Science.gov

Sample records for air traffic flows

  1. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  2. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  3. An evolutionary outlook of air traffic flow management techniques

    NASA Astrophysics Data System (ADS)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  4. An air traffic flow management method based on mixed genetic algorithms

    NASA Astrophysics Data System (ADS)

    Fu, Ying

    2009-12-01

    With the air traffic congest problem becoming more and more severe, the study of air traffic flow management is more and more important. According to the character of air traffic flow management, the author analyzed the heuristic method and genetic algorithms, later put this two method together and give a new method of air traffic flow management-mixture genetic algorithms, It has global convergence, the simulation result demonstrates that the presented algorithm is effective.

  5. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  6. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  7. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  8. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  9. Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad

    2011-04-01

    Traffic during operation at a junction undergoes different flow conditions and modal events which result into dynamic fleet characteristics generating more emissions and stronger vehicle-induced heat and wakes generating obscure dispersion. Traffic in a manner operated at junctions often creates pockets of higher concentrations the locations of which shift as a result of the combine effects of traffic dynamics and random airflow. This research examined the impacts of traffic dynamics and meteorology on the levels and locations of higher concentrations of pollutant CO, NO 2 and PM within the influence of signalized traffic intersection and a conventional two-lane roundabout in a response to varying flow conditions and emissions resulted from the traffic operations. Three line source dispersion models have been used to determine the impact on air quality. Emissions have been calculated for different scenarios developed from different combinations of semi-empirical and field based time and space-mean speeds and lane-width based density when traffic undergoes free, interrupted and congested-flow conditions during operation. It has been found that the locations of highest concentrations within the domain change as traffic with different modal share encounters different flow conditions at different times of a day.

  10. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  11. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.

  12. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion.

  13. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Youngkook; Guldmann, Jean-Michel

    2011-05-01

    Vehicle emissions are responsible for a substantial share of urban air pollution concentrations. Various integrated air quality modeling systems have been developed to analyze the consequences of air pollution caused by traffic flows. However, the quantitative relationship between vehicle-kilometers-traveled (VKT) and pollution concentrations while considering wind direction effects has rarely been explored in the context of land-use regression models (LUR). In this research, VKTs occurring within circular buffers around air pollution monitoring stations are simulated, using a traffic assignment model, and weighted by eight wind directions frequencies. The relationships between monitored pollution concentrations and weighted VKTs are estimated using regression analysis. In general, the wind direction weighted VKT variable increases the explanatory power of the models, particularly for nitrogen dioxide and carbon monoxide. The case of ozone is more complex, due to the effects of solar radiation, which appears to overwhelm the effects of wind direction in the afternoon hours. The statistical significance of the weighted VKT variable is high, which makes the models appropriate for impact analysis of traffic flow growth.

  14. Air Traffic Network Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The high level requirement of the Air Traffic Network (ATN) project is to provide a mechanism for evaluating the impact of router scheduling modifications on a networks efficiency, without implementing the modifications in the live network.

  15. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  16. Traffic in the operating room: a review of factors influencing air flow and surgical wound contamination.

    PubMed

    Pokrywka, Marian; Byers, Karin

    2013-06-01

    Surgical wound contamination leading to surgical site infection can result from disruption of the intended airflow in the operating room (OR). When personnel enter and exit the OR, or create unnecessary movement and traffic during the procedure, the intended airflow in the vicinity of the open wound becomes disrupted and does not adequately remove airborne contaminants from the sterile field. An increase in the bacterial counts of airborne microorganisms is noted during increased activity levels within the OR. Researchers have studied OR traffic and door openings as a determinant of air contamination. During a surgical procedure the door to the operating room may be open as long as 20 minutes out of each surgical hour during critical procedures involving implants. Interventions into limiting excessive movement and traffic in the OR may lead to reductions in surgical site infections in select populations.

  17. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  18. Traffic Flow Management Wrap-Up

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon

    2011-01-01

    Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.

  19. Software for Simulating Air Traffic

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Bilimoria, Karl; Grabbe, Shon; Chatterji, Gano; Sheth, Kapil; Mulfinger, Daniel

    2006-01-01

    Future Air Traffic Management Concepts Evaluation Tool (FACET) is a system of software for performing computational simulations for evaluating advanced concepts of advanced air-traffic management. FACET includes a program that generates a graphical user interface plus programs and databases that implement computational models of weather, airspace, airports, navigation aids, aircraft performance, and aircraft trajectories. Examples of concepts studied by use of FACET include aircraft self-separation for free flight; prediction of air-traffic-controller workload; decision support for direct routing; integration of spacecraft-launch operations into the U.S. national airspace system; and traffic- flow-management using rerouting, metering, and ground delays. Aircraft can be modeled as flying along either flight-plan routes or great-circle routes as they climb, cruise, and descend according to their individual performance models. The FACET software is modular and is written in the Java and C programming languages. The architecture of FACET strikes a balance between flexibility and fidelity; as a consequence, FACET can be used to model systemwide airspace operations over the contiguous U.S., involving as many as 10,000 aircraft, all on a single desktop or laptop computer running any of a variety of operating systems. Two notable applications of FACET include: (1) reroute conformance monitoring algorithms that have been implemented in one of the Federal Aviation Administration s nationally deployed, real-time, operational systems; and (2) the licensing and integration of FACET with the commercially available Flight Explorer, which is an Internet- based, real-time flight-tracking system.

  20. Physics of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  1. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2012-01-01

    Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.

  2. Probabilistic description of traffic flow

    NASA Astrophysics Data System (ADS)

    Mahnke, R.; Kaupužs, J.; Lubashevsky, I.

    2005-03-01

    A stochastic description of traffic flow, called probabilistic traffic flow theory, is developed. The general master equation is applied to relatively simple models to describe the formation and dissolution of traffic congestions. Our approach is mainly based on spatially homogeneous systems like periodically closed circular rings without on- and off-ramps. We consider a stochastic one-step process of growth or shrinkage of a car cluster (jam). As generalization we discuss the coexistence of several car clusters of different sizes. The basic problem is to find a physically motivated ansatz for the transition rates of the attachment and detachment of individual cars to a car cluster consistent with the empirical observations in real traffic. The emphasis is put on the analogy with first-order phase transitions and nucleation phenomena in physical systems like supersaturated vapour. The results are summarized in the flux-density relation, the so-called fundamental diagram of traffic flow, and compared with empirical data. Different regimes of traffic flow are discussed: free flow, congested mode as stop-and-go regime, and heavy viscous traffic. The traffic breakdown is studied based on the master equation as well as the Fokker-Planck approximation to calculate mean first passage times or escape rates. Generalizations are developed to allow for on-ramp effects. The calculated flux-density relation and characteristic breakdown times coincide with empirical data measured on highways. Finally, a brief summary of the stochastic cellular automata approach is given.

  3. Simulation evaluation of TIMER, a time-based, terminal air traffic, flow-management concept

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Capron, William R.

    1989-01-01

    A description of a time-based, extended terminal area ATC concept called Traffic Intelligence for the Management of Efficient Runway scheduling (TIMER) and the results of a fast-time evaluation are presented. The TIMER concept is intended to bridge the gap between today's ATC system and a future automated time-based ATC system. The TIMER concept integrates en route metering, fuel-efficient cruise and profile descents, terminal time-based sequencing and spacing together with computer-generated controller aids, to improve delivery precision for fuller use of runway capacity. Simulation results identify and show the effects and interactions of such key variables as horizon of control location, delivery time error at both the metering fix and runway threshold, aircraft separation requirements, delay discounting, wind, aircraft heading and speed errors, and knowledge of final approach speed.

  4. Air-traffic surveillance systems

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    Passive ground-based radio-interferometry systems (RILS) monitor local air traffic by determining aircraft position in planes defined by surveillance area. Similar RILS arrangements are used to determine aircraft positions in three dimensions when combined with azimuth and range information obtained by radar. Information helps determine three-dimensional aircraft position without expensive encoding altimeters.

  5. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.

