures of air toxics.

    PubMed

    Ghosh, Jo Kay C; Wilhelm, Michelle; Su, Jason; Goldberg, Daniel; Cockburn, Myles; Jerrett, Michael; Ritz, Beate

    2012-06-15

    Few studies have examined associations of birth outcomes with toxic air pollutants (air toxics) in traffic exhaust. This study included 8,181 term low birth weight (LBW) children and 370,922 term normal-weight children born between January 1, 1995, and December 31, 2006, to women residing within 5 miles (8 km) of an air toxics monitoring station in Los Angeles County, California. Additionally, land-use-based regression (LUR)-modeled estimates of levels of nitric oxide, nitrogen dioxide, and nitrogen oxides were used to assess the influence of small-area variations in traffic pollution. The authors examined associations with term LBW (≥37 weeks' completed gestation and birth weight <2,500 g) using logistic regression adjusted for maternal age, race/ethnicity, education, parity, infant gestational age, and gestational age squared. Odds of term LBW increased 2%-5% (95% confidence intervals ranged from 1.00 to 1.09) per interquartile-range increase in LUR-modeled estimates and monitoring-based air toxics exposure estimates in the entire pregnancy, the third trimester, and the last month of pregnancy. Models stratified by monitoring station (to investigate air toxics associations based solely on temporal variations) resulted in 2%-5% increased odds per interquartile-range increase in third-trimester benzene, toluene, ethyl benzene, and xylene exposures, with some confidence intervals containing the null value. This analysis highlights the importance of both spatial and temporal contributions to air pollution in epidemiologic birth outcome studies.

  6. National Air Toxics Assessment

    EPA Pesticide Factsheets

    NATA is an ongoing comprehensive evaluation of air toxics in the U.S. As a screening tool, it helps air agencies prioritize pollutants, emission sources and locations of interest for further study to gain a better understanding of risks.

  7. LARGE-SCALE PREDICTIONS OF MOBILE SOURCE CONTRIBUTIONS TO CONCENTRATIONS OF TOXIC AIR POLLUTANTS

    EPA Science Inventory

    This presentation shows concentrations and deposition of toxic air pollutants predicted by a 3-D air quality model, the Community Multi Scale Air Quality (CMAQ) modeling system. Contributions from both on-road and non-road mobile sources are analyzed.

  8. Analysis of Mobile Source Air Toxics (MSATS)–Near-Road VOC and CarbonylConcentrations

    EPA Science Inventory

    This presentation examines data from a year-long study of measured near-road mobile source air toxic (MSAT) concentrations and compares these data with modeled 2005 National Air Toxic Assessment (NATA) results. Field study measurements were collected during a field campaign in ...

  9. SNRB{trademark} air toxics monitoring. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less

  10. Air toxics and asthma: impacts and end points.

    PubMed Central

    Eschenbacher, W L; Holian, A; Campion, R J

    1995-01-01

    The National Urban Air Toxics Research Center (NUATRC) hosted a medical/scientific workshop focused on possible asthma/air toxics relationships, with the results of the NUATRC's first research contract with the University of Cincinnati as the point of discussion. The workshop was held at the Texas Medical Center on 4 February 1994 and featured presentations by distinguished academic, government, and industry scientists. This one-day session explored the impact of various environmental factors, including air toxics, on asthma incidence and exacerbation; an emphasis was placed on future research directions to be pursued in the asthma/air toxics area. A key research presentation on the association of air toxics and asthma, based on the study sponsored by NUATRC, was given by Dr. George Leikauf of the University of Cincinnati Medical Center. Additional presentations were made by H. A. Boushey, Jr., Cardiovascular Research Institute/University of California at San Francisco, who spoke on of the Basic Mechanisms of Asthma; K. Sexton, U.S. Environmental Protection Agency, who spoke on hazardous air pollutants: science/policy interface; and D. V. Bates, Department of Health Care and Epidemiology at the University of British Columbia, who spoke on asthma epidemiology. H. Koren, U.S. Environmental Protection Agency, and M. Yeung, of the Respiratory Division/University of British Columbia, Vancouver General Hospital, discussed occupational health impacts on asthma. Doyle Pendleton, Texas Natural Resource Conservation Commission, reviewed air quality measurements in Texas. The information presented at the workshop suggested a possible association of asthma exacerbations with ozone and particulate matter (PM10); however, direct relationships between worsening asthma and air toxic ambient levels were not established. Possible respiratory health effects associated with air toxics will require considerably more investigation, especially in the area of human exposure assessment

  11. Retinoblastoma and ambient exposure to air toxics in the perinatal period

    PubMed Central

    Heck, Julia E.; Park, Andrew S.; Qiu, Jiaheng; Cockburn, Myles; Ritz, Beate

    2014-01-01

    We examined ambient exposure to specific air toxics in the perinatal period in relation to retinoblastoma development. Cases were ascertained from California Cancer Registry records of children diagnosed 1990–2007 and matched to California birth certificates. Controls were randomly selected from state birth records for the same time period. We chose 27 air toxics for the present study that had been listed as possible, probable, or established human carcinogens by the International Agency for Research on Cancer. Children (103 cases and 30,601 controls) included in the study lived within 5 miles (~8K) of an air pollution monitor. Using logistic regression analyses, we modeled the risk of retinoblastoma due to air toxics exposure, separately for exposures in pregnancy and the first year of life. With a per interquartile range increase in air toxics exposure, retinoblastoma risk was found to be increased with pregnancy exposure to benzene (OR=1.67, 95%CI 1.06, 2.64) and other toxics which primarily arise from gasoline and diesel combustion: toluene, 1,3 butadiene, ethyl benzene, ortho-xylene, and meta/para-xylene; these 6 toxics were highly correlated. Retinoblastoma risk was also increased with pregnancy exposure to chloroform (OR=1.35, 95%CI 1.07, 1.70), chromium (OR=1.29, 95%CI 1.04, 1.60), para-dichlorobenzene (OR=1.24, 95%CI 1.04, 1.49), nickel (OR=1.48, 95%CI 1.08, 2.01), and in the first year of life, acetaldehyde (OR=1.62, 95%CI 1.06, 2.48). Sources of these agents are discussed. PMID:24280682

  12. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING

    EPA Science Inventory

    A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic c...

  13. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  14. Community-Scale Air Toxics Ambient Monitoring Grant - Closed Announcement FY 2015

    EPA Pesticide Factsheets

    Grant to fund projects designed to assist state, local and tribal communities in identifying air toxics sources, characterizing the degree and extent of local-scale air toxics problems, tracking progress of air toxics reduction activities, etc.

  15. Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Pesticide Factsheets

    CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.

  16. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesnor, J.D.

    1993-10-26

    The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessmentmore » of Toxic By-Product Control Technologies; and Test Protocol Definition.« less

  17. Air toxics regulatory issues facing urban settings.

    PubMed Central

    Olden, K; Guthrie, J

    1996-01-01

    Biomarker research does not exist in isolation. Its usefulness can only be realized when it is translated into prevention strategies to protect public health. In the context of air toxics, these prevention strategies begin with the development of regulatory standards derived from risk assessment schemes. The Clean Air Act Amendments of 1990 list 189 air toxics, including many volatile organics, metals, and pesticides. The National Institute of Environmental Health Sciences (NIEHS), through its affiliation with the National Toxicology Program, has generated toxicity and carcinogenicity data on more than 100 of these air toxics. The NIEHS extramural and intramural research portfolios support a variety of projects that develop and validate biomarkers for use in environmental health science and risk assessment. Biomarkers have a tremendous potential in the areas of regulating air toxics and protecting public health. Risk assessors need data provided by biomarkers of exposure, biomarkers of dose/pharmacokinetics, biomarkers of susceptibility or individual variability, and biomarkers of effects. The greatest benefit would be realized if biomarkers could be employed in four areas of primary and secondary prevention. The first is the use of biomarkers to enhance extrapolation of animal data to human exposure situations in establishing risk standards. The second is the use of biomarkers that assess noncancer, as well as cancer, end points. Important health end points include pulmonary dysfunction, immunotoxicity, and neurotoxicity. Third, biomarkers that serve as early waming signs to detect intermediate effects would enhance our ability to design timely and cost-effective intervention strategies. Finally, biomarkers used to evaluate the effectiveness of intervention strategies, both in clinical and regulatory settings, would enable us to ensure that programs designed to protect public health do, in fact, achieve the desired outcome. PMID:8933026

  18. Temporal variability of selected air toxics in the United States

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.

    Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.

  19. IPM Analysis of the Final Mercury and Air Toxics Standards (MATS)

    EPA Pesticide Factsheets

    EPA used version 4.10_MATS of the Integrated Planning Model (IPM) to analyze the impact of the Mercury and Air Toxics Standards (MATS) rule on the U.S. electric power sector. Learn about the results and view links to documentation.

  20. Basic Information about Mercury and Air Toxics Standards

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page describes how federal mercury standards work.

  1. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  2. Mobile source air toxics mitigation measures.

    DOT National Transportation Integrated Search

    2013-10-01

    In accordance with the Federal Highway Administration (FHWA) Interim Guidance Update on Mobile Source Air Toxic Analysis in NEPA Documents (September 30, 2009), transportation projects subject to the National Environmental Policy Act (NEPA) mus...

  3. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    PubMed Central

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-01-01

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑88BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑16EPABaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑88BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate. PMID:29051449

  4. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    PubMed

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-08-15

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑ 88 BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑ 16EPA BaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑ 88 BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate.

  5. Temporal and modal characterization of DoD source air toxic ...

    EPA Pesticide Factsheets

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for organic air toxics, laser induced breakdown spectroscopy (LIBS) for metallic air toxics, and optical remote sensing (ORS) methods for measurement of criteria pollutants and other hazardous air pollutants (HAPs). Conventional emission measurements were used for verification of the real-time monitoring results. The REMPI-TOFMS system was demonstrated on the following: --a United States U.S. Marine Corps (USMC) diesel generator, --a U.S. Air Force auxiliary power unit (APU), --the waste combustor at the Portsmouth Naval Shipyard, during a multi-monitor environmental technology verification (ETV) test for dioxin monitoring systems, --two dynamometer-driven high mobility multi-purpose wheeled vehicles (HMMWVs), --an idling Abrams battle tank, --a Bradley infantry fighting vehicle (IFV), and --an F-15 and multiple F-22 U.S. Air Force aircraft engines. LIBS was tested and applied solely to the U.S. Marine Corps diesel generator. The high detection limits of LIBS for toxic metals limited its usefulness as a real time analyzer for most DoD sources. ORS was tested only on the APU with satisfactory results for non-condensable combustion products (carbon monoxide [CO], carbon dioxide

  6. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less

  7. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less

  8. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING: A COMPREHENSIVE REVIEW

    EPA Science Inventory

    A detailed literature search was performed to collect and collate available data reporting emissions of organic air toxics from open burning sources. Availability of data varied according to the source and the class of air toxics of interest, and there were several sources for wh...

  9. AIR TOXICS EMISSIONS FROM ELECTRONICS INCINERATION

    EPA Science Inventory

    The purpose of this project is to examine the emissions of air toxics from the combustion of electronics equipment, primarily personal computer components. Due to a shortage of recycling programs for personal computers and other personal electronics equipment, most of these mate...

  10. AIR QUALITY MODELING AT COARSE-TO-FINE SCALES IN URBAN AREAS

    EPA Science Inventory

    Urban air toxics control strategies are moving towards a community based modeling approach, with an emphasis on assessing those areas that experience high air toxic concentration levels, the so-called "hot spots". This approach will require information that accurately maps and...

  11. Air toxics and early childhood acute lymphocytic leukemia in Texas, a population based case control study.

    PubMed

    Symanski, Elaine; Tee Lewis, P Grace; Chen, Ting-Yu; Chan, Wenyaw; Lai, Dejian; Ma, Xiaomei

    2016-06-14

    Traffic exhaust, refineries and industrial facilities are major sources of air toxics identified by the U.S. Environmental Protection Agency (U.S. EPA) for their potential risk to human health. In utero and early life exposures to air toxics such as benzene and 1,3-butadiene, which are known leukemogens in adults, may play an etiologic role in childhood leukemia that comprises the majority of pediatric cancers. We conducted a population based case-control study to examine individual effects of benzene, 1,3-butadiene and polycyclic organic matter (POM) in ambient residential air on acute lymphocytic leukemia (ALL) diagnosed in children under age 5 years in Texas from 1995-2011. Texas Cancer Registry cases were linked to birth records and then were frequency matched by birth month and year to 10 population-based controls. Maternal and infant characteristics from birth certificates were abstracted to obtain information about potential confounders. Modelled estimates of benzene, 1,3-butadiene and POM exposures at the census tract level were assigned by linking geocoded maternal addresses from birth certificates to U.S. EPA National-Scale Air Toxics Assessment data for single and co-pollutant statistical analyses. Mixed-effects logistic regression models were applied to evaluate associations between air toxics and childhood leukemia. In adjusted single pollutant models, odds of childhood leukemia among mothers with the highest ambient air exposures compared to those in the lowest quartile were 1.11 (95 % CI: 0.94-1.32) for POM, 1.17 (95 % CI: 0.98-1.39) for benzene and 1.29 (95 % CI: 1.08-1.52) for 1,3-butadiene. In co-pollutant models, odds ratios for childhood leukemia remained elevated for 1,3-butadiene but were close to the null value for benzene and POM. We observed positive associations between 1,3-butadiene and childhood leukemia in single and co-pollutant models whereas effect estimates from single pollutant models were diminished for benzene and POM in co

  12. In utero exposure to toxic air pollutants and risk of childhood autism.

    PubMed

    von Ehrenstein, Ondine S; Aralis, Hilary; Cockburn, Myles; Ritz, Beate

    2014-11-01

    Genetic and environmental factors are believed to contribute to the development of autism, but relatively few studies have considered potential environmental risks. Here, we examine risks for autism in children related to in utero exposure to monitored ambient air toxics from urban emissions. Among the cohort of children born in Los Angeles County, California, 1995-2006, those whose mothers resided during pregnancy in a 5-km buffer around air toxics monitoring stations were included (n = 148,722). To identify autism cases in this cohort, birth records were linked to records of children diagnosed with primary autistic disorder at the California Department of Developmental Services between 1998 and 2009 (n = 768). We calculated monthly average exposures during pregnancy for 24 air toxics selected based on suspected or known neurotoxicity or neurodevelopmental toxicity. Factor analysis helped us identify the correlational structure among air toxics, and we estimated odds ratios (ORs) for autism from logistic regression analyses. Autism risks were increased per interquartile range increase in average concentrations during pregnancy of several correlated toxics mostly loading on 1 factor, including 1,3-butadiene (OR = 1.59 [95% confidence interval = 1.18-2.15]), meta/para-xylene (1.51 [1.26-1.82]), other aromatic solvents, lead (1.49 [1.23-1.81]), perchloroethylene (1.40 [1.09-1.80]), and formaldehyde (1.34 [1.17-1.52]), adjusting for maternal age, race/ethnicity, nativity, education, insurance type, parity, child sex, and birth year. Risks for autism in children may increase following in utero exposure to ambient air toxics from urban traffic and industry emissions, as measured by community-based air-monitoring stations.

  13. Fuel-cycle emissions for conventional and alternative fuel vehicles : an assessment of air toxics

    DOT National Transportation Integrated Search

    2000-08-01

    This report provides information on recent efforts to use the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) fuel-cycle model to estimate air toxics emissions. GREET, developed at Argonne National Laboratory, currentl...

  14. An Evaluation of EPA's National-Scale Air Toxics Assessment (NATA): Comparison with Benzene Measurements in Detroit, Michigan

    EPA Science Inventory

    The U.S. EPA periodically evaluates ambient concentrations, human exposures, and health risks for 180 hazardous air pollutants plus diesel particulate matter using modeled estimates from the National-Scale Air Toxics Assessment (NATA). NATA publishes estimates at the spatial reso...

  15. In Utero Exposure to Toxic Air Pollutants and Risk of Childhood Autism

    PubMed Central

    von Ehrenstein, Ondine S; Aralis, Hilary; Cockburn, Myles; Ritz, Beate

    2015-01-01

    Background Genetic and environmental factors are believed to contribute to the development of autism, but relatively few studies have considered potential environmental risks. Here we examine risks for autism in children related to in utero exposure to monitored ambient air toxics from urban emissions. Methods Among the cohort of children born in Los Angeles County, California 1995–2006, those whose mothers resided during pregnancy in a 5km buffer around air-toxics monitoring stations were included (n=148,722). To identify autism cases in this cohort, birth records were linked to records of children diagnosed with primary autistic disorder at the California Department of Developmental Services between 1998 and 2009 (n=768). We calculated monthly average exposures during pregnancy for 24 air toxics selected based on suspected or known neurotoxicity or neurodevelopmental toxicity. Factor analysis helped us identify the correlational structure among air toxics, and we estimated odds ratios (ORs) for autism from logistic regression analyses. Results Autism risks were increased per interquartile-range increase in average concentrations during pregnancy of several correlated toxics mostly loading on one factor, including 1,3-butadiene (OR=1.59 [95% confidence interval=1.18–2.15]), meta/para-xylene (1.51 [1.26–182]), other aromatic solvents, lead (1.49 [1.23–1.81]), perchloroethylene (1.40 [1.09–1.80]), and formaldehyde (1.34 [1.17–1.52]), adjusting for maternal age, race/ethnicity, nativity, education, insurance type, maternal birth place, parity, child sex, and birth year. Conclusions Risks for autism in children may increase following in utero exposure to ambient air toxics from urban traffic and industry emissions, as measured by community-based air -monitoring stations. PMID:25051312

  16. News focus: Report on state and local air toxics regulatory strategies published by STAPPA/ALAPCO (State and Territorial Air Pollution Program Administrators/Association of Local Air Pollution Control Officials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-12-01

    The report is entitled Toxic Air Pollutants: State and Local Regulatory Strategies - 1989. The 364-page report is the result of a survey of state and local air pollution control agencies, which solicited information on their programs to control air toxics. According to the survey, every state currently has a program to address emissions of air toxics. Additionally, 27 of the 40 local agencies that responded to the survey have, or are developing, air toxics programs. The strategies employed by state and local agencies vary widely, including control technology requirements, risk assessment, acceptable ambient guidelines, or a combination of thesemore » approaches. This is a report summarizing the air toxics control programs currently implemented (or under development) by state and local air pollution control agencies throughout the US. The report is based upon a survey of all 50 states and 220 local air pollution control agencies conducted by the State and Territorial Air Pollution Program Administrators (STAPPA) and the Association of Local Air Pollution Control Officials (ALAPCO). This survey updates one published five years earlier.« less

  17. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States.

    PubMed

    Zhou, Ying; Li, Chaoyang; Huijbregts, Mark A J; Mumtaz, M Moiz

    2015-01-01

    Public health protection from air pollution can be achieved more effectively by shifting from a single-pollutant approach to a multi-pollutant approach. To develop such multi-pollutant approaches, identifying which air pollutants are present most frequently is essential. This study aims to determine the frequently found carcinogenic air toxics or hazardous air pollutants (HAPs) combinations across the United States as well as to analyze the health impacts of developing cancer due to exposure to these HAPs. To identify the most commonly found carcinogenic air toxics combinations, we first identified HAPs with cancer risk greater than one in a million in more than 5% of the census tracts across the United States, based on the National-Scale Air Toxics Assessment (NATA) by the U.S. EPA for year 2005. We then calculated the frequencies of their two-component (binary), and three-component (ternary) combinations. To quantify the cancer-related health impacts, we focused on the 10 most frequently found HAPs with national average cancer risk greater than one in a million. Their cancer-related health impacts were calculated by converting lifetime cancer risk reported in NATA 2005 to years of healthy life lost or Disability-Adjusted Life Years (DALYs). We found that the most frequently found air toxics with cancer risk greater than one in a million are formaldehyde, carbon tetrachloride, acetaldehyde, and benzene. The most frequently occurring binary pairs and ternary mixtures are the various combinations of these four air toxics. Analysis of urban and rural HAPs did not reveal significant differences in the top combinations of these chemicals. The cumulative annual cancer-related health impacts of inhaling the top 10 carcinogenic air toxics included was about 1,600 DALYs in the United States or 0.6 DALYs per 100,000 people. Formaldehyde and benzene together contribute nearly 60 percent of the total cancer-related health impacts. Our study shows that although there are many

  18. Uneven Magnitude of Disparities in Cancer Risks from Air Toxics

    PubMed Central

    James, Wesley; Jia, Chunrong; Kedia, Satish

    2012-01-01

    This study examines race- and income-based disparities in cancer risks from air toxics in Cancer Alley, LA, USA. Risk estimates were obtained from the 2005 National Air Toxics Assessment and socioeconomic and race data from the 2005 American Community Survey, both at the census tract level. Disparities were assessed using spatially weighted ordinary least squares (OLS) regression and quantile regression (QR) for five major air toxics, each with cancer risk greater than 10−6. Spatial OLS results showed that disparities in cancer risks were significant: People in low-income tracts bore a cumulative risk 12% more than those in high-income tracts (p < 0.05), and those in black-dominant areas 16% more than in white-dominant areas (p < 0.01). Formaldehyde and benzene were the two largest contributors to the disparities. Contributions from emission sources to disparities varied by compound. Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas. Cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods. PMID:23208297

  19. INEEL AIR MODELING PROTOCOL ext

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidancemore » for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.« less

  20. The National Near-Road Mobile Source Air Toxics Study

    EPA Science Inventory

    Recently, much attention has been directed at understanding the impact of mobile sources on near-road air quality, especially PM and its components, NOx and CO, but little information exists for mobile source air toxics (MSATs). MSATs of interest to this project are 1,3-butadiene...

  1. RESOLVING NEIGHBORHOOD-SCALE AIR TOXICS MODELING: A CASE STUDY IN WILMINGTON, CALIFORNIA

    EPA Science Inventory

    Air quality modeling is useful for characterizing exposures to air pollutants. While models typically provide results on regional scales, there is a need for refined modeling approaches capable of resolving concentrations on the scale of tens of meters, across modeling domains 1...

  2. Emission factors of air toxics from semiconductor manufacturing in Korea.

    PubMed

    Eom, Yun-Sung; Hong, Ji-Hyung; Lee, Suk-Jo; Lee, Eun-Jung; Cha, Jun-Seok; Lee, Dae-Gyun; Bang, Sun-Ae

    2006-11-01

    The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.

  3. National review of ambient air toxics observations.

    PubMed

    Strum, Madeleine; Scheffe, Richard

    2016-02-01

    Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple

  4. Exposures to multiple air toxics in New York City.

    PubMed Central

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-01-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter air exchange rates. For other VOCs, especially those related to motor vehicle exhaust, more consistent indoor, outdoor, and personal concentrations were observed, suggesting that ambient concentrations may have been the

  5. Exposures to multiple air toxics in New York City.

    PubMed

    Kinney, Patrick L; Chillrud, Steven N; Ramstrom, Sonja; Ross, James; Spengler, John D

    2002-08-01

    Efforts to assess health risks associated with exposures to multiple urban air toxics have been hampered by the lack of exposure data for people living in urban areas. The TEACH (Toxic Exposure Assessment, a Columbia/Harvard) study was designed to characterize levels of and factors influencing personal exposures to urban air toxics among high school students living in inner-city neighborhoods of New York City and Los Angeles, California. This present article reports methods and data for the New York City phase of TEACH, focusing on the relationships between personal, indoor, and outdoor concentrations in winter and summer among a group of 46 high school students from the A. Philip Randolph Academy, a public high school located in the West Central Harlem section of New York City. Air pollutants monitored included a suite of 17 volatile organic compounds (VOCs) and aldehydes, particulate matter with a mass median aerodynamic diameter air exchange rates. For other VOCs, especially those related to motor vehicle exhaust, more consistent indoor, outdoor, and personal concentrations were observed, suggesting that ambient concentrations may have been the

  6. Toxicity of Silver Nanoparticles at the Air-Liquid Interface

    PubMed Central

    Holder, Amara L.; Marr, Linsey C.

    2013-01-01

    Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles. PMID:23484109

  7. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    NASA Astrophysics Data System (ADS)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  8. Analysis of mobile source air toxics (MSATs)–Near-Road VOC and carbonyl concentrations

    EPA Science Inventory

    Exposures to mobile source air toxics (MSATs) have been associated with numerous adverse health effects. While thousands of air toxic compounds are emitted from mobile sources, a subset of compounds are considered high priority due to their significant contribution to cancer and...

  9. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.

    PubMed

    Libralato, G; Ghirardini, A Volpi; Avezzù, F

    2008-05-30

    Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.

  10. Reduced Toxicity, High Performance Monopropellant at the U.S. Air Force Research Laboratory

    DTIC Science & Technology

    2010-04-27

    develop reduced toxicity monopropellant formulations to replace spacecraft hydrazine monopropellant. The Air Force Research Laboratory’s (AFRL’s...Public Release, Distribution unlimited REDUCED TOXICITY, HIGH PERFORMANCE MONOPROPELLANT AT THE U.S. AIR FORCE RESEARCH LABORATORY T.W. Hawkins...information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations

  11. Evolution of the Air Toxics under the Big Sky Program

    ERIC Educational Resources Information Center

    Marra, Nancy; Vanek, Diana; Hester, Carolyn; Holian, Andrij; Ward, Tony; Adams, Earle; Knuth, Randy

    2011-01-01

    As a yearlong exploration of air quality and its relation to respiratory health, the "Air Toxics Under the Big Sky" program offers opportunities for students to learn and apply science process skills through self-designed inquiry-based research projects conducted within their communities. The program follows a systematic scope and sequence…

  12. Laser photoacoustic sensor for air toxicity measurements

    NASA Astrophysics Data System (ADS)

    Prasad, Coorg R.; Lei, Jie; Shi, Wenhui; Li, Guangkun; Dunayevskiy, Ilya; Patel, C. Kumar N.

    2012-06-01

    US EPA's Clean Air Act lists 187 hazardous air pollutants (HAP) or airborne toxics that are considered especially harmful to health, and hence the measurement of their concentration is of great importance. Numerous sensor systems have been reported for measuring these toxic gases and vapors. However, most of these sensors are specific to a single gas or able to measure only a few of them. Thus a sensor capable of measuring many of the toxic gases simultaneously is desirable. Laser photoacoustic spectroscopy (LPAS) sensors have the potential for true broadband measurement when used in conjunction with one or more widely tunable laser sources. An LPAS gas analyzer equipped with a continuous wave, room temperature IR Quantum Cascade Laser tunable over the wavelength range of 9.4 μm to 9.7 μm was used for continuous real-time measurements of multiple gases/chemical components. An external cavity grating tuner was used to generate several (75) narrow line output wavelengths to conduct photoacoustic absorption measurements of gas mixtures. We have measured various HAPs such as Benzene, Formaldehyde, and Acetaldehyde in the presence of atmospheric interferents water vapor, and carbon dioxide. Using the preliminary spectral pattern recognition algorithm, we have shown our ability to measure all these chemical compounds simultaneously in under 3 minutes. Sensitivity levels of a few part-per-billion (ppb) were achieved with several of the measured compounds with the preliminary laboratory system.

  13. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  14. Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures.

    PubMed

    Liu, Faye F; Peng, Cheng; Escher, Beate I; Fantino, Emmanuelle; Giles, Cindy; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2013-10-15

    Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX(®) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50cell for 1h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kgdry weight, which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. [Toxic fungi in Buenos Aires City and surroundings].

    PubMed

    Romano, Gonzalo M; Iannone, Leopoldo; Novas, María V; Carmarán, Cecilia; Romero, Andrea I; López, Silvia E; Lechner, Bernardo E

    2013-01-01

    In Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires there is a service called Servicio de Identificación de Hongos Tóxicos, directed by researchers of the Program of Medicinal Plants and Fungi Involved in Biological Degradation (PROPLAME-PRHIDEB, CONICET) that assist hospitals and other health establishments, identifying the different samples of fungi and providing information about their toxicity, so that patients can receive the correct treatment. The objective of the present study was to analyze all the cases received from 1985 to 2012. This analysis permitted the confection of a table identifying the most common toxic species. The information gathered revealed that 47% of the patients were under 18 years of age and had eaten basidiomes; the remaining 53% were adults who insisted that they were able to distinguish edible from toxic mushrooms. Chlorophyllum molybdites turned out to be the main cause of fungal intoxication in Buenos Aires, which is commonly confused with Macrolepiota procera, an edible mushroom. In the second place Amanita phalloides was registered, an agaric known to cause severe symptoms after a long period of latency (6-10 hours), and which can lead to hepatic failure even requiring a transplant to prevent severe internal injuries or even death, is not early and correctly treated.

  16. Regulatory Actions - Final Mercury and Air Toxics Standards (MATS) for Power Plants

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page describes Federal regulatory actions.

  17. Regulatory Actions - Proposed Mercury and Air Toxics Standards (MATS) for Power Plants

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page includes supporting documentation and

  18. Power Plants Likely Covered by the Mercury and Air Toxics Standards (MATS)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. Using Google Earth, this page locates power plants in your state.

  19. “A Reduced-form Model to Estimate Near-road Air Quality for Communities: the Community Line Source modeling system (C-LINE)”

    EPA Science Inventory

    The paper presents the Community Line Source (C-LINE) modeling system that estimates toxic air pollutant (air toxics) concentration gradients within 500 meters of busy roadways for community-sized areas on the order of 100 km2. C-LINE accesses publicly available datasets with nat...

  20. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  1. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  2. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  3. Epidemiologic evidence for asthma and exposure to air toxics: linkages between occupational, indoor, and community air pollution research.

    PubMed Central

    Delfino, Ralph J

    2002-01-01

    Outdoor ambient air pollutant exposures in communities are relevant to the acute exacerbation and possibly the onset of asthma. However, the complexity of pollutant mixtures and etiologic heterogeneity of asthma has made it difficult to identify causal components in those mixtures. Occupational exposures associated with asthma may yield clues to causal components in ambient air pollution because such exposures are often identifiable as single-chemical agents (e.g., metal compounds). However, translating occupational to community exposure-response relationships is limited. Of the air toxics found to cause occupational asthma, only formaldehyde has been frequently investigated in epidemiologic studies of allergic respiratory responses to indoor air, where general consistency can be shown despite lower ambient exposures. The specific volatile organic compounds (VOCs) identified in association with occupational asthma are generally not the same as those in studies showing respiratory effects of VOC mixtures on nonoccupational adult and pediatric asthma. In addition, experimental evidence indicates that airborne polycyclic aromatic hydrocarbon (PAH) exposures linked to diesel exhaust particles (DEPs) have proinflammatory effects on airways, but there is insufficient supporting evidence from the occupational literature of effects of DEPs on asthma or lung function. In contrast, nonoccupational epidemiologic studies have frequently shown associations between allergic responses or asthma with exposures to ambient air pollutant mixtures with PAH components, including black smoke, high home or school traffic density (particularly truck traffic), and environmental tobacco smoke. Other particle-phase and gaseous co-pollutants are likely causal in these associations as well. Epidemiologic research on the relationship of both asthma onset and exacerbation to air pollution is needed to disentangle effects of air toxics from monitored criteria air pollutants such as particle mass

  4. Notification: Background Investigation Services EPA’s Efforts to Incorporate Environmental Justice Into Clean Air Act Inspections for Air Toxics

    EPA Pesticide Factsheets

    Project #OPE-FY14-0017, March 7, 2014. The OIG plans to begin the preliminary research phase of an evaluation of the EPA's efforts to incorporate environmental justice into Clean Air Act (CAA) inspections for air toxics.

  5. Race, deprivation, and immigrant isolation: The spatial demography of air-toxic clusters in the continental United States.

    PubMed

    Liévanos, Raoul S

    2015-11-01

    This article contributes to environmental inequality outcomes research on the spatial and demographic factors associated with cumulative air-toxic health risks at multiple geographic scales across the United States. It employs a rigorous spatial cluster analysis of census tract-level 2005 estimated lifetime cancer risk (LCR) of ambient air-toxic emissions from stationary (e.g., facility) and mobile (e.g., vehicular) sources to locate spatial clusters of air-toxic LCR risk in the continental United States. It then tests intersectional environmental inequality hypotheses on the predictors of tract presence in air-toxic LCR clusters with tract-level principal component factor measures of economic deprivation by race and immigrant status. Logistic regression analyses show that net of controls, isolated Latino immigrant-economic deprivation is the strongest positive demographic predictor of tract presence in air-toxic LCR clusters, followed by black-economic deprivation and isolated Asian/Pacific Islander immigrant-economic deprivation. Findings suggest scholarly and practical implications for future research, advocacy, and policy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Air Toxics under the Big Sky: A Real-World Investigation to Engage High School Science Students

    ERIC Educational Resources Information Center

    Adams, Earle; Smith, Garon; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Jones, David; Henthorn, Melissa; Striebel, Jim

    2008-01-01

    This paper describes a problem-based chemistry education model in which students perform scientific research on a local environmentally relevant problem. The project is a collaboration among The University of Montana and local high schools centered around Missoula, Montana. "Air Toxics under the Big Sky" involves high school students in collecting…

  7. Risk Assessment for Criteria Pollutants and Air Toxics in two Sites of Mexico City During 2003 Field Campaign

    NASA Astrophysics Data System (ADS)

    García, A. R.; Grutter, M. M.; Volkamer, R. M.

    2007-05-01

    An environmental risk assessment for criteria pollutants and air toxics in Mexico City is presented. The data used in the study were collected by FTIR and DOAS systems during the Mexico City Metropolitan Area field campaign on April 2003 (MCMA2003). The systems were deployed in two different sites: One in downtown (Merced) and the other in the south east (CENICA). Concentrations of criteria pollutants and air toxics were obtained every 5 min and were used to obtain hourly average concentrations and the month average for April. The concentration values were used to estimate the risks of acute and chronic exposure to ambient concentrations using risk measures like hazard index, life cancer probability, life lost expectancy and maximum individual cancer risk. Results revealed that both sites have similar risk values. For acute exposure, criteria pollutants have larger risks than air toxics, but air toxics have larger risks for chronic exposure. Ambient concentrations of benzene showed the largest carcinogenic risk of the measured air toxics.

  8. Possible central nervous system oxygen toxicity seizures among US recreational air or enriched air nitrox open circuit diving fatalities 2004-2013.

    PubMed

    Buzzacott, P; Denoble, P J

    2017-01-01

    The first diver certification programme for recreational 'enriched air nitrox' (EAN) diving was released in 1985. Concerns were expressed that many EAN divers might suffer central nervous system (CNS) oxygen toxicity seizures and drown. US fatalities on open-circuit scuba occurring between 2004-2013, where the breathing gas was either air or EAN, were identified. Causes of death and preceding circumstances were examined by a medical examiner experienced in diving autopsies. Case notes were searched for witnessed seizures at elevated partial pressures of oxygen. The dataset comprised 344 air divers (86%) and 55 divers breathing EAN (14%). EAN divers' fatal dives were deeper than air divers' (28 msw vs 18 msw, p < 0.0001). Despite this, of the 249 cases where a cause of death was established, only three EAN divers were considered to have possibly died following CNS oxygen toxicity seizures at depth (ppO2 132, 142 and 193 kPa). The analysis of recreational diving fatalities in the US over 10 years found just one death likely from CNS oxygen toxicity among EAN divers. A further two possible, although unlikely, cases were also found. Fears of commonplace CNS oxygen toxicity seizures while EAN diving have not apparently been realized.

  9. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN ...

    EPA Pesticide Factsheets

    A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic compound (VOC) and polycyclic aromatic hydrocarbon (PAH) data were available for many of the sources. Data on semivolatile organic compounds (SVOCs) that are not PAHs were available for several sources. Carbonyl and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran (PCDD/F) data were available for only a few sources. There were several sources for which no emissions data were available at all. Several observations were made including: 1) Biomass open burning sources typically emitted less VOCs than open burning sources with anthropogenic fuels on a mass emitted per mass burned basis, particularly those where polymers were concerned; 2) Biomass open burning sources typically emitted less SVOCs and PAHs than anthropogenic sources on a mass emitted per mass burned basis. Burning pools of crude oil and diesel fuel produced significant amounts of PAHs relative to other types of open burning. PAH emissions were highest when combustion of polymers was taking place; and 3) Based on very limited data, biomass open burning sources typically produced higher levels of carbonyls than anthropogenic sources on a mass emitted per mass burned basis, probably due to oxygenated structures r

  10. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    NASA Astrophysics Data System (ADS)

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-06-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.

  11. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    PubMed Central

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-01-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening. PMID:28621308

  12. STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory


    STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    Hazardous Air Pollutants (HAPs) refers to a set of structurally diverse environmental chemicals, many with limited toxicity data, that have...

  13. Spatial variations of particulate matter and air toxics in communities adjacent to the Port of Oakland.

    PubMed

    Fujita, Eric M; Campbell, David E; Arnott, W Patrick; Lau, Virginia; Martien, Philip T

    2013-12-01

    The Bay Area Air Quality Management District (BAAQMD) sponsored the West Oakland Monitoring Study (WOMS) to provide supplemental air quality monitoring that will be used by the BAAQMD to evaluate local-scale dispersion modeling of diesel emissions and other toxic air contaminants for the area within and around the Port of Oakland. The WOMS was conducted during two seasonal periods of 4 weeks in summer 2009 and winter 2009/2010. Monitoring data showed spatial patterns of pollutant concentrations that were generally consistent with proximity to vehicle traffic. Concentrations of directly emitted pollutants were highest on heavily traveled roads with consistently lower concentrations away from the roadways. Pollutants that have higher emission rates from diesel trucks (nitric oxide, black carbon) tended to exhibit sharper gradients than pollutants that are largely associated with gasoline vehicles, such as carbon monoxide and volatile organic compounds, including benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX concentrations in West Oakland were similar to those measured at the three air toxics monitoring network sites in the Bay Area (San Francisco, Fremont, and San Jose). Aldehyde levels were higher in Fremont and San Jose than in West Oakland, reflecting greater contributions from photo-oxidation of hydrocarbons downwind of the Bay Area. A 2005 modeling-based health risk assessment of diesel particulate matter concentrations is consistent with aerosol carbon concentrations measured during the WOMS after adjusting for recent mitigation measures and improved estimates of heavy-duty truck traffic volumes.

  14. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2017-04-01

    With concern about levels of air pollutants in recent years in the Capital Region of Alberta, an investigation of ambient concentrations, sources and potential human health risk of hazardous air pollutants (HAPs) or air toxics was undertaken in the City of Edmonton over a 5-year period (2009-2013). Mean concentrations of individual HAPs in ambient air including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and trace metals ranged from 0.04 to 1.73 μg/m 3 , 0.01-0.54 ng/m 3 , and 0.05-3.58 ng/m 3 , respectively. Concentrations of benzene, naphthalene, benzo(a)pyrene (BaP), arsenic, manganese and nickel were far below respective annual Alberta Ambient Air Quality Objectives. Carcinogenic and non-carcinogenic risk of air toxics were also compared with risk levels recommended by regulatory agencies. Positive matrix factorization identified six air toxics sources with traffic as the dominant contributor to total HAPs (4.33 μg/m 3 , 42%), followed by background/secondary organic aerosol (SOA) (1.92 μg/m 3 , 25%), fossil fuel combustion (0.92 μg/m 3 , 11%). On high particulate air pollution event days, local traffic was identified as the major contributor to total HAPs compared to background/SOA and fossil fuel combustion. Carcinogenic risk values of traffic, background/SOA and metals industry emissions were above the USEPA acceptable level (1 × 10 -6 ), but below a tolerable risk (1 × 10 -4 ) and Alberta benchmark (1 × 10 -5 ). These findings offer useful preliminary information about current ambient air toxics levels, dominant sources and their potential risk to public health; and this information can support policy makers in the development of appropriate control strategies if required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Quantitative dose-response assessment of inhalation exposures to toxic air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarabek, A.M.; Foureman, G.L.; Gift, J.S.

    1997-12-31

    Implementation of the 1990 Clean Air Act Amendments, including evaluation of residual risks. requires accurate human health risk estimates of both acute and chronic inhalation exposures to toxic air pollutants. The U.S. Environmental Protection Agency`s National Center for Environmental Assessment, Research Triangle Park, NC, has a research program that addresses several key issues for development of improved quantitative approaches for dose-response assessment. This paper describes three projects underway in the program. Project A describes a Bayesian approach that was developed to base dose-response estimates on combined data sets and that expresses these estimates as probability density functions. A categorical regressionmore » model has been developed that allows for the combination of all available acute data, with toxicity expressed as severity categories (e.g., mild, moderate, severe), and with both duration and concentration as governing factors. Project C encompasses two refinements to uncertainty factors (UFs) often applied to extrapolate dose-response estimates from laboratory animal data to human equivalent concentrations. Traditional UFs have been based on analyses of oral administration and may not be appropriate for extrapolation of inhalation exposures. Refinement of the UF applied to account for the use of subchronic rather than chronic data was based on an analysis of data from inhalation exposures (Project C-1). Mathematical modeling using the BMD approach was used to calculate the dose-response estimates for comparison between the subchronic and chronic data so that the estimates were not subject to dose-spacing or sample size variability. The second UF that was refined for extrapolation of inhalation data was the adjustment for the use of a LOAEL rather than a NOAEL (Project C-2).« less

  16. A METHOD OF ASSESSING AIR TOXICS CONCENTRATIONS IN URBAN AREAS USING MOBILE PLATFORM MEASUREMENTS

    EPA Science Inventory

    The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxic assessments in Environmental Justice applications, epidemiological studies...

  17. Criteria and air-toxic emissions from in-use automobiles in the National Low-Emission Vehicle program.

    PubMed

    Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich

    2005-09-01

    The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.

  18. REDUCING UNCERTAINTY IN AIR TOXICS RISK ASSESSMENT: A MECHANISTIC EXPOSURE-DOSE-RESPONSE (EDR) MODEL FOR ASSESSING THE ACUTE NEUROTOXICITY OF VOLATILE ORGANIC COMPOUNDS (VOCS) BASED UPON A RECEPTOR-MEDIATED MODE OF ACTION

    EPA Science Inventory

    SUMMARY: The major accomplishment of NTD’s air toxics program is the development of an exposure-dose- response model for acute exposure to volatile organic compounds (VOCs), based on momentary brain concentration as the dose metric associated with acute neurological impairments...

  19. Web-Based Toxic Gas Dispersion Model for Shuttle Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    During the launch of the Space Shuttle vehicle, the burning of liquid hydrogen fuel with liquid oxygen at extreme high temperatures inside the three space shuttle main engines, and the burning of the solid propellant mixture of ammonium perchlorate oxidizer, aluminum fuel, iron oxide catalyst, polymer binder, and epoxy curing agent in the two solid rocket boosters result in the formation of a large cloud of hot, buoyant toxic exhaust gases near the ground level which subsequently rises and entrains into ambient air until the temperature and density of the cloud reaches an approximate equilibrium with ambient conditions. In this paper, toxic gas dispersion for various gases are simulated over the web for varying environmental conditions which is provided by rawinsonde data. The model simulates chemical concentration at ground level up to 10 miles (1 KM grids) in downrange up to an hour after launch. The ambient concentration of the gas dispersion and the deposition of toxic particles are used as inputs for a human health risk assessment model. The advantage of the present model is the accessibility and dissemination of model results to other NASA centers over the web. The model can be remotely operated and various scenarios can be analyzed.

  20. Risk of leukemia in relation to exposure to ambient air toxics in pregnancy and early childhood.

    PubMed

    Heck, Julia E; Park, Andrew S; Qiu, Jiaheng; Cockburn, Myles; Ritz, Beate

    2014-07-01

    There are few established causes of leukemia, the most common type of cancer in children. Studies in adults suggest a role for specific environmental agents, but little is known about any effect from exposures in pregnancy to toxics in ambient air. In our case-control study, we ascertained 69 cases of acute lymphoblastic leukemia (ALL) and 46 cases of acute myeloid leukemia (AML) from California Cancer Registry records of children air toxics monitoring station between 1990 and 2007. Information on air toxics exposures was taken from community air monitors. We used logistic regression to estimate the risk of leukemia associated with one interquartile range increase in air toxic exposure. Risk of ALL was elevated with 3(rd) trimester exposure to polycyclic aromatic hydrocarbons (OR=1.16, 95% CI 1.04, 1.29), arsenic (OR=1.33, 95% CI 1.02, 1.73), benzene (OR=1.50, 95% CI 1.08, 2.09), and three other toxics related to fuel combustion. Risk of AML was increased with 3rd trimester exposure to chloroform (OR=1.30, 95% CI 1.00, 1.69), benzene (1.75, 95% CI 1.04, 2.93), and two other traffic-related toxics. During the child's first year, exposure to butadiene, ortho-xylene, and toluene increased risk for AML and exposure to selenium increased risk for ALL. Benzene is an established cause of leukemia in adults; this study supports that ambient exposures to this and other chemicals in pregnancy and early life may also increase leukemia risk in children. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. DETERMINANTS OF HUMAN EXPOSURES TO AIR TOXICS AND ASSOCIATED HEALTH EFFECTS

    EPA Science Inventory

    Individuals are exposed to wide variety of air toxics in various indoor and outdoor microenvironments during the course of their daily activities. Sources of emissions include a wide variety of indoor and outdoor sources, including stationary and mobile sources, building material...

  2. NEIGHBORHOOD SCALE MODELING OF PM 2.5 AND AIR TOXICS CONCENTRATION DISTRIBUTIONS TO DRIVE HUMAN EXPOSURE MODELS

    EPA Science Inventory

    Air quality (AQ) simulation models provide a basis for implementing the National Ambient Air Quality Standards (NAAQS) and are a tool for performing risk-based assessments and for developing environmental management strategies. Fine particulate matter (PM 2.5), its constituent...

  3. Evaluation of a possible association of urban air toxics and asthma.

    PubMed Central

    Leikauf, G D; Kline, S; Albert, R E; Baxter, C S; Bernstein, D I; Buncher, C R

    1995-01-01

    The prevalence of asthma, measured either as the frequency of hospital admissions or number of deaths attributed to asthma, has increased over the last 15 to 20 years. Rapid increases in disease prevalence are more likely to be attributable to environmental than genetic factors. Inferring from past associations between air pollution and asthma, it is feasible that changes in the ambient environment could contribute to this increase in morbidity and mortality. Scientific evaluation of the links between air pollution and the exacerbation of asthma is incomplete, however. Currently, criteria pollutants [SOx, NOx, O3, CO, Pb, particulate matter (PM10)] and other risk factors (exposure to environmental tobacco smoke, volatile organic compounds, etc.) are constantly being evaluated as to their possible contributions to this situation. Data from these studies suggest that increases in respiratory disease are associated with exposures to ambient concentrations of particulate and gaseous pollutants. Similarly, exposure to environmental tobacco smoke, also a mixture of particulate and gaseous air toxics, has been associated with an increase in asthma among children. In addition, current associations of adverse health effects with existing pollution measurements are often noted at concentrations below those that produce effects in controlled animal and human exposures to each pollutant alone. These findings imply that adverse responses are augmented when persons are exposed to irritant mixtures of particles and gases and that current measurements of air pollution are, in part, indirect in that the concentrations of criteria pollutants are acting as surrogates of our exposure to a complex mixture. Other irritant air pollutants, including certain urban air toxics, are associated with asthma in occupational settings and may interact with criteria pollutants in ambient air to exacerbate asthma. An evaluation of dose-response information for urban air toxics and biological

  4. Comparative In Vitro Biological Toxicity of Four Kinds of Air Pollution Particles.

    PubMed

    Shin, Han-Jae; Cho, Hyun Gi; Park, Chang Kyun; Park, Ki Hong; Lim, Heung Bin

    2017-10-01

    Accumulating epidemiological evidence indicates that exposure to fine air pollution particles (APPs) is associated with a variety of adverse health effects. However, the exact physiochemical properties and biological toxicities of fine APPs are still not well characterized. We collected four types of fine particle (FP) (diesel exhaust particles [DEPs], natural organic combustion [NOC] ash, synthetic organic combustion [SOC] ash, and yellow sand dust [YSD]) and investigated their physicochemical properties and in vitro biological toxicity. DEPs were almost entirely composed of ultrafine particles (UFPs), while the NOC, SOC, and YSD particles were a mixture of UFPs and FPs. The main elements in the DEPs, NOC ash, SOC ash, and YSD were black carbon, silicon, black carbon, and silicon, respectively. DEPs exhibited dose-dependent mutagenicity even at a low dose in Salmonella typhimurium TA 98 and 100 strains in an Ames test for genotoxicity. However, NOC, SOC, and YSD particles did not show any mutagenicity at high doses. The neutral red uptake assay to test cell viability revealed that DEPs showed dose-dependent potent cytotoxicity even at a low concentration. The toxicity of DEPs was relatively higher than that of NOC, SOC, and YSD particles. Therefore, these results indicate that among the four FPs, DEPs showed the highest in vitro biological toxicity. Additional comprehensive research studies such as chemical analysis and in vivo acute and chronic inhalation toxicity tests are necessary to determine and clarify the effects of this air contaminant on human health.

  5. CORONA DESTRUCTION: AN INNOVATIVE CONTROL TECHNOLOGY FOR VOCS AND AIR TOXICS

    EPA Science Inventory

    This paper discusses the work and results to date leading to the demonstration of the corona destruction process at pilot scale. The research effort in corona destruction of volatile organic compounds (VOCs) and air toxics has shown significant promise for providing a valuable co...

  6. AIR QUALITY MODELING OF HAZARDOUS POLLUTANTS: CURRENT STATUS AND FUTURE DIRECTIONS

    EPA Science Inventory

    The paper presents a review of current air toxics modeling applications and discusses possible advanced approaches. Many applications require the ability to predict hot spots from industrial sources or large roadways that are needed for community health and Environmental Justice...

  7. Notification: Background Investigation Services New Assignment Notification: EPA’s Efforts to Incorporate Environmental Justice Into Clean Air Act Inspections for Air Toxics

    EPA Pesticide Factsheets

    The purpose of this memorandum is to notify you that the EPA OIG plans to begin the preliminary research phase of an evaluation of the U.S. EPA's efforts to incorporate environmental justice into Clean Air Act inspections for air toxics.

  8. Evaluating the Toxicity of Cigarette Whole Smoke Solutions in an Air-Liquid-Interface Human In Vitro Airway Tissue Model.

    PubMed

    Cao, Xuefei; Muskhelishvili, Levan; Latendresse, John; Richter, Patricia; Heflich, Robert H

    2017-03-01

    Exposure to cigarette smoke causes a multitude of pathological changes leading to tissue damage and disease. Quantifying such changes in highly differentiated in vitro human tissue models may assist in evaluating the toxicity of tobacco products. In this methods development study, well-differentiated human air-liquid-interface (ALI) in vitro airway tissue models were used to assess toxicological endpoints relevant to tobacco smoke exposure. Whole mainstream smoke solutions (WSSs) were prepared from 2 commercial cigarettes (R60 and S60) that differ in smoke constituents when machine-smoked under International Organization for Standardization conditions. The airway tissue models were exposed apically to WSSs 4-h per day for 1-5 days. Cytotoxicity, tissue barrier integrity, oxidative stress, mucin secretion, and matrix metalloproteinase (MMP) excretion were measured. The treatments were not cytotoxic and had marginal effects on tissue barrier properties; however, other endpoints responded in time- and dose-dependent manners, with the R60 resulting in higher levels of response than the S60 for many endpoints. Based on the lowest effect dose, differences in response to the WSSs were observed for mucin induction and MMP secretion. Mitigation of mucin induction by cotreatment of cultures with N-acetylcysteine suggests that oxidative stress contributes to mucus hypersecretion. Overall, these preliminary results suggest that quantifying disease-relevant endpoints using ALI airway models is a potential tool for tobacco product toxicity evaluation. Additional research using tobacco samples generated under smoking machine conditions that more closely approximate human smoking patterns will inform further methods development. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by US Government employees and is in the public domain in the US.

  9. Climate change air toxic co-reduction in the context of macroeconomic modelling.

    PubMed

    Crawford-Brown, Douglas; Chen, Pi-Cheng; Shi, Hsiu-Ching; Chao, Chia-Wei

    2013-08-15

    This paper examines the health implications of global PM reduction accompanying greenhouse gas emissions reductions in the 180 national economies of the global macroeconomy. A human health effects module based on empirical data on GHG emissions, PM emissions, background PM concentrations, source apportionment and human health risk coefficients is used to estimate reductions in morbidity and mortality from PM exposures globally as co-reduction of GHG reductions. These results are compared against the "fuzzy bright line" that often underlies regulatory decisions for environmental toxics, and demonstrate that the risk reduction through PM reduction would usually be considered justified in traditional risk-based decisions for environmental toxics. It is shown that this risk reduction can be on the order of more than 4 × 10(-3) excess lifetime mortality risk, with global annual cost savings of slightly more than $10B, when uniform GHG reduction measures across all sectors of the economy form the basis for climate policy ($2.2B if only Annex I nations reduce). Consideration of co-reduction of PM-10 within a climate policy framework harmonized with other environmental policies can therefore be an effective driver of climate policy. An error analysis comparing results of the current model against those of significantly more spatially resolved models at city and national scales indicates errors caused by the low spatial resolution of the global model used here may be on the order of a factor of 2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Air Toxics Emissions from Open Burning of Crop Residues in Southeast Asia

    NASA Astrophysics Data System (ADS)

    KIM Oanh, N. T.; Permadi, D. A.; Hopke, P. K.; Smith, K. R.; Nguyet, D. A.

    2016-12-01

    Agricultural crops production in Southeast Asia (SEA) increases annually to meet domestic consumption of growing population and also for export. Crop residue open burning (CROB) is commonly practiced by farmers to quickly dispose of huge amounts of the agricultural waste, such as rice straw, generated after each crop cycle. This CROB activity emits various toxic air pollutants as well as short-lived climate pollutants such as black carbon particles. Our study focused on quantifying the 2015 annual emissions of semi-volatile organic compounds including polycyclic aromatic hydrocarbons (PAHs), dioxins/furans (PCDD/PCDF), organochlorine pesticides (OCP), along with other conventional trace gases, particulate matter, and greenhouse gases from CROB in 10 major agricultural crop producing SEA countries. Crop production statistics and current field OB practices were gathered from our primary surveys and relevant secondary data sources. Emission factors for rice straw and maize residue burning were taken mainly from our measurements in Thailand while for other crops relevant published data were used. The best emission estimates of air toxics from CROB in SEA were 112 g-TEQ/yr of PCDD/PCDF, 33 t/yr of OCP, and 25 Gg/yr of total PAH of which the well-known carcinogenic benzo[a]pyrene was 0.3 Gg/yr. The CROB of rice production had the highest shares of emissions (33-95%) among considered 8 crop types. Indonesia was the top contributor to the total SEA emissions (30-45%) followed by Vietnam (16-26%), Thailand (6-22%) and Myanmar (5-18%). The spatial distributions of emissions, 0.1º x 0.1º, for each specie were prepared using MODIS land cover data. Temporally, higher emissions were observed in the harvesting months of the main rice crops. This emissions database can be used in regional air quality modeling studies to assess the impacts of CROB activity and to promote non-open burning alternatives.

  11. Development of probabilistic emission inventories of air toxics for Jacksonville, Florida, USA.

    PubMed

    Zhao, Yuchao; Frey, H Christopher

    2004-11-01

    Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as -25 to +30% for Hg to as large as -83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.

  12. Respiratory tract toxicity in rats exposed to Mexico City air.

    PubMed

    Moss, O R; Gross, E A; James, R A; Janszen, D B; Ross, P W; Roberts, K C; Howard, A M; Harkema, J R; Calderón-Garcidueñas, L; Morgan, K T

    2001-03-01

    The rat has been used extensively as a health sentinel, indicator, or monitor of environmental health hazards, but this model has not been directly validated against human exposures. Humans in Mexico City show upper respiratory tract lesions and evidence of pulmonary damage related to their environmental inhalation exposure. In this study, male and female F344 rats were exposed (23 hr/day) in Mexico City to local Mexico City air (MCA)* for up to seven weeks. Controls were maintained at the same location under filtered air. Prior to these exposures, several steps were taken. First, the nasal passages of normal male rats shipped from the United States and housed in Mexico City were examined for mycoplasma infection; no evidence of infection was found. In addition, a mobile exposure and monitoring system was assembled and, with an ozone (O3) exposure atmosphere, was tested along with supporting histopathology techniques and analysis of rat nasal and lung tissues. Last, the entire exposure model (equipment and animals) was transported to Mexico City and validated for a three-week period. During the seven-week study there were 18 one-hour intervals during which the average O3 concentration of MCA in the exposure chamber exceeded the US National Ambient Air Quality Standard (NAAQS) of 0.120 ppm 03 (hourly average, not to be exceeded more than once per year). This prolonged exposure of healthy F344 rats to MCA containing episodically low to moderate concentrations of 03 (as well as other urban air pollutants) did not induce inflammatory or epithelial lesions in the nasal airways or lung as measured by qualitative histologic techniques or quantitative morphometric techniques. These findings agree with those of previous controlled O3 inhalation studies, but they are in contrast to reports indicating that O3-polluted MCA causes significant nasal mucosal injury in adults and children living in southwestern Mexico City. Taken together, these findings may suggest that human

  13. 40 CFR Table 5 to Subpart Mmmm of... - Model Rule-Toxic Equivalency Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Model Rule-Toxic Equivalency Factors 5 Table 5 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge...

  14. 40 CFR Table 5 to Subpart Mmmm of... - Model Rule-Toxic Equivalency Factors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Model Rule-Toxic Equivalency Factors 5 Table 5 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge...

  15. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  16. Residential exposure to air toxics is linked to lower grade point averages among school children in El Paso, Texas, USA

    PubMed Central

    Clark-Reyna, Stephanie E.; Grineski, Sara E.; Collins, Timothy W.

    2015-01-01

    Children in low-income neighborhoods tend to be disproportionately exposed to environmental toxicants. This is cause for concern because exposure to environmental toxicants negatively affect health, which can impair academic success. To date, it is unknown if associations between air toxics and academic performance found in previous school-level studies persist when studying individual children. In pairing the National Air Toxics Assessment (NATA) risk estimates for respiratory and diesel particulate matter risk disaggregated by source, with individual-level data collected through a mail survey, this paper examines the effects of exposure to residential environmental toxics on academic performance for individual children for the first time and adjusts for school-level effects using generalized estimating equations. We find that higher levels of residential air toxics, especially those from non-road mobile sources, are statistically significantly associated with lower grade point averages among fourth and fifth grade school children in El Paso (Texas, USA). PMID:27034529

  17. Uncertainty, ensembles and air quality dispersion modeling: applications and challenges

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Miller, Erik

    The past two decades have seen significant advances in mesoscale meteorological modeling research and applications, such as the development of sophisticated and now widely used advanced mesoscale prognostic models, large eddy simulation models, four-dimensional data assimilation, adjoint models, adaptive and targeted observational strategies, and ensemble and probabilistic forecasts. Some of these advances are now being applied to urban air quality modeling and applications. Looking forward, it is anticipated that the high-priority air quality issues for the near-to-intermediate future will likely include: (1) routine operational forecasting of adverse air quality episodes; (2) real-time high-level support to emergency response activities; and (3) quantification of model uncertainty. Special attention is focused here on the quantification of model uncertainty through the use of ensemble simulations. Application to emergency-response dispersion modeling is illustrated using an actual event that involved the accidental release of the toxic chemical oleum. Both surface footprints of mass concentration and the associated probability distributions at individual receptors are seen to provide valuable quantitative indicators of the range of expected concentrations and their associated uncertainty.

  18. PROCEEDINGS OF THE 1992 EPA/AWMA INTERNATIONAL SYMPOSIUM MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS

    EPA Science Inventory

    The 1992 USEPA/AWMA International Symposium Measurement of Toxic and Related Air Pollutants was held in Durham, NC on May 4-9, 1992. his yearly symposium is sponsored by the Atmospheric Research and Exposure Assessment Laboratory and the Air & Waste Management Association. he tec...

  19. CRITERIA AND AIR TOXIC EMISSIONS FROM IN-USE, LOW EMISSION VEHICLES (LEVS)

    EPA Science Inventory

    The U.S. Environmental Protection Agency implemented a program to identify tailpipe emissions of criteria and air toxic contaminants from in-use, light-duty Low Emission Vehicles (LEVs). EPA recruited twenty-five LEVs in 2002, and measured emissions on a chassis dynamometer usin...

  20. APPLICATIONS ANALYSIS REPORT: TOXIC TREATMENTS, IN-SITU STEAM/HOT-AIR STRIPPING TECHNOLOGY

    EPA Science Inventory

    This document is an evaluation of the performance of the Toxic Treatments (USA), Inc., (TTUSA) in situ steam/hot-air stripping technology and its applicability as an on-site treatment technique for hazardous waste site soil cleanup of volatile and semivolatile contaminants. Both ...

  1. Toxic Warfare

    DTIC Science & Technology

    2002-02-01

    Prepared for the United States Air Force Approved for public release; distribution unlimited Theodore Karasik Project AIR FORCE R TOXIC WARFARE...Report Documentation Page Report Date 000002002 Report Type N/A Dates Covered (from... to) - Title and Subtitle Toxic Warfare Contract Number Grant...310) 451-6915; Email: order@rand.org Library of Congress Cataloging-in-Publication Data Karasik, Theodore William. Toxic warfare / Theodore Karasik

  2. Fact Sheet: Final Air Toxics Standards for Area Sources in the Chemical Manufacturing Industry

    EPA Pesticide Factsheets

    Fact sheet on the national air toxics standards issued October 16, 2009 by the Environmental Protection Agency (EPA) for smaller-emitting sources, known as area sources, in the chemical manufacturing industry.

  3. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides

    DTIC Science & Technology

    2009-01-01

    STOCHASTIC LANCHESTER AIR-TO-AIR CAMPAIGN MODEL MODEL DESCRIPTION AND USERS GUIDES—2009 REPORT PA702T1 Rober t V. Hemm Jr. Dav id A . Lee...LMI © 2009. ALL RIGHTS RESERVED. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides—2009 PA702T1/JANUARY...2009 Executive Summary This report documents the latest version of the Stochastic Lanchester Air-to-Air Campaign Model (SLAACM), developed by LMI for

  4. Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN

    NASA Astrophysics Data System (ADS)

    Jia, Chunrong; Foran, Jeffery

    2013-12-01

    Southwest Memphis is a residential region surrounded by fossil fuel burning, steel, refining, and food processing industries, and considerable mobile sources whose emissions may pose adverse health risks to local residents. This study characterizes cancer and non-cancer risks resulting from exposure to ambient air toxics in southwest Memphis. Air toxics samples were collected at a central location every 6 days from June 5, 2008 to January 8, 2010. Volatile organic compounds (VOCs) were collected in evacuated stainless-steel canisters and aldehydes by DNPH cartridges, and samples were analyzed for 73 target compounds. A total of 60 compounds were detected and 39 were found in over 86% of the samples. Mean concentrations of many compounds were higher than those measured in many industrial communities throughout the U.S. The cumulative cancer risk associated with exposure to 13 carcinogens found in southwest Memphis air was 2.3 × 10-4, four times higher than the national average of 5.0 × 10-5. Three risk drivers were identified: benzene, formaldehyde, and acrylonitrile, which contributed 43%, 19%, and 14% to the cumulative risk, respectively. This is the first field study to confirm acrylonitrile as a potential risk driver. Mobile, secondary, industrial, and background sources contributed 57%, 24%, 14%, and 5% of the risk, respectively. The results of this study indicate that southwest Memphis, a region of significant income, racial, and social disparities, is also a region under significant environmental stress compared with surrounding areas and communities.