  6. Wartime Air Traffic Control

    DTIC Science & Technology

    1991-05-01

    sets overboard mnd reported their accidental loss.5 Fortunately. such aviation pioneers as Lt Col Henry H. ("Hap") Arnold and Capt Harold M. McClelland...operability is t he responsibility of the entire base populace. All "blue- suiters " must be mentally and physically prepared to fight the air base war. Winston

  7. Research on the net amount of air traffic network

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wu, Zhenya

    2013-03-01

    As accurate prediction of traffic flow states could reduce the congestion possibility, the theoretical study of air traffic was how to determinate the next time the state with fluid mechanics based on random condition. Then, a novel depicting method of air traffic flow is proposed, which calculated the change of net amount in flow conservation equation with discrete time loss queuing, further, it could determine the relationship between flow and density. Compared to the existing general algorithm, the threshold of net amount was presented in the method, and it had good adaptability.

  8. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.

  9. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  10. A Wavelet Analysis Approach for Categorizing Air Traffic Behavior

    NASA Technical Reports Server (NTRS)

    Drew, Michael; Sheth, Kapil

    2015-01-01

    In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.

  11. Dynamic Density: An Air Traffic Management Metric

    NASA Technical Reports Server (NTRS)

    Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.

    1998-01-01

    The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.

  12. Traffic Flow Management and Optimization

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio

    2014-01-01

    This talk will present an overview of Traffic Flow Management (TFM) research at NASA Ames Research Center. Dr. Rios will focus on his work developing a large-scale, parallel approach to solving traffic flow management problems in the national airspace. In support of this talk, Dr. Rios will provide some background on operational aspects of TFM as well a discussion of some of the tools needed to perform such work including a high-fidelity airspace simulator. Current, on-going research related to TFM data services in the national airspace system and general aviation will also be presented.

  13. Synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  14. Collegiate Aviation and FAA Air Traffic Control.

    ERIC Educational Resources Information Center

    Ruiz, Jose R.; Ruiz, Lorelei E.

    2003-01-01

    Based on a literature review this article describes the Air Traffic-Collegiate Training Initiative (AT-CTI) program, including objectives, the process by which postsecondary institutes become affiliated, advantages of affiliation, and the recruitment and employment of air traffic control graduates by the Federal Aviation Administration. (Contains…

  15. Automatic speech recognition in air traffic control

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.

  16. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  17. Integrated Traffic Flow Management Decision Making

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit

    2009-01-01

    A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.

  18. Irresponsibility clause in air traffic contracts

    NASA Technical Reports Server (NTRS)

    PORQUET

    1922-01-01

    This report examines the question of the responsibility of the carrier in air traffic. The French were concerned about the competitive advantage the English companies enjoyed because of differences in their respective laws.

  19. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  20. Traffic flow theory and traffic flow simulation models. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents: Comparison of Simulation Modules of TRANSYT and INTEGRATION Models; Evaluation of SCATSIM-RTA Adaptive Traffic Network Simulation Model; Comparison NETSIM, NETFLO I, and NETFLO II Traffic Simulation Models for Fixed-Time Signal Control; Traffic Flow Simulation Through Parallel Processing; Cluster Analysis as Tool in Traffic Engineering; Traffic Platoon Dispersion Modeling on Arterial Streets; Hybrid Model for Estimating Permitted Left-Turn Saturations Flow Rate; and Passing Sight Distance and Overtaking Dilemma on Two-Lane Roads.

  1. Virtualized Traffic: reconstructing traffic flows from discrete spatiotemporal data.

    PubMed

    Sewall, Jason; van den Berg, Jur; Lin, Ming C; Manocha, Dinesh

    2011-01-01

    We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatiotemporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e., the dynamic motions of multiple cars over time) between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We demonstrate our reconstruction technique with both synthetic and real-world input.

  2. Delay Banking for Managing Air Traffic

    NASA Technical Reports Server (NTRS)

    Green, Steve

    2008-01-01

    Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system. Delay banking would be administered by an independent third party who would use delay banking automation to continually monitor flights, allocate delay credits, maintain accounts of delay credits for participating airlines, mediate bidding and the consumption of credits of winning bidders, analyze potential transfers of credits within and between operators, implement accepted transfers, and ensure fair treatment of all participating operators. A flow restriction can manifest itself in the form of a delay in assigned takeoff time, a reduction in assigned airspeed, a change in the position for the aircraft in a queue of all aircraft in a common stream of traffic (e.g., similar route), a change in the planned altitude profile for an aircraft, or change in the planned route for the aircraft. Flow restrictions are typically imposed to mitigate traffic congestion at an airport or in a region of airspace, particularly congestion due to inclement weather, or the unavailability of a runway or region of airspace. A delay credit would be allocated to an operator of a

  3. Empirical synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L.; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  4. Empirical synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  5. Synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.036110 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  6. Neural network system for traffic flow management

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard

    1992-09-01

    Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.

  7. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  8. Breakdowns in Coordination Between Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  9. General aviation air traffic pattern safety analysis

    NASA Technical Reports Server (NTRS)

    Parker, L. C.

    1973-01-01

    A concept is described for evaluating the general aviation mid-air collision hazard in uncontrolled terminal airspace. Three-dimensional traffic pattern measurements were conducted at uncontrolled and controlled airports. Computer programs for data reduction, storage retrieval and statistical analysis have been developed. Initial general aviation air traffic pattern characteristics are presented. These preliminary results indicate that patterns are highly divergent from the expected standard pattern, and that pattern procedures observed can affect the ability of pilots to see and avoid each other.

  10. Future Air Traffic Growth and Schedule Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  11. Future Air Traffic Growth and Schedule Model, Supplement

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  12. Studies of uncontrolled air traffic patterns, phase 1

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.; Scharf, L. L.; Ruedger, W. H.; Modi, J. A.; Wheelock, S. L.; Davis, C. M.

    1975-01-01

    The general aviation air traffic flow patterns at uncontrolled airports are investigated and analyzed and traffic pattern concepts are developed to minimize the midair collision hazard in uncontrolled airspace. An analytical approach to evaluate midair collision hazard probability as a function of traffic densities is established which is basically independent of path structure. Two methods of generating space-time interrelationships between terminal area aircraft are presented; one is a deterministic model to generate pseudorandom aircraft tracks, the other is a statistical model in preliminary form. Some hazard measures are presented for selected traffic densities. It is concluded that the probability of encountering a hazard should be minimized independently of any other considerations and that the number of encounters involving visible-avoidable aircraft should be maximized at the expense of encounters in other categories.

  13. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.

  14. Congestion Transition in Air Traffic Networks

    PubMed Central

    Monechi, Bernardo; Servedio, Vito D. P.; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  15. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    PubMed

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  16. Kinetic model for dilute traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana A.

    The flow of traffic represents a many-particle non-equilibrium problem with important practical consequences. Traffic behavior has been studied using a variety of approaches, including fluid dynamics models, Boltzmann equation, and recently cellular automata (CA). The CA model for traffic flow that Nagel and Schreckenberg (NS) introduced can successfully mimic many of the known features of the traffic flow. We show that in the dilute limit of the NS model, where vehicles exhibit free flow, cars show significant nearest neighbor correlation primarily via a short-range repulsion. introduce an approximate analytic model to describe this dilute limit. We show that the distribution of the distance between consecutive vehicles obeys a drift-diffusion equation. We compared this model with direct simulations. The steady state solution and relaxation of this model agrees well with direct simulations. We explore how this model breaks down as the transition to jams occurs.

  17. Traffic Flow Density Distribution Based on FEM

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Cui, Jianming

    In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.

  18. Situational Leadership in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Arvidsson, Marcus; Johansson, Curt R.; Ek, Asa; Akselsson, Roland

    2007-01-01

    In high-risk environments such as air traffic control, leadership on different levels plays a certain role in establishing, promoting, and maintaining a good safety culture. The current study aimed to investigate how leadership styles, leadership style adaptability, and over and under task leadership behavior differed across situations, operative conditions, leadership structures, and working tasks in an air traffic control setting. Study locations were two air traffic control centers in Sweden with different operational conditions and leadership structures, and an administrative air traffic management unit. Leadership was measured with a questionnaire based on Leader Effectiveness and Adaptability Description (LEAD; Blanchard, Zigarmi & Zigarmi, 2003; Hersey & Blanchard, 1988). The results showed that the situation had strong impact on the leadership in which the leadership behavior was more relationship oriented in Success and Group situations than in Hardship and Individual situations. The leadership adaptability was further superior in Success and Individual situations compared with Hardship and Group situations. Operational conditions, leadership structures and working tasks were, on the other hand, not associated with leadership behavior.