  5. EPA'S CONTROL TECHNOLOGY APPROACH TO ASSISTING STATES AND REGIONS WITH AIR TOXICS PROBLEMS: FIVE CASE STUDIES

    EPA Science Inventory

    The paper discusses a new U.S. strategy to reduce public exposure to toxic air pollutants in the ambient air. he strategy calls for state and local authorities to take on more of the lead regulatory role. he shift in emphasis and responsibility prompted EPA's Offices of Research ...

  6. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER

    EPA Science Inventory

    The report discusses emissions of air toxics from a simulated charcoal kiln equipped with an afterburner. A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to that produced in Missouri-type charcoal kilns...

  7. Adaptation of a military FTS to civilian air toxics measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, J.R.; Dorval, R.K.

    1994-12-31

    In many ways, the military problem of chemical agent detection is similar to the civilian problem of toxic and related air pollutants detection. A recent program to design a next generation Fourier transform spectrometer (FTS) based chemical agent detection system has been funded by the US Army. This program has resulted in an FTS system that has a number of characteristics that make it suitable for applications to the civilian measurement problem. Low power, low weight, and small size lead to low installation, operating and maintenance costs. Innovative use of diode lasers in place of HeNe reference sources leads tomore » long lifetimes and high reliability. Absolute scan position servos allow for highly efficient offset scanning. This paper will relate the performance of this system to present air monitoring requirements.« less

  8. Report: EPA’s Method for Calculating Air Toxics Emissions for Reporting Results Needs Improvement

    EPA Pesticide Factsheets

    Report #2004-P-00012, March 31, 2004. Although the methods by which air toxics emissions are estimated have improved substantially, unvalidated assumptions and other limitations underlying the NTI continue to impact its use as a GPRA performance measure.

  9. Petition for EPA action to protect communities from oil and gas wells toxic air pollution

    EPA Pesticide Factsheets

    Petition submitted by Earthjustice urging EPA to list oil and gas wells and associated equipment as an area sourcecategory and set national air toxics standards to protect public health from these sources.

  10. Temporal and modal characterization of DoD source air toxic emission factors: final report

    EPA Science Inventory

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for o...

  11. Temporal and Modal Characterization of DoD Source Air Toxic Emission Factors

    DTIC Science & Technology

    2010-04-01

    Deviation RTP Research Triangle Park RWS Roadway Simulator S/N Signal Noise SDA Spray Dryer Catwalk Area STP Standard Pressure SVOC Semi...shutdown, and stationary idle conditions. A journal paper detailing the performance of REMPI-TOFMS in characterizing real-time air toxic emissions...the whole (benzene) dataset. The results are currently (July, 2009) being written into a paper prime- authored by Battelle. xvii

  12. SAR STUDY OF NASAL TOXICITY: LESSONS FOR MODELING SMALL TOXICITY DATASETS

    EPA Science Inventory

    Most toxicity data, particularly from whole animal bioassays, are generated without the needs or capabilities of structure-activity relationship (SAR) modeling in mind. Some toxicity endpoints have been of sufficient regulatory concern to warrant large scale testing efforts (e.g....

  13. EPA's control technology approach to assisting states and regions with air toxics problems: Five case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolen, S.L.; Dimmick, W.F.

    1990-10-01

    The Environmental Protection Agency (EPA) announced in June 1985 a new strategy to reduce public exposure to toxic air pollutants in the ambient air. Over the next 5-8 years, the strategy called for State and Local authorities to take on more of the lead regulatory role, with the Agency providing technical and financial assistance to their efforts. The shift in emphasis and responsibility from the Federal level to State and Local air toxics programs and the need to transfer expertise from the Federal level to the appropriate State or Local level prompted EPA's Office of Research and Development (ORD) andmore » EPA's Office of Air Quality Planning and Standards (OAQPS) to develop and implement an innovative technical assistance program. This program is called the Control Technology Center (CTC). It has since been expanded to include technical assistance in the area of control of air toxics, particulate matter, and volatile organic compounds (VOCs); emission measurements; and other areas where expertise is available to ORD and OAQPS. During the CTC's first year of operation, operating guidelines were developed and three categories of technical assistance were established. These categories are telephone HOTLINE calls, direct engineering assistance, and technical guidance projects. The CTC HOTLINE is a special telephone number which State and Local Agencies can call for easy access to EPA personnel who can provide prompt assistance in a variety of ways including discussions, references to pertinent literature, and referrals to other EPA personnel. In some cases, a HOTLINE call will require more in-depth engineering analysis indicating a need for direct engineering assistance.« less

  14. Toxicity and elemental composition of particulate matter from outdoor and indoor air of elementary schools in Munich, Germany.

    PubMed

    Oeder, S; Dietrich, S; Weichenmeier, I; Schober, W; Pusch, G; Jörres, R A; Schierl, R; Nowak, D; Fromme, H; Behrendt, H; Buters, J T M

    2012-04-01

    Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P < 0.001). Compared to outdoors, indoor PM contained more silicate (36% of particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious. © 2011 John Wiley & Sons A/S.

  15. Geographic boundaries in breast, lung and colorectal cancers in relation to exposure to air toxics in Long Island, New York

    PubMed Central

    Jacquez, Geoffrey M; Greiling, Dunrie A

    2003-01-01

    Background This two-part study employs several statistical techniques to evaluate the geographic distribution of breast cancer in females and colorectal and lung cancers in males and females in Nassau, Queens, and Suffolk counties, New York, USA. In this second paper, we compare patterns in standardized morbidity ratios (SMR values), calculated from New York State Department of Health (NYSDOH) data, to geographic patterns in overall predicted risk (OPR) from air toxics using exposures estimated in the USEPA National Air Toxics Assessment database. Results We identified significant geographic boundaries in SMR and OPR. We found little or no association between the SMR of colorectal and breast cancers and the OPR for each cancer from exposure to the air toxics. We did find boundaries in male and female lung cancer SMR and boundaries in lung cancer OPR to be closer to one another than expected. Conclusion While consistent with a causal relationship between air toxics and lung cancer incidence, the boundary analysis does not demonstrate the existence of a causal relationship. However, now that the areas of overlap between boundaries in lung cancer incidence and potential airborne exposures have been identified, we can begin to evaluate local- as well as large-scale determinants of lung cancer. PMID:12633502

  16. SIMULATION MODELS FOR ENVIRONMENTAL MULTIMEDIA ANALYSIS OF TOXIC CHEMICALS

    EPA Science Inventory

    Multimedia understanding of pollutant behavior in the environment is of particular concern for chemicals that are toxic and are subject to accumulation in the environmental media (air, soil, water, vegetation) where biota and human exposure is significant. Multimedia simulation ...

  17. Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX).

    PubMed

    Herkovits, Jorge; Perez-Coll, Cristina; Herkovits, Francisco D

    2002-01-01

    The toxicity of 34 environmental samples from potentially polluted and reference stations were evaluated by means of the AMPHITOX test from acute to chronic exposure according to the toxicity found in each sample. The samples were obtained from surface and ground water, leaches, industrial effluents and soils. The data, expressed in acute, short-term chronic and chronic Toxicity Units (TUa, TUstc and TUc) resulted in a maximal value of 1000 TUc, found in a leach, while the lower toxicity value was 1.4 TUa corresponding to two surface water samples. In five samples (four providing from reference places) no toxicity was detected. The results point out the possibility of evaluating the toxicity of a wide diversity of samples by means of AMPHITOX as a customized toxicity test. The fact that almost all samples with suspected toxicity in rivers and streams from the Metropolitan area of Buenos Aires city resulted toxic, indicates the need of enhanced stewardship of chemical substances for environmental and human health protection purposes.

  18. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  19. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  20. A model for field toxicity tests

    USGS Publications Warehouse

    Kaiser, Mark S.; Finger, Susan E.

    1996-01-01

    Toxicity tests conducted under field conditions present an interesting challenge for statistical modelling. In contrast to laboratory tests, the concentrations of potential toxicants are not held constant over the test. In addition, the number and identity of toxicants that belong in a model as explanatory factors are not known and must be determined through a model selection process. We present one model to deal with these needs. This model takes the record of mortalities to form a multinomial distribution in which parameters are modelled as products of conditional daily survival probabilities. These conditional probabilities are in turn modelled as logistic functions of the explanatory factors. The model incorporates lagged values of the explanatory factors to deal with changes in the pattern of mortalities over time. The issue of model selection and assessment is approached through the use of generalized information criteria and power divergence goodness-of-fit tests. These model selection criteria are applied in a cross-validation scheme designed to assess the ability of a model to both fit data used in estimation and predict data deleted from the estimation data set. The example presented demonstrates the need for inclusion of lagged values of the explanatory factors and suggests that penalized likelihood criteria may not provide adequate protection against overparameterized models in model selection.

  1. High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.

    2017-12-01

    Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results

  2. Urban-air-toxics Monitoring Program carbonyl results, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-07-01

    The report summarizes the results of sampling ambient air for selected carbonyl containing compounds in 12 urban centers in the contiguous United States as part of the Urban Air Toxics Monitoring Program (UATMP). Formaldehyde, acetaldehyde, and acetone concentrations were measured using 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges to collect the carbonyls for subsequent analysis. Sampling and analysis followed guidance provided in U.S. Environmental Protection Agency (EPA) compendium method TO-11. Formaldehyde concentrations ranged from 0.42 to 34.5 ppbv with an average concentration for all sites of 4.2 ppbv. Site average formaldehyde concentrations ranged from 1.5 ppbv for Houston, TX (H1TX) to 7.9 formore » Washington, DC (W2DC). Acetaldehyde concentrations ranged from 0.37 to 9.5 ppbv, averaging 1.7 ppbv over all 1990 UATMP sites. Site average acetaldehyde concentrations ranged from 0.76 ppbv at Houston, TX (H1TX) to 2.5 ppbv at Baton Rouge, LA (BRLA). Acetone concentrations ranged from 0.37 to 10.8 ppbv and averaged 1.8 ppbv over all sites. Site average acetone concentrations ranged from 0.68 ppbv at Houston, TX (H1TX) to 2.9 ppbv at Chicago, IL (C4IL).« less

  3. COMPENDIUM OF METHODS FOR THE DETERMINATION OF TOXIC ORGANIC COMPOUNDS IN AMBIENT AIR--SECOND EDITION

    EPA Science Inventory

    This Second Edition of the Compendium has been prepared to provide regional, state and local environmental regulatory agencies with step-by-step sampling and analysis procedures for the determination of selected toxic organic pollutants in ambient air. It is designed to assist t...

  4. Predictive Model of Systemic Toxicity (SOT)

    EPA Science Inventory

    In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...

  5. Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...

  6. Modeling Aquatic Toxicity through Chromatographic Systems.

    PubMed

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  7. Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure

    DTIC Science & Technology

    2000-09-30

    Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure Principal Investigator: Roger M. Nisbet Department of Ecology, Evolution...DATES COVERED 00-00-2000 to 00-00-2000 4. TITLE AND SUBTITLE Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure 5a...those of real populations. We have also investigated how toxicants may affect the stability of the system. If the toxicant effect is primarily an

  8. Thermal Stress and Toxicity

    EPA Science Inventory

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral te...

  9. The importance of toxicity in determining the impact of hazardous air pollutants on the respiratory health of children in Tennessee.

    PubMed

    Moore, Roberta J H; Hotchkiss, Julie L

    2016-09-01

    Respiratory diseases, exacerbated through point source pollution, are currently among the leading causes of hospitalization of children in the United States. This paper investigates the relationship between the proximity of hazardous air pollutants (HAPs) emitted from Toxic Release Inventory (TRI) facilities and the number of children diagnosed in hospitals with a respiratory disease in Tennessee. The importance of controlling for toxicity of those HAPs is of particular interest. Hospital discharge, socioeconomic, TRI emission, and HAP toxicity data are used to estimate, via Generalized Linear Methods, a logistic regression model describing the relationship between the percent of children living in a zip code area treated for respiratory illness and the average annual emissions over the previous 10 years of HAPs from TRI sites in that area. Controlling for area socioeconomic characteristics, we find that accounting for toxicity is important in uncovering the relationship between HAP emissions and respiratory health of children. A one standard deviation increase in toxicity-weighted emissions per 100 square miles is associated with an increase in the number of children diagnosed with asthma (chronic bronchitis) by about 1205 (260). The evidence suggests that, with a goal to improving children's respiratory health, monitoring the toxicity of chemicals being emitted is at least as important as simply monitoring total emission levels. This suggests that the EPA should consider making efforts toward establishing toxicity adjusted emission guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. PARAMETRIC EVALUATION OF VOC/HAP (VOLATILE ORGANIC COMPOUNDS-HAZARDOUS/TOXIC AIR POLLUTANTS) DESTRUCTION VIA CATALYTIC INCINERATION

    EPA Science Inventory

    The report describes the use of a pilot-scale catalytic incineration unit/solvent generation system to investigate the effectiveness of catalytic incineration as a way to destroy volatile organic compounds (VOCs) and hazardous/toxic air pollutants (HAPs). Objectives of the study ...

  11. Experiences in evaluating regional air quality models

    NASA Astrophysics Data System (ADS)

    Liu, Mei-Kao; Greenfield, Stanley M.

    Any area of the world concerned with the health and welfare of its people and the viability of its ecological system must eventually address the question of the control of air pollution. This is true in developed countries as well as countries that are undergoing a considerable degree of industrialization. The control or limitation of the emissions of a pollutant can be very costly. To avoid ineffective or unnecessary control, the nature of the problem must be fully understood and the relationship between source emissions and ambient concentrations must be established. Mathematical models, while admittedly containing large uncertainties, can be used to examine alternatives of emission restrictions for achieving safe ambient concentrations. The focus of this paper is to summarize our experiences with modeling regional air quality in the United States and Western Europe. The following modeling experiences have been used: future SO 2 and sulfate distributions and projected acidic deposition as related to coal development in the northern Great Plains in the U.S.; analysis of regional ozone and sulfate episodes in the northeastern U.S.; analysis of the regional ozone problem in western Europe in support of alternative emission control strategies; analysis of distributions of toxic chemicals in the Southeast Ohio River Valley in support of the design of a monitoring network human exposure. Collectively, these prior modeling analyses can be invaluable in examining a similar problem in other parts of the world as well, such as the Pacific rim in Asia.

  12. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs

  13. PRELIMINARY FINDINGS ON THE ASSESSMENT OF POTENTIAL CAR-RELATED OCCUPATIONAL PM AND AIR TOXIC EXPOSURE TO PATROL TROOPERS (COPP STUDY)

    EPA Science Inventory

    In-vehicle, roadside and community-based measurements of particulate matter (PM) and select air toxics were measured as part of a study involving patrol cars from the North Carolina Highway Patrol. One goal of this study was to characterize PM and related air pollutant concentra...

  14. Reduced Toxicity, High Performance Monopropellant at the U.S. Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Hawkins, T. W.; Brand, A. J.; McKay, M. B.; Tinnirello, M.

    2010-09-01

    Current programs are aiming to develop reduced toxicity monopropellant formulations to replace spacecraft hydrazine monopropellant. The Air Force Research Laboratory's(AFRL's) approach to replacing hydrazine is the synthesis and development of energetic compounds/formulations with substantially less vapor toxicity and superior performance(specific impulse and density). Characterization and testing of these high energy density materials is an essential part of the screening process for viable advanced propellants. Hazardous handling characteristics, undesirable physical properties or unacceptable sensitivity behaviors must also be identified and/or modified to further development by a potential user. AFRL has successfully identified a novel monopropellant(designated AF-M315E) that shows great promise as an avenue toward replacement of hydrazine monopropellant for spacecraft propulsion. Hazard and safety/sensitivity, stability, and toxicity studies have been conducted on the monopropellant and will be described. The results from AF-M315E indicate that a >50% improvement in propulsion system performance over hydrazine is achievable while simultaneously providing a safer environment for the general public, ground personnel, crews and flight participants.

  15. Toxic releases and risk disparity: a spatiotemporal model of industrial ecology and social empowerment.

    PubMed

    Aoyagi, Hannah; Ogunseitan, Oladele A

    2015-06-02

    Information-based regulations (IBRs) are founded on the theoretical premise that public participation in accomplishing policy goals is empowered by open access to information. Since its inception in 1988, the Toxics Release Inventory (TRI) has provided the framework and regulatory impetus for the compilation and distribution of data on toxic releases associated with industrial development, following the tenets of IBR. As TRI emissions are reputed to disproportionately affect low-income communities, we investigated how demographic characteristics are related to change in TRI emissions and toxicity risks between 1989 and 2002, and we sought to identify factors that predict these changes. We used local indicators of spatial association (LISA) maps and spatial regression techniques to study risk disparity in the Los Angeles urban area. We also surveyed 203 individuals in eight communities in the same region to measure the levels of awareness of TRI, attitudes towards air pollution, and general environmental risk. We discovered, through spatial lag models, that changes in gross and toxic emissions are related to community ethnic composition, poverty level, home ownership, and base 1989 emissions (R-square=0.034-0.083). We generated a structural equation model to explain the determinants of social empowerment to act on the basis of environmental information. Hierarchical confirmatory factor analysis (HCFA) supports the theoretical model that individual empowerment is predicted by risk perception, worry, and awareness (Chi-square=63.315, p=0.022, df=42). This study provides strong evidence that spatiotemporal changes in regional-scale environmental risks are influenced by individual-scale empowerment mediated by IBRs.

  16. Toxic Releases and Risk Disparity: A Spatiotemporal Model of Industrial Ecology and Social Empowerment

    PubMed Central

    Aoyagi, Hannah; Ogunseitan, Oladele A.

    2015-01-01

    Information-based regulations (IBRs) are founded on the theoretical premise that public participation in accomplishing policy goals is empowered by open access to information. Since its inception in 1988, the Toxics Release Inventory (TRI) has provided the framework and regulatory impetus for the compilation and distribution of data on toxic releases associated with industrial development, following the tenets of IBR. As TRI emissions are reputed to disproportionately affect low-income communities, we investigated how demographic characteristics are related to change in TRI emissions and toxicity risks between 1989 and 2002, and we sought to identify factors that predict these changes. We used local indicators of spatial association (LISA) maps and spatial regression techniques to study risk disparity in the Los Angeles urban area. We also surveyed 203 individuals in eight communities in the same region to measure the levels of awareness of TRI, attitudes towards air pollution, and general environmental risk. We discovered, through spatial lag models, that changes in gross and toxic emissions are related to community ethnic composition, poverty level, home ownership, and base 1989 emissions (R-square = 0.034–0.083). We generated a structural equation model to explain the determinants of social empowerment to act on the basis of environmental information. Hierarchical confirmatory factor analysis (HCFA) supports the theoretical model that individual empowerment is predicted by risk perception, worry, and awareness (Chi-square = 63.315, p = 0.022, df = 42). This study provides strong evidence that spatiotemporal changes in regional-scale environmental risks are influenced by individual-scale empowerment mediated by IBRs. PMID:26042368

  17. Dispersion modeling of accidental releases of toxic gases - utility for the fire brigades.

    NASA Astrophysics Data System (ADS)

    Stenzel, S.; Baumann-Stanzer, K.

    2009-09-01

    Several air dispersion models are available for prediction and simulation of the hazard areas associated with accidental releases of toxic gases. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for effective presentation of results. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios”), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Viennese fire brigade, OMV Refining & Marketing GmbH and Synex Ries & Greßlehner GmbH. RETOMOD was funded by the KIRAS safety research program of the Austrian Ministry of Transport, Innovation and Technology (www.kiras.at). The main tasks of this project were 1. Sensitivity study and optimization of the meteorological input for modeling of the hazard areas (human exposure) during the accidental toxic releases. 2. Comparison of several model packages (based on reference scenarios) in order to estimate the utility for the fire brigades. For the purpose of our study the following models were tested and compared: ALOHA (Areal Location of Hazardous atmosphere, EPA), MEMPLEX (Keudel av-Technik GmbH), Trace (Safer System), Breeze (Trinity Consulting), SAM (Engineering office Lohmeyer). A set of reference scenarios for Chlorine, Ammoniac, Butane and Petrol were proceed, with the models above, in order to predict and estimate the human exposure during the event. Furthermore, the application of the observation-based analysis and forecasting system INCA, developed in the Central Institute for Meteorology and Geodynamics (ZAMG) in case of toxic release was

  18. A Near-Road Modeling System for Community-Scale Assessments of Traffic-Related AirPollution in the United States

    EPA Science Inventory

    The Community Line Source (C-LINE) modeling system estimates emissions and dispersion of toxic air pollutants for roadways within the continental United States. It accesses publicly available traffic and meteorological datasets, and is optimized for use on community-sized areas (...

  19. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Diseasemore » Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental

  20. Accuracy of Chronic Aquatic Toxicity Estimates Determined from Acute Toxicity Data and Two Time–Response Models.

    EPA Science Inventory

    Traditionally, chronic toxicity in aquatic organisms and wildlife has been determined from either toxicity test data, acute to chronic ratios, or application of safety factors. A more recent alternative approach has been to estimate chronic toxicity by modeling the time course of...

  1. Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using thismore » model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.« less

  2. In vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure: A review.

    PubMed

    Li, Xiang

    2016-10-01

    Cigarette smoke is a complex aerosol comprising particulate phase and gaseous vapour phase. The air-liquid interface exposure provides a possible technical means to implement whole smoke exposure for the assessment of tobacco products. In this review, the research progress in the in vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure is summarized. The contents presented involve mainly cytotoxicity, genotoxicity, oxidative stress, inflammation, systems toxicology, 3D culture and cigarette smoke dosimetry related to cigarette smoke, as well as the assessment of electronic cigarette aerosol. Prospect of the application of the air-liquid interface exposure method in assessing the biological effects of tobacco smoke is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Air Quality Modeling

    EPA Pesticide Factsheets

    In this technical support document (TSD) EPA describes the air quality modeling performed to support the Environmental Protection Agency’s Transport Rule proposal (now known as the Cross-State Air Pollution Rule).

  4. Air Quality Modeling | Air Quality Planning & Standards | US ...

    EPA Pesticide Factsheets

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. One facet of accomplishing this goal requires that new and existing air pollution sources be modeled for compliance with the National Ambient Air Quality Standards (NAAQS).

  5. Dispersion modeling of accidental releases of toxic gases - Comparison of the models and their utility for the fire brigades.

    NASA Astrophysics Data System (ADS)

    Stenzel, S.; Baumann-Stanzer, K.

    2009-04-01

    Dispersion modeling of accidental releases of toxic gases - Comparison of the models and their utility for the fire brigades. Sirma Stenzel, Kathrin Baumann-Stanzer In the case of accidental release of hazardous gases in the atmosphere, the emergency responders need a reliable and fast tool to assess the possible consequences and apply the optimal countermeasures. For hazard prediction and simulation of the hazard zones a number of air dispersion models are available. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for display the results, they are easy to use and can operate fast and effective during stress situations. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios"), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. There are also possibilities for model direct coupling to automatic meteorological stations, in order to avoid uncertainties in the model output due to insufficient or incorrect meteorological data. Another key problem in coping with accidental toxic release is the relative width spectrum of regulations and values, like IDLH, ERPG, AEGL, MAK etc. and the different criteria for their application. Since the particulate emergency responders and organizations require for their purposes unequal regulations and values, it is quite difficult to predict the individual hazard areas. There are a quite number of research studies and investigations coping with the problem, anyway the end decision is up to the authorities. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Vienna fire brigade, OMV Refining & Marketing GmbH and

  6. "Air Toxics under the Big Sky": Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest

    ERIC Educational Resources Information Center

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    "Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…

  7. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    PubMed

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  8. QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    PubMed Central

    Zhu, Hao; Martin, Todd M.; Ye, Lin; Sedykh, Alexander; Young, Douglas M.; Tropsha, Alexander

    2009-01-01

    Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all 5 models. The consensus models afforded higher prediction accuracy for the external validation dataset with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity. PMID:19845371

  9. The acute toxicity of major ion salts to Ceriodaphnia dubia: III. Mathematical models for mixture toxicity

    EPA Science Inventory

    Based on previous research on the acute toxicity of major ions (Na+, K+, Ca2+, Mg2+, Cl, SO42, and HCO3/CO32) to C. dubia, two mathematical models were developed for predicting the LC50 for any ion mixture, excluding those dominated by K toxicity. One model addresses a mechanism...

  10. Portable air pollution control equipment for the control of toxic particulate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) priormore » to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.« less

  11. The chemical exposure toxicity space (CETS) model: Displaying exposure time, aqueous and organic concentration, activity, and onset of toxicity.

    PubMed

    Mackay, Donald; Celsie, Alena K D; Parnis, J Mark; McCarty, Lynn S; Arnot, Jon A; Powell, David E

    2017-05-01

    A 1-compartment toxicokinetic model is used to characterize the chemical exposure toxicity space (CETS), providing a novel graphic tool that can aid in the design of aquatic toxicity tests for fish and for interpreting their results. The graph depicts the solution to the differential equation describing the uptake kinetics of a chemical by a modeled fish under conventional bioassay conditions. The model relates the exposure concentration in the water to a dimensionless time and the onset of toxicity as determined by an estimated or assumed critical body residue or incipient lethal aqueous concentration. These concentration graphs are specific to each chemical and exposure and organism parameters and clearly demonstrate differences in toxicity between chemicals and how factors such as hydrophobicity influence the toxic endpoint. The CETS plots can also be used to assess bioconcentration test conditions to ensure that concentrations are well below toxic levels. Illustrative applications are presented using a recent set of high-quality toxicity data. Conversion of concentrations to chemical activities in the plots enables results for different baseline toxicants to be superimposed. For chemicals that have different modes of toxic action, the increased toxicity then becomes apparent. Implications for design and interpretation of aquatic toxicity tests are discussed. The model, and pictorial visualization of the time-course of aquatic toxicity tests, may contribute to improvements in test design, implementation, and interpretation, and to reduced animal usage. Environ Toxicol Chem 2017;36:1389-1396. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  12. Toxicity and bioconcentration of hexachlorocyclohexane (HCH) in an air-breathing catfish, Saccobranchus fossilis (Bloch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangarot, B.S.; Takroo, R.; Singh, R.R.

    1991-12-01

    The current study was undertaken to determine the sublethal toxicity of commercial grade hexachlorocyclohexane (HCH) to a freshwater air-breathing catfish, Saccobranchus fossilis (Bloch) for 14 days. The bioconcentration of HCH and its distribution in gill, brain and liver was determined. This species was selected for the present study because it is widely distributed in ponds, lakes and rivers of India and consumed as human diet in many parts of the world.

  13. 40 CFR 80.915 - How are the baseline toxics value and baseline toxics volume determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are the baseline toxics value and... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Baseline Determination § 80.915 How are the baseline toxics value and baseline toxics volume determined? (a...

  14. 40 CFR 80.915 - How are the baseline toxics value and baseline toxics volume determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are the baseline toxics value and... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Baseline Determination § 80.915 How are the baseline toxics value and baseline toxics volume determined? (a...

  15. Characterization of a developmental toxicity dose-response model.

    PubMed Central

    Faustman, E M; Wellington, D G; Smith, W P; Kimmel, C A

    1989-01-01

    The Rai and Van Ryzin dose-response model proposed for teratology experiments has been characterized for its appropriateness and applicability in modeling the dichotomous response data from developmental toxicity studies. Modifications were made in the initial probability statements to reflect more accurately biological events underlying developmental toxicity. Data sets used for the evaluation were obtained from the National Toxicology Program and U.S. EPA laboratories. The studies included developmental evaluations of ethylene glycol, diethylhexyl phthalate, di- and triethylene glycol dimethyl ethers, and nitrofen in rats, mice, or rabbits. Graphic examination and statistical evaluation demonstrate that this model is sensitive to the data when compared to directly measured experimental outcomes. The model was used to interpolate to low-risk dose levels, and comparisons were made between the values obtained and the no-observed-adverse-effect levels (NOAELs) divided by an uncertainty factor. Our investigation suggests that the Rai and Van Ryzin model is sensitive to the developmental toxicity end points, prenatal deaths, and malformations, and appears to model closely their relationship to dose. PMID:2707204

  16. Quantitative Predictive Models for Systemic Toxicity (SOT)

    EPA Science Inventory

    Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...

  17. SIMULATING URBAN AIR TOXICS OVER CONTINENTAL AND URBAN SCALES

    EPA Science Inventory

    The US EPA is evaluating a version of the CMAQ model to support risk assessment for the exposure to Hazardous Air Pollutants (HAPs). The model uses a variant of the CB4 chemical mechanism to simulate ambient concentrations of twenty HAPs that exist primarily as gaseous compounds...

  18. PREVENTION REFERENCE MANUAL: CONTROL TECHNOLOGIES, VOL. 2. POST-RELEASE MITIGATION MEASURES FOR CONTROLLING ACCIDENTAL RELEASES OF AIR TOXICS

    EPA Science Inventory

    The volume discusses prevention and protection measures for controlling accidental releases of air toxics. The probability of accidental releases depends on the extent to which deviations (in magnitude and duration) in the process can be tolerated before a loss of chemical contai...

  19. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  20. Salicylate toxicity model of tinnitus

    PubMed Central

    Stolzberg, Daniel; Salvi, Richard J.; Allman, Brian L.

    2012-01-01

    Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs, or aging, which affects ∼14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed. PMID:22557950

  1. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.

    PubMed

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M; Thorne, Peter S

    2015-04-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONPs. Cells were exposed to filtered, particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×10(7)particles/cm(3), respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4h) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  3. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blank

  4. Toxicity of Nanoparticles and an Overview of Current Experimental Models.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Niaz, Kamal; Abdollahi, Mohammad

    2016-01-01

    Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles (NPs) have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Cell inflammatory response induced by NPs is checked by measuring inflammatory biomarkers, such as IL-8, IL-6, and tumor necrosis factor, using ELISA. Lactate dehydrogenase (LDH) assay is used for cell membrane integrity. Different types of cell cultures, including cancer cell lines have been employed as in vitro toxicity models. It has been generally agreed that NPs interfere with either assay materials or with detection systems. So far, toxicity data generated by employing such models are conflicting and inconsistent. Therefore, on the basis of available experimental models, it may be difficult to judge and list some of the more valuable NPs as more toxic to biological systems and vice versa. Considering the potential applications of NPs in many fields and the growing apprehensions of FDA about the toxic potential of nanoproducts, it is the need of the hour to look for new internationally agreed free of bias toxicological models by focusing more on in vivo studies.

  5. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  6. Understanding environmental health inequalities through comparative intracategorical analysis: racial/ethnic disparities in cancer risks from air toxics in El Paso County, Texas.

    PubMed

    Collins, Timothy W; Grineski, Sara E; Chakraborty, Jayajit; McDonald, Yolanda J

    2011-01-01

    This paper contributes to the environmental justice literature by analyzing contextually relevant and racial/ethnic group-specific variables in relation to air toxics cancer risks in a US-Mexico border metropolis at the census block group-level. Results indicate that Hispanics' ethnic status interacts with class, gender and age status to amplify disproportionate risk. In contrast, results indicate that non-Hispanic whiteness attenuates cancer risk disparities associated with class, gender and age status. Findings suggest that a system of white-Anglo privilege shapes the way in which race/ethnicity articulates with other dimensions of inequality to create unequal cancer risks from air toxics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. A Bayesian network model for predicting aquatic toxicity mode ...

    EPA Pesticide Factsheets

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the data set with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2% with a R2 of 0.959. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally

  8. Hazardous Air Pollutants

    MedlinePlus

    ... Air Toxics Website Rules and Implementation Related Information Air Quality Data and Tools Clean Air Act Criteria Air ... Resources Visibility and Haze Voluntary Programs for Improving Air Quality Contact Us to ask a question, provide feedback, ...

  9. Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.

    PubMed

    Klüver, Nils; Vogs, Carolina; Altenburger, Rolf; Escher, Beate I; Scholz, Stefan

    2016-12-01

    Fish embryos have become a popular model in ecotoxicology and toxicology. The fish embryo acute toxicity test (FET) with the zebrafish embryo was recently adopted by the OECD as technical guideline TG 236 and a large database of concentrations causing 50% lethality (LC 50 ) is available in the literature. Quantitative Structure-Activity Relationships (QSARs) of baseline toxicity (also called narcosis) are helpful to estimate the minimum toxicity of chemicals to be tested and to identify excess toxicity in existing data sets. Here, we analyzed an existing fish embryo toxicity database and established a QSAR for fish embryo LC 50 using chemicals that were independently classified to act according to the non-specific mode of action of baseline toxicity. The octanol-water partition coefficient K ow is commonly applied to discriminate between non-polar and polar narcotics. Replacing the K ow by the liposome-water partition coefficient K lipw yielded a common QSAR for polar and non-polar baseline toxicants. This developed baseline toxicity QSAR was applied to compare the final mode of action (MOA) assignment of 132 chemicals. Further, we included the analysis of internal lethal concentration (ILC 50 ) and chemical activity (La 50 ) as complementary approaches to evaluate the robustness of the FET baseline toxicity. The analysis of the FET dataset revealed that specifically acting and reactive chemicals converged towards the baseline toxicity QSAR with increasing hydrophobicity. The developed FET baseline toxicity QSAR can be used to identify specifically acting or reactive compounds by determination of the toxic ratio and in combination with appropriate endpoints to infer the MOA for chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Real time measurement of transient event emissions of air toxics by tomographic remote sensing in tandem with mobile monitoring

    NASA Astrophysics Data System (ADS)

    Olaguer, Eduardo P.; Stutz, Jochen; Erickson, Matthew H.; Hurlock, Stephen C.; Cheung, Ross; Tsai, Catalina; Colosimo, Santo F.; Festa, James; Wijesinghe, Asanga; Neish, Bradley S.

    2017-02-01

    During the Benzene and other Toxics Exposure (BEE-TEX) study, a remote sensing network based on long path Differential Optical Absorption Spectroscopy (DOAS) was set up in the Manchester neighborhood beside the Ship Channel of Houston, Texas in order to perform Computer Aided Tomography (CAT) scans of hazardous air pollutants. On 18-19 February 2015, the CAT scan network detected large nocturnal plumes of toluene and xylenes most likely associated with railcar loading and unloading operations at Ship Channel petrochemical facilities. The presence of such plumes during railcar operations was confirmed by a mobile laboratory equipped with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), which measured transient peaks of toluene and C2-benzenes of 50 ppb and 57 ppb respectively around 4 a.m. LST on 19 February 2015. Plume reconstruction and source attribution were performed using the 4D variational data assimilation technique and a 3D micro-scale forward and adjoint air quality model based on both tomographic and PTR-MS data. Inverse model estimates of fugitive emissions associated with railcar transfer emissions ranged from 2.0 to 8.2 kg/hr for toluene and from 2.2 to 3.5 kg/hr for xylenes in the early morning of 19 February 2015.

  11. Regional Models for Sediment Toxicity Assessment

    EPA Science Inventory

    This paper investigates the use of empirical models to predict the toxicity of sediment samples within a region to laboratory test organisms based on sediment chemistry. In earlier work, we used a large nationwide database of matching sediment chemistry and marine amphipod sedim...

  12. Consensus Modeling of Oral Rat Acute Toxicity

    EPA Science Inventory

    An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...

  13. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities

    USGS Publications Warehouse

    Balistrieri, Laurie S.; Mebane, Christopher A.; Schmidt, Travis S.; Keller, William (Bill)

    2015-01-01

    A modeling approach that was used to predict the toxicity of dissolved single and multiple metals to trout is extended to stream benthic macroinvertebrates, freshwater zooplankton, and Daphnia magna. The approach predicts the accumulation of toxicants (H, Al, Cd, Cu, Ni, Pb, and Zn) in organisms using 3 equilibrium accumulation models that define interactions between dissolved cations and biological receptors (biotic ligands). These models differ in the structure of the receptors and include a 2-site biotic ligand model, a bidentate biotic ligand or 2-pKa model, and a humic acid model. The predicted accumulation of toxicants is weighted using toxicant-specific coefficients and incorporated into a toxicity function called Tox, which is then related to observed mortality or invertebrate community richness using a logistic equation. All accumulation models provide reasonable fits to metal concentrations in tissue samples of stream invertebrates. Despite the good fits, distinct differences in the magnitude of toxicant accumulation and biotic ligand speciation exist among the models for a given solution composition. However, predicted biological responses are similar among the models because there are interdependencies among model parameters in the accumulation–Tox models. To illustrate potential applications of the approaches, the 3 accumulation–Tox models for natural stream invertebrates are used in Monte Carlo simulations to predict the probability of adverse impacts in catchments of differing geology in central Colorado (USA); to link geology, water chemistry, and biological response; and to demonstrate how this approach can be used to screen for potential risks associated with resource development.

  14. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea.

    PubMed

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-08-05

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  15. A PROBABILISTIC MODELING FRAMEWORK FOR PREDICTING POPULATION EXPOSURES TO BENZENE

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is modifying their probabilistic Stochastic Human Exposure Dose Simulation (SHEDS) model to assess aggregate exposures to air toxics. Air toxics include urban Hazardous Air Pollutants (HAPS) such as benzene from mobile sources, part...

  16. MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...

  17. Modelling interactions of toxicants and density dependence in wildlife populations

    USGS Publications Warehouse

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  18. A statistical model for characterizing common air pollutants in air-conditioned offices

    NASA Astrophysics Data System (ADS)

    Wong, L. T.; Mui, K. W.; Hui, P. S.

    Maintaining acceptable indoor air quality (IAQ) for a healthy environment is of primary concern, policymakers have developed different strategies to address the performance of it based on proper assessment methodologies and monitoring plans. It could be cost prohibitive to sample all toxic pollutants in a building. In search of a more manageable number of parameters for cost-effective IAQ assessment, this study investigated the probable correlations among the 12 indoor environmental parameters listed in the IAQ certification scheme of the Hong Kong Environment Protection Department (HKEPD) in 422 Hong Kong offices. These 12 parameters consists of nine indoor air pollutants: carbon dioxide (CO 2), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO 2), ozone (O 3), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), airborne bacteria count (ABC); and three thermal comfort parameters: temperature ( T), relative humidity (RH) and air velocity ( V). The relative importance of the correlations derived, from largest to smallest loadings, was ABC, Rn, CO, RH, RSP, CO 2, TVOC, O 3, T, V, NO 2 and HCHO. Together with the mathematical expressions derived, an alternative sampling protocol for IAQ assessment with the three 'most representative and independent' parameters namely RSP, CO 2 and TVOC measured in an office environment was proposed. The model validity was verified with on site measurements from 43 other offices in Hong Kong. The measured CO 2, RSP and TVOC concentrations were used to predict the probable levels of the other nine parameters and good agreement was found between the predictions and measurements. This simplified protocol provides an easy tool for performing IAQ monitoring in workplaces and will be useful for determining appropriate mitigation measures to finally honor the certification scheme in a cost-effective way.

  19. Modelling hot air balloons

    NASA Astrophysics Data System (ADS)

    Brimicombe, N. W.

    1991-07-01

    Hot air balloons can be modelled in a number of different ways. The most satisfactory, but least useful model is at a microscopic level. Macroscopic models are easier to use but can be very misleading.

  20. Models of germ cell development and their application for toxicity studies

    PubMed Central

    Ferreira, Daniel W.; Allard, Patrick

    2015-01-01

    Germ cells are unique in their ability to transfer genetic information and traits from generation to generation. As such, the proper development of germ cells and the integrity of their genome are paramount to the health of organisms and the survival of species. Germ cells are also exquisitely sensitive to environmental influences although the testing of germ cell toxicity, especially in females, has proven particularly challenging. In this review, we first describe the remarkable odyssey of germ cells in mammals, with an emphasis on the female germline, from their initial specification during embryogenesis to the generation of mature gametes in adults. We also describe the current methods used in germ cell toxicity testing and their limitations in examining the complex features of mammalian germ cell development. To bypass these challenges, we propose the use of alternative model systems such as Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and in vitro germ cell methods that have distinct advantages over traditional toxicity models. We discuss the benefits and limitations of each approach, their application to germ cell toxicity studies, and the need for computational approaches to maximize the usefulness of these models. Together, the inclusion of these alternative germ cell toxicity models will be invaluable for the examination of stages not easily accessible in mammals as well as the large scale, high-throughput investigation of germ cell toxicity. PMID:25821157

  1. Three dimensional quantitative structure-toxicity relationship modeling and prediction of acute toxicity for organic contaminants to algae.

    PubMed

    Jin, Xiangqin; Jin, Minghao; Sheng, Lianxi

    2014-08-01

    Although numerous chemicals have been identified to have significant toxicological effect on aquatic organisms, there is still lack of a reliable, high-throughput approach to evaluate, screen and monitor the presence of organic contaminants in aquatic system. In the current study, we proposed a synthetic pipeline to automatically model and predict the acute toxicity of chemicals to algae. In the procedure, a new alignment-free three dimensional (3D) structure characterization method was described and, with this method, several 3D-quantitative structure-toxicity relationship (3D-QSTR) models were developed, from which two were found to exhibit strong internal fitting ability and high external predictive power. The best model was established by Gaussian process (GP), which was further employed to perform extrapolation on a random compound library consisting of 1014 virtually generated substituted benzenes. It was found that (i) substitution number can only exert slight influence on chemical׳s toxicity, but low-substituted benzenes seem to have higher toxicity than those of high-substituted entities, and (ii) benzenes substituted by nitro group and halogens exhibit high acute toxicity as compared to other substituents such as methyl and carboxyl groups. Subsequently, several promising candidates suggested by computational prediction were assayed by using a standard algal growth inhibition test. Consequently, four substituted benzenes, namely 2,3-dinitrophenol, 2-chloro-4-nitroaniline, 1,2,3-trinitrobenzene and 3-bromophenol, were determined to have high acute toxicity to Scenedesmus obliquus, with their EC50 values of 2.5±0.8, 10.5±2.1, 1.4±0.2 and 42.7±5.4μmol/L, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Assessment of Sociodemographic and Geographic Disparities in Cancer Risk from Air Toxics in South Carolina

    PubMed Central

    Wilson, Sacoby; Burwell-Naney, Kristen; Jiang, Chengsheng; Zhang, Hongmei; Samantapudi, Ashok; Murray, Rianna; Dalemarre, Laura; Rice, LaShanta; Williams, Edith

    2015-01-01

    Populations of color and low-income communities are often disproportionately burdened by exposures to various environmental contaminants, including air pollution. Some air pollutants have carcinogenic properties that are particularly problematic in South Carolina (SC), a state that consistently has high rates of cancer mortality for all sites. The purpose of this study was to assess cancer risk disparities in SC by linking risk estimates from the U.S. Environmental Protection Agency’s 2005 National Air Toxics Assessment (NATA) with sociodemographic data from the 2000 US Census Bureau. Specifically, NATA risk data for varying risk categories were linked by tract ID and analyzed with sociodemographic variables from the 2000 census using R. The average change in cancer risk from all sources by sociodemographic variable was quantified using multiple linear regression models. Spatial methods were further employed using ArcGIS 10 to assess the distribution of all source risk and percent non-white at each census tract level. The relative risk estimates of the proportion of high cancer risk tracts (defined as the top 10% of cancer risk in SC) and their respective 95% confidence intervals (CIs) were calculated between the first and latter three quartiles defined by sociodemographic factors, while the variance in the percentage of high cancer risk between quartile groups was tested using Pearson’s chi-square. The average total cancer risk for SC was 26.8 people/million (ppl/million). The risk from on-road sources was approximately 5.8 ppl/million, higher than the risk from major, area, and non-road sources (1.8, 2.6, and 1.3 ppl/million), respectively. Based on our findings, addressing on-road sources may decrease the disproportionate cancer risk burden among low-income populations and communities of color in SC. PMID:26037107

  3. TOWARDS REFINED USE OF TOXICITY DATA IN STATISTICALLY BASED SAR MODELS FOR DEVELOPMENTAL TOXICITY.

    EPA Science Inventory

    In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.

  4. 1990 Clean Air Act Amendment Summary: Title III

    EPA Pesticide Factsheets

    This page provides an overview of the 1990 amendments to Title III of the Clean Air Act, which were enacted to curb acid rain, urban air pollution and toxic air emissions. The edits to this title deal with toxic air pollutants.

  5. Toxic air pollution across a state line: implications for the siting of resource recovery facilities.

    PubMed

    Landrigan, P J; Halper, L A; Silbergeld, E K

    1989-01-01

    Massive volumes of solid waste are produced in the United States. Options for disposal are limited. Incineration and recycling are frequently proposed solutions. However, incinerators and waste recovery facilities, such as scrap smelters, generate hazardous air pollutants and toxic ash. Their potential hazards to health have not been adequately assessed. To illustrate the policy issues surrounding waste incineration and resource recycling, we examine the case of U.S. Metals, a scrap metals recovery plant in Carteret, New Jersey. This plant emitted 20 kilograms of dioxin in its 25 years of operation. It also released 86 tons of lead annually; nearby air lead levels were repeatedly in violation of standards. Construction of a tall stack caused export of toxic emissions from the plant to Staten Island, New York; high concentrations of lead were documented in surface soil on Staten Island. Because neither the State of New Jersey nor the U.S. Environmental Protection Agency were willing to regulate emissions from the plant, New York, the downwind state, was forced to sue U.S. Metals in federal court. The suit resulted ultimately in closing the plant. The case illustrates the difficulties in regulating pollution across state lines, a difficulty compounded by the abdication of responsibility by state and federal agencies. Further, the episode appears paradigmatic of a disturbing trend by state and local governments to locate waste combustion facilities at sites which will resolve problems of solid waste by encouraging export of airborne pollutants across regulatory boundaries.

  6. Methods for Environments and Contaminants: Hazardous Air Pollutants

    EPA Pesticide Factsheets

    EPA’s Office of Air Quality Planning and Standards estimated census tract annual average outdoor concentrations of 181i hazardous air pollutants, also known as air toxics, as part of EPA’s National Air Toxics Assessment (NATA) for the calendar year 2005.

  7. Using Models to Enhance Exposure Characterization for Air Pollution Health Studies

    EPA Science Inventory

    The United States and the United Kingdom are faced with increasing challenges in determining the human health impact of air pollutants emitted locally. Often, these pollutants can be toxic at relatively low doses, are highly reactive, or generate large gradients across space beca...

  8. CHANGES IN HEART RATE VARIABILITY AND LUNG FUNCTION OBSERVED IN NC PATROL TROOPERS EXPOSED TO PM AND AIR TOXICS

    EPA Science Inventory

    Changes in Heart Rate Variability and Lung Function in NC Patrol Troopers exposed to PM and Air Toxics

    Michael Riediker1, Wayne E Cascio1, Robert B Devlin2, Thomas Griggs1&4, Margaret Herbst1, Ronald W Williams3, Steve P McCorquodale4, Philip A Bromberg1
    1) University o...

  9. A HYBRID MODELING APPROACH TO RESOLVE POLLUTANT CONCENTRATIONS IN AN URBAN AREA

    EPA Science Inventory

    A modeling tool that can resolve contributions from individual sources to the urban environment is critical for air-toxics exposure assessments. Air toxics are often chemically reactive and may have background concentrations originated from distant sources. Grid models are the be...

  10. CHANGES IN LUNG FUNCTION OBSERVED IN A STUDY OF PM AND AIR TOXICS EXPOSURE TO NC HIGHWAY PATROL TROOPERS (COPP-STUDY)

    EPA Science Inventory

    Introduction: Car emissions have been identified as a major source of respirable particles. Individuals whose jobs involve being on the road, such as patrol troopers, may be exposed to high cencentrations of toxic air pollutants from vehicle emissions. This exposure might a...

  11. SAR/QSAR MODELS FOR TOXICITY PREDICTION: APPROACHES AND NEW DIRECTIONS

    EPA Science Inventory

    Abstract

    SAR/QSAR MODELS FOR TOXICITY PREDICTION: APPROACHES AND NEW DIRECTIONS

    Risk assessment typically incorporates some relevant toxicity information upon which to base a sound estimation for a chemical of concern. However, there are many circumstances in whic...

  12. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  13. Genetic variance of tolerance and the toxicant threshold model.

    PubMed

    Tanaka, Yoshinari; Mano, Hiroyuki; Tatsuta, Haruki

    2012-04-01

    A statistical genetics method is presented for estimating the genetic variance (heritability) of tolerance to pollutants on the basis of a standard acute toxicity test conducted on several isofemale lines of cladoceran species. To analyze the genetic variance of tolerance in the case when the response is measured as a few discrete states (quantal endpoints), the authors attempted to apply the threshold character model in quantitative genetics to the threshold model separately developed in ecotoxicology. The integrated threshold model (toxicant threshold model) assumes that the response of a particular individual occurs at a threshold toxicant concentration and that the individual tolerance characterized by the individual's threshold value is determined by genetic and environmental factors. As a case study, the heritability of tolerance to p-nonylphenol in the cladoceran species Daphnia galeata was estimated by using the maximum likelihood method and nested analysis of variance (ANOVA). Broad-sense heritability was estimated to be 0.199 ± 0.112 by the maximum likelihood method and 0.184 ± 0.089 by ANOVA; both results implied that the species examined had the potential to acquire tolerance to this substance by evolutionary change. Copyright © 2012 SETAC.

  14. Urban-air-toxics Monitoring Program, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    From March 1990 through February 1991 samples of ambient air were collected at 12 sites in the eastern part of the U.S. Every 12 days, air was integrated over 24-hour periods into passivated stainless steel canisters. Simultaneously, air was drawn through cartridges containing dinitrophenylhydrazine to collect carbonyl compounds. The samples were analyzed at a central laboratory for a total of 37 halogenated and aromatic hydrocarbons, formaldehyde, acetaldehyde, and other oxygenated species. The hydrocarbon species were analyzed by gas chromatography/multiple detectors and gas chromatography/mass spectrometry, while the carbonyl species were analyzed by liquid chromatography. Complete data for all the hydrocarbon samplesmore » are presented in the report.« less

  15. REAL-TIME EMISSION CHARACTERIZATION OF ORGANIC AIR TOXIC POLLUTANTS DURING STEADY STATE AND TRANSIENT OPERATION OF A MEDIUM DUTY DIESEL ENGINE

    EPA Science Inventory

    An on-line monitoring method, jet resonance-enhanced multi-photon ionization (REMPI) with time-of-flight mass spectrometry (TOFMS) was used to measure emissions of organic air toxics from a medium-duty (60 kW)diesel generator during transient and steady state operations. Emission...

  16. Zebrafish (Danio rerio) Models To Assess Acute, Developmental, And Neurodevelopmental Toxicity

    EPA Science Inventory

    Zebrafish (Danio rerio) acute, developmental, and neurodevelopmental model systems have been developed to assess both known and unknown environmental contaminants. Developmental toxicity is assessed using death and dysmorphology as endpoints, whereas neurodevelopmental toxicity ...

  17. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    PubMed Central

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-01-01

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  18. Air carrier operations system model

    DOT National Transportation Integrated Search

    2001-03-01

    Representatives from the Federal Aviation Administration (FAA) and several 14 Code of Federal Regulations (CFR) Part 121 air carriers met several times during 1999-2000 to develop a system engineering model of the generic functions of air carrier ope...

  19. Urban Air Toxics Monitoring Program, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, R.A.; Moore, W.H.; Rice, J.

    1990-10-01

    From January 1989 through January 1990 samples of ambient air were collected at 14 sites in the eastern part of the U.S. Every 12 days, air was integrated over 24-hour periods into passivated stainless steel canisters. Simultaneously, air was drawn through cartridges containing dinitrophenylhydrazine to collect carbonyl compounds. The samples were analyzed at a central laboratory for a total of 37 halogenated and aromatic hydrocarbons, formaldehyde, acetaldehyde, and other oxygenated species. The hydrocarbon species were analyzed by gas chromatography/multiple detectors and gas chromatography/mass spectrometry, while the carbonyl species were analyzed by liquid chromatography. An extensive quality assurance program was carriedmore » on to secure high quality data. Complete data for all the carbonyl samples are presented in the report.« less

  20. Innovations in projecting emissions for air quality modeling

    EPA Science Inventory

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality mana...

  1. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.

    PubMed

    Zhu, Hao; Martin, Todd M; Ye, Lin; Sedykh, Alexander; Young, Douglas M; Tropsha, Alexander

    2009-12-01

    Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD(50)) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R(2) of linear regression between actual and predicted LD(50) values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R(2) ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD(50) for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD(50) models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.

  2. Modeling Respiratory Toxicity of Authentic Lunar Dust

    NASA Technical Reports Server (NTRS)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  3. An analysis of candidates for addition to the Clean Air Act list of hazardous air pollutants.

    PubMed

    Lunder, Sonya; Woodruff, Tracey J; Axelrad, Daniel A

    2004-02-01

    There are 188 air toxics listed as hazardous air pollutants (HAPs) in the Clean Air Act (CAA), based on their potential to adversely impact public health. This paper presents several analyses performed to screen potential candidates for addition to the HAPs list. We analyzed 1086 HAPs and potential HAPs, including chemicals regulated by the state of California or with emissions reported to the Toxics Release Inventory (TRI). HAPs and potential HAPs were ranked by their emissions to air, and by toxicity-weighted (tox-wtd) emissions for cancer and noncancer, using emissions information from the TRI and toxicity information from state and federal agencies. Separate consideration was given for persistent, bioaccumulative toxins (PBTs), reproductive or developmental toxins, and chemicals under evaluation for regulation as toxic air contaminants in California. Forty-four pollutants were identified as candidate HAPs based on three ranking analyses and whether they were a PBT or a reproductive or developmental toxin. Of these, nine qualified in two or three different rankings (ammonia [NH3], copper [Cu], Cu compounds, nitric acid [HNO3], N-methyl-2-pyrrolidone, sulfuric acid [H2SO4], vanadium [V] compounds, zinc [Zn], and Zn compounds). This analysis suggests further evaluation of several pollutants for possible addition to the CAA list of HAPs.

  4. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Modelling anaerobic digestion acclimatisation to a biodegradable toxicant: application to cyanide.

    PubMed

    Zaher, U; Moussa, M S; Widyatmika, I N; van Der Steen, P; Gijzen, H J; Vanrolleghem, P A

    2006-01-01

    The observed acclimatisation to biodegradable toxicants in anaerobic cassava wastewater treatment is explained by modelling anaerobic cyanide degradation. A complete degradation pathway is proposed for cyanide. Cyanide degradation is modelled as enzymatic hydrolysis to formate and ammonia. Ammonia is added to the inorganic nitrogen content of the digester while formate is degraded by the hydrogenotrophic methanogens. Cyanide irreversible enzyme inhibition is modelled as an inhibition factor to acetate uptake processes. Cyanide irreversible toxicity is modelled as a decay factor to the acetate degraders. Cyanide as well as added phosphorus buffer solution were considered in the chemical equilibrium calculations of pH. The observed reversible effect after acclimatisation of sludge is modelled by a population shift between two aceticlastic methanogens that have different tolerance to cyanide toxicity. The proposed pathway is added to the IWA Anaerobic Digestion Model no.1 (ADM1). The ADM1 model with the designed extension is validated by an experiment using three lab-scale upflow anaerobic sludge bed reactors which were exposed to different cyanide loadings.

  6. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  7. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons. 2: An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, X.D.; Krylov, S.N.; Ren, L.

    1997-11-01

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) occurs via photosensitization reactions (e.g., generation of singlet-state oxygen) and by photomodification (photooxidation and/or photolysis) of the chemicals to more toxic species. The quantitative structure-activity relationship (QSAR) described in the companion paper predicted, in theory, that photosensitization and photomodification additively contribute to toxicity. To substantiate this QSAR modeling exercise it was necessary to show that toxicity can be described by empirically derived parameters. The toxicity of 16 PAHs to the duckweed Lemna gibba was measured as inhibition of leaf production in simulated solar radiation (a light source with a spectrum similar to thatmore » of sunlight). A predictive model for toxicity was generated based on the theoretical model developed in the companion paper. The photophysical descriptors required of each PAH for modeling were efficiency of photon absorbance, relative uptake, quantum yield for triplet-state formation, and the rate of photomodification. The photomodification rates of the PAHs showed a moderate correlation to toxicity, whereas a derived photosensitization factor (PSF; based on absorbance, triplet-state quantum yield, and uptake) for each PAH showed only a weak, complex correlation to toxicity. However, summing the rate of photomodification and the PSF resulted in a strong correlation to toxicity that had predictive value. When the PSF and a derived photomodification factor (PMF; based on the photomodification rate and toxicity of the photomodified PAHs) were summed, an excellent explanatory model of toxicity was produced, substantiating the additive contributions of the two factors.« less

  8. USING THE AIR QUALITY MODEL TO ANALYZE THE CONCENTRATIONS OF AIR TOXICS OVER THE CONTINENTAL U.S.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is examining the concentrations and deposition of hazardous air pollutants (HAPs), which include a large number of chemicals, ranging from non reactive (i.e. carbon tetrachloride) to reactive (i.e. formaldehyde), exist in gas, aqueous, and...

  9. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yumei; Williams, Nolann G.; Tolic, Ana

    The majority of in vitro studies characterizing the impact of engineered nanoparticles (NPs) on cells that line the respiratory tract were conducted in cells exposed to NPs in suspension. This approach introduces processes that are unlikely to occur during inhaled NP exposures in vivo, such as the shedding of toxic doses of dissolved ions. ZnO NPs are used extensively and pose significant sources for human exposure. Exposures to airborne ZnO NPs can induce adverse effects, but the relevance of the dissolved Zn2+ to the observed effects in vivo is still unclear. Our goal was to mimic in vivo exposures tomore » airborne NPs and decipher the contribution of the intact NP from the contribution of the dissolved ions to airborne ZnO NP toxicity. We established the exposure of alveolar type II epithelial cells to aerosolized NPs at the air-liquid interface (ALI), and compared the impact of aerosolized ZnO NPs and NPs in suspension at the same cellular doses, measured as the number of particles per cell. By evaluating membrane integrity and cell viability 6 and 24 hours post exposure we found that aerosolized NPs induced toxicity at the ALI at doses that were in the same order of magnitude as doses required to induce toxicity in submersed cultures. In addition, distinct patterns of oxidative stress were observed in the two exposure systems. These observations unravel the ability of airborne ZnO NPs to induce toxicity without the contribution of dissolved Zn2+ and suggest distinct mechanisms at the ALI and in submersed cultures.« less

  10. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.; Weschler, Charles J.

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which reacts rapidly with organics, leading to the formation of other potentially toxic air pollutants. Indoor reactive chemistry involving the nitrate radical and cleaning-product constituents is also of concern, since it produces organic nitrates as well as some of the same oxidation products generated by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic principles of indoor pollutant behavior and with information from relevant studies, to analyze and critically assess air pollutant exposures resulting from the use of cleaning products and air fresheners. Attention is focused on compounds that are listed as HAPs, TACs or Proposition 65 carcinogens/reproductive toxicants and compounds that can readily react to generate secondary pollutants. The toxicity of many of these secondary pollutants has yet to be evaluated. The inhalation

  11. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  12. Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae.

    PubMed

    Peters, Adam; Lofts, Stephen; Merrington, Graham; Brown, Bruce; Stubblefield, William; Harlow, Keven

    2011-11-01

    Ecotoxicity tests were performed with fish, invertebrates, and algae to investigate the effect of water quality parameters on Mn toxicity. Models were developed to describe the effects of Mn as a function of water quality. Calcium (Ca) has a protective effect on Mn toxicity for both fish and invertebrates, and magnesium (Mg) also provides a protective effect for invertebrates. Protons have a protective effect on Mn toxicity to algae. The models derived are consistent with models of the toxicity of other metals to aquatic organisms in that divalent cations can act as competitors to Mn toxicity in fish and invertebrates, and protons act as competitors to Mn toxicity in algae. The selected models are able to predict Mn toxicity to the test organisms to within a factor of 2 in most cases. Under low-pH conditions invertebrates are the most sensitive taxa, and under high-pH conditions algae are most sensitive. The point at which algae become more sensitive than invertebrates depends on the Ca concentration and occurs at higher pH when Ca concentrations are low, because of the sensitivity of invertebrates under these conditions. Dissolved organic carbon concentrations have very little effect on the toxicity of Mn to aquatic organisms. Copyright © 2011 SETAC.

  13. Characterization and Quantification of Hexavalent Chromium and Other Toxic Metals in the Air of Communities Surrounding Metal Processing Facilities

    NASA Astrophysics Data System (ADS)

    Pikelnaya, O.; Polidori, A.; Low, J.

    2017-12-01

    Hexavalent chromium [Cr(VI)] and other toxic metals are often emitted during metal forging, cutting, grinding and plating operations. In the South Coast Air Basin (SCAB) many of such operations are conducted by relatively small facilities intertwined within residential communities in the cities of Paramount, Compton, Long Beach and Anaheim. In response to the city of Paramount community members' complaints of "metallic" odors, the South Coast Air Quality Management District (SCAQMD) initiated a local air sampling study for toxic metals, which found elevated Cr(VI) and nickel levels in the community downwind of selected metal processing facilities. SCAQMD worked with these facilities to reduce the emissions from their metal grinding operations, which resulted in substantial reduced nickel levels, but did not reduce Cr(VI) levels. In order to fully understand the source(s) of these emissions, SCAQMD has been deploying portable samplers for Cr(VI) monitoring throughout the city of Paramount since October 2016. During this presentation we will discuss the results of more than a year of Cr(VI) analyses of samplers collected throughout the City of Paramount, as well as data from a continuous metal monitor deployed at one of the sites. We will also discuss options and challenges for expanding of Cr(VI) monitoring to other communities in the SCAB that are adjacent to metal forging and grinding operations; and explore emerging new technologies to address such monitoring challenges.

  14. MOVES and Related Models

    EPA Pesticide Factsheets

    MOVES is a state-of-the-science emission modeling system that estimates emissions for mobile sources at the national, county, and project level for criteria air pollutants, greenhouse gases, and air toxics.

  15. Highway Air Pollution Dispersion Modeling : Preliminary Evaluation of Thirteen Models

    DOT National Transportation Integrated Search

    1978-06-01

    Thirteen highway air pollution dispersion models have been tested, using a portion of the Airedale air quality data base. The Transportation Air Pollution Studies (TAPS) System, a data base management system specifically designed for evaluating dispe...

  16. Highway Air Pollution Dispersion Modeling : Preliminary Evaluation of Thirteen Models

    DOT National Transportation Integrated Search

    1977-01-01

    Thirteen highway air pollution dispersion models have been tested, using a portion of the Airedale air quality data base. The Transportation Air Pollution Studies (TAPS) System, a data base management system specifically designed for evaluating dispe...

  17. Air Quality Response Modeling for Decision Support | Science ...

    EPA Pesticide Factsheets

    Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use

  18. MODELING APPROACHES FOR ESTIMATING THE DOSIMETRY OF INHALED TOXICANTS IN CHILDREN

    EPA Science Inventory

    Risk assessment of inhaled toxicants has typically focused upon adults, with modeling used to extrapolate dosimetry and risks from laboratory animals to humans. However, behavioral factors such as time spent playing outdoors can lead to more exposure to inhaled toxicants in chil...