  19. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  20. Air Traffic Control: Economics of Flight

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2004-01-01

    Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.

  1. Terminal area air traffic control simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.

  2. Air Traffic Management Research at NASA

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  3. 76 FR 27168 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES: The meeting will be held Tuesday, June 21, and Wednesday... the ATPAC's review of present air traffic control procedures and practices for...

  4. 77 FR 2603 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES: The meeting will be held Tuesday, February 7, and Wednesday... present air traffic control procedures and practices for standardization, revision, clarification,...

  5. 75 FR 68022 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... Doc No: 2010-27832] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Air Traffic... Administration Air Traffic Procedures Advisory Committee (ATPAC). The duties of this advisory committee include..., Executive Director, Air Traffic Procedures Advisory Committee. [FR Doc. 2010-27832 Filed 11-3-10; 8:45...

  6. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  7. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  8. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  9. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  10. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  11. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  12. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  13. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  14. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  15. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  16. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  17. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  18. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  19. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  20. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  1. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  2. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  3. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  4. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  5. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  6. The Monotonic Lagrangian Grid for Rapid Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay

    2010-01-01

    The Air Traffic Monotonic Lagrangian Grid (ATMLG) is presented as a tool to evaluate new air traffic system concepts. The model, based on an algorithm called the Monotonic Lagrangian Grid (MLG), can quickly sort, track, and update positions of many aircraft, both on the ground (at airports) and in the air. The underlying data structure is based on the MLG, which is used for sorting and ordering positions and other data needed to describe N moving bodies and their interactions. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. Recent upgrades to ATMLG include adding blank place-holders within the MLG data structure, which makes it possible to dynamically change the MLG size and also improves the quality of the MLG grid. Additional upgrades include adding FAA flight plan data, such as way-points and arrival and departure times from the Enhanced Traffic Management System (ETMS), and combining the MLG with the state-of-the-art strategic and tactical conflict detection and resolution algorithms from the NASA-developed Stratway software. In this paper, we present results from our early efforts to couple ATMLG with the Stratway software, and we demonstrate that it can be used to quickly simulate air traffic flow for a very large ETMS dataset.

  7. Neurotoxicity of traffic-related air pollution.

    PubMed

    Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J

    2017-03-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m(3) for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2.

  8. Traffic Flow on a 3-LANE Highway

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Yao; Huang, Ding-Wei; Huang, Wei-Neng; Hwang, Wen-Liang

    The traffic flow on a 3-lane highway is investigated using a cellular automaton method. Two different kinds of vehicles, cars and trucks, with different driving behaviors are presented on the highway. It is found that in the high density region, a control scheme requiring passing from the inner lane will enhance the traffic flow; while restricting the trucks to the outer lane will enhance the flow in the low density region and also has the benefit of suppressing the unnecessary lane-changing rate.

  9. Technical Seminar: "Modeling and Optimization in Air Traffic Management"

    NASA Video Gallery

    Traffic Flow Management (TFM) is the efficient organization of traffic flows to meet demand taking into account capacity constraints at airports and in en route airspace. TFM involves thousands of ...

  10. Air Traffic Control Improvement Using Prioritized CSMA

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    Version 7 simulations of the industry-standard network simulation software "OPNET" are presented of two applications of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) and Automatic Dependent Surveillance-Broadcast mode (ADS-B), over VHF Data Link mode 2 (VDL-2). Communication is modeled for air traffic between just three cities. All aircraft are assumed to have the same equipage. The simulation involves Air Traffic Control (ATC) ground stations and 105 aircraft taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. All communication is modeled as unreliable. Collision-less, prioritized carrier sense multiple access (CSMA) is successfully tested. The statistics presented include latency, queue length, and packet loss. This research may show that a communications system simpler than the currently accepted standard envisioned may not only suffice, but also surpass performance of the standard at a lower cost of deployment.

  11. Computationally Lightweight Air-Traffic-Control Simulation

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    An algorithm for computationally lightweight simulation of automated air traffic control (ATC) at a busy airport has been derived. The algorithm is expected to serve as the basis for development of software that would be incorporated into flight-simulator software, the ATC component of which is not yet capable of handling realistic airport loads. Software based on this algorithm could also be incorporated into other computer programs that simulate a variety of scenarios for purposes of training or amusement.

  12. Lattice Boltzmann model for traffic flow.

    PubMed

    Meng, Jianping; Qian, Yuehong; Li, Xingli; Dai, Shiqiang

    2008-03-01

    Mesoscopic models for traffic flows are usually difficult to be employed because of the appearance of integro-differential terms in the models. In this work, a lattice Boltzmann model for traffic flow is introduced on the basis of the existing kinetics models by using the Bhatnagar-Gross-Krook-type approximation interaction term in the Boltzmann equation and discretizing it in time and phase space. The so-obtained model is simple while the relevant parameters are physically meaningful. Together with its discrete feature, the model can be easily used to investigate numerically the behavior of traffic flows. In consequence, the macroscopic dynamics of the model is derived using the Taylor and Chapman-Enskog expansions. For validating the model, numerical simulations are conducted under the periodic boundary conditions. It is found that the model could reasonably reproduce the fundamental diagram. Moreover, certain interesting physical phenomena can be captured by the model, such as the metastability and stop-and-go phenomena.

  13. A superstatistical model of vehicular traffic flow

    NASA Astrophysics Data System (ADS)

    Kosun, Caglar; Ozdemir, Serhan

    2016-02-01

    In the analysis of vehicular traffic flow, a myriad of techniques have been implemented. In this study, superstatistics is used in modeling the traffic flow on a highway segment. Traffic variables such as vehicular speeds, volume, and headway were collected for three days. For the superstatistical approach, at least two distinct time scales must exist, so that a superposition of nonequilibrium systems assumption could hold. When the slow dynamics of the vehicle speeds exhibit a Gaussian distribution in between the fluctuations of the system at large, one speaks of a relaxation to a local equilibrium. These Gaussian distributions are found with corresponding standard deviations 1 /√{ β }. This translates into a series of fluctuating beta values, hence the statistics of statistics, superstatistics. The traffic flow model has generated an inverse temperature parameter (beta) distribution as well as the speed distribution. This beta distribution has shown that the fluctuations in beta are distributed with respect to a chi-square distribution. It must be mentioned that two distinct Tsallis q values are specified: one is time-dependent and the other is independent. A ramification of these q values is that the highway segment and the traffic flow generate separate characteristics. This highway segment in question is not only nonadditive in nature, but a nonequilibrium driven system, with frequent relaxations to a Gaussian.

  14. Continuum modeling of cooperative traffic flow dynamics

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.

    2009-07-01

    This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.

  15. Cubesat Constellation Design for Air Traffic Monitoring

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  16. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  17. Studies of Next Generation Air Traffic Control Specialists: Why Be an Air Traffic Controller?

    DTIC Science & Technology

    2011-08-01

    Millennials ” (Gimbel, 2007), descriptions of generational differences are a staple in the human resources (HR) trade press and corporate training. The...controllers, recruited from Gen-X and Millennials , than to the “Post-Strike” generation (largely Baby Boomers) and non-material factors such as the...air traffic coNtrol SpecialiStS: Why Be aN air traffic coNtroller? “Gen-X,” “Gen-Y,” “Baby Boomer,” “ Millennial ,” “The Greatest Generation ”: Labels

  18. Traffic Flow Wide-Area Surveillance system

    SciTech Connect

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.

    1994-09-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a Traffic Flow Wide-Area Surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  19. 77 FR 67862 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation Administration (FAA), DOT. SUMMARY: The FAA is issuing this notice to advise the public that the FAA's Air... Administrator. The ATPAC charter is valid for two years and provides a venue to review air traffic...

  20. Design and Operational Evaluation of the Traffic Management Advisor at the Ft. Worth Air Route Traffic Control Center

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)

    1997-01-01

    NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.