  19. MOAtox: A Comprehensive Mode of Action and Acute Aquatic Toxicity Database for Predictive Model Development

    EPA Science Inventory

    tThe mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity andas an alternative to chemical class-based predictive toxicity modeling. However, the development ofquantitative structure activity relationship (QSAR) and other models has been limite...

  20. CASTNet Air Toxics Monitoring Program (CATMP): VOC and carbonyl data for July, 1993 through March, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlos, D.P.; Edgerton, E.S.

    1994-12-31

    The US EPA has, under the auspices of the CASTNet program (Clean Air Status and Trends Network), initiated the CASTNet Air Toxics Monitoring Program (CATMP). Volatile Organic Compounds (VOC) and carbonyls and metals are sampled for 24-hour periods on a 12-day schedule using TO-14 samplers (SUMMA canisters) and dinitrophenylhydrazine-coated (dmph) sorbent cartridges and high volume particle samplers. Sampling was begun at most sites in July of 1993. The sites are operated by state and local air pollution control programs and all analysis is performed by Environmental Science and Engineering (ESE) in Gainesville, Florida. The network currently supports 15 VOC sites,more » of which 7 also sample carbonyls. Three sites sample metals only in Pinellas County, Florida. The limits of detection of 0.05 ppb for VOCs allow routine tracking of a wide range of pollutants including several greenhouse gases, transportation pollutants and photochemically-derived compounds. The sites range from major urban areas (Chicago, St. Louis) to a rural village (Waterbury, Vermont). Results of the first three quarters of VOC and carbonyl data collection are summarized in this presentation.« less

  1. Egg incubation position affects toxicity of air cell administered PCB 126 (3,3?4,4?,5- pentachlorobiphenyl) in chicken (Gallus domesticus) embryos

    USGS Publications Warehouse

    McKernan, M.A.; Rattner, B.A.; Hale, R.C.; Ottinger, M.A.

    2007-01-01

    The avian egg is used extensively for chemical screening and determining the relative sensitivity of species to environmental contaminants (e.g., metals, pesticides, polyhalogenated compounds). The effect of egg incubation position on embryonic survival, pipping, and hatching success was examined following air cell administration of polychlorinated biphenyl (PCB) congener 126 (3,3',4,4',5-pentachlorobiphenyl [PCB 126]; 500?2,000 pg/g egg) on day 4 of development in fertile chicken (Gallus gallus) eggs. Depending on dose, toxicity was found to be up to nine times greater in vertically versus horizontally incubated eggs. This may be due to enhanced embryonic exposure to the injection bolus in vertically incubated eggs compared to more gradual uptake in horizontally incubated eggs. Following air cell administration of PCB 126, horizontal incubation of eggs may more closely approximate uptake and toxicity that has been observed with naturally incorporated contaminants. These data have implications for chemical screening and use of laboratory data for ecological risk assessments.

  2. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models.

    PubMed

    Willming, Morgan M; Lilavois, Crystal R; Barron, Mace G; Raimondo, Sandy

    2016-10-04

    Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA's Internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa using least-squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family). Web-ICE was expanded with new models that can predict toxicity to over 250 listed species. A case study was used to assess protectiveness of genus and family model estimates derived from either geometric mean or minimum taxa toxicity values for listed species. Models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE model estimates were compared to HC5 values derived from Species Sensitivity Distributions for the case study chemicals to assess protectiveness of the two approaches. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species.

  3. Toxicity studies of a polyurethane rigid foam

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Schneider, J. E.

    1977-01-01

    Relative toxicity tests were performed on a polyurethane foam containing a trimethylopropane-based polyol and an organophosphate flame retardant. The routine screening procedure involved the exposure of four Swiss albino male mice in a 4.2 liter hemispherical chamber to the products generated by pyrolyzing a 1.00 g sample at a heating rate of 40 deg C/min from 200 to 800 C in the absence of air flow. In addition to the routine screening, experiments were performed with a very rapid rise to 800 C, with nominal 16 and 48 ml/sec air flow and with varying sample rates. No unusual toxicity was observed with either gradual or rapid pyrolysis to 800 C. Convulsions and seizures similar to those previously reported were observed when the materials were essentially flash pyrolyzed at 800 C in the presence of air flow, and the toxicity appeared unusual because of low sample weights required to produce death.

  4. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.

    PubMed

    Sizochenko, Natalia; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Kuz'min, Victor; Puzyn, Tomasz; Leszczynski, Jerzy

    2014-11-21

    Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were established. A new approach for representation of nanoparticles' structure is presented. For description of the supramolecular structure of nanoparticles the "liquid drop" model was applied. It is expected that a novel, proposed approach could be of general use for predictions related to nanomaterials. In addition, in our study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. The developed nano-QSAR models were validated and reliably predict the toxicity of all studied metal oxide nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-based descriptors were revealed to have an almost similar level of contribution to toxicity in both cases, while other parameters (van der Waals interactions, electronegativity and metal-ligand binding characteristics) have unequal contribution levels. In addition, the models developed here suggest different mechanisms of nanotoxicity for these two types of cells.

  5. [Air pollution and cardiovascular toxicity: known risks].

    PubMed

    Kostrzewa, A; Filleul, L; Eilstein, D; Harrabi, I; Tessier, J F

    2004-03-01

    Review of studies about epidemiological and physiopathological knowledge of ambient air particles short-term cardio-vascular effects. CURRENTS AND STRONG POINTS: Many studies, in contrasted countries for pollution's sources, meteorological conditions or socio-demographical characteristics, have shown health effects due to ambient air particles. After having studied mainly the respiratory effects of particulate air pollution, epidemiologists are now interested in the cardio-vascular effects of ambient air particles. In fact, serious effects seem to exist in fragile people which can get to emergency department visits, hospitalisation and even death. In addition, studies have shown less serious effects, but likely to be frequent (cardiac symptoms, and stoppages for cardio-vascular causes, notably). The exact mechanism by which particles have cardio-vascular adverse health effects is unknown, but experimental and epidemiological studies have led to several hypotheses: local pulmonary effects seem to be followed by systemic effects, which would be responsible for effects on the electrical activity of the heart through cardiac autonomic dysfunction and effects on the blood supply to the heart. The objective of this work is to summarise epidemiological and physiopathological knowledge about the cardio-vascular effects of ambient air particles. To evaluate the real importance of cardio-vascular effects due to particulate air pollution and to identify their exact mechanism, a more precise knowledge of detailed causes of deaths and hospitalisations and a better knowledge of less serious effects, but likely to be frequent, is necessary. Equally, a detailed identification of fragile people is essential for developing preventive actions.

  6. Evaluation of model-predicted hazardous air pollutants (HAPs) near a mid-sized U.S. airport

    NASA Astrophysics Data System (ADS)

    Vennam, Lakshmi Pradeepa; Vizuete, William; Arunachalam, Saravanan

    2015-10-01

    Accurate modeling of aircraft-emitted pollutants in the vicinity of airports is essential to study the impact on local air quality and to answer policy and health-impact related issues. To quantify air quality impacts of airport-related hazardous air pollutants (HAPs), we carried out a fine-scale (4 × 4 km horizontal resolution) Community Multiscale Air Quality model (CMAQ) model simulation at the T.F. Green airport in Providence (PVD), Rhode Island. We considered temporally and spatially resolved aircraft emissions from the new Aviation Environmental Design Tool (AEDT). These model predictions were then evaluated with observations from a field campaign focused on assessing HAPs near the PVD airport. The annual normalized mean error (NME) was in the range of 36-70% normalized mean error for all HAPs except for acrolein (>70%). The addition of highly resolved aircraft emissions showed only marginally incremental improvements in performance (1-2% decrease in NME) of some HAPs (formaldehyde, xylene). When compared to a coarser 36 × 36 km grid resolution, the 4 × 4 km grid resolution did improve performance by up to 5-20% NME for formaldehyde and acetaldehyde. The change in power setting (from traditional International Civil Aviation Organization (ICAO) 7% to observation studies based 4%) doubled the aircraft idling emissions of HAPs, but led to only a 2% decrease in NME. Overall modeled aircraft-attributable contributions are in the range of 0.5-28% near a mid-sized airport grid-cell with maximum impacts seen only within 4-16 km from the airport grid-cell. Comparison of CMAQ predictions with HAP estimates from EPA's National Air Toxics Assessment (NATA) did show similar annual mean concentrations and equally poor performance. Current estimates of HAPs for PVD are a challenge for modeling systems and refinements in our ability to simulate aircraft emissions have made only incremental improvements. Even with unrealistic increases in HAPs aviation emissions the model

  7. InMAP: A model for air pollution interventions

    DOE PAGES

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...

    2017-04-19

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  8. InMAP: A model for air pollution interventions

    PubMed Central

    Hill, Jason D.; Marshall, Julian D.

    2017-01-01

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049

  9. InMAP: A model for air pollution interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  10. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  11. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials

    PubMed Central

    Kim, Jong Sung; Peters, Thomas M.; O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Thorne, Peter S.

    2013-01-01

    To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air–liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4 h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p < 0.01) and significantly (p < 0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo. PMID:22981796

  12. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™).

    PubMed

    Wills, John W; Hondow, Nicole; Thomas, Adam D; Chapman, Katherine E; Fish, David; Maffeis, Thierry G; Penny, Mark W; Brown, Richard A; Jenkins, Gareth J S; Brown, Andy P; White, Paul A; Doak, Shareen H

    2016-09-09

    The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model's 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D

  13. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.

    PubMed

    Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John

    2011-01-01

    In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Cellular Sentinels Toxicity Platform

    DTIC Science & Technology

    2017-02-01

    Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace Medicine Aeromedical Research Department 2510 Fifth St...toxicity testing is to assess the likely risks posed to human populations at ambient exposure levels. Unfortunately, current approaches to toxicology... human populations at ambient exposure levels. For the past 50 years, this goal has been met by high dose testing in experimental animals with

  15. Population Pharmacokinetic-Pharmacodynamic Modeling of 5-Fluorouracil for Toxicities in Rats.

    PubMed

    Kobuchi, Shinji; Ito, Yukako; Sakaeda, Toshiyuki

    2017-08-01

    Myelosuppression is a dose-limiting toxicity of 5-fluorouracil (5-FU). Predicting the inter- and intra-patient variability in pharmacokinetics and toxicities of 5-FU may contribute to the individualized medicine. This study aimed to establish a population pharmacokinetic-pharmacodynamic model that could evaluate the inter- and intra-individual variability in the plasma 5-FU concentration, 5-FU-induced body weight loss and myelosuppression in rats. Plasma 5-FU concentrations, body weight loss, and blood cell counts in rats following the intravenous administration of various doses of 5-FU for 4 days were used to develop the population pharmacokinetic-pharmacodynamic model. The population pharmacokinetic model consisting of a two-compartment model with Michaelis-Menten elimination kinetics successfully characterized the individual and population predictions of the plasma concentration of 5-FU and provided credible parameter estimates. The estimates of inter-individual variability in maximal rate of saturable metabolism and residual variability were 8.1 and 22.0%, respectively. The population pharmacokinetic-pharmacodynamic model adequately described the individual complete time-course of alterations in body weight loss, erythrocyte, leukocyte, and lymphocyte counts in rats treated with various doses of 5-FU. The inter-individual variability of the drug effects in the pharmacodynamic model for body weight loss was 82.6%, which was relatively high. The results of the present study suggest that not only individual fluctuations in the 5-FU concentration but also the cell sensitivity would affect the onset and degree of 5-FU-induced toxicity. This population pharmacokinetic-pharmacodynamic model could evaluate the inter- and intra-individual variability in drug-induced toxicity and guide the assessments of novel anticancer agents in drug development.

  16. 40 CFR Table 3 to Subpart X of... - Toxic Equivalency Factors

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Subpart X of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Standards For Hazardous Air Pollutants From Secondary Lead Smelting Pt. 63, Subpt. X, Table 3 Table 3 to Subpart X of Part 63—Toxic Equivalency Factors Dioxin/furan congener Toxic equivalency factor 2,3,7,8...

  17. 40 CFR Table 3 to Subpart X of... - Toxic Equivalency Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Subpart X of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Standards For Hazardous Air Pollutants From Secondary Lead Smelting Pt. 63, Subpt. X, Table 3 Table 3 to Subpart X of Part 63—Toxic Equivalency Factors Dioxin/furan congener Toxic equivalency factor 2,3,7,8...

  18. California wildfires of 2008: coarse and fine particulate matter toxicity.

    PubMed

    Wegesser, Teresa C; Pinkerton, Kent E; Last, Jerold A

    2009-06-01

    During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM(10-2.5) (particulate matter with mass median aerodynamic diameter > 2.5 mum to < 10 mum; coarse ) and PM(2.5) (particulate matter with mass median aerodynamic diameter < 2.5 mum; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected. These observations prompt a number of questions about the health impact of exposure to elevated levels of PM(10-2.5) and PM(2.5) and about the specific toxicity of PM arising from wildfires in this region. Toxicity of PM(10-2.5) and PM(2.5) obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007. Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung. We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season.

  19. A Dosimetric Model of Duodenal Toxicity After Stereotactic Body Radiotherapy for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, James D.; Christman-Skieller, Claudia; Kim, Jeff

    2010-12-01

    Introduction: Dose escalation for pancreas cancer is limited by the tolerance of adjacent normal tissues, especially with stereotactic body radiotherapy (SBRT). The duodenum is generally considered to be the organ at greatest risk. This study reports on the dosimetric determinants of duodenal toxicity with single-fraction SBRT. Methods and Materials: Seventy-three patients with locally advanced unresectable pancreatic adenocarcinoma received 25 Gy in a single fraction. Dose-volume histogram (DVH) endpoints evaluated include V{sub 5} (volume of duodenum that received 5 Gy), V{sub 10}, V{sub 15}, V{sub 20}, V{sub 25}, and D{sub max} (maximum dose to 1 cm{sup 3}). Normal tissue complication probabilitymore » (NTCP) was evaluated with a Lyman model. Univariate and multivariate analyses were conducted with Kaplan-Meier and Cox regression models. Results: The median time to Grade 2-4 duodenal toxicity was 6.3 months (range, 1.6-11.8 months). The 6- and 12-month actuarial rates of toxicity were 11% and 29%, respectively. V{sub 10}-V{sub 25} and D{sub max} all correlated significantly with duodenal toxicity (p < 0.05). In particular, V{sub 15} {>=} 9.1 cm{sup 3} and V{sub 15} < 9.1 cm{sup 3} yielded duodenal toxicity rates of 52% and 11%, respectively (p = 0.002); V{sub 20} {>=} 3.3 cm{sup 3} and V{sub 20} < 3.3 cm{sup 3} gave toxicity rates of 52% and 11%, respectively (p = 0.002); and D{sub max} {>=} 23 Gy and D{sub max} < 23 Gy gave toxicity rates of 49% and 12%, respectively (p = 0.004). Lyman NTCP model optimization generated the coefficients m = 0.23, n = 0.12, and TD{sub 50} = 24.6 Gy. Only the Lyman NTCP model remained significant in multivariate analysis (p = 0.001). Conclusions: Multiple DVH endpoints and a Lyman NTCP model are strongly predictive of duodenal toxicity after SBRT for pancreatic cancer. These dose constraints will be valuable in future abdominal SBRT studies.« less

  20. Meeting report: Estimating the benefits of reducing hazardous air pollutants--summary of 2009 workshop and future considerations.

    PubMed

    Gwinn, Maureen R; Craig, Jeneva; Axelrad, Daniel A; Cook, Rich; Dockins, Chris; Fann, Neal; Fegley, Robert; Guinnup, David E; Helfand, Gloria; Hubbell, Bryan; Mazur, Sarah L; Palma, Ted; Smith, Roy L; Vandenberg, John; Sonawane, Babasaheb

    2011-01-01

    Quantifying the benefits of reducing hazardous air pollutants (HAPs, or air toxics) has been limited by gaps in toxicological data, uncertainties in extrapolating results from high-dose animal experiments to estimate human effects at lower doses, limited ambient and personal exposure monitoring data, and insufficient economic research to support valuation of the health impacts often associated with exposure to individual air toxics. To address some of these issues, the U.S. Environmental Protection Agency held the Workshop on Estimating the Benefits of Reducing Hazardous Air Pollutants (HAPs) in Washington, DC, from 30 April to 1 May 2009. Experts from multiple disciplines discussed how best to move forward on air toxics benefits assessment, with a focus on developing near-term capability to conduct quantitative benefits assessment. Proposed methodologies involved analysis of data-rich pollutants and application of this analysis to other pollutants, using dose-response modeling of animal data for estimating benefits to humans, determining dose-equivalence relationships for different chemicals with similar health effects, and analysis similar to that used for criteria pollutants. Limitations and uncertainties in economic valuation of benefits assessment for HAPS were discussed as well. These discussions highlighted the complexities in estimating the benefits of reducing air toxics, and participants agreed that alternative methods for benefits assessment of HAPs are needed. Recommendations included clearly defining the key priorities of the Clean Air Act air toxics program to identify the most effective approaches for HAPs benefits analysis, focusing on susceptible and vulnerable populations, and improving dose-response estimation for quantification of benefits.

  1. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  2. 75 FR 29699 - Approval and Promulgation of Air Quality Implementation Plans: Florida; Approval of Section 110(a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental...: Lynorae Benjamin, Chief, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics... Bradley, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management...

  3. Between-airport heterogeneity in air toxics emissions associated with individual cancer risk thresholds and population risks

    PubMed Central

    2009-01-01

    Background Airports represent a complex source type of increasing importance contributing to air toxics risks. Comprehensive atmospheric dispersion models are beyond the scope of many applications, so it would be valuable to rapidly but accurately characterize the risk-relevant exposure implications of emissions at an airport. Methods In this study, we apply a high resolution atmospheric dispersion model (AERMOD) to 32 airports across the United States, focusing on benzene, 1,3-butadiene, and benzo [a]pyrene. We estimate the emission rates required at these airports to exceed a 10-6 lifetime cancer risk for the maximally exposed individual (emission thresholds) and estimate the total population risk at these emission rates. Results The emission thresholds vary by two orders of magnitude across airports, with variability predicted by proximity of populations to the airport and mixing height (R2 = 0.74–0.75 across pollutants). At these emission thresholds, the population risk within 50 km of the airport varies by two orders of magnitude across airports, driven by substantial heterogeneity in total population exposure per unit emissions that is related to population density and uncorrelated with emission thresholds. Conclusion Our findings indicate that site characteristics can be used to accurately predict maximum individual risk and total population risk at a given level of emissions, but that optimizing on one endpoint will be non-optimal for the other. PMID:19426510

  4. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  5. 77 FR 35652 - Approval and Promulgation of Implementation Plans and Designations of Areas for Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental Protection Agency..., Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S... Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental...

  6. A review of AirQ Models and their applications for forecasting the air pollution health outcomes.

    PubMed

    Oliveri Conti, Gea; Heibati, Behzad; Kloog, Itai; Fiore, Maria; Ferrante, Margherita

    2017-03-01

    Even though clean air is considered as a basic requirement for the maintenance of human health, air pollution continues to pose a significant health threat in developed and developing countries alike. Monitoring and modeling of classic and emerging pollutants is vital to our knowledge of health outcomes in exposed subjects and to our ability to predict them. The ability to anticipate and manage changes in atmospheric pollutant concentrations relies on an accurate representation of the chemical state of the atmosphere. The task of providing the best possible analysis of air pollution thus requires efficient computational tools enabling efficient integration of observational data into models. A number of air quality models have been developed and play an important role in air quality management. Even though a large number of air quality models have been discussed or applied, their heterogeneity makes it difficult to select one approach above the others. This paper provides a brief review on air quality models with respect to several aspects such as prediction of health effects.

  7. A 13-year retrospective study evaluating the efficacy of using air-fluidised beds for toxic epidermal necrolysis patients.

    PubMed

    Xia, Weidong; Mao, Cong; Luo, Xu; Xu, Jianjun; Chen, Xiaofeng; Lin, Cai

    2016-08-01

    Toxic epidermal necrolysis (TEN) is a potentially life-threatening dermatological disease involving large areas of skin loss with systemic symptoms. This study evaluated the efficacy of air-fluidised bed therapy for TEN patients. Of 27 people with TEN, 11 used air-fluidised beds (the air-fluidised group) and 16 used standard beds (the control group). Days to complete re-epithelialisation, re-epithelialisation rate, incidence of complications, mortality, pain measured by visual analogue score and the incidence of cutaneous infection were compared in these groups. The mean body surface area of involvement was 77.0 ± 11.8% and baseline mean severity-of-illness score for TEN (SCORTEN) was 2.81 ± 1.08. The re-epithelialisation rate in the air-fluidised group was 100% but was only 56.3% in the control group (P < 0.05). There was a significant difference in the time taken to complete re-epithelialisation between the air-fluidised group (13 days [95% CI: 9.0-17.0]) and the control group (21 days [16.5-25.5], P < 0.05). Furthermore, the incidence of complications was 18% in the air-fluidised group versus 75% in the control group, including fewer cutaneous infections (P < 0.05). There was a significant reduction in pain among the air-fluidised group compared with the control group (P < 0.05). There were no deaths in the air-fluidised group while 19% of the control group died. Air-fluidised beds can reduce the time to complete re-epithelialisation, relieve pain and increase the re-epithelialisation rate of TEN patients, but there was no significant difference between them in mortality rate in our study. © 2015 The Australasian College of Dermatologists.

  8. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution

  9. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  10. Predictive Modeling of Developmental Toxicity

    EPA Science Inventory

    The use of alternative methods in conjunction with traditional in vivo developmental toxicity testing has the potential to (1) reduce cost and increase throughput of testing the chemical universe, (2) prioritize chemicals for further targeted toxicity testing and risk assessment,...

  11. Ion toxicity and the development of a salinity toxicity relationship (STR) model for marine species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietge, J.E.; Mount, D.R.

    1994-12-31

    Salinity in effluents can cause acute toxicity to marine organisms. The toxicity of the water can be due to an excess or deficiency of common ions, which usually are not thought of as toxicants. In order to develop an understanding of this phenomenon, laboratory toxicity tests were conducted to determine the effects of single ion deficiency, single ion excess, multiple ion deficiency, multiple ion excess, and total salinity on survival of three common marine test organisms (Mysidopsis bahia, Cyprinidon variegatus, and Menidia beryllina). The ions which were manipulated in these studies were Na{sup +}, K{sup +}, Ca{sup ++}, Mg{sup ++},more » Sr{sup ++}, Cl{sup {minus}}, Br{sup {minus}}, SO{sub 4}{sup {minus}{minus}}, HCO{sub 3}{sup {minus}}, and B{sub 4}O{sub 7}{sup {minus}{minus}}. Results indicate that Ca{sup ++} and K{sup +} are essential ions at normal salinities, since the deficiency of these two ions causes mortality. In contrast, the complete deficiency of Mg{sup ++}, Sr{sup ++}, B{sub 4}O{sub 7}{sup {minus}{minus}}, and HCO{sub 3}{sup {minus}} did not affect survival. The single ion excess studies demonstrated that K{sup +}, Ca{sup ++}, Mg{sup ++}, and B{sub 4}O{sub 7}{sup {minus}} were acutely toxic in excess at normal salinities. Total salinity studies determined the salinity tolerance range for each species, with upper and lower LC{sub 50}s for Mysidopsis bahia at 44 g/L and 8 g/L, for Cyprinidon variegatus at 73 g/L and < 0 g/L, and for Menidia beryllina at 45 g/L and < 0 g/L. These data will be used to develop a model to predict toxicity due to common ions.« less

  12. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.

    PubMed

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.

  13. 75 FR 51968 - Outer Continental Shelf Air Regulations Consistency Update for Massachusetts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... comments to: Ida McDonnell, Air Permits, Toxics and Indoor Air Unit, Office of Ecosystem Protection, U.S... INFORMATION CONTACT: Ida E. McDonnell, Air Permits, Toxics and Indoor Air Unit, U.S. Environmental Protection... Continental Shelf Air Regulations Consistency Update for Massachusetts AGENCY: Environmental Protection Agency...

  14. Towards the Next Generation Air Quality Modeling System ...

    EPA Pesticide Factsheets

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving understanding of the formation and transport of air pollutants. It is noted, however, that air quality issues and climate change assessments need to be addressed globally recognizing the linkages and interactions between meteorology and atmospheric chemistry across a wide range of scales. Therefore, an effort is currently underway to develop the next generation air quality modeling system (NGAQM) that will be based on a global integrated meteorology and chemistry system. The model for prediction across scales-atmosphere (MPAS-A), a global fully compressible non-hydrostatic model with seamlessly refined centroidal Voronoi grids, has been chosen as the meteorological driver of this modeling system. The initial step of adapting MPAS-A for the NGAQM was to implement and test the physics parameterizations and options that are preferred for retrospective air quality simulations (see the work presented by R. Gilliam, R. Bullock, and J. Herwehe at this workshop). The next step, presented herein, would be to link the chemistry from CMAQ to MPAS-A to build a prototype for the NGAQM. Furthermore, the techniques to harmonize transport processes between CMAQ and MPAS-A, methodologies to connect the chemis

  15. Reduced-form air quality modeling for community-scale ...

    EPA Pesticide Factsheets

    Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove

  16. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.

    PubMed

    Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J

    2018-06-01

    Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.

  17. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  18. IDENTIFYING TOXIC LEADERSHIP BEHAVIORS AND TOOLS TO FACILITATE THEIR DISCOVERY

    DTIC Science & Technology

    2016-01-31

    AIR WAR COLLEGE AIR UNIVERSITY IDENTIFYING TOXIC LEADERSHIP BEHAVIORS AND TOOLS TO FACILITATE THEIR DISCOVERY by Michael Boger, Lt Col...released investigations for specific, observable traits relating to toxic behavior . 3) Discuss indicators and concerns in steps one and two with...subordinates, which will aid in validating the specific observable behaviors from the lenses of each of these positions. The application of their input

  19. Airborne persistent toxic substances (PTSs) in China: occurrence and its implication associated with air pollution.

    PubMed

    Wang, Pu; Zhang, Qinghua; Li, Yingming; Matsiko, Julius; Zhang, Ya; Jiang, Guibin

    2017-08-16

    In recent years, China suffered from extensive air pollution due to the rapidly expanding economic and industrial developments. Its severe impact on human health has raised great concern currently. Persistent toxic substances (PTSs), a large group of environmental pollutants, have also received much attention due to their adverse effects on both the ecosystem and public health. However, limited studies have been conducted to reveal the airborne PTSs associated with air pollution at the national scale in China. In this review, we summarized the occurrence and variation of airborne PTSs in China, especially in megacities. These PTSs included polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), halogenated flame retardants (HFRs), perfluorinated compounds (PFCs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and heavy metals. The implication of their occurrence associated with air pollution was discussed, and the emission source of these chemicals was concluded. Most reviewed studies have been conducted in east and south China with more developed economy and industry. Severe contamination of airborne PTSs generally occurred in megacities with large populations, such as Guangzhou, Shanghai and Beijing. However, the summarized results suggested that industrial production and product consumption are the major sources of most PTSs in the urban environment, while unintentional emission during anthropogenic activities is an important contributor to airborne PTSs. It is important that fine particles serve as a major carrier of most airborne PTSs, which facilitates the long-range atmospheric transport (LRAT) of PTSs, and therefore, increases the exposure risk of the human body to these pollutants. This implied that not only the concentration and chemical composition of fine particles but also the absorbed PTSs are of particular concern when air pollution occurs.

  20. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.

    PubMed

    Önlü, Serli; Saçan, Melek Türker

    2017-04-01

    The authors modeled the 72-h algal toxicity data of hundreds of chemicals with different modes of action as a function of chemical structures. They developed mode of action-based local quantitative structure-toxicity relationship (QSTR) models for nonpolar and polar narcotics as well as a global QSTR model with a wide applicability potential for industrial chemicals and pharmaceuticals. The present study rigorously evaluated the generated models, meeting the Organisation for Economic Co-operation and Development principles of robustness, validity, and transparency. The proposed global model had a broad structural coverage for the toxicity prediction of diverse chemicals (some of which are high-production volume chemicals) with no experimental toxicity data. The global model is potentially useful for endpoint predictions, the evaluation of algal toxicity screening, and the prioritization of chemicals, as well as for the decision of further testing and the development of risk-management measures in a scientific and regulatory frame. Environ Toxicol Chem 2017;36:1012-1019. © 2016 SETAC. © 2016 SETAC.

  1. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  2. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin

    PubMed Central

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976

  3. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  4. Discharge in Long Air Gaps; Modelling and applications

    NASA Astrophysics Data System (ADS)

    Beroual, A.; Fofana, I.

    2016-06-01

    Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by contributing an innovative approach to this research domain, and universities with programs in high-voltage engineering will find this volume to be a working example of how to introduce the basics of electric discharge phenomena.

  5. DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...

  6. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles.

    PubMed

    Ji, Jie; Hedelin, Anna; Malmlöf, Maria; Kessler, Vadim; Seisenbaeva, Gulaim; Gerde, Per; Palmberg, Lena

    2017-01-01

    Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents. In this study, we successfully established a combination of an exposure system (XposeALI) with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC) and fibroblast at air-liquid interface (ALI). Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER) measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd) nanoparticles which sized 6-10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system. Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM) and apical lavage medium (AM) were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM. This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting.

  7. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  8. Component modeling in ecological risk assessment: Disturbance in interspecific interactions caused by air toxics introduced into terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Swider, Jan Zenon

    Ecological Risk Assessment standpoint and examine the impact of air toxics emissions on an ecosystem, with particular emphasis on predator-prey interactions. Such analysis may help to identify the most likely conditions leading to the ecosystem instability and possibility of its recuperation.

  9. Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model

    PubMed Central

    Jackson, George R.; Maione, Anna G.; Klausner, Mitchell

    2018-01-01

    Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643

  10. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  11. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)

    NASA Astrophysics Data System (ADS)

    Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.

    2011-12-01

    The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological

  12. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.

    PubMed

    Fruergaard, Thilde; Hyks, Jiri; Astrup, Thomas

    2010-09-15

    Based on available technology and emission data seven selected management options for air-pollution-control (APC) residues from waste incineration were evaluated by life-cycle assessment (LCA) using the EASEWASTE model. Scenarios were evaluated with respect to both non-toxicity impact categories (e.g. global warming) and toxicity related impact categories (e.g. ecotoxicity and human toxicity). The assessment addressed treatment and final placement of 1 tonne of APC residue in seven scenarios: 1) direct landfilling without treatment (baseline), 2) backfilling in salt mines, 3) neutralization of waste acid, 4) filler material in asphalt, 5) Ferrox stabilization, 6) vitrification, and 7) melting with automobile shredder residues (ASR). The management scenarios were selected as examples of the wide range of different technologies available worldwide while at the same time using realistic technology data. Results from the LCA were discussed with respect to importance of: energy consumption/substitution, material substitution, leaching, air emissions, time horizon aspects for the assessment, and transportation distances. The LCA modeling showed that thermal processes were associated with the highest loads in the non-toxicity categories (energy consumption), while differences between the remaining alternatives were small and generally considered insignificant. In the toxicity categories, all treatment/utilization options were significantly better than direct landfilling without treatment (lower leaching), although the thermal processes had somewhat higher impacts than the others options (air emissions). Transportation distances did not affect the overall ranking of the management alternatives. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants.