  1. Comprehensive Software Eases Air Traffic Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.

  2. The Future of Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    A system for the control of terminal area traffic to improve productivity, referred to as the Center-TRACON Automation System (CTAS), is being developed at NASA's Ames Research Center under a joint program with the FAA. CTAS consists of a set of integrated tools that provide computer-generated advisories for en-route and terminal area controllers. The premise behind the design of CTAS has been that successful planning of traffic requires accurate trajectory prediction. Data bases consisting of representative aircraft performance models, airline preferred operational procedures and a three dimensional wind model support the trajectory prediction. The research effort has been the design of a set of automation tools that make use of this trajectory prediction capability to assist controllers in overall management of traffic. The first tool, the Traffic Management Advisor (TMA), provides the overall flow management between the en route and terminal areas. A second tool, the Final Approach Spacing Tool (FAST) provides terminal area controllers with sequence and runway advisories to allow optimal use of the runways. The TMA and FAST are now being used in daily operations at Dallas/Ft. Worth airport. Additional activities include the development of several other tools. These include: 1) the En Route Descent Advisor that assist the en route controller in issuing conflict free descents and ascents; 2) the extension of FAST to include speed and heading advisories and the Expedite Departure Path (EDP) that assists the terminal controller in management of departures; and 3) the Collaborative Arrival Planner (CAP) that will assist the airlines in operational decision making. The purpose of this presentation is to review the CTAS concept and to present the results of recent field tests. The paper will first discuss the overall concept and then discuss the status of the individual tools.

  3. Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon

    2010-01-01

    The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.

  4. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  5. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  6. 75 FR 22892 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES: The meeting will be held Tuesday, May 18, and Wednesday, May... the ATPAC's review of present air traffic control procedures and practices for...

  7. 77 FR 27835 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. Class B airspace will be a major topic of discussion on the ATPAC... of present air traffic control procedures and practices for standardization, revision,...

  8. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  9. Atlanta Air Route Traffic Control Center's involvement in aviation weather

    NASA Technical Reports Server (NTRS)

    Wood, W. D.

    1979-01-01

    The distribution of weather information throughout the Air Traffic Control System is discussed along with the development of meteorological radar, and the modifications to the Air Route Traffic Control Center radars for locating and determining the severity of storms' cells. The planned improvements in the availability of weather data to the control centers are listed.

  10. 32 CFR 245.21 - ESCAT air traffic priority list.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State emergency plans. (3) LIFEGUARD and MEDEVAC aircraft in direct support of emergency medical... (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic... training/workups (e.g., Navy Field Carrier Landing Practice) in support of the emergency condition....

  11. 32 CFR 245.21 - ESCAT air traffic priority list.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... State emergency plans. (3) LIFEGUARD and MEDEVAC aircraft in direct support of emergency medical... (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic... training/workups (e.g., Navy Field Carrier Landing Practice) in support of the emergency condition....

  12. 32 CFR 245.21 - ESCAT air traffic priority list.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State emergency plans. (3) LIFEGUARD and MEDEVAC aircraft in direct support of emergency medical... (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic... training/workups (e.g., Navy Field Carrier Landing Practice) in support of the emergency condition....

  13. Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods

    NASA Technical Reports Server (NTRS)

    Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon

    2010-01-01

    A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.

  14. Zero-range model of traffic flow.

    PubMed

    Kaupuzs, J; Mahnke, R; Harris, R J

    2005-11-01

    A multicluster model of traffic flow is studied, in which the motion of cars is described by a stochastic master equation. Assuming that the escape rate from a cluster depends only on the cluster size, the dynamics of the model is directly mapped to the mathematically well-studied zero-range process. Knowledge of the asymptotic behavior of the transition rates for large clusters allows us to apply an established criterion for phase separation in one-dimensional driven systems. The distribution over cluster sizes in our zero-range model is given by a one-step master equation in one dimension. It provides an approximate mean-field dynamics, which, however, leads to the exact stationary state. Based on this equation, we have calculated the critical density at which phase separation takes place. We have shown that within a certain range of densities above the critical value a metastable homogeneous state exists before coarsening sets in. Within this approach we have estimated the critical cluster size and the mean nucleation time for a condensate in a large system. The metastablity in the zero-range process is reflected in a metastable branch of the fundamental flux-density diagram of traffic flow. Our work thus provides a possible analytical description of traffic jam formation as well as important insight into condensation in the zero-range process.

  15. TASAR Flight Trial 2: Assessment of Air Traffic Controller Acceptability of TASAR Requests

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Enea, Gabriele

    2016-01-01

    In support of the Flight Trial (FT-2) of NASA's prototype of the Traffic Aware Strategic Aircrew Requests (TASAR) concept, observations were conducted at the air traffic facilities to identify and assess the main factors that affect the acceptability of pilot requests by air traffic controllers. Two observers shadowed air traffic controllers at the Atlanta (ZTL) and Jacksonville (ZJX) air traffic control centers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed the observed and other controllers voluntarily. Fifty controllers were interviewed with experience ranging from one to thirty-five years. All interviewed controllers were enthusiastic about the technology and accounting for sector boundaries in pilot requests, particularly if pilots can be made aware of high workload situations. All interviewed controllers accept more than fifty percent of pilot requests; forty percent of them reject less than ten percent of requests. The most common reason for rejecting requests is conflicting with traffic followed by violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, major arrival and departure flows and flow restrictions. Thirty-six requests were made during the test, eight of which were rejected due to: the aircraft already handed off to another sector, violating LOA, opposing traffic, intruding into an active special use airspace (SUA), intruding into another center, weather, and unfamiliarity with the requested waypoint. Nine requests were accepted with delay mostly because the controller needed to locate unfamiliar waypoints or to coordinate with other controllers.

  16. Disorder effect on the traffic flow behavior

    NASA Astrophysics Data System (ADS)

    Ez-Zahraouy, H.; Benyoussef, A.

    2008-08-01

    The effects of some disorders, on the traffic flow behavior, are studied numerically. Especially, the effect of mixture of vehicles of different velocities and/or lengths, the effects of different drivers reactions, the position and the extraction rate of off-ramp in the free way. Using a generalized optimal velocity model, for a mixture of fast and slow vehicles, we have investigated the effect of delay times τ f and τ s on the fundamental diagram. It is Found that the small delay times have almost no effect, while, for sufficiently large delay time τ s , the current profile displays qualitatively five different forms, depending on τ f , τ s and the fractions f f and f s of the fast and slow cars, respectively. The velocity (current) exhibits first-order transitions at low and/or high densities, from freely moving phase to the congested state, and from congested state to a jamming one, respectively. The minimal current appears in intermediate values of τ s . Furthermore there exist, a critical value of τ f above which the meta-stability and hysteresis appear. The effects of disorder due to drivers behaviors have been introduced through a random delay time τ allowing the car to reach its optimal velocity traffic flow models with open boundaries. In the absence of the variation of the delay time Δτ, it is found that the transition from unstable to meta-stable and from meta-stable to stable state occur under the effect of the injecting and the extracting rate probabilities α and β respectively. Moreover, the perturbation of the traffic flow behavior due to the off-ramp has been studied using numerical simulations in the one dimensional cellular automaton traffic flow model with open boundaries. When the off-ramp is located between two critical positions i c1 and i c2 the current remains constant (plateau) for β0 c1 < β0 < β0 c2, and the density undergoes two successive first order transitions: from high density to plateau current phase and from average

  17. A Survey of Modern Air Traffic Control. Volume 2

    DTIC Science & Technology

    1975-07-01

    oceanic traffic would use combined hyperbolic-inertial navigation systems. System I could be implemented to meet the demanda for air traffic services...of Aviation c/o Flugrad Reykjavik ITALY Aeronautica Militare Ufficio del Delegato Nationale all’AGARD 3, Piazzale Adenauer Roma /EUR

  18. The employment of a spoken language computer applied to an air traffic control task.

    NASA Technical Reports Server (NTRS)

    Laveson, J. I.; Silver, C. A.

    1972-01-01

    Assessment of the merits of a limited spoken language (56 words) computer in a simulated air traffic control (ATC) task. An airport zone approximately 60 miles in diameter with a traffic flow simulation ranging from single-engine to commercial jet aircraft provided the workload for the controllers. This research determined that, under the circumstances of the experiments carried out, the use of a spoken-language computer would not improve the controller performance.