    PubMed Central

    Möller, L; Schuetzle, D; Autrup, H

    1994-01-01

    This paper presents key conclusions and future research needs from a Workshop on the Risk Assessment of Urban Air, Emissions, Exposure, Risk Identification, and Quantification, which was held in Stockholm during June 1992 by 41 participants from 13 countries. Research is recommended in the areas of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out this research. PMID:7529703

  14. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    PubMed

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  15. Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models.

    PubMed

    Seremet, Oana Cristina; Olaru, Octavian Tudorel; Gutu, Claudia Maria; Nitulescu, George Mihai; Ilie, Mihaela; Negres, Simona; Zbarcea, Cristina Elena; Purdel, Carmen Nicoleta; Spandidos, Demetrios A; Tsatsakis, Aristides M; Coleman, Michael D; Margina, Denisa Marilena

    2018-06-01

    Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC‑MS method, using a retention time (TR)‑5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson 's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC‑MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans.

  16. Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models

    PubMed Central

    Seremet, Oana Cristina; Olaru, Octavian Tudorel; Gutu, Claudia Maria; Nitulescu, George Mihai; Ilie, Mihaela; Negres, Simona; Zbarcea, Cristina Elena; Purdel, Carmen Nicoleta; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Coleman, Michael D.; Margina, Denisa Marilena

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC-MS method, using a retention time (TR)-5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC-MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans. PMID:29620235

  17. 1990 Clean Air Act Amendment Summary

    EPA Pesticide Factsheets

    In 1989, President George W. Bush proposed revisions to the Clean Air Act designed to curb acid rain, urban air pollution, and toxic air emissions. The proposal also called for establishing a national permits program.

  18. The contribution of outdoor air pollution sources to premature mortality on a global scale.

    PubMed

    Lelieveld, J; Evans, J S; Fnais, M; Giannadaki, D; Pozzer, A

    2015-09-17

    Assessment of the global burden of disease is based on epidemiological cohort studies that connect premature mortality to a wide range of causes, including the long-term health impacts of ozone and fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5). It has proved difficult to quantify premature mortality related to air pollution, notably in regions where air quality is not monitored, and also because the toxicity of particles from various sources may vary. Here we use a global atmospheric chemistry model to investigate the link between premature mortality and seven emission source categories in urban and rural environments. In accord with the global burden of disease for 2010 (ref. 5), we calculate that outdoor air pollution, mostly by PM2.5, leads to 3.3 (95 per cent confidence interval 1.61-4.81) million premature deaths per year worldwide, predominantly in Asia. We primarily assume that all particles are equally toxic, but also include a sensitivity study that accounts for differential toxicity. We find that emissions from residential energy use such as heating and cooking, prevalent in India and China, have the largest impact on premature mortality globally, being even more dominant if carbonaceous particles are assumed to be most toxic. Whereas in much of the USA and in a few other countries emissions from traffic and power generation are important, in eastern USA, Europe, Russia and East Asia agricultural emissions make the largest relative contribution to PM2.5, with the estimate of overall health impact depending on assumptions regarding particle toxicity. Model projections based on a business-as-usual emission scenario indicate that the contribution of outdoor air pollution to premature mortality could double by 2050.

  19. Integrating in silico models to enhance predictivity for developmental toxicity.

    PubMed

    Marzo, Marco; Kulkarni, Sunil; Manganaro, Alberto; Roncaglioni, Alessandra; Wu, Shengde; Barton-Maclaren, Tara S; Lester, Cathy; Benfenati, Emilio

    2016-08-31

    Application of in silico models to predict developmental toxicity has demonstrated limited success particularly when employed as a single source of information. It is acknowledged that modelling the complex outcomes related to this endpoint is a challenge; however, such models have been developed and reported in the literature. The current study explored the possibility of integrating the selected public domain models (CAESAR, SARpy and P&G model) with the selected commercial modelling suites (Multicase, Leadscope and Derek Nexus) to assess if there is an increase in overall predictive performance. The results varied according to the data sets used to assess performance which improved upon model integration relative to individual models. Moreover, because different models are based on different specific developmental toxicity effects, integration of these models increased the applicable chemical and biological spaces. It is suggested that this approach reduces uncertainty associated with in silico predictions by achieving a consensus among a battery of models. The use of tools to assess the applicability domain also improves the interpretation of the predictions. This has been verified in the case of the software VEGA, which makes freely available QSAR models with a measurement of the applicability domain. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Impact of secondary generated minerals on toxic element immobilization for air pollution control fly ash of a municipal solid waste incinerator.

    PubMed

    Kitamura, Hiroki; Dahlan, Astryd Viandila; Tian, Yu; Shimaoka, Takayuki; Yamamoto, Takashi; Takahashi, Fumitake

    2018-05-12

    Impacts of secondary generated minerals on mineralogical and physical immobilization of toxic elements were investigated for chelate-treated air pollution control (APC) fly ash of a municipal solid waste incinerator. Scanning electron microscope (SEM) observation showed that ettringite was generated after the moistening treatment with/without chelate. Although ettringite can incorporate toxic elements into its structure, elemental analysis by energy dispersive X-ray could not find concentrated points of toxic elements in ettringite structure. This implies that mineralogical immobilization of toxic element by the encapsulation to ettringite structure seems to be limited. Physical immobilization was also investigated by SEM observation of the same APC fly ash particles before and after the moistening treatment. The transfer of soluble elements was inhibited only when insoluble minerals such as gypsum were generated and covered the surface of fly ash particles. Neoformed insoluble minerals prevented soluble elements from leaching and transfer. However, such physical immobilization seems to be limited because insoluble mineral formation with surface coverage was monitored only one time of more than 20 observations. Although uncertainty owing to limited samples with limited observations should be considered, this study concludes that mineralogical and physical immobilization of toxic elements by secondary minerals is limited although secondary minerals are always generated on the surface of APC fly ash particles during chelate treatment.

  1. Air Quality Modeling Technical Support Document for the Final Cross State Air Pollution Rule Update

    EPA Pesticide Factsheets

    In this technical support document (TSD) we describe the air quality modeling performed to support the final Cross State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS).

  2. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  3. Identifying developmental vascular disruptor compounds using a predictive signature and alternative toxicity models

    EPA Science Inventory

    Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...

  4. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development (SETAC abstract)

    EPA Science Inventory

    The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...

  5. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  6. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  7. QSAR models for reproductive toxicity and endocrine disruption in regulatory use – a preliminary investigation†

    PubMed Central

    Jensen, G.E.; Niemelä, J.R.; Wedebye, E.B.; Nikolov, N.G.

    2008-01-01

    A special challenge in the new European Union chemicals legislation, Registration, Evaluation and Authorisation of Chemicals, will be the toxicological evaluation of chemicals for reproductive toxicity. Use of valid quantitative structure–activity relationships (QSARs) is a possibility under the new legislation. This article focuses on a screening exercise by use of our own and commercial QSAR models for identification of possible reproductive toxicants. Three QSAR models were used for reproductive toxicity for the endpoints teratogenic risk to humans (based on animal tests, clinical data and epidemiological human studies), dominant lethal effect in rodents (in vivo) and Drosophila melanogaster sex-linked recessive lethal effect. A structure set of 57,014 European Inventory of Existing Chemical Substances (EINECS) chemicals was screened. A total of 5240 EINECS chemicals, corresponding to 9.2%, were predicted as reproductive toxicants by one or more of the models. The chemicals predicted positive for reproductive toxicity will be submitted to the Danish Environmental Protection Agency as scientific input for a future updated advisory classification list with advisory classifications for concern for humans owing to possible developmental toxic effects: Xn (Harmful) and R63 (Possible risk of harm to the unborn child). The chemicals were also screened in three models for endocrine disruption. PMID:19061080

  8. Wet air oxidation pretreatment of biomethanated distillery effluent: mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation.

    PubMed

    Sarat Chandra, T; Malik, S N; Suvidha, G; Padmere, M L; Shanmugam, P; Mudliar, S N

    2014-04-01

    The effluents from molasses-based distilleries after biomethanation are beset with problems of intensified dark brown color, high residual COD, low biodegradability index (BOD/COD ratio <0.2) and toxicity issues for possible land application as a potential fertilizer. Wet air oxidation (WAO) pretreatment of biomethanated distillery effluent resulted in substantial enhancement in the biodegradability index (BI) (up to 0.8). WAO pretreated effluent on anaerobic digestion indicated favorable biogas generation with methane content up to 64% along with concomitant COD reduction up to 54.75%. The HPLC analysis indicated that the pretreatment facilitated degradation of major color containing compounds-namely melanoidins, up to 97.8%. The pretreated effluent with enhanced biodegradability along with substantially reduced color also indicated positive effect on seed germination (up to 100%), implying toxicity reduction of the effluent post WAO pretreatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Generic Surface-to-Air Missile Model.

    DTIC Science & Technology

    1979-10-01

    describes the Generic Surface-to-Air Missile Model (GENSAM) which evaluates the outcome of an engagement between a surface-to-air missile system and an...DETAILS OF THE GENERIC SAM MODEL 3-1 3.1 Coordinate Transformations 3-1 3.1.1 Coordinate Systems 3-1 3.1.2 Coordinate Transformations 3-4 3.1.3 Functions...Tracking Radars 3-54 3.3.11 Deception Jamming and Tracking Radars 3-55 3.3.12 Jaming and Track Radar Downlinks 3-56 3.3.13 Infrared Surveillance Systems 3

  10. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    EPA Science Inventory

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  11. NEAR ROADWAY RESEARCH IN THE ATMOSPHERIC MODELING DIVISION

    EPA Science Inventory

    This is a presentation to the CRC Mobile Source Air Toxics Workshop in Phoenix, AZ, on 23 October 2006. The presentation provides an overview of air quality modeling research in the USEPA/ORD/NERL's Atmospheric Modeling Division, with an emphasis on near-road pollutant character...

  12. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  13. Brownfields and health risks--air dispersion modeling and health risk assessment at landfill redevelopment sites.

    PubMed

    Ofungwu, Joseph; Eget, Steven

    2006-07-01

    Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach.

  14. Estimation of Wildlife Hazard Levels Using Interspecies Correlation Models and Standard Laboratory Rodent Toxicity Data

    EPA Science Inventory

    Toxicity data from laboratory rodents are widely available and frequently used in human health assessments as an animal model. We explore the possibility of using single rodent acute toxicity values to predict chemical toxicity to a diversity of wildlife species and to estimate ...

  15. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...

  16. NOVEL MARKERS OF AIR POLLUTION-INDUCED VASCULAR TOXICITY

    EPA Science Inventory

    The results of this project should be a handful of biological markers that can be subsequently used to: 1) identify susceptible individuals, 2) identify causal components of the complex air pollution mixture, and 3) better understand the biological mechanisms involved in air p...

  17. The cost of simplifying air travel when modeling disease spread.

    PubMed

    Lessler, Justin; Kaufman, James H; Ford, Daniel A; Douglas, Judith V

    2009-01-01

    Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.

  18. Clean Air Act Requirements and History

    EPA Pesticide Factsheets

    In 1970 congress designed the Clean Air Act to combat a variety of air pollution problems, and to tackle emerging pollution threats such as public health, national welfare, toxic air pollutants, acid rain, protection of the ozone layer, and regional haze.

  19. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less

  20. Physical model for the photo-induced toxicity of polycyclic aromatic hydrocarbons (PAHs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenburg, B.M.; Krylov, S.N.; Huang, H.D.

    1994-12-31

    A model for photo-induced toxicity of PAHs to duckweed was developed. Growth inhibition was described by photochemical reactions between PAHs and a hypothetical group of biomolecules (given the notation G) which are required for growth of the plants. Light activation of PAHs was considered in a two compartment system (water and leaves). The reaction scheme includes: photooxidation of PAHs, partitioning of PAHs into leaves, triplet formation of intact PAHs, photosensitization reactions that consume G, and reaction between photooxidized PAHs and G. The assumptions used in the model are: the rate of PAH photooxidation is slower than the rate of assimilation,more » PAH content in solution is approximately constant over the length of the toxicity test, the fluence rate of actinic radiation is lower in the leaves than in solution, the toxicity of intact PAHs with G in the absence of light is negligible, and the reaction of photooxidized PAHs with G does not require light. The authors then analyzed a series of differential equations that described toxicity. The result was an expression for growth inhibition as a function of the initial concentration of the PAH, the spectral distribution of the light source, the absorption spectrum of the PAH, the quantum yield for formation of triplet state PAH, and the rate of photo-oxidation of the PAH. The expression also includes two complex constants that can be solved by a least squares analysis of the empirical data for growth inhibition. Thus, the model allows a prediction of PAH photo-induced toxicity using only physical parameters of PAHs.« less

  1. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles

    PubMed Central

    Ji, Jie; Hedelin, Anna; Malmlöf, Maria; Kessler, Vadim; Seisenbaeva, Gulaim; Gerde, Per; Palmberg, Lena

    2017-01-01

    Background Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents. Methods In this study, we successfully established a combination of an exposure system (XposeALI) with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC) and fibroblast at air-liquid interface (ALI). Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER) measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd) nanoparticles which sized 6–10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system. Results Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM) and apical lavage medium (AM) were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM. Conclusion This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting. PMID:28107509

  2. RCA: A route city attraction model for air passengers

    NASA Astrophysics Data System (ADS)

    Huang, Feihu; Xiong, Xi; Peng, Jian; Guo, Bing; Tong, Bo

    2018-02-01

    Human movement pattern is a research hotspot of social computing and has practical values in various fields, such as traffic planning. Previous studies mainly focus on the travel activities of human beings on the ground rather than those in the air. In this paper, we use the reservation records of air passengers to explore air passengers' movement characteristics. After analyzing the effect of the route-trip length on the throughput, we find that most passengers eventually return to their original departure city and that the mobility of air passengers is not related to the route length. Based on these characteristics, we present a route city attraction (RCA) model, in which GDP or population is considered for the calculation of the attraction. The sub models of our RCA model show the better prediction performance of throughput than the radiation model and the gravity model.

  3. Air Pollution Exposure Modeling for Health Studies | Science ...

    EPA Pesticide Factsheets

    Dr. Michael Breen is leading the development of air pollution exposure models, integrated with novel personal sensor technologies, to improve exposure and risk assessments for individuals in health studies. He is co-investigator for multiple health studies assessing the exposure and effects of air pollutants. These health studies include participants with asthma, diabetes, and coronary artery disease living in various U.S. cities. He has developed, evaluated, and applied novel exposure modeling and time-activity tools, which includes the Exposure Model for Individuals (EMI), GPS-based Microenvironment Tracker (MicroTrac) and Exposure Tracker models. At this seminar, Dr. Breen will present the development and application of these models to predict individual-level personal exposures to particulate matter (PM) for two health studies in central North Carolina. These health studies examine the association between PM and adverse health outcomes for susceptible individuals. During Dr. Breen’s visit, he will also have the opportunity to establish additional collaborations with researchers at Harvard University that may benefit from the use of exposure models for cohort health studies. These research projects that link air pollution exposure with adverse health outcomes benefit EPA by developing model-predicted exposure-dose metrics for individuals in health studies to improve the understanding of exposure-response behavior of air pollutants, and to reduce participant

  4. On Regional Modeling to Support Air Quality Policies

    EPA Science Inventory

    We examine the use of the Community Multiscale Air Quality (CMAQ) model in simulating the changes in the extreme values of air quality that are of interest to the regulatory agencies. Year-to-year changes in ozone air quality are attributable to variations in the prevailing mete...

  5. The ASAC Air Carrier Investment Model (Second Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  6. The air quality forecast in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) System: model evaluation and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2013-12-01

    The MM5-SMOKE-CMAQ model system, which is developed by the United States Environmental Protection Agency(U.S. EPA) as the Models-3 system, has been used for the daily air quality forecast in the Beijing Municipal Environmental Monitoring Center(Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing(EMS-Beijing) since the Olympic Games year 2008. In this study, we collect the daily forecast results of the CMAQ model in the whole year 2010 for the model evaluation. The results show that the model play a good model performance in most days but underestimate obviously in some air pollution episode. A typical air pollution episode from 11st - 20th January 2010 was chosen, which the air pollution index(API) of particulate matter (PM10) observed by Beijing MEMC reaches to 180 while the prediction of PM10-API is about 100. Taking in account all stations in Beijing, including urban and suburban stations, three numerical methods are used for model improvement: firstly, enhance the inner domain with 4km grids, the coverage from only Beijing to the area including its surrounding cities; secondly, update the Beijing stationary area emission inventory, from statistical county-level to village-town level, that would provide more detail spatial informance for area emissions; thirdly, add some industrial points emission in Beijing's surrounding cities, the latter two are both the improvement of emission. As the result, the peak of the nine national standard stations averaged PM10-API, which is simulated by CMAQ as daily hindcast PM10-API, reach to 160 and much near to the observation. The new results show better model performance, which the correlation coefficent is 0.93 in national standard stations average and 0.84 in all stations, the relative error is 15.7% in national standard stations averaged and 27% in all stations. The time series of 9 national standard in Beijing urban The scatter diagram of all stations in Beijing, the red is the forecast and

  7. Presence of organophosphorus pesticide oxygen analogs in air samples

    NASA Astrophysics Data System (ADS)

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2013-02-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  8. Toxic volatile organic compounds in environmental tobacco smoke: Emission factors for modeling exposures of California populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daisey, J.M.; Mahanama, K.R.R.; Hodgson, A.T.

    The primary objective of this study was to measure emission factors for selected toxic air contaminants in environmental tobacco smoke (ETS) using a room-sized environmental chamber. The emissions of 23 volatile organic compounds (VOCs), including, 1,3-butadiene, three aldehydes and two vapor-phase N-nitrosamines were determined for six commercial brands of cigarettes and reference cigarette 1R4F. The commercial brands were selected to represent 62.5% of the cigarettes smoked in California. For each brand, three cigarettes were machine smoked in the chamber. The experiments were conducted over four hours to investigate the effects of aging. Emission factors of the target compounds were alsomore » determined for sidestream smoke (SS). For almost all target compounds, the ETS emission factors were significantly higher than the corresponding SS values probably due to less favorable combustion conditions and wall losses in the SS apparatus. Where valid comparisons could be made, the ETS emission factors were generally in good agreement with the literature. Therefore, the ETS emission factors, rather than the SS values, are recommended for use in models to estimate population exposures from this source. The variabilities in the emission factors ({mu}g/cigarette) of the selected toxic air contaminants among brands, expressed as coefficients of variation, were 16 to 29%. Therefore, emissions among brands were Generally similar. Differences among brands were related to the smoked lengths of the cigarettes and the masses of consumed tobacco. Mentholation and whether a cigarette was classified as light or regular did not significantly affect emissions. Aging was determined not to be a significant factor for the target compounds. There were, however, deposition losses of the less volatile compounds to chamber surfaces.« less

  9. Toxic Volatile Organic Compounds in Environmental Tobacco Smoke:Emission Factors for Modeling Exposures of California Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daisey, J.M.; Mahanama, K.R.R.; Hodgson, A.T.

    The primary objective of this study was to measure emission factors for selected toxic air in environmental tobacco smoke (ETS) using a room-sized environmental chamber. The emissions of 23 volatile organic compounds (VOCs), including 1,3-butadiene, three aldehydes and two vapor-phase N-nitrosarnines were determined for six commercial brands of cigarettes and reference cigarette 1R4F. The commercial brands were selected to represent 62.5% of the cigarettes smoked in California. For each brand, three cigarettes were machine smoked in the chamber. The experiments were conducted over four hours to investigate the effects of aging. Emission factors of the target compounds were also determinedmore » for sidestream smoke (SS). For almost all target compounds, the ETS emission factors were significantly higher than the corresponding SS values probably due to less favorable combustion conditions and wall losses in the SS apparatus. Where valid comparisons could be made, the ETS emission factors were generally in good agreement with the literature. Therefore, the ETS emission factors, rather than the SS values, are recommended for use in models to estimate population exposures from this source. The variabilities in the emission factors (pgkigarette) of the selected toxic air contaminants among brands, expressed as coefficients of variation, were 16 to 29%. Therefore, emissions among brands were generally similar. Differences among brands were related to the smoked lengths of the cigarettes and the masses of consumed tobacco. Mentholation and whether a cigarette was classified as light or regular did not significantly affect emissions. Aging was determined not to be a significant factor for the target compounds. There were, however, deposition losses of the less volatile compounds to chamber surfaces.« less

  10. Evaluating Air-Quality Models: Review and Outlook.

    NASA Astrophysics Data System (ADS)

    Weil, J. C.; Sykes, R. I.; Venkatram, A.

    1992-10-01

    Over the past decade, much attention has been devoted to the evaluation of air-quality models with emphasis on model performance in predicting the high concentrations that are important in air-quality regulations. This paper stems from our belief that this practice needs to be expanded to 1) evaluate model physics and 2) deal with the large natural or stochastic variability in concentration. The variability is represented by the root-mean- square fluctuating concentration (c about the mean concentration (C) over an ensemble-a given set of meteorological, source, etc. conditions. Most air-quality models used in applications predict C, whereas observations are individual realizations drawn from an ensemble. For cC large residuals exist between predicted and observed concentrations, which confuse model evaluations.This paper addresses ways of evaluating model physics in light of the large c the focus is on elevated point-source models. Evaluation of model physics requires the separation of the mean model error-the difference between the predicted and observed C-from the natural variability. A residual analysis is shown to be an elective way of doing this. Several examples demonstrate the usefulness of residuals as well as correlation analyses and laboratory data in judging model physics.In general, c models and predictions of the probability distribution of the fluctuating concentration (c), (c, are in the developmental stage, with laboratory data playing an important role. Laboratory data from point-source plumes in a convection tank show that (c approximates a self-similar distribution along the plume center plane, a useful result in a residual analysis. At pmsent,there is one model-ARAP-that predicts C, c, and (c for point-source plumes. This model is more computationally demanding than other dispersion models (for C only) and must be demonstrated as a practical tool. However, it predicts an important quantity for applications- the uncertainty in the very high and

  11. Methods for regionalization of impacts of non-toxic air pollutants in life-cycle assessments often tell a consistent story

    NASA Astrophysics Data System (ADS)

    Djomo, S. Njakou; Knudsen, M. T.; Andersen, M. S.; Hermansen, J. E.

    2017-11-01

    There is an ongoing debate regarding the influence of the source location of pollution on the fate of pollutants and their subsequent impacts. Several methods have been developed to derive site-dependent characterization factors (CFs) for use in life-cycle assessment (LCA). Consistent, precise, and accurate estimates of CFs are crucial for establishing long-term, sustainable air pollution abatement policies. We reviewed currently available studies on the regionalization of non-toxic air pollutants in LCA. We also extracted and converted data into indices for analysis. We showed that CFs can distinguish between emissions occurring in different locations, and that the different methods used to derive CFs map locations consistently from very sensitive to less sensitive. Seasonal variations are less important for the computation of CFs for acidification and eutrophication, but they are relevant for the calculation of CFs for tropospheric ozone formation. Large intra-country differences in estimated CFs suggest that an abatement policy relying on quantitative estimates based upon a single method may have undesirable outcomes. Within country differences in estimates of CFs for acidification and eutrophication are the results of the models used, category definitions, soil sensitivity factors, background emission concentration, critical loads database, and input data. Striking features in these studies were the lack of CFs for countries outside Europe, the USA, Japan, and Canada, the lack of quantification of uncertainties. Parameter and input data uncertainties are well quantified, but the uncertainty associated with the choice of category indicator is rarely quantified and this can be significant. Although CFs are scientifically robust, further refinements are needed before they can be integrated in LCA. Future research should include uncertainty analyses, and should develop a consensus model for CFs. CFs for countries outside Europe, Japan, Canada and the USA are

  12. Evaluating Regional-Scale Air Quality Models

    EPA Science Inventory

    Numerical air quality models are being used to understand the complex interplay among emission loading meteorology, and atmospheric chemistry leading to the formation and accumulation of pollutants in the atmosphere. A model evaluation framework is presented here that considers ...

  13. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  14. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest.

    PubMed

    Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  15. Air Toxics Under the Big Sky: examining the effectiveness of authentic scientific research on high school students' science skills and interest

    NASA Astrophysics Data System (ADS)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-04-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  16. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students’ Science Skills and Interest

    PubMed Central

    Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom. PMID:28286375

  17. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  18. A Predictive Model for Toxicity Effects Assessment of Biotransformed Hepatic Drugs Using Iterative Sampling Method.

    PubMed

    Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella

    2016-12-09

    Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive effects. The proposed model consists of three phases. In the first phase, rough set-based methods are used to select the most discriminative features for reducing the classification time and improving the classification performance. Due to the imbalanced class distribution, in the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique are used to solve the problem of imbalanced datasets. ITerative Sampling (ITS) method is proposed to avoid the limitations of those methods. ITS method has two steps. The first step (sampling step) iteratively modifies the prior distribution of the minority and majority classes. In the second step, a data cleaning method is used to remove the overlapping that is produced from the first step. In the third phase, Bagging classifier is used to classify an unknown drug into toxic or non-toxic. The experimental results proved that the proposed model performed well in classifying the unknown samples according to all toxic effects in the imbalanced datasets.

  19. A geometric model of mortality and crop protection for insects feeding on discrete toxicant deposits.

    PubMed

    Ebert, Timothy; Derksen, Richard

    2004-04-01

    Current theory governing the biological effectiveness of toxicants stresses the dose-response relationship and focuses on uniform toxicant distributions in the insect's environment. However, toxicants are seldom uniformly dispersed under field conditions. Toxicant distribution affects bioavailability, but the mechanics of such interactions is not well documented. We present a geometric model of the interactions between insects and heterogeneously distributed toxicants. From the model, we conclude the following: 1) There is an optimal droplet size, and droplets both smaller and larger than this optimum will decrease efficacy. 2) There is an ideal droplet distribution. Droplets should be spaced based on two criteria: calculate the allowable damage, double this quantity, and one lethal deposit should be placed in this area; and define the quantity of leaf the larva could eat before the toxicant decays below the lethal level and place one lethal deposit within this area. 3) Distributions of toxicant where deposits are sublethal will often be ineffective, but the application is wasteful if deposits contain more than a lethal dose. 4) Insect behavior both as individuals and collectively influences the level of crop production provided by an application. This conclusion has implications for both crop protection and natural plant-insect interactions. The effective utilization of new more environmentally sensitive toxicants may depend on how well we understand how heterogeneous toxicant distributions interact with insect behavior to determine the biological outcome.

  20. COMIS -- an international multizone air-flow and contaminant transport model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less

  1. Hybrid Air Quality Modeling Approach For Use in the Near ...

    EPA Pesticide Factsheets

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep

  2. A zebrafish model for uremic toxicity: role of the complement pathway.

    PubMed

    Berman, Nathaniel; Lectura, Melisa; Thurman, Josh; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H

    2013-01-01

    Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. Copyright © 2013 S. Karger AG, Basel.

  3. A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway

    PubMed Central

    Thurman, Josh; Reinecke, James; Raff, Amanda C.; Melamed, Michal L.; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W.; Hostetter, Thomas H

    2016-01-01

    Many organic solutes accumulate in ESRD and some are poorly removed removed with urea based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients pre-dialysis or from normal subjects. Zebrafish embryos 24 hours post fertilization were exposed to experimental media at a ratio of 3:1 water:human serum. Those exposed to serum from uremic subjects had significantly reduced survival at 8 hours (19% +/− 18% vs. 94% +/− 6%; p < 0.05, uremic serum vs control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50kD showed significantly greater toxicity with the larger molecular weight fraction (83% +/− 11% vs 7% +/−17% survival, p < 0.05, <50kD vs >50 kD, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96%+/− 5% vs 28%+/− 20% survival, p < 0.016, chelated vs non chelated serum respectively). Anti- factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98% +/− 6% vs. 3% +/− 9% survival, p < 0.016, anti- factor B treated vs non treated, respectively).Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and non-specific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. PMID:23689420

  4. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  5. The analysis of a generic air-to-air missile simulation model

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chappell, Alan R.; Mcmanus, John W.

    1994-01-01

    A generic missile model was developed to evaluate the benefits of using a dynamic missile fly-out simulation system versus a static missile launch envelope system for air-to-air combat simulation. This paper examines the performance of a launch envelope model and a missile fly-out model. The launch envelope model bases its probability of killing the target aircraft on the target aircraft's position at the launch time of the weapon. The benefits gained from a launch envelope model are the simplicity of implementation and the minimal computational overhead required. A missile fly-out model takes into account the physical characteristics of the missile as it simulates the guidance, propulsion, and movement of the missile. The missile's probability of kill is based on the missile miss distance (or the minimum distance between the missile and the target aircraft). The problems associated with this method of modeling are a larger computational overhead, the additional complexity required to determine the missile miss distance, and the additional complexity of determining the reason(s) the missile missed the target. This paper evaluates the two methods and compares the results of running each method on a comprehensive set of test conditions.

  6. COMMUNITY-SCALE MODELING FOR AIR TOXICS AND HOMELAND SECURITY

    EPA Science Inventory

    The purpose of this task is to develop and evaluate numerical and physical modeling tools for simulating ambient concentrations of airborne substances in urban settings at spatial scales ranging from <1-10 km. Research under this task will support client needs in human exposure ...

  7. Community-LINE Source Model (C-LINE) to estimate roadway emissions

    EPA Pesticide Factsheets

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  8. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  9. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  10. AIR QUALITY SIMULATION MODEL PERFORMANCE FOR ONE-HOUR AVERAGES

    EPA Science Inventory

    If a one-hour standard for sulfur dioxide were promulgated, air quality dispersion modeling in the vicinity of major point sources would be an important air quality management tool. Would currently available dispersion models be suitable for use in demonstrating attainment of suc...

  11. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model

    DOE PAGES

    deLorimier, Elaine; Coonrod, Leslie A.; Copperman, Jeremy; ...

    2014-10-10

    In this study, CUG repeat expansions in the 3' UTR of dystrophia myotonica protein kinase ( DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2'-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2'-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecularmore » dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.« less

  12. The ASAC Air Carrier Investment Model (Third Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Gaier, Eric M.; Santmire, Tara E.

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC.

  13. An Overview of Atmospheric Chemistry and Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2017-01-01

    This presentation will include my personal research experience and an overview of atmospheric chemistry and air quality modeling to the participants of the NASA Student Airborne Research Program (SARP 2017). The presentation will also provide examples on ways to apply airborne observations for chemical transport (CTM) and air quality (AQ) model evaluation. CTM and AQ models are important tools in understanding tropospheric-stratospheric composition, atmospheric chemistry processes, meteorology, and air quality. This presentation will focus on how NASA scientist currently apply CTM and AQ models to better understand these topics. Finally, the importance of airborne observation in evaluating these topics and how in situ and remote sensing observations can be used to evaluate and improve CTM and AQ model predictions will be highlighted.

  14. Potential Air Toxics Hot Spots in Truck Terminals and Cabs

    PubMed Central

    Smith, Thomas J.; Davis, Mary E.; Hart, Jaime E.; Blicharz, Andrew; Laden, Francine; Garshick, Eric

    2016-01-01

    INTRODUCTION Hot spots are areas where concentrations of one or more air toxics — organic vapors or particulate matter (PM) — are expected to be elevated. The U.S. Environmental Protection Agency’s (EPA*) screening values for air toxics were used in our definition of hot spots. According to the EPA, a screening value “is used to indicate a concentration of a chemical in the air to which a person could be continually exposed for a lifetime … and which would be unlikely to result in a deleterious effect (either cancer or noncancer health effects)” (U.S. EPA 2006). Our characterization of volatile organic compounds (VOCs; namely 18 hydrocarbons, methyl tert-butyl ether [MTBE], acetone, and aldehydes) was added onto our ongoing National Cancer Institute–funded study of lung cancer and particulate pollutant concentrations (PM with an aerodynamic diameter ≤ 2.5 µm [PM2.5], elemental carbon [EC], and organic carbon [OC]) and source apportionment of the U.S. trucking industry. We focused on three possible hot spots within the trucking terminals: upwind background areas affected by nearby industrial parks; downwind areas affected by upwind and terminal sources; and the loading docks and mechanic shops within terminal as well as the interior of cabs of trucks being driven on city, suburban, and rural streets and on highways. METHODS In Phase 1 of our study, 15 truck terminals across the United States were each visited for five consecutive days. During these site visits, sorbent tubes were used to collect 12-hour integrated samples of hydrocarbons and aldehydes from upwind and downwind fence-line locations as well as inside truck cabs. Meteorologic data and extensive site information were collected with each sample. In Phase 2, repeat visits to six terminals were conducted to test the stability of concentrations across time and judge the representativeness of our previous measurements. During the repeat site visits, the sampling procedure was expanded to

  15. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    EPA Pesticide Factsheets

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  16. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.

    PubMed

    Haest, P J; Springael, D; Smolders, E

    2010-01-01

    The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.

  17. Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  18. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  19. THE FUTURE OF COMPUTER-BASED TOXICITY PREDICTION: MECHANISM-BASED MODELS VS. INFORMATION MINING APPROACHES

    EPA Science Inventory


    The Future of Computer-Based Toxicity Prediction:
    Mechanism-Based Models vs. Information Mining Approaches

    When we speak of computer-based toxicity prediction, we are generally referring to a broad array of approaches which rely primarily upon chemical structure ...

  20. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  1. Development of the Next Generation Air Quality Modeling System

    EPA Science Inventory

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  2. ENGINEERING BULLETIN: AIR PATHWAY ANALYSIS

    EPA Science Inventory

    This bulletin presents information on estimating toxic air emissions from Superfund sites. The focus is on the collection of air emmissions data during the site inspection and remedial investigation/feasibility study and the use of these data for the selection or implementation o...

  3. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  4. Analysis of Air Toxics From NOAA WP-3 Aircraft Measurements During the TexAQS 2006 Campaign: Comparison With Emission Inventories and Additive Inhalation Risk Factors

    NASA Astrophysics Data System (ADS)

    Del Negro, L. A.; Warneke, C.; de Gouw, J. A.; Atlas, E.; Lueb, R.; Zhu, X.; Pope, L.; Schauffler, S.; Hendershot, R.; Washenfelder, R.; Fried, A.; Richter, D.; Walega, J. G.; Weibring, P.

    2007-12-01

    Benzene and nine other air toxics classified as human carcinogens by the International Agency for Research on Cancer (IARC) were measured from the NOAA WP-3 aircraft during the TexAQS 2006 campaign. In-situ measurements of benzene, measured with a PTR-MS instrument, are used to estimate emission fluxes for comparison with point source emission inventories developed by the Texas Commission on Environmental Quality. Mean and median mixing ratios for benzene, acetaldehyde, formaldehyde, 1,3-butadiene, carbon tetrachloride, chloroform, 1,2-dichloroethane, dibromoethane, dichloromethane, and vinyl chloride, encountered over the city of Houston during the campaign, are combined with inhalation unit risk factor values developed by the California Environmental Protection Agency and the United States Environmental Protection Agency to estimate the additive inhalation risk factor. This additive risk factor represents the risk associated with lifetime (70 year) exposure at the levels measured and should not be used as an absolute indicator of risk to individuals. However, the results are useful for assessments of changing relative risk over time, and for identifying dominant contributions to the overall air toxic risk.

  5. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    EPA Pesticide Factsheets

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  6. Air Quality Modeling Technical Support Document for the 2008 Ozone NAAQS Cross-State Air Pollution Rule Proposal

    EPA Pesticide Factsheets

    In this technical support document (TSD) we describe the air quality modeling performed to support the proposed Cross-State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS)

  7. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  8. Modeling Trends in Air Pollutant Concentrations over the ...

    EPA Pesticide Factsheets

    Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr

  9. InMAP: a new model for air pollution interventions

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3

  10. Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model.

    PubMed

    Como, F; Carnesecchi, E; Volani, S; Dorne, J L; Richardson, J; Bassan, A; Pavan, M; Benfenati, E

    2017-01-01

    Ecological risk assessment of plant protection products (PPPs) requires an understanding of both the toxicity and the extent of exposure to assess risks for a range of taxa of ecological importance including target and non-target species. Non-target species such as honey bees (Apis mellifera), solitary bees and bumble bees are of utmost importance because of their vital ecological services as pollinators of wild plants and crops. To improve risk assessment of PPPs in bee species, computational models predicting the acute and chronic toxicity of a range of PPPs and contaminants can play a major role in providing structural and physico-chemical properties for the prioritisation of compounds of concern and future risk assessments. Over the last three decades, scientific advisory bodies and the research community have developed toxicological databases and quantitative structure-activity relationship (QSAR) models that are proving invaluable to predict toxicity using historical data and reduce animal testing. This paper describes the development and validation of a k-Nearest Neighbor (k-NN) model using in-house software for the prediction of acute contact toxicity of pesticides on honey bees. Acute contact toxicity data were collected from different sources for 256 pesticides, which were divided into training and test sets. The k-NN models were validated with good prediction, with an accuracy of 70% for all compounds and of 65% for highly toxic compounds, suggesting that they might reliably predict the toxicity of structurally diverse pesticides and could be used to screen and prioritise new pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 1990 Clean Air Act Amendment Summary: Title I

    EPA Pesticide Factsheets

    This page provides an overview of the 1990 amendments to Title I of the Clean Air Act, which were enacted to curb acid rain, urban air pollution and toxic air emissions. The edits to this title deal with the national ambient air quality standards.

  12. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.

    PubMed

    Loret, Thomas; Peyret, Emmanuel; Dubreuil, Marielle; Aguerre-Chariol, Olivier; Bressot, Christophe; le Bihan, Olivier; Amodeo, Tanguy; Trouiller, Bénédicte; Braun, Anne; Egles, Christophe; Lacroix, Ghislaine

    2016-11-03

    Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions. Three nano-TiO 2 and one nano-CeO 2 were used. An exposure system was set up using VitroCell® devices to expose pulmonary cells at the air-liquid interface to aerosols. A549 alveolar cells in monocultures or in co-cultures with THP-1 macrophages were exposed to aerosols in inserts or to suspensions in inserts and in plates. Submerged exposures in inserts were performed, using similar culture conditions and exposure kinetics to the air-liquid interface, to provide accurate comparisons between the methods. Exposure in plates using classical culture and exposure conditions was performed to provide comparable results with classical submerged exposure studies. The biological activity of the cells (inflammation, cell viability, oxidative stress) was assessed at 24 h and comparisons of the nanomaterial toxicities between exposure methods were performed. Deposited doses of nanomaterials achieved using our aerosol exposure system were sufficient to observe adverse effects. Co-cultures were more sensitive than monocultures and biological responses were usually observed at lower doses at the air-liquid interface than in submerged conditions. Nevertheless, the general ranking of the nanomaterials according to their toxicity was similar across the different exposure methods used. We showed that

  13. Downscaler Model for predicting daily air pollution

    EPA Pesticide Factsheets

    This model combines daily ozone and particulate matter monitoring and modeling data from across the U.S. to provide improved fine-scale estimates of air quality in communities and other specific locales.

  14. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  15. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  16. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  17. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  18. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  19. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    NASA Astrophysics Data System (ADS)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  20. MODELING THE FATE OF TOXIC ORGANIC MATERIALS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Documentation is given for PEST, a dynamic simulation model for evaluating the fate of toxic organic materials (TOM) in freshwater environments. PEST represents the time-varying concentration (in ppm) of a given TOM in each of as many as 16 carrier compartments; it also computes ...

  1. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-05-01

    Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.

  2. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  3. Comparison of the contributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and other unintentionally produced persistent organic pollutants to the total toxic equivalents in air of steel plant areas.

    PubMed

    Li, Sumei; Liu, Guorui; Zheng, Minghui; Liu, Wenbin; Wang, Mei; Xiao, Ke; Li, Changliang; Wang, Yiwen

    2015-05-01

    The concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and the "dioxin-like" (dl) compounds polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), polybrominated dibenzo-p-dioxins (PBDDs), and dibenzofurans (PBDFs), were determined in the air samples collected from six steel plants. The toxic equivalent (TEQ) concentrations of the PCDDs, PCDFs, dl-PCBs, dl-PCNs, PBDDs, and PBDFs in the air were 0.01-0.19 pg WHO-TEQ Nm(-3), 0.01-0.69 pg WHO-TEQN m(-3), 0.001-0.089 pg WHO-TEQ Nm(-3), 0.002-0.011 pg TEQ Nm(-3), 0.004-0.02 pg TEQ Nm(-3), and 0.02-0.12 pg TEQ Nm(-3), respectively. The PCNs were the most abundant compounds (by mass concentration), contributing about 87% of the total mass concentrations of the analytes that were found in the air of the steel plant areas. The PCDFs contributed about 47% of the total TEQs, following by the PBDFs (28%) and the PCDDs (18%). The dioxin-like compounds together contributed up to 40% of the total TEQs, so their contributions to the toxic effects that could be caused by exposure to the air of the steel plant areas were significant. The congener profiles in the air were similar to the congener profiles that were found in stack gas emissions, indicating that the steelmaking plants were possible sources of the PCDDs, PCDFs, and dioxin-like compounds that were found in the air of the steel plant areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Air conditioning systems as non-infectious health hazards inducing acute respiratory symptoms.

    PubMed

    Gerber, Alexander; Fischer, Axel; Willig, Karl-Heinz; Groneberg, David A

    2006-04-01

    Chronic and acute exposure to toxic aerosols belongs to frequent causes of airway diseases. However, asthma attacks due to long-distance inhalative exposure to organic solvents, transmitted via an air condition system, have not been reported so far. The present case illustrates the possibility of air conditioning systems as non-infectious health hazards in occupational medicine. So far, only infectious diseases such as legionella pneumophila pneumonia have commonly been associated to air-conditioning exposures but physicians should be alert to the potential of transmission of toxic volatile substances via air conditioning systems. In view of the events of the 11th of September 2001 with a growing danger of large building terrorism which may even use air conditioning systems to transmit toxins, facility management security staff should be alerted to possible non-infectious toxic health hazards arising from air-conditioning systems.

  5. The comparative toxicity of operational Air Force hydraulic fluids.

    PubMed

    Mattie, D R; Hoeflich, T J; Jones, C E; Horton, M L; Whitmire, R E; Godin, C S; Flemming, C D; Andersen, M E

    1993-01-01

    The subchronic (26 day) oral toxicities of two AF hydraulic fluids (MIL-H-5606 [H5], MIL-H-83282 [H8]), a commercial phosphate ester (PE), and two candidate hydraulic fluids (low temperature version of MIL-H-83282 [LT] and chlorotrifluorethylene oligomers [polyCTFE]) were compared in male F-344 rats. Oral dosing was used in order to quickly compare these fluids to PolyCTFE, the only fluid at the time to have been tested in a 90-day inhalation study. Rats were initially dosed with 1.0 g/kg/day of each fluid. H8 increased alkaline phosphatase (ALKP) while LT produced an anemia and leukocytosis. Exposure to H5 fluid resulted in lymphocytopenia and persistent diuresis. Due to their greater toxicity, resulting in lethality in the first dosing study, only 0.5 g/kg/day of PE and PolyCTFE were administered in the second study. Exposure to PE (0.5 g/kg) resulted in an anemia and decreases in BW (day 10 until day 25), spleen/BW ratio, blood urea nitrogen (BUN), and creatinine (CREAT). PolyCREAT (0.5 g/kg) decreased BW (day 11 to the end of the study) and testicular weight. PolyCTFE (0.5 g/kg) increased relative spleen weights, various clinical chemistry parameters, and triggered a reversible diuresis. PolyCTFE (0.5 g/kg), PE (0.5 g/kg), and H5 produced an increase in absolute and relative liver weights compared to control livers. Peroxisomal beta oxidation, an indicator of peroxisomal proliferation, was significantly increased above control levels in the livers of all rats except the PE (0.5 g/kg) group, where the increase was not significant. Hydrocarbon nephropathy, indicated by increased levels of hyaline droplets in kidney tubules, was severe in H5, mild in H8, LT, and PolyCTFE (0.5 g/kg), and minimal in PE (0.5 g/kg). The MIL-H-83282 fluids (H8 and LT) were the least toxic hydraulic fluids. PolyCTFE and PE were the most toxic, with H5 intermediate.

  6. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  7. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  8. Insights on in vitro models for safety and toxicity assessment of cosmetic ingredients.

    PubMed

    Almeida, Andreia; Sarmento, Bruno; Rodrigues, Francisca

    2017-03-15

    According to the current European legislation, the safety assessment of each individual cosmetic ingredient of any formulation is the basis for the safety evaluation of a cosmetic product. Also, animal testing in the European Union is prohibited for cosmetic ingredients and products since 2004 and 2009, respectively. Additionally, the commercialization of any cosmetic products containing ingredients tested on animal models was forbidden in 2009. In consequence of these boundaries, the European Centre for the Validation of Alternative Methods (ECVAM) proposes a list of validated cell-based in vitro models for predicting the safety and toxicity of cosmetic ingredients. These models have been demonstrated as valuable and effective tools to overcome the limitations of animal in vivo studies. Although the use of in vitro cell-based models for the evaluation of absorption and permeability of cosmetic ingredients is widespread, a detailed study on the properties of these platforms and the in vitro-in vivo correlation compared with human data are required. Moreover, additional efforts must be taken to develop in vitro models to predict carcinogenicity, repeat dose toxicity and reproductive toxicity, for which no alternative in vitro methods are currently available. This review paper summarizes and characterizes the most relevant in vitro models validated by ECVAM employed to predict the safety and toxicology of cosmetic ingredients. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Novel in vitro and mathematical models for the prediction of chemical toxicity.

    PubMed

    Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to

  10. Novel in vitro and mathematical models for the prediction of chemical toxicity

    PubMed Central

    Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to

  11. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  12. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  13. U.S. EPA Environmental Quality Index - Air Domain

    EPA Science Inventory

    This is an invited presentation by Region 5, Air Office, who asked me to provide an overview of the Air Domain and health results associated with the Air Domain of the Environmental Quality Index. Region 5 is hosting an Air Toxics meeting for its member states (Ohio, Michigan, I...

  14. An air brake model for longitudinal train dynamics studies

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Hu, Yang; Wu, Qing; Zhao, Xubao; Zhang, Jun; Zhang, Yuan

    2017-04-01

    Experience of heavy haul train operation shows that heavy haul train fatigue fracture of coupler and its related components, even the accidents are caused by excessive coupler force. The most economical and effective method to study on train longitudinal impulse by reducing the coupler force is simulation method. The characteristics of train air brake system is an important excitation source for the study of longitudinal impulse. It is very difficult to obtain the braking characteristic by the test method, a better way to get the input parameters of the excitation source in the train longitudinal dynamics is modelling the train air brake system. In this paper, the air brake system model of integrated system of air brake and longitudinal dynamics is introduced. This introduce is focus on the locomotive automatic brake valve and vehicle distribution valve model, and the comparative analysis of the simulation and test results of the braking system is given. It is proved that the model can predict the characteristics of train braking system. This method provides a good solution for the excitation source of longitudinal dynamic analysis system.

  15. A Risk-based Assessment And Management Framework For Multipollutant Air Quality

    PubMed Central

    Frey, H. Christopher; Hubbell, Bryan

    2010-01-01

    The National Research Council recommended both a risk- and performance-based multipollutant approach to air quality management. Specifically, management decisions should be based on minimizing the exposure to, and risk of adverse effects from, multiple sources of air pollution and that the success of these decisions should be measured by how well they achieved this objective. We briefly describe risk analysis and its application within the current approach to air quality management. Recommendations are made as to how current practice could evolve to support a fully risk- and performance-based multipollutant air quality management system. The ability to implement a risk assessment framework in a credible and policy-relevant manner depends on the availability of component models and data which are scientifically sound and developed with an understanding of their application in integrated assessments. The same can be said about accountability assessments used to evaluate the outcomes of decisions made using such frameworks. The existing risk analysis framework, although typically applied to individual pollutants, is conceptually well suited for analyzing multipollutant management actions. Many elements of this framework, such as emissions and air quality modeling, already exist with multipollutant characteristics. However, the framework needs to be supported with information on exposure and concentration response relationships that result from multipollutant health studies. Because the causal chain that links management actions to emission reductions, air quality improvements, exposure reductions and health outcomes is parallel between prospective risk analyses and retrospective accountability assessments, both types of assessment should be placed within a single framework with common metrics and indicators where possible. Improvements in risk reductions can be obtained by adopting a multipollutant risk analysis framework within the current air quality management

  16. 1990 Clean Air Act Amendment Summary: Title II

    EPA Pesticide Factsheets

    This page provides an overview of the 1990 amendments to Title II of the Clean Air Act, which were enacted to curb acid rain, urban air pollution and toxic air emissions. The edits to this title deal emissions from mobile sources.

  17. 1990 Clean Air Act Amendment Summary: Title IV

    EPA Pesticide Factsheets

    This page provides an overview of the 1990 amendments to Title IV of the Clean Air Act, which were enacted to curb acid rain, urban air pollution and toxic air emissions. The edits to this title deal with acid deposition control.

  18. 1990 Clean Air Act Amendment Summary: Title VII

    EPA Pesticide Factsheets

    This page provides an overview of the 1990 amendments to Title VII of the Clean Air Act, which were enacted to curb acid rain, urban air pollution and toxic air emissions. The edits to this title deal with enforcement provisions.

  19. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  20. Evaluation of regional climate simulations for air quality modelling purposes

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand

    2013-05-01

    In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.

  1. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4′-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1–3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA’s. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as “expression signatures”. The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with

  2. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-05-25

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4'-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis

  3. Recent Enhancements to the Community Multiscale Air Quality Model (CMAQ)

    EPA Science Inventory

    This presentation overviews recent updates to the CMAQ modeling system. The presentation will be given as part of the information exchange session on Regional Air Pollution Modeling at the UK-US Collaboration Meeting on Air Pollution Exposure Science.

  4. Framework for a Quantitative Systemic Toxicity Model (FutureToxII)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  5. Robust geographically weighted regression of modeling the Air Polluter Standard Index (APSI)

    NASA Astrophysics Data System (ADS)

    Warsito, Budi; Yasin, Hasbi; Ispriyanti, Dwi; Hoyyi, Abdul

    2018-05-01

    The Geographically Weighted Regression (GWR) model has been widely applied to many practical fields for exploring spatial heterogenity of a regression model. However, this method is inherently not robust to outliers. Outliers commonly exist in data sets and may lead to a distorted estimate of the underlying regression model. One of solution to handle the outliers in the regression model is to use the robust models. So this model was called Robust Geographically Weighted Regression (RGWR). This research aims to aid the government in the policy making process related to air pollution mitigation by developing a standard index model for air polluter (Air Polluter Standard Index - APSI) based on the RGWR approach. In this research, we also consider seven variables that are directly related to the air pollution level, which are the traffic velocity, the population density, the business center aspect, the air humidity, the wind velocity, the air temperature, and the area size of the urban forest. The best model is determined by the smallest AIC value. There are significance differences between Regression and RGWR in this case, but Basic GWR using the Gaussian kernel is the best model to modeling APSI because it has smallest AIC.

  6. ROLE OF MODELS IN AIR QUALITY MANAGEMENT DECISIONS

    EPA Science Inventory

    Within the frame of the US-India bilateral agreement on environmental cooperation, a team of US scientists have been helping India in designing emission control policies to address urban air quality problems. This presentation discusses how air quality models need to be used for ...

  7. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    PubMed

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  9. Formaldehyde: a candidate toxic air contaminant. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  10. EVALUATING AND USING AIR QUALITY MODELS

    EPA Science Inventory

    Grid-based models are being used to assess the magnitude of the pollution problem and to design emission control strategies to achieve compliance with the relevant air quality standards in the United States.

  11. Spatial Allocator for air quality modeling

    EPA Pesticide Factsheets

    The Spatial Allocator is a set of tools that helps users manipulate and generate data files related to emissions and air quality modeling without requiring the use of a commercial Geographic Information System.

  12. Air freight demand models: An overview

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bernstein, G. W.

    1978-01-01

    A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems are reviewed, with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources, without which the calibration, validation and the testing of both modal split and simulation models would be impossible are also reviewed.

  13. Toxicity of food-relevant nanoparticles in intestinal epithelial models

    NASA Astrophysics Data System (ADS)

    McCracken, Christie

    Nanoparticles are increasingly being incorporated into common consumer products, including in foods and food packaging, for their unique properties at the nanoscale. Food-grade silica and titania are used as anti-caking and whitening agents, respectively, and these particle size distributions are composed of approximately one-third nanoparticles. Zinc oxide and silver nanoparticles can be used for their antimicrobial properties. However, little is known about the interactions of nanoparticles in the body upon ingestion. This study was performed to investigate the role of nanoparticle characteristics including surface chemistry, dissolution, and material type on toxicity to the intestinal epithelium. Only mild acute toxicity of zinc oxide nanoparticles was observed after 24-hour treatment of intestinal epithelial C2BBe1 cells based on the results of toxicity assays measuring necrosis, apoptosis, membrane damage, and mitochondrial activity. Silica and titanium dioxide nanoparticles were not observed to be toxic although all nanoparticles were internalized by cells. In vitro digestion of nanoparticles in solutions representing the stomach and intestines prior to treatment of cells did not alter nanoparticle toxicity. Long-term repeated treatment of cells weekly for 24 hours with nanoparticles did not change nanoparticle cytotoxicity or the growth rate of the treated cell populations. Thus, silica, titanium dioxide, and zinc oxide nanoparticles were found to induce little toxicity in intestinal epithelial cells. Fluorescent silica nanoparticles were synthesized as a model for silica used in foods that could be tracked in vitro and in vivo. To maintain an exterior of pure silica, a silica shell was hydrolyzed around a core particle of quantum dots or a fluorescent dye electrostatically associated with a commercial silica particle. The quantum dots used were optimized from a previously reported microwave quantum dot synthesis to a quantum yield of 40%. Characterization

  14. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Bryan; Thomas, Dennis G.; Chikkagoudar, Satish

    The integration of rapid assays, large data sets, informatics and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality, were established at realistic exposure levels and used to develop a predictive model of nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both core composition and outermost surface chemistrymore » of nanomaterials. The resulting clusters guided the development of a predictive model of gold nanoparticle toxicity to embryonic zebrafish. In addition, our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. These findings reveal the need to expeditiously increase the availability of quantitative measures of nanomaterial hazard and broaden the sharing of that data and knowledge to support predictive modeling. In addition, research should continue to focus on methodologies for developing predictive models of nanomaterial hazard based on sub-lethal responses to low dose exposures.« less

  15. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    DOE PAGES

    Harper, Bryan; Thomas, Dennis G.; Chikkagoudar, Satish; ...

    2015-06-04

    The integration of rapid assays, large data sets, informatics and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality, were established at realistic exposure levels and used to develop a predictive model of nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both core composition and outermost surface chemistrymore » of nanomaterials. The resulting clusters guided the development of a predictive model of gold nanoparticle toxicity to embryonic zebrafish. In addition, our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. These findings reveal the need to expeditiously increase the availability of quantitative measures of nanomaterial hazard and broaden the sharing of that data and knowledge to support predictive modeling. In addition, research should continue to focus on methodologies for developing predictive models of nanomaterial hazard based on sub-lethal responses to low dose exposures.« less

  16. Use of Segregation Indices, Townsend Index, and Air Toxics Data to Assess Lifetime Cancer Risk Disparities in Metropolitan Charleston, South Carolina, USA

    PubMed Central

    Rice, LaShanta J.; Jiang, Chengsheng; Wilson, Sacoby M.; Burwell-Naney, Kristen; Samantapudi, Ashok; Zhang, Hongmei

    2014-01-01

    Background: Studies have demonstrated a relationship between segregation and level of education, occupational opportunities, and risk behaviors, yet a paucity of research has elucidated the association between racial residential segregation, socioeconomic deprivation, and lifetime cancer risk. Objectives: We examined estimated lifetime cancer risk from air toxics by racial composition, segregation, and deprivation in census tracts in Metropolitan Charleston. Methods: Segregation indices were used to measure the distribution of groups of people from different races within neighborhoods. The Townsend Index was used to measure economic deprivation in the study area. Poisson multivariate regressions were applied to assess the association of lifetime cancer risk with segregation indices and Townsend Index along with several sociodemographic measures. Results: Lifetime cancer risk from all pollution sources was 28 persons/million for half of the census tracts in Metropolitan Charleston. Isolation Index and Townsend Index both showed significant correlation with lifetime cancer risk from different sources. This significance still holds after adjusting for other sociodemographic measures in a Poisson regression, and these two indices have stronger effect on lifetime cancer risk compared to the effects of sociodemographic measures. Conclusions: We found that material deprivation, measured by the Townsend Index and segregation measured by the Isolation index, introduced high impact on lifetime cancer risk by air toxics at the census tract level. PMID:24852759

  17. Using biotic ligand models to predict metal toxicity in mineralized systems

    USGS Publications Warehouse

    Smith, Kathleen S.; Balistrieri, Laurie S.; Todd, Andrew S.

    2015-01-01

    The biotic ligand model (BLM) is a numerical approach that couples chemical speciation calculations with toxicological information to predict the toxicity of aquatic metals. This approach was proposed as an alternative to expensive toxicological testing, and the U.S. Environmental Protection Agency incorporated the BLM into the 2007 revised aquatic life ambient freshwater quality criteria for Cu. Research BLMs for Ag, Ni, Pb, and Zn are also available, and many other BLMs are under development. Current BLMs are limited to ‘one metal, one organism’ considerations. Although the BLM generally is an improvement over previous approaches to determining water quality criteria, there are several challenges in implementing the BLM, particularly at mined and mineralized sites. These challenges include: (1) historically incomplete datasets for BLM input parameters, especially dissolved organic carbon (DOC), (2) several concerns about DOC, such as DOC fractionation in Fe- and Al-rich systems and differences in DOC quality that result in variations in metal-binding affinities, (3) water-quality parameters and resulting metal-toxicity predictions that are temporally and spatially dependent, (4) additional influences on metal bioavailability, such as multiple metal toxicity, dietary metal toxicity, and competition among organisms or metals, (5) potential importance of metal interactions with solid or gas phases and/or kinetically controlled reactions, and (6) tolerance to metal toxicity observed for aquatic organisms living in areas with elevated metal concentrations.

  18. Intradermal air pouch leukocytosis as an in vivo test for nanoparticles

    PubMed Central

    Vandooren, Jennifer; Berghmans, Nele; Dillen, Chris; Van Aelst, Ilse; Ronsse, Isabelle; Israel, Liron Limor; Rosenberger, Ina; Kreuter, Jörg; Lellouche, Jean-Paul; Michaeli, Shulamit; Locatelli, Erica; Franchini, Mauro Comes; Aiertza, Miren K; Sánchez-Abella, Laura; Loinaz, Iraida; Edwards, Dylan R; Shenkman, Louis; Opdenakker, Ghislain

    2013-01-01

    The need for test systems for nanoparticle biocompatibility, toxicity, and inflammatory or adaptive immunological responses is paramount. Nanoparticles should be free of microbiological and chemical contaminants, and devoid of toxicity. Nevertheless, in the absence of contamination, these particles may still induce undesired immunological effects in vivo, such as enhanced autoimmunity, hypersensitivity reactions, and fibrosis. Here we show that artificial particles of specific sizes affect immune cell recruitment as tested in a dermal air pouch model in mice. In addition, we demonstrate that the composition of nanoparticles may influence immune cell recruitment in vivo. Aside from biophysical characterizations in terms of hydrodynamic diameter, zeta potential, concentration, and atomic concentration of metals, we show that – after first-line in vitro assays – characterization of cellular and molecular effects by dermal air pouch analysis is straightforward and should be included in the quality control of nanoparticles. We demonstrate this for innate immunological effects such as neutrophil recruitment and the production of immune-modulating matrix metalloproteases such as MMP-9; we propose the use of air pouch leukocytosis analysis as a future standard assay. PMID:24379662

  19. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used

  20. Use of the Zebrafish Larvae as a Model to Study Cigarette Smoke Condensate Toxicity

    PubMed Central

    Ellis, Lee D.; Soo, Evelyn C.; Achenbach, John C.; Morash, Michael G.; Soanes, Kelly H.

    2014-01-01

    The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products. PMID:25526262

  1. Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity.

    PubMed

    Ellis, Lee D; Soo, Evelyn C; Achenbach, John C; Morash, Michael G; Soanes, Kelly H

    2014-01-01

    The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products.

  2. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  3. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  4. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  5. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  6. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  7. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  8. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  9. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  10. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  11. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  12. Modeling of lead air pollution. [Baton Rouge, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteith, C.S.; Henry, J.M.

    1982-05-01

    A study was performed to determine whether vehicular emissions should be included with industrial emissions when demonstrating attainment of the ambient air quality standard for lead. The impact on ambient lead concentrations of the phaseout of leaded gasoline and improved automobile fuel economy was examined by modeling vehicular emissions for 1972 and 1978. Results show that while automobiles in the Baton Rouge area were a significant source of lead in 1972, the phaseout of leaded gasoline and the increase in fuel economy have resulted in a lower contribution (0.20 ..mu..g/m/sup 3/) by automobiles to the ambient lead concentration in 1978.more » The areas having the greatest potential for exceeding the ambient air quality standard can be identified using CDM (EPA's Climatological Dispersion Model). This information can be used to determine the optimal location for an ambient air monitor to demonstrate compliance with the ambient air quality standard. 9 references, 4 figures, 5 tables. (JMT)« less

  13. Indoor Air Quality Building Education and Assessment Model Forms

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  14. Thermal Stress and Toxicity | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  15. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.

    PubMed

    Concu, Riccardo; Kleandrova, Valeria V; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2017-09-01

    Nanoparticles (NPs) are part of our daily life, having a wide range of applications in engineering, physics, chemistry, and biomedicine. However, there are serious concerns regarding the harmful effects that NPs can cause to the different biological systems and their ecosystems. Toxicity testing is an essential step for assessing the potential risks of the NPs, but the experimental assays are often very expensive and usually too slow to flag the number of NPs that may cause adverse effects. In silico models centered on quantitative structure-activity/toxicity relationships (QSAR/QSTR) are alternative tools that have become valuable supports to risk assessment, rationalizing the search for safer NPs. In this work, we develop a unified QSTR-perturbation model based on artificial neural networks, aimed at simultaneously predicting general toxicity profiles of NPs under diverse experimental conditions. The model is derived from 54,371 NP-NP pair cases generated by applying the perturbation theory to a set of 260 unique NPs, and showed an accuracy higher than 97% in both training and validation sets. Physicochemical interpretation of the different descriptors in the model are additionally provided. The QSTR-perturbation model is then employed to predict the toxic effects of several NPs not included in the original dataset. The theoretical results obtained for this independent set are strongly consistent with the experimental evidence found in the literature, suggesting that the present QSTR-perturbation model can be viewed as a promising and reliable computational tool for probing the toxicity of NPs.