  19. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  20. Analytical studies on the instabilities of heterogeneous intelligent traffic flow

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    It has been widely reported in literature that a small perturbation in traffic flow such as a sudden deceleration of a vehicle could lead to the formation of traffic jams without a clear bottleneck. These traffic jams are usually related to instabilities in traffic flow. The applications of intelligent traffic systems are a potential solution to reduce the amplitude or to eliminate the formation of such traffic instabilities. A lot of research has been conducted to theoretically study the effect of intelligent vehicles, for example adaptive cruise control vehicles, using either computer simulation or analytical method. However, most current analytical research has only applied to single class traffic flow. To this end, the main topic of this paper is to perform a linear stability analysis to find the stability threshold of heterogeneous traffic flow using microscopic models, particularly the effect of intelligent vehicles on heterogeneous (or multi-class) traffic flow instabilities. The analytical results will show how intelligent vehicle percentages affect the stability of multi-class traffic flow.

  1. Lightweight simulation of air traffic control using simple temporal networks

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    We provide a formulation of the air traffic control problem and a solver for this problem that makes use of temporal constraint networks and simple geometric reasoning. We provide results showing that this approach is practical for realistic simulated problems.

  2. Investigating the Effects of Traffic on Air Pollution.

    ERIC Educational Resources Information Center

    Taylor, Sharon

    2001-01-01

    Discusses the benefits of bringing scientists into the classroom to collaborate with children on environmental research projects. Describes one collaborative project that focused on the effects of traffic on air pollution. (DDR)

  3. 78 FR 66098 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... practices for standardization, revision, clarification, and upgrading of terminology and procedures. It will...) will be held to review present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES: The meeting will be...

  4. 76 FR 59481 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... for standardization, revision, clarification, and upgrading of terminology and procedures. It will... present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES: The meeting will be held Tuesday, October 4, and...

  5. 75 FR 63255 - Air Traffic Procedures Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... for standardization, revision, clarification, and upgrading of terminology and procedures. It will... present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES: The meeting will be held Tuesday, October 26, and...

  6. 78 FR 2711 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... procedures and practices for standardization, revision, clarification, and upgrading of terminology and... present air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES: The meeting will be held Tuesday, January 29,...

  7. 77 FR 56698 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... practices for standardization, revision, clarification, and upgrading of terminology and procedures. DATES... air traffic control procedures and practices for standardization, revision, clarification, and upgrading of terminology and procedures. It will also include: 1. Approval of Minutes; 2. Submission...

  8. A new dynamic model for heterogeneous traffic flow

    NASA Astrophysics Data System (ADS)

    Tang, T. Q.; Huang, H. J.; Zhao, S. G.; Shang, H. Y.

    2009-06-01

    Based on the property of heterogeneous traffic flow, we in this Letter present a new car-following model. Applying the relationship between the micro and macro variables, a new dynamic model for heterogeneous traffic flow is obtained. The fundamental diagram and the jam density of the heterogeneous traffic flow consisting of bus and car are studied under three different conditions: (1) without any restrictions, (2) under the action of the traffic control policy that restrains some private cars and (3) using bus to replace the private cars restrained by the traffic control policy. The numerical results show that our model can describe some qualitative properties of the heterogeneous traffic flow consisting of bus and car, which verifies that our model is reasonable.

  9. Derivation of a fundamental diagram for urban traffic flow

    NASA Astrophysics Data System (ADS)

    Helbing, D.

    2009-07-01

    Despite the importance of urban traffic flows, there are only a few theoretical approaches to determine fundamental relationships between macroscopic traffic variables such as the traffic density, the utilization, the average velocity, and the travel time. In the past, empirical measurements have primarily been described by fit curves. Here, we derive expected fundamental relationships from a model of traffic flows at intersections, which suggest that the recently measured fundamental diagrams for urban flows can be systematically understood. In particular, this allows one to derive the average travel time and the average vehicle speed as a function of the utilization and/or the average number of delayed vehicles.

  10. Shaping traffic flow with a ratio of time constants

    NASA Astrophysics Data System (ADS)

    Bîrlea, Nicolae Marius

    2014-06-01

    In this paper we present how the main parameters of an optimal velocity model, the velocity adaptation time, τ, and the desired time gap between consecutive vehicles (time headway), T, control the structure of vehicular traffic flow. We show that the ratio between the desired time gap and the velocity adaptation time, T /τ, establishes the pattern formation in congested traffic flow. This ratio controls both the collective behavior and the individual response of vehicles in traffic. We also introduced a response (transfer) function, which shows how perturbation is transmitted between adjacent vehicles and permits the study of collective stability of traffic flow.

  11. Air Traffic Sector Configuration Change Frequency

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Drew, Michael

    2010-01-01

    A Mixed Integer Linear Programming method is used for creating sectors in Fort Worth, Cleveland, and Los Angeles centers based on several days of good-weather traffic data. The performance of these sectors is studied when they are subjected to traffic data from different days. Additionally, the advantage of using different sector designs at different times of day with varying traffic loads is examined. Specifically, traffic data from 10 days are used for design, and 47 other days are played back to test if the traffic-counts stay below the design values used in creating the partitions. The primary findings of this study are as follows. Sectors created with traffic from good-weather days can be used on other good-weather days. Sector configurations created with two hours of traffic can be used for 6 to 12 hours without exceeding the peak-count requirement. Compared to using a single configuration for the entire day, most of the sector-hour reduction is achieved by using two sector configurations -one during daytime hours and one during nighttime hours.

  12. Characteristics of vehicular traffic flow at a roundabout.

    PubMed

    Fouladvand, M Ebrahim; Sadjadi, Zeinab; Shaebani, M Reza

    2004-10-01

    We construct a stochastic cellular automata model for the description of vehicular traffic at a roundabout designed at the intersection of two perpendicular streets. The vehicular traffic is controlled by a self-organized scheme in which traffic lights are absent. This controlling method incorporates a yield-at-entry strategy for the approaching vehicles to the circulating traffic flow in the roundabout. Vehicular dynamics is simulated and the delay experienced by the traffic at each individual street is evaluated. We discuss the impact of the geometrical properties of the roundabout on the total delay. We compare our results with traffic-light signalization schemes, and obtain the critical traffic volume over which the intersection is optimally controlled through traffic-light signalization schemes.

  13. Characteristics of vehicular traffic flow at a roundabout

    NASA Astrophysics Data System (ADS)

    Ebrahim Fouladvand, M.; Sadjadi, Zeinab; Reza Shaebani, M.

    2004-10-01

    We construct a stochastic cellular automata model for the description of vehicular traffic at a roundabout designed at the intersection of two perpendicular streets. The vehicular traffic is controlled by a self-organized scheme in which traffic lights are absent. This controlling method incorporates a yield-at-entry strategy for the approaching vehicles to the circulating traffic flow in the roundabout. Vehicular dynamics is simulated and the delay experienced by the traffic at each individual street is evaluated. We discuss the impact of the geometrical properties of the roundabout on the total delay. We compare our results with traffic-light signalization schemes, and obtain the critical traffic volume over which the intersection is optimally controlled through traffic-light signalization schemes.

  14. Controller Strategies for Managing Air Traffic in High Altitude Arrival Sectors

    NASA Technical Reports Server (NTRS)

    Smith, Nancy; Palmer, Everett; Prevot, Thomas

    1998-01-01

    Substantial increases in the volume of air traffic in the National Airspace System (NAS) are forecast for the next decade, with the number of passengers travelling on U.S. airlines expected to increase by as much as 60%. This increased demand on system capacity will be accompanied by increases in traffic complexity as air traffic service providers routinely accommodate user preferred routing requests. Changes to the NAS to meet these new demands are currently underway, including development of new decision support tools to aid controllers in monitoring and managing air traffic, and increased air-to-air and air-to-ground information exchange. Changes in roles and responsibilities of pilots and controllers in flight path management will accompany these changes in traffic patterns and information technology, however the ultimate responsibility for maintaining aircraft separation will remain with the air traffic controller. A thorough understanding of the methods controllers use to manage air traffic will help ensure that changes to the NAS are implemented in a way that maintains the controller's ability to separate aircraft as the system evolves. This presentation describes the strategies controllers use today to manage arrival traffic in its descent from cruise altitude to the Terminal Radar Approach Control (TRACON) boundary. Factors that increase the complexity of this task include the presence of overflight traffic, varying aircraft performance characteristics, winds aloft, ground speed variations with altitude, the need to merge arrival traffic into a single stream, and, when arrival traffic exceeds airport runway capacity, the added task of metering flow into the TRACON. Because of the limited information available to controllers to manage arrival traffic, their strategies are often driven by the need to reduce the task's complexity, which can result in de-optimized flight paths for individual aircraft (e.g., sub-optimal descent or speed profiles). Understanding

  15. Traffic flow wide-area surveillance system definition

    SciTech Connect

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L.; Moynihan, P.I.

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  16. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy.

  17. Expanding Regional Airport Usage to Accommodate Increased Air Traffic Demand

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2009-01-01

    Small regional airports present an underutilized source of capacity in the national air transportation system. This study sought to determine whether a 50 percent increase in national operations could be achieved by limiting demand growth at large hub airports and instead growing traffic levels at the surrounding regional airports. This demand scenario for future air traffic in the United States was generated and used as input to a 24-hour simulation of the national airspace system. Results of the demand generation process and metrics predicting the simulation results are presented, in addition to the actual simulation results. The demand generation process showed that sufficient runway capacity exists at regional airports to offload a significant portion of traffic from hub airports. Predictive metrics forecast a large reduction of delays at most major airports when demand is shifted. The simulation results then show that offloading hub traffic can significantly reduce nationwide delays.

  18. Traffic flow behavior at a single lane roundabout as compared to traffic circle

    NASA Astrophysics Data System (ADS)

    Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2014-09-01

    In this paper, we propose a stochastic Cellular Automata (CA) model to study traffic flow at a single-lane urban roundabout (resp. traffic circle) of N entry points (resp. exit points), the entry points are controlled by rates α1 and α2 while the removal rates from the exit points are denoted by β. The traffic is controlled by a self-organized scheme. Based on computer simulation, density profiles, global density and current are calculated in terms of rates. Furthermore, the phase diagrams for roundabout as well as traffic circle are constructed. It has turned out that the phase diagrams consist essentially of two phases namely free flow and jamming. It is noted that the typology of the phase diagrams of the roundabout is not similar to it in the traffic circle. Furthermore, we have compared the performance of the two systems in terms of the geometrical properties and the number of entry points.

  19. Bifurcation analysis of a speed gradient continuum traffic flow model

    NASA Astrophysics Data System (ADS)

    Ai, Wen-Huan; Shi, Zhong-Ke; Liu, Da-Wei

    2015-11-01

    A bifurcation analysis approach is presented based on the macroscopic traffic flow model. This method can be used to describe and predict the nonlinear traffic phenomena on the highway from a system global stability perspective. Based on a recently proposed speed gradient continuum traffic flow model, the types and stabilities of the equilibrium solutions are discussed and the existence of Hopf bifurcation and saddle-node bifurcation is proved. Then various bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles, Cusp bifurcation and Bogdanov-Takens bifurcation are found and the traffic flow behaviors at some of them are analyzed. When the Hopf bifurcation is selected as the starting point of density temporal evolution, it may help to explain the stop-and-go traffic phenomena.

  20. Hysteresis phenomena of the intelligent driver model for traffic flow.

    PubMed

    Dahui, Wang; Ziqiang, Wei; Ying, Fan

    2007-07-01

    We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

  1. A cellular automaton model for ship traffic flow in waterways

    NASA Astrophysics Data System (ADS)

    Qi, Le; Zheng, Zhongyi; Gang, Longhui

    2017-04-01

    With the development of marine traffic, waterways become congested and more complicated traffic phenomena in ship traffic flow are observed. It is important and necessary to build a ship traffic flow model based on cellular automata (CAs) to study the phenomena and improve marine transportation efficiency and safety. Spatial discretization rules for waterways and update rules for ship movement are two important issues that are very different from vehicle traffic. To solve these issues, a CA model for ship traffic flow, called a spatial-logical mapping (SLM) model, is presented. In this model, the spatial discretization rules are improved by adding a mapping rule. And the dynamic ship domain model is considered in the update rules to describe ships' interaction more exactly. Take the ship traffic flow in the Singapore Strait for example, some simulations were carried out and compared. The simulations show that the SLM model could avoid ship pseudo lane-change efficiently, which is caused by traditional spatial discretization rules. The ship velocity change in the SLM model is consistent with the measured data. At finally, from the fundamental diagram, the relationship between traffic ability and the lengths of ships is explored. The number of ships in the waterway declines when the proportion of large ships increases.

  2. Surveying air traffic control specialist perception of scheduling regulations

    NASA Astrophysics Data System (ADS)

    Thompson, Darrius E.

    While there have been several studies conducted on air traffic controller fatigue, there is a lack of research on the subject since the scheduling policy changes that took place in 2012. The effectiveness of these changes has yet to be measured. The goal of this study was to investigate air traffic control specialist views towards the number of hours scheduled between shifts, changes in perception since 2012 regulation changes, and external factors that impact fatigue. A total of 54 FAA air traffic control specialist completed an online questionnaire. The results from the survey showed that the majority of respondents felt the 2012 regulation changes were not sufficient to address fatigue issues, and work with some amount sleep deprivation. The factors that appeared to have the most significant effect on fatigue included facility level, age group, availability of recuperative breaks, and children under 18 in the home.

  3. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  4. Air pollution and health risks due to vehicle traffic

    PubMed Central

    Zhang, Kai; Batterman, Stuart

    2014-01-01

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed–volume relationship, the California Line Source Dispersion Model, an empirical NO2–NOx relationship, estimated travel time changes during congestion, and concentration–response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, “U” shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2–NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion

  5. A Concept for Robust, High Density Terminal Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Robinson, John E.; Swenson, Harry N.; Denery, Dallas G.

    2010-01-01

    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team.

  6. Validation of Air Traffic Controller Workload Models

    DTIC Science & Technology

    1979-09-01

    SAR) tapes dtirinq the data reduc- tion phase of the project. Kentron International Limited provided the software support for the oroject. This included... ETABS ) or to revised traffic control procedures. The models also can be used to verify productivity benefits after new configurations have been...col- lected and processed manually. A preliminary compari- son has been made between standard NAS Stage A and ETABS operations at Miami. 1.2

  7. Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Lu, Wei-Zhen; Xue, Yu; He, Hong-Di

    2016-02-01

    A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.

  8. Impact analysis of traffic-related air pollution based on real-time traffic and basic meteorological information.

    PubMed

    Pan, Long; Yao, Enjian; Yang, Yang

    2016-12-01

    With the rapid development of urbanization and motorization in China, traffic-related air pollution has become a major component of air pollution which constantly jeopardizes public health. This study proposes an integrated framework for estimating the concentration of traffic-related air pollution with real-time traffic and basic meteorological information and also for further evaluating the impact of traffic-related air pollution. First, based on the vehicle emission factor models sensitive to traffic status, traffic emissions are calculated according to the real-time link-based average traffic speed, traffic volume, and vehicular fleet composition. Then, based on differences in meteorological conditions, traffic pollution sources are divided into line sources and point sources, and the corresponding methods to determine the dynamic affecting areas are also proposed. Subsequently, with basic meteorological data, Gaussian dispersion model and puff integration model are applied respectively to estimate the concentration of traffic-related air pollution. Finally, the proposed estimating framework is applied to calculate the distribution of CO concentration in the main area of Beijing, and the population exposure is also calculated to evaluate the impact of traffic-related air pollution on public health. Results show that there is a certain correlation between traffic indicators (i.e., traffic speed and traffic intensity) of the affecting area and traffic-related CO concentration of the target grid, which indicates the methods to determine the affecting areas are reliable. Furthermore, the reliability of the proposed estimating framework is verified by comparing the predicted and the observed ambient CO concentration. In addition, results also show that the traffic-related CO concentration is higher in morning and evening peak hours, and has a heavier impact on public health within the Fourth Ring Road of Beijing due to higher population density and higher CO

  9. Social dilemma structure hidden behind traffic flow with route selection

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun; Nakamura, Kousuke

    2016-10-01

    Several traffic flows contain social dilemma structures. Herein, we explored a route-selection problem using a cellular automaton simulation dovetailed with evolutionary game theory. In our model, two classes of driver-agents coexist: D agents (defective strategy), which refer to traffic information for route selection to move fast, and C agents (cooperative strategy), which are insensitive to information and less inclined to move fast. Although no evidence suggests that the social dilemma structure in low density causes vehicles to move freely and that in high density causes traffic jams, we found a structure that corresponds to an n-person (multiplayer) Chicken (n-Chicken) game if the provided traffic information is inappropriate. If appropriate traffic information is given to the agents, the n-Chicken game can be solved. The information delivered to vehicles is crucial for easing the social dilemma due to urban traffic congestion when developing technologies to support the intelligent transportation system (ITS).