  16. A comparison of self reported air pollution problems and GIS-modeled levels of air pollution in people with and without chronic diseases

    PubMed Central

    Piro, Fredrik Niclas; Madsen, Christian; Næss, Øyvind; Nafstad, Per; Claussen, Bjørgulf

    2008-01-01

    Objective To explore various contributors to people's reporting of self reported air pollution problems in area of living, including GIS-modeled air pollution, and to investigate whether those with respiratory or other chronic diseases tend to over-report air pollution problems, compared to healthy people. Methods Cross-sectional data from the Oslo Health Study (2000–2001) were linked with GIS-modeled air pollution data from the Norwegian Institute of Air Research. Multivariate regression analyses were performed. 14 294 persons aged 30, 40, 45, 60 or 75 years old with complete information on modeled and self reported air pollution were included. Results People who reported air pollution problems were exposed to significantly higher GIS-modeled air pollution levels than those who did not report such problems. People with chronic disease, reported significantly more air pollution problems after adjustment for modeled levels of nitrogen dioxides, socio-demographic variables, smoking, depression, dwelling conditions and an area deprivation index, even if they had a non-respiratory disease. No diseases, however, were significantly associated with levels of nitrogen dioxides. Conclusion Self reported air pollution problems in area of living are strongly associated with increased levels of GIS-modeled air pollution. Over and above this, those who report to have a chronic disease tend to report more air pollution problems in area of living, despite no significant difference in air pollution exposure compared to healthy people, and no associations between these diseases and NO2. Studies on the association between self reported air pollution problems and health should be aware of the possibility that disease itself may influence the reporting of air pollution. PMID:18307757

  17. Innovations in projecting emissions for air quality modeling ...

    EPA Pesticide Factsheets

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  18. Validation of air traffic controller workload models

    DOT National Transportation Integrated Search

    1979-09-01

    During the past several years, computer models have been developed for off-site : estimat ion of control ler's workload. The inputs to these models are audio and : digital data normally recorded at an Air Route Traffic Control Center (ARTCC). : This ...

  19. ESTIMATION OF CHEMICAL TOXICITY TO WILDLIFE SPECIES USING INTERSPECIES CORRELATION MODELS

    EPA Science Inventory

    Ecological risks to wildlife are typically assessed using toxicity data for relataively few species and with limited understanding of differences in species sensitivity to contaminants. Empirical interspecies correlation models were derived from LD50 values for 49 wildlife speci...

  20. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  1. Editor's Highlight: Transgenic Zebrafish Reporter Lines as Alternative In Vivo Organ Toxicity Models.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Lee, Serene G P; Ng, Ashley S; Goh, Wei Huang; Zhao, Zhonghua; Al-Haddawi, Muthafar; Wang, Haishan; Mathavan, Sinnakaruppan; Ingham, Philip W; McGinnis, Claudia; Carney, Tom J

    2017-03-01

    Organ toxicity, particularly liver toxicity, remains one of the major reasons for the termination of drug candidates in the development pipeline as well as withdrawal or restrictions of marketed drugs. A screening-amenable alternative in vivo model such as zebrafish would, therefore, find immediate application in the early prediction of unacceptable organ toxicity. To identify highly upregulated genes as biomarkers of toxic responses in the zebrafish model, a set of well-characterized reference drugs that cause drug-induced liver injury (DILI) in the clinic were applied to zebrafish larvae and adults. Transcriptome microarray analysis was performed on whole larvae or dissected adult livers. Integration of data sets from different drug treatments at different stages identified common upregulated detoxification pathways. Within these were candidate biomarkers which recurred in multiple treatments. We prioritized 4 highly upregulated genes encoding enzymes acting in distinct phases of the drug metabolism pathway. Through promoter isolation and fosmid recombineering, eGFP reporter transgenic zebrafish lines were generated and evaluated for their response to DILI drugs. Three of the 4 generated reporter lines showed a dose and time-dependent induction in endodermal organs to reference drugs and an expanded drug set. In conclusion, through integrated transcriptomics and transgenic approaches, we have developed parallel independent zebrafish in vivo screening platforms able to predict organ toxicities of preclinical drugs. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Comorbid rat model of ischemia and β-amyloid toxicity: striatal and cortical degeneration.

    PubMed

    Amtul, Zareen; Whitehead, Shawn N; Keeley, Robin J; Bechberger, John; Fisher, Alicia L; McDonald, Robert J; Naus, Christian C; Munoz, David G; Cechetto, David F

    2015-01-01

    Levels of cerebral amyloid, presumably β-amyloid (Abeta), toxicity and the incidence of cortical and subcortical ischemia increases with age. However, little is known about the severe pathological condition and dementia that occur as a result of the comorbid occurrence of this vascular risk factor and Abeta toxicity. Clinical studies have indicated that small ischemic lesions in the striatum are particularly important in generating dementia in combination with minor amyloid lesions. These cognitive deficits are highly likely to be caused by changes in the cortex. In this study, we examined the viability and morphological changes in microglial and neuronal cells, gap junction proteins (connexin43) and neuritic/axonal retraction (Fer Kinase) in the striatum and cerebral cortex using a comorbid rat model of striatal injections of endothelin-1 (ET1) and Abeta toxicity. The results demonstrated ventricular enlargement, striatal atrophy, substantial increases in β-amyloid, ramified microglia and increases in neuritic retraction in the combined models of stroke and Abeta toxicity. Changes in connexin43 occurred equally in both groups of Abeta-treated rats, with and without focal ischemia. Although previous behavioral tests demonstrated impairment in memory and learning, the visual discrimination radial maze task did not show significant difference, suggesting the cognitive impairment in these models is not related to damage to the dorsolateral striatum. These results suggest an insight into the relationship between cortical/striatal atrophy, pathology and functional impairment. © 2014 International Society of Neuropathology.

  3. The acute toxicity of local anesthetics.

    PubMed

    Mather, Laurence E

    2010-11-01

    Systemic toxicity, usually from overdose or intravascular dose, is feared because it mainly affects the heart and brain, and may be acutely life-threatening. Pharmacological studies of local anesthetic toxicity have largely been reviewed primarily relating to the evaluation of ropivacaine and levobupivacaine during the past decade. This review/opinion focuses more on the principles and concepts underlying the main models used, from chemical pharmacological and pharmacokinetic perspectives. Research models required to produce pivotal toxicity data are discussed. The potencies for neural blockade and systemic toxicity are associated across virtually all models, with some deviations through molecular stereochemistry. These models show that all local anesthetics can produce direct cardiovascular system toxicity and CNS excitotoxicity that may further affect the cardiovascular system response. Whereas the longer-acting local anesthetics are more likely to cause cardiac death by malignant arrhythmias, the shorter-acting agents are more likely to cause cardiac contraction failure. In most models, equi-anesthetic doses of ropivacaine and levobupivacaine are less likely to produce serious toxicity than bupivacaine. Of the various models, this reviewer favors a whole-body large animal preparation because of the comprehensive data collection possible. The conscious sheep preparation has contributed more than any other, and may be regarded as the de facto 'standard' experimental model for concurrent study of local anesthetic toxicity ± pharmacokinetics, using experimental designs that can reproduce the toxicity seen in clinical accidents.

  4. Danger in the Air: Air Pollution and Cognitive Dysfunction.

    PubMed

    Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Borin, Gemma

    2018-01-01

    Clean air is considered to be a basic requirement for human health and well-being. To examine the relationship between cognitive performance and ambient pollution exposure. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Air pollution is a multifaceted toxic chemical mixture capable of assaulting the central nervous system. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on cognitive function in both adults and children. Consistent evidence showed that exposure to air pollution, specifically exposure to particulate matter, caused poor age-related cognitive performance. Living in areas with high levels of air pollution has been linked to markers of neuroinflammation and neuropathology that are associated with neurodegenerative conditions such as Alzheimer's disease-like brain pathologies.

  5. Modeling green infrastructure land use changes on future air ...

    EPA Pesticide Factsheets

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  6. Development and application of air quality models at the US ...

    EPA Pesticide Factsheets

    Overview of the development and application of air quality models at the U.S. EPA, particularly focused on the development and application of the Community Multiscale Air Quality (CMAQ) model developed within the Computation Exposure Division (CED) of the National Exposure Research Laboratory (NERL). This presentation will provide a simple overview of air quality model development and application geared toward a non-technical student audience. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  7. Past, present and emerging toxicity issues for jet fuel.

    PubMed

    Mattie, David R; Sterner, Teresa R

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Past, present and emerging toxicity issues for jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattie, David R., E-mail: david.mattie@wpafb.af.mil; Sterner, Teresa R.

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8more » and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.« less

  9. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    EPA Science Inventory

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  10. 1990 Clean Air Act Amendment Summary: Title VI

    EPA Pesticide Factsheets

    This page provides an overview of the 1990 amendments to Title VI of the Clean Air Act, which were enacted to curb acid rain, urban air pollution and toxic air emissions. The edits to this title deal with stratospheric ozone and global climate protection.

  11. Likelihood of achieving air quality targets under model uncertainties.

    PubMed

    Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W

    2011-01-01

    Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.

  12. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization

    PubMed Central

    Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton

    2016-01-01

    Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972

  13. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models.

    PubMed

    Perreault, François; Melegari, Silvia Pedroso; Fuzinatto, Cristiane Funghetto; Bogdan, Nicoleta; Morin, Mario; Popovic, Radovan; Matias, William Gerson

    2014-03-01

    Polyamidoamine (PAMAM) dendrimers are used for many pharmaceutical and biomedical applications. However, the toxicological risks of several PAMAM-based compounds are still not fully evaluated, despite evidences of PAMAM deleterious effects on biological membranes, leading to toxicity. In this report, we investigated the toxicity of generation 0 PAMAM-coated gold nanoparticles (AuG0 NPs) in four different models to determine how different cellular systems are affected by PAMAM-coated NPs. Toxicity was evaluated in two mammalian cell lines, Neuro 2A and Vero, in the green alga Chlamydomonas reinhardtii and the bacteria Vibrio fischeri. AuG0 NP treatments reduced cell metabolic activity in algal and bacterial cells, measured by esterase enzymatic activity (C. reinhardtii) and luminescence emission (V. fischeri). EC50 value after 30 min of treatment was similar in both organisms, with 0.114 and 0.167 mg mL(-1) for C. reinhardtii and V. fischeri, respectively. On the other hand, AuG0 NPs induced no change of mitochondrial activity in mammalian cells after 24 h of treatment to up to 0.4 mg mL(-1) AuG0 NPs. Change in the absorption spectra of AuG0 NP in the mammalian cell culture media may indicate an alteration of NP properties that contributed to the low toxicity of AuG0 NPs in mammalian cells. For a safe development of PAMAM-based nanomaterials, the difference of sensitivity between mammalian and microbial cells, as well as the modulation of NPs toxicity by medium properties, should be taken into account when designing PAMAM NPs for applications that may lead to their introduction in the environment. Copyright © 2012 Wiley Periodicals, Inc.

  14. Embryonic Zebrafish Model - A Well-Established Method for Rapidly Assessing the Toxicity of Homeopathic Drugs: - Toxicity Evaluation of Homeopathic Drugs Using Zebrafish Embryo Model.

    PubMed

    Gupta, Himanshu R; Patil, Yogesh; Singh, Dipty; Thakur, Mansee

    2016-12-01

    model is recommended as a well-established method for rapidly assessing the toxicity of homeopathic drugs.

  15. Future directions of meteorology related to air-quality research.

    PubMed

    Seaman, Nelson L

    2003-06-01

    Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.

  16. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  17. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  18. Complex versus simple models: ion-channel cardiac toxicity prediction.

    PubMed

    Mistry, Hitesh B

    2018-01-01

    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  19. Developing predictive models for toxicity of organic chemicals to green algae based on mode of action.

    PubMed

    Bakire, Serge; Yang, Xinya; Ma, Guangcai; Wei, Xiaoxuan; Yu, Haiying; Chen, Jianrong; Lin, Hongjun

    2018-01-01

    Organic chemicals in the aquatic ecosystem may inhibit algae growth and subsequently lead to the decline of primary productivity. Growth inhibition tests are required for ecotoxicological assessments for regulatory purposes. In silico study is playing an important role in replacing or reducing animal tests and decreasing experimental expense due to its efficiency. In this work, a series of theoretical models was developed for predicting algal growth inhibition (log EC 50 ) after 72 h exposure to diverse chemicals. In total 348 organic compounds were classified into five modes of toxic action using the Verhaar Scheme. Each model was established by using molecular descriptors that characterize electronic and structural properties. The external validation and leave-one-out cross validation proved the statistical robustness of the derived models. Thus they can be used to predict log EC 50 values of chemicals that lack authorized algal growth inhibition values (72 h). This work systematically studied algal growth inhibition according to toxic modes and the developed model suite covers all five toxic modes. The outcome of this research will promote toxic mechanism analysis and be made applicable to structural diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening

    EPA Pesticide Factsheets

    The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening (Presented by Maria Bondesson Bolin, Ph.D, University of Houston, Center for Nuclear Receptors and Cell Signaling) (3/22/2012)

  1. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  2. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  3. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  4. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  5. How Good and Useful Are Air Pollution Models?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    The Regional Air Pollution Study (RAPS) to be conducted in St. Louis, is the largest air monitoring program of the Environmental Protection Agency. A key segment will be the collection of a data base on which this system of mathematical models can be tested and upon which submodels can be validated. (BL)

  6. The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity.

    PubMed

    Colombo, Andrea; Benfenati, Emilio; Karelson, Mati; Maran, Uko

    2008-06-01

    One of the challenges in the field of quantitative structure-activity relationship (QSAR) analysis is the correct classification of a chemical compound to an appropriate model for the prediction of activity. Thus, in previous studies, compounds have been divided into distinct groups according to their mode of action or chemical class. In the current study, theoretical molecular descriptors were used to divide 568 organic substances into subsets with toxicity measured for the 96-h lethal median concentration for the Fathead minnow (Pimephales promelas). Simple constitutional descriptors such as the number of aliphatic and aromatic rings and a quantum chemical descriptor, maximum bond order of a carbon atom divide compounds into nine subsets. For each subset of compounds the automatic forward selection of descriptors was applied to construct QSAR models. Significant correlations were achieved for each subset of chemicals and all models were validated with the leave-one-out internal validation procedure (R(2)(cv) approximately 0.80). The results encourage to consider this alternative way for the prediction of toxicity using QSAR subset models without direct reference to the mechanism of toxic action or the traditional chemical classification.

  7. Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method.

    PubMed

    Zhang, Hui; Ren, Ji-Xia; Kang, Yan-Li; Bo, Peng; Liang, Jun-Yu; Ding, Lan; Kong, Wei-Bao; Zhang, Ji

    2017-08-01

    Toxicological testing associated with developmental toxicity endpoints are very expensive, time consuming and labor intensive. Thus, developing alternative approaches for developmental toxicity testing is an important and urgent task in the drug development filed. In this investigation, the naïve Bayes classifier was applied to develop a novel prediction model for developmental toxicity. The established prediction model was evaluated by the internal 5-fold cross validation and external test set. The overall prediction results for the internal 5-fold cross validation of the training set and external test set were 96.6% and 82.8%, respectively. In addition, four simple descriptors and some representative substructures of developmental toxicants were identified. Thus, we hope the established in silico prediction model could be used as alternative method for toxicological assessment. And these obtained molecular information could afford a deeper understanding on the developmental toxicants, and provide guidance for medicinal chemists working in drug discovery and lead optimization. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  9. Modelling pesticide volatilization after soil application using the mechanistic model Volt'Air

    NASA Astrophysics Data System (ADS)

    Bedos, Carole; Génermont, Sophie; Le Cadre, Edith; Garcia, Lucas; Barriuso, Enrique; Cellier, Pierre

    Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH 3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to K h. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make

  10. A model for interprovincial air pollution control based on futures prices.

    PubMed

    Zhao, Laijun; Xue, Jian; Gao, Huaizhu Oliver; Li, Changmin; Huang, Rongbing

    2014-05-01

    Based on the current status of research on tradable emission rights futures, this paper introduces basic market-related assumptions for China's interprovincial air pollution control problem. The authors construct an interprovincial air pollution control model based on futures prices: the model calculated the spot price of emission rights using a classic futures pricing formula, and determined the identities of buyers and sellers for various provinces according to a partitioning criterion, thereby revealing five trading markets. To ensure interprovincial cooperation, a rational allocation result for the benefits from this model was achieved using the Shapley value method to construct an optimal reduction program and to determine the optimal annual decisions for each province. Finally, the Beijing-Tianjin-Hebei region was used as a case study, as this region has recently experienced serious pollution. It was found that the model reduced the overall cost of reducing SO2 pollution. Moreover, each province can lower its cost for air pollution reduction, resulting in a win-win solution. Adopting the model would therefore enhance regional cooperation and promote the control of China's air pollution. The authors construct an interprovincial air pollution control model based on futures prices. The Shapley value method is used to rationally allocate the cooperation benefit. Interprovincial pollution control reduces the overall reduction cost of SO2. Each province can lower its cost for air pollution reduction by cooperation.

  11. Evaluation of the Community Multiscale Air Quality (CMAQ) Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  12. Evaluation of the Community Multi-scale Air Quality Model Version 5.2

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Pr...

  13. Early Life Stress, Air Pollution, Inflammation, and Disease: An Integrative Review and Immunologic Model of Social-Environmental Adversity and Lifespan Health.

    PubMed

    Olvera Alvarez, Hector A; Kubzansky, Laura D; Campen, Matthew J; Slavich, George M

    2018-06-03

    Socially disadvantaged individuals are at greater risk for simultaneously being exposed to adverse social and environmental conditions. Although the mechanisms underlying joint effects remain unclear, one hypothesis is that toxic social and environmental exposures have synergistic effects on inflammatory processes that underlie the development of chronic diseases, including cardiovascular disease, diabetes, depression, and certain types of cancer. In the present review, we examine how exposure to two risk factors that commonly occur with social disadvantage-early life stress and air pollution-affect health. Specifically, we identify neuroimmunologic pathways that could link early life stress, inflammation, air pollution, and poor health, and use this information to propose an integrated, multi-level model that describes how these factors may interact and cause health disparity across individuals based on social disadvantage. This model highlights the importance of interdisciplinary research considering multiple exposures across domains and the potential for synergistic, cross-domain effects on health, and may help identify factors that could potentially be targeted to reduce disease risk and improve lifespan health. Copyright © 2018. Published by Elsevier Ltd.

  14. Development and analysis of air quality modeling simulations for hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Luecken, D. J.; Hutzell, W. T.; Gipson, G. L.

    The concentrations of five hazardous air pollutants were simulated using the community multi-scale air quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results are shown for formaldehyde, acetaldehyde, benzene, 1,3-butadiene and acrolein. Photochemical production in the atmosphere is predicted to dominate ambient formaldehyde and acetaldehyde concentrations, and to account for a significant fraction of ambient acrolein concentrations. Spatial and temporal variations are large throughout the domain over the year. Predicted concentrations are compared with observations for formaldehyde, acetaldehyde, benzene and 1,3-butadiene. Although the modeling results indicate an overall slight tendency towards underprediction, they reproduce episodic and seasonal behavior of pollutant concentrations at many monitors with good skill.

  15. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae.

    PubMed

    Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin

    2018-01-01

    The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Toxic Release Inventory Chemicals by Groupings

    EPA Pesticide Factsheets

    The Toxics Release Inventory (TRI) makes available information for more than 600 toxic chemicals that are being used, manufactured, treated, transported, or released into the environment since 1987. EPA makes changes (additions, deletions, or changes in definition) to the TRI chemical list. As a result, the TRI list of reportable toxic chemicals can vary from year to year. EPA created groupings such as the core chemical lists (of 1988, 1991, 1995, 1998, 2000, and 2001) to facilitate year-to-year comparison based on a consistent set of reporting requirements and assure that changes in TRI release or other waste management amounts do not reflect the addition, deletion, or change in definition of reportable chemicals. EPA also created groupings of specific chemicals of interest by categories such as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Hazardous Air Pollutants (HAPs), Metals, Newly Added TRI Chemicals in 1995, Occupational Safety and Health Administration (OSHA, Carcinogens), Persistent Bioaccumulative and Toxic (PBT) Chemicals, and Priority Chemicals.

  17. Toxicology of the air in closed spaces

    NASA Technical Reports Server (NTRS)

    Wands, R. C.

    1975-01-01

    Sources and identification of contaminants in artificial gas atmospheres are discussed. They include biological sources (microflora and man), materials, processes, aerosols, and malfunctions. Acute or chronic toxicity may result from spacecraft air contamination. Air quality standards are presented in tabular form.

  18. A physically based analytical spatial air temperature and humidity model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  19. USEtox - The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, Ralph K.; Bachmann, Till M.; Swirsky Gold, Lois

    2008-02-03

    Background, Aim and Scope. In 2005 a comprehensive comparison of LCIA toxicity characterisation models was initiated by the UNEP-SETAC Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON, and EcoSense. In this paper we describe this model-comparison process and its results--in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (i) to identify specific sources of differences between the models' results and structure, (ii) to detect the indispensable model components, and (iii) to build a scientific consensus model from them, representing recommended practice. Methods. Amore » chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Results. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than 2 orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment, or nesting an urban box in a continental box. Discussion. The precision of the new characterisation factors (CFs) is within a factor of 100-1000 for human health and 10-100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement

  20. On Regional Modeling to Support Air Quality Policies (book chapter)

    EPA Science Inventory

    We examine the use of the Community Multiscale Air Quality (CMAQ) model in simulating the changes in the extreme values of air quality that are of interest to the regulatory agencies. Year-to-year changes in ozone air quality are attributable to variations in the prevailing meteo...

  1. Control of asthma triggers in indoor air with air cleaners: a modeling analysis.

    PubMed

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; Macintosh, David L

    2008-08-06

    Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30-55% lower cat allergen levels, 90-99% lower risk of respiratory infection through the inhalation route of exposure, 90-98% lower environmental tobacco smoke (ETS) levels, and 50-75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice.

  2. Variability of LD50 Values from Rat Oral Acute Toxicity Studies: Implications for Alternative Model Development

    EPA Science Inventory

    Alternative models developed for estimating acute systemic toxicity are generally evaluated using in vivo LD50 values. However, in vivo acute systemic toxicity studies can produce variable results, even when conducted according to accepted test guidelines. This variability can ma...

  3. Microcomputer pollution model for civilian airports and Air Force Bases. Model application and background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal, H.M.

    1988-08-01

    This is one of three reports describing the Emissions and Dispersion Modeling System (EDMS). All reports use the same main title--A MICROCOMPUTER MODEL FOR CIVILIAN AIRPORTS AND AIR FORCE BASES--but different subtitles. The subtitles are: (1) USER'S GUIDE - ISSUE 2 (FAA-EE-88-3/ESL-TR-88-54); (2) MODEL DESCRIPTION (FAA-EE-88-4/ESL-TR-88-53); (S) MODEL APPLICATION AND BACKGROUND (FAA-EE-88-5/ESL-TR-88-55). The first and second reports above describe the EDMS model and provide instructions for its use. This is the third report. IT consists of an accumulation of five key documents describing the development and use of the EDMS model. This report is prepared in accordance with discussions withmore » the EPA and requirements outlined in the March 27, 1980 Federal Register for submitting air-quality models to the EPA. Contents: Model Development and Use - Its Chronology and Reports; Monitoring Concorde EMissions; The Influence of Aircraft Operations on Air Quality at Airports; Simplex A - A simplified Atmospheric Dispersion Model for Airport Use -(User's Guide); Microcomputer Graphics in Atmospheric Dispersion Modeling; Pollution from Motor Vehicles and Aircraft at Stapleton International Airport (Abbreviated Report).« less

  4. Environmental links to interannual variability in shellfish toxicity in Cobscook Bay and eastern Maine, a strongly tidally mixed coastal region

    NASA Astrophysics Data System (ADS)

    Horecka, Hannah M.; Thomas, Andrew C.; Weatherbee, Ryan A.

    2014-05-01

    The Gulf of Maine experiences annual closures of shellfish harvesting due to the accumulation of toxins produced by dinoflagellates of the genus Alexandrium. Factors controlling the timing, location, and magnitude of these events in eastern Maine remain poorly understood. Previous work identified possible linkages between interannual variability of oceanographic variables and shellfish toxicity along the western Maine coastline but no such linkages were evident along the eastern Maine coast in the vicinity of Cobscook Bay, where strong tidal mixing tends to reduce seasonal variability in oceanographic properties. Using 21 years (1985-2005) of shellfish toxicity data, interannual variability in two metrics of annual toxicity, maximum magnitude and total annual toxicity, from stations in the Cobscook Bay region are examined for relationships to a suite of available environmental variables. Consistent with earlier work, no (or only weak) correlations were found between toxicity and oceanographic variables, even those very proximate to the stations such as local sea surface temperature. Similarly no correlations were evident between toxicity and air temperature, precipitation or relative humidity. The data suggest possible connections to local river discharge, but plausible mechanisms are not obvious. Correlations between toxicity and two variables indicative of local meteorological conditions, dew point and atmospheric pressure, both suggest a link between increased toxicity in these eastern Maine stations and weather conditions characterized by clearer skies/drier air (or less stormy/humid conditions). As no correlation of opposite sign was evident between toxicity and local precipitation, one plausible link is through light availability and its positive impact on phytoplankton production in this persistently foggy section of coast. These preliminary findings point to both the value of maintaining long-term shellfish toxicity sampling and a need for inclusion of

  5. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  6. Toxicity data for modeling impacts of oil components in an Arctic ecosystem.

    PubMed

    Olsen, G H; Klok, C; Hendriks, A J; Geraudie, P; De Hoop, L; De Laender, F; Farmen, E; Grøsvik, B E; Hansen, B H; Hjorth, M; Jansen, C R; Nordtug, T; Ravagnan, E; Viaene, K; Carroll, J

    2013-09-01

    Ecological impact assessment modeling systems are valuable support tools for managing impacts from commercial activities on marine habitats and species. The inclusion of toxic effects modeling in these systems is predicated on the availability and quality of ecotoxicology data. Here we report on a data gathering exercise to obtain toxic effects data on oil compounds for a selection of cold-water marine species of fish and plankton associated with the Barents Sea ecosystem. Effects data were collated from historical and contemporary literature resources for the endpoints mortality, development, growth, bioaccumulation and reproduction. Evaluating the utility and applicability of these data for modeling, we find that data coverage is limited to a sub-set of the required endpoints. There is a need for new experimental studies for zooplankton focused on the endpoints development and bioaccumulation and for larvae and juvenile fish focused on growth and development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Maximizing sinter plant operating flexibility through emissions trading and air modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewe, G.J.; Wagner, J.A.; Heron, T.

    1998-12-31

    This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less

  8. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NO x in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R 2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy.

  9. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  10. Deriving Points of Departure and Performance Baselines for Predictive Modeling of Systemic Toxicity using ToxRefDB (SOT)

    EPA Science Inventory

    A primary goal of computational toxicology is to generate predictive models of toxicity. An elusive target of alternative test methods and models has been the accurate prediction of systemic toxicity points of departure (PoD). We aim not only to provide a large and valuable resou...

  11. Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2011-04-01

    Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.

  12. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors-abstract

    EPA Science Inventory

    The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset contain...

  13. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  14. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  15. Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results.

    PubMed

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur; Alimokhtari, Shahnaz; Kwon, Jaymin; Mohan, Krishnan; Harrington, Robert; Giovanetti, Robert; Cui, William; Afshar, Masoud; Maberti, Silvia; Shendell, Derek

    2005-03-01

    The Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study was undertaken to evaluate the contribution of outdoor sources of air toxics, as defined in the 1990 Clean Air Act Amendments, to indoor concentrations and personal exposures. The concentrations of 18 volatile organic compounds (VOCs), 17 carbonyl compounds, and fine particulate matter mass (PM(2.5)) were measured using 48-h outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons and elemental analysis) were also measured; only PM(2.5) mass is reported here. Questionnaires were administered to characterize homes, neighborhoods and personal activities that might affect exposures. The air exchange rate was also measured in each home. Homes in close proximity (<0.5 km) to sources of air toxics were preferentially (2:1) selected for sampling. Approximately 100 non-smoking households in each of Elizabeth, NJ, Houston, TX, and Los Angeles, CA were sampled (100, 105, and 105 respectively) with second visits performed at 84, 93, and 81 homes in each city, respectively. VOC samples were collected at all homes, carbonyls at 90% and PM(2.5) at 60% of the homes. Personal samples were collected from nonsmoking adults and a portion of children living in the target homes. This manuscript provides the RIOPA study design and quality control and assurance data. The results from the RIOPA study can potentially provide information on the influence of ambient sources on indoor air concentrations and exposure for many air toxics and will furnish an opportunity to evaluate exposure models for these compounds.

  16. Modeling urban air pollution in Budapest using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Kovács, Attila; Leelőssy, Ádám; Lagzi, István; Mészáros, Róbert

    2017-04-01

    Air pollution is a major problem for urban areas since the industrial revolution, including Budapest, the capital and largest city of Hungary. The main anthropogenic sources of air pollutants are industry, traffic and residential heating. In this study, we investigated the contribution of major industrial point sources to the urban air pollution in Budapest. We used the WRF (Weather Research and Forecasting) nonhydrostatic mesoscale numerical weather prediction system online coupled with chemistry (WRF-Chem, version 3.6).The model was configured with three nested domains with grid spacings of 15, 5 and 1 km, representing Central Europe, the Carpathian Basin and Budapest with its surrounding area. Emission data was obtained from the National Environmental Information System. The point source emissions were summed in their respective cells in the second nested domain according to latitude-longitude coordinates. The main examined air pollutants were carbon monoxide (CO) and nitrogen oxides (NOx), from which the secondary compound, ozone (O3) forms through chemical reactions. Simulations were performed under different weather conditions and compared to observations from the automatic monitoring site of the Hungarian Air Quality Network. Our results show that the industrial emissions have a relatively weak role in the urban background air pollution, confirming the effect of industrial developments and regulations in the recent decades. However, a few significant industrial sources and their impact area has been demonstrated.

  17. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  18. An interprovincial cooperative game model for air pollution control in China.

    PubMed

    Xue, Jian; Zhao, Laijun; Fan, Longzhen; Qian, Ying

    2015-07-01

    The noncooperative air pollution reduction model (NCRM) that is currently adopted in China to manage air pollution reduction of each individual province has inherent drawbacks. In this paper, we propose a cooperative air pollution reduction game model (CRM) that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distribute the economic benefit of the cooperation (i.e., pollution reduction cost saving) among the provinces in the cooperation based on the Shapley value method. We applied the CRM to the case of SO2 reduction in the Beijing-Tianjin-Hebei region in China. The results, based on the data from 2003-2009, show that cooperation helps lower the overall SO2 pollution reduction cost from 4.58% to 11.29%. Distributed across the participating provinces, such a cost saving from interprovincial cooperation brings significant benefits to each local government and stimulates them for further cooperation in pollution reduction. Finally, sensitivity analysis is performed using the year 2009 data to test the parameters' effects on the pollution reduction cost savings. China is increasingly facing unprecedented pressure for immediate air pollution control. The current air pollution reduction policy does not allow cooperation and is less efficient. In this paper we developed a cooperative air pollution reduction game model that consists of two parts: (1) an optimization model that calculates the optimal pollution reduction quantity for each participating province to meet the joint pollution reduction goal; and (2) a model that distributes the cooperation gains (i.e., cost reduction) among the provinces in the cooperation based on the Shapley value method. The empirical case shows that such a model can help improve efficiency in air pollution reduction. The result of the model can serve as a reference for Chinese government

  19. Developing Mental Models about Air Using Inquiry-Based Instruction with Kindergartners

    ERIC Educational Resources Information Center

    Van Hook, Stephen; Huziak, Tracy; Nowak, Katherine

    2005-01-01

    This study examines the development of mental models of air by kindergarten students after completing a series of hands-on, inquiry-based science lessons. The lessons focused on two properties of air: (1) that air takes up space and (2) that it is made of particles ("balls of air"). The students were interviewed about their ideas of air and about…

  20. Evaluation of air traffic control models and simulations.

    DOT National Transportation Integrated Search

    1971-06-01

    Approximately two hundred reports were identified as describing Air Traffic Control (ATC) modeling and simulation efforts. Of these, about ninety analytical and simulation models dealing with virtually all aspects of ATC were formally evaluated. The ...