  10. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    PubMed Central

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-01-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042

  11. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses.

    PubMed

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  12. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  13. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air transport traffic and capacity elements... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  14. 14 CFR 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air transport traffic and capacity elements... CERTIFICATED AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  15. Simulation Study of Traffic Flow At a Three Way Intersection

    DTIC Science & Technology

    1988-09-01

    INTERSECTION by Chong Chul Song September 1988 Thesis Advisor: Peter A. W. Lewis Approved for public release; distribution is unlimited i~ K...II Title (Include security classification) SIMULATION STUDY OF TRAFFIC FLOW AT A THREE WAY INTERSECTION 12 Personal Author(s) Chong Chul Song 13a...distribution is unlimited. Simulation Study of Traffic Flow at a Three Way Intersection by Chong Chul Song Major, Republic Of Korea Army B.S., Korea

  16. Relationship Between Air Pollution, Weather, Traffic, and Traffic-Related Mortality

    PubMed Central

    Dastoorpoor, Maryam; Idani, Esmaeil; Khanjani, Narges; Goudarzi, Gholamreza; Bahrampour, Abbas

    2016-01-01

    Background Air pollution and weather are just two of many environmental factors contributing to traffic accidents (RTA). Objectives This study assessed the effects of these factors on traffic accidents and related mortalities in Ahvaz, Iran. Methods In this ecological study, data about RTA, traffic-related mortalities, air pollution (including NO, CO, NO2, NOx PM10, SO2, and O3 rates) and climate data from March 2008 until March 2015 was acquired from the Khuzestan State Police Force, the Environmental Protection Agency and the State Meteorological Department. Statistical analysis was performed with STATA 12 through both crude and adjusted negative binomial regression methods. Results There was a significant positive correlation between increase in the monthly average temperature, the number of rainy days, and the number of frost days with the number of RTA (P < 0.05). Increased monthly average relative humidity, evaporation, and number of sunny days were negatively correlated with the frequency of RTA (P < 0.05). We also observed an inverse significant correlation between monthly average relative humidity, evaporation, and wind speed with traffic accident mortality (P < 0.05). Some air pollutants were negatively associated with the incidence rate of RTA. Conclusions It appears that some weather variables were significantly associated with increased RTA. However, increased levels of air pollutants were not associated with increased rates of RTA and/or related mortalities. Additional studies are recommended to explore this topic in more detail. PMID:28180125

  17. Supporting the Future Air Traffic Control Projection Process

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John, Jr.

    2002-01-01

    In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.

  18. An extended signal control strategy for urban network traffic flow

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  19. Continuum modeling for two-lane traffic flow with consideration of the traffic interruption probability

    NASA Astrophysics Data System (ADS)

    Tian, Chuan; Sun, Di-Hua

    2010-12-01

    Considering the effects that the probability of traffic interruption and the friction between two lanes have on the car-following behaviour, this paper establishes a new two-lane microscopic car-following model. Based on this microscopic model, a new macroscopic model was deduced by the relevance relation of microscopic and macroscopic scale parameters for the two-lane traffic flow. Terms related to lane change are added into the continuity equations and velocity dynamic equations to investigate the lane change rate. Numerical results verify that the proposed model can be efficiently used to reflect the effect of the probability of traffic interruption on the shock, rarefaction wave and lane change behaviour on two-lane freeways. The model has also been applied in reproducing some complex traffic phenomena caused by traffic accident interruption.

  20. Realistic Data-Driven Traffic Flow Animation Using Texture Synthesis.

    PubMed

    Chao, Qianwen; Deng, Zhigang; Ren, Jiaping; Ye, Qianqian; Jin, Xiaogang

    2017-01-11

    We present a novel data-driven approach to populate virtual road networks with realistic traffic flows. Specifically, given a limited set of vehicle trajectories as the input samples, our approach first synthesizes a large set of vehicle trajectories. By taking the spatio-temporal information of traffic flows as a 2D texture, the generation of new traffic flows can be formulated as a texture synthesis process, which is solved by minimizing a newly developed traffic texture energy. The synthesized output captures the spatio-temporal dynamics of the input traffic flows, and the vehicle interactions in it strictly follow traffic rules. After that, we position the synthesized vehicle trajectory data to virtual road networks using a cage-based registration scheme, where a few traffic-specific constraints are enforced to maintain each vehicle's original spatial location and synchronize its motion in concert with its neighboring vehicles. Our approach is intuitive to control and scalable to the complexity of virtual road networks. We validated our approach through many experiments and paired comparison user studies.

  1. Measurement of Temporal Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  2. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  3. Vehicular Traffic Flow Controlled by Traffic Light on a Street with Open Boundaries

    NASA Astrophysics Data System (ADS)

    Mhirech, Abdelaziz; Ismaili, Assia Alaoui

    2013-08-01

    The Nagel-Schreckenberg (NS) cellular automata (CA) model for describing the vehicular traffic flow in a street with open boundaries is studied. To control the traffic flow, a traffic signalization light operating for a fixed-time scheme is placed in the middle of the street. Extensive Monte Carlo simulations are carried out to calculate various model characteristics. Essentially, we investigate the formation of the cars queue behind traffic light dependence on the duration of green light Tg, injecting and extracting probabilities α and β, respectively. Two phases of average training queues were found. Besides, the dependence of car accident probability per site and per time step on Tg, α and β is computed.

  4. Properties of Air Traffic Conflicts for Free and Structured Routing

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2001-01-01

    This paper analyzes the properties of air traffic conflicts in a future free routing system against those in the current structured routing system. Simulation of en route air traffic operations (above 18,000 ft) over the contiguous United States for a 24-hour period, constructed with initial conditions from actual air traffic data, were conducted using the Future ATM Concepts Evaluation Tool (FACET). Free routes were modeled as great circle (direct) routes from origin to destination, and structured routes were derived from actual flight plans along the current system of air routes. The conflict properties analyzed in this study include: (1) Total number of conflicts; (2) Distributions of key conflict parameters; and, (3) Categorization of conflicts into independent conflicts and two types of interacting conflicts. Preliminary results (for Denver Center traffic) indicate that conflict properties in a free routing system are different from those in the current structured routing system. In particular, a free routing system has significantly fewer conflicts, involving a correspondingly smaller number of aircraft, compared to the current structured routing system. Additionally, the conflict parameter distributions indicate that free routing conflicts are less intrusive than structured routing conflicts, and would therefore require small trajectory deviations for resolution.

  5. Second Careers: The Air Traffic Controller Experience and Beyond.

    ERIC Educational Resources Information Center

    Batten, Michael D.

    1978-01-01

    Second careers are examined from an organizational viewpoint, and new directions for education-work policy, suggested by a unique second career program of the Federal Aviation Administration for air traffic controllers, are explored. Focus is on age, organizational and training factors, and community involvement. (Author/JMD)

  6. Airborne Collision Avoidance Systems and Air Traffic Management Safety

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2005-01-01

    A new ICAO Policy on Airborne Collision Avoidance Systems is needed, which recognizes it to be an integrated part of the air traffic management system's safety defences; and that should be fully included in hazard analyses for the total system's design safety targets.

  7. Trainer Interventions as Instructional Strategies in Air Traffic Control Training

    ERIC Educational Resources Information Center

    Koskela, Inka; Palukka, Hannele

    2011-01-01

    Purpose: This paper aims to identify methods of guidance and supervision used in air traffic control training. It also aims to show how these methods facilitate trainee participation in core work activities. Design/methodology/approach: The paper applies the tools of conversation analysis and ethnomethodology to explore the ways in which trainers…

  8. Planes, Politics and Oral Proficiency: Testing International Air Traffic Controllers

    ERIC Educational Resources Information Center

    Moder, Carol Lynn; Halleck, Gene B.

    2009-01-01

    This study investigates the variation in oral proficiency demonstrated by 14 Air Traffic Controllers across two types of testing tasks: work-related radio telephony-based tasks and non-specific English tasks on aviation topics. Their performance was compared statistically in terms of level ratings on the International Civil Aviation Organization…

  9. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  10. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  11. Initial Air Traffic Control Training at Tartu Aviation College.

    ERIC Educational Resources Information Center

    Kulbas, Tanel

    1997-01-01

    Development of an air traffic control (ATC) training course at Tartu Aviation College in Estonia had to start at ground zero, creating new rules and regulations for ATC, writing special study materials, building simulators, and finding enough applicants with sufficient English skills. (SK)

  12. Effect of gravitational force upon traffic flow with gradients

    NASA Astrophysics Data System (ADS)

    Komada, Kazuhito; Masukura, Shuichi; Nagatani, Takashi

    2009-07-01

    We study the effect of gravitational force upon traffic flow on a highway with sag, uphill, and downhill. We extend the optimal velocity model to take into account the gravitational force which acts on vehicles as an external force. We study the traffic states and jamming transitions induced by the slope of highway. We derive the fundamental diagrams (flow-density diagrams) for the traffic flow on the sag, the uphill, and downhill by using the extended optimal velocity model. We clarify where and when traffic jams occur on a highway with gradients. We show the relationship between densities before and after the jam. We derive the dependence of the fundamental diagram on the slope of gradients.

  13. Synchronized traffic flow simulating with cellular automata model

    NASA Astrophysics Data System (ADS)

    Tian, Jun-fang; Jia, Bin; Li, Xin-gang; Jiang, Rui; Zhao, Xiao-mei; Gao, Zi-you

    2009-12-01

    The synchronized flow traffic phase of Kerner’s three-phase traffic theory can be well reproduced by the model proposed by Jiang and Wu [R. Jiang, Q.S. Wu, J. Phys. A: Math. Gen. 36 (2003) 381]. But in the Jiang and Wu model, the rule for brake light-after switching on, the brake light will not set off until the vehicle accelerates-is obviously unrealistic. Thus we improved the model by considering the difference in accelerating and decelerating performance under different driving conditions. The fundamental diagram and spatial-temporal diagrams are analyzed. We confirmed that the new model could reproduce the synchronized flow by two methods, i.e. the traffic flow interruption effect and performing microscopic analysis of time series data. Simulation results show that the decelerating difference is an important factor to reproduce the synchronized flow. We expect that our work could make contributions to understanding the mechanism of the synchronized flow.

  14. How to reduce workload--augmented reality to ease the work of air traffic controllers.

    PubMed

    Hofmann, Thomas; König, Christina; Bruder, Ralph; Bergner, Jörg

    2012-01-01

    In the future the air traffic will rise--the workload of the controllers will do the same. In the BMWi research project, one of the tasks is, how to ensure safe air traffic, and a reasonable workload for the air traffic controllers. In this project it was the goal to find ways how to reduce the workload (and stress) for the controllers to allow safe air traffic, esp. at huge hub-airports by implementing augmented reality visualization and interaction.

  15. Particle hopping vs. fluid-dynamical models for traffic flow

    SciTech Connect

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  16. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  17. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  18. 75 FR 1116 - RTCA Government/Industry Air Traffic Management Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    .../Industry Air Traffic Management Advisory Committee AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Government/Industry Air Traffic Management Advisory Committee. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Government/Industry Air Traffic...

  19. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  20. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  1. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  2. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  3. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  4. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  5. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  6. A unified model for two-lane lattice traffic flow

    NASA Astrophysics Data System (ADS)

    Wang, Yanhong

    2016-09-01

    In this paper, a unified model is presented for two-lane lattice traffic flow, with comparing different effects in the various lattice hydrodynamic models. Results of linear and nonlinear analysis show that multiple density difference effect (MDDE) is the strongest to enlarge the stable region in two-lane systems. Followed by density difference effect (DDE), multiple flux difference effect (MFDE), and finally flux difference effect (FDE). But when density is around 0.25, MFDE is better to enlarge the stable region than DDE. The reason is that a small flow-rate value might correspond to either a light traffic or a heavy traffic. Also energy consumption and traffic emissions are analyzed and shown to be the same marshaling sequence as linear and nonlinear analysis results. Numerical simulations validate theoretical analysis. And this is consistent with the realistic.

  7. Flow improvement caused by agents who ignore traffic rules.

    PubMed

    Baek, Seung Ki; Minnhagen, Petter; Bernhardsson, Sebastian; Choi, Kweon; Kim, Beom Jun

    2009-07-01

    A system of agents moving along a road in both directions is studied numerically within a cellular-automata formulation. An agent steps to the right with probability q or to the left with 1-q when encountering other agents. Our model is restricted to two agent types, traffic-rule abiders (q=1) and traffic-rule ignorers (q=1/2) , and the traffic flow, resulting from the interaction between these two types of agents, which is obtained as a function of density and relative fraction. The risk for jamming at a fixed density, when starting from a disordered situation, is smaller when every agent abides by a traffic rule than when all agents ignore the rule. Nevertheless, the absolute minimum occurs when a small fraction of ignorers are present within a majority of abiders. The characteristic features for the spatial structure of the flow pattern are obtained and discussed.

  8. Toward real-time en route air traffic control optimization

    NASA Astrophysics Data System (ADS)

    Jardin, Matthew Robert

    The increase in air traffic along the existing jet route structure has led to inefficiencies and frequent congestion in en route airspace. Analysis of air-traffic data suggests that direct operating costs might be reduced by about 4.5%, or $500 million per year, if aircraft were permitted to fly optimal wind routes instead of the structured routes allowed today. To enable aircraft to fly along unstructured optimal routes safely, automation is required to aid air-traffic controllers. This requires the global solution for conflict-free optimal routes for many aircraft in real time. The constraint that all aircraft must maintain adequate separation from one another results in a greater-than-exponential increase in the complexity of the multi-aircraft optimization problem. The main challenges addressed in this dissertation are in the areas of optimal wind routing, computationally efficient aircraft conflict detection, and efficient conflict resolution. A core contribution is the derivation of an analytical neighboring optimal control solution for the efficient computation of optimal wind routes. The neighboring optimal control algorithm uses an order of magnitude less computational effort to achieve the same performance as existing algorithms, and is easily extended to compute near-optimal conflict free trajectories. A conflict detection algorithm as been developed which eliminates the need to compute inter-aircraft distances. Simulation results are presented to demonstrate an integrated horizontal route-optimization and conflict-resolution method for air-traffic control. Conflict-free solutions have been computed for roughly double the current-day traffic density for a single flight level (over 600 aircraft) in less than 1 minute on a 450-MHz UNIX work station. This corresponds to a computation rate of better than 25 optimal routes per second. Extrapolation of the two-dimensional results to the multi-flight-level domain suggests that the complete solution for optimal

  9. Interaction of Airspace Partitions and Traffic Flow Management Delay

    NASA Technical Reports Server (NTRS)

    Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae

    2010-01-01

    To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.

  10. Wind Prediction Accuracy for Air Traffic Management Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Cole, Rod; Green, Steve; Jardin, Matt; Schwartz, Barry; Benjamin, Stan

    2000-01-01

    The performance of Air Traffic Management and flight deck decision support tools depends in large part on the accuracy of the supporting 4D trajectory predictions. This is particularly relevant to conflict prediction and active advisories for the resolution of conflicts and the conformance with of traffic-flow management flow-rate constraints (e.g., arrival metering / required time of arrival). Flight test results have indicated that wind prediction errors may represent the largest source of trajectory prediction error. The tests also discovered relatively large errors (e.g., greater than 20 knots), existing in pockets of space and time critical to ATM DST performance (one or more sectors, greater than 20 minutes), are inadequately represented by the classic RMS aggregate prediction-accuracy studies of the past. To facilitate the identification and reduction of DST-critical wind-prediction errors, NASA has lead a collaborative research and development activity with MIT Lincoln Laboratories and the Forecast Systems Lab of the National Oceanographic and Atmospheric Administration (NOAA). This activity, begun in 1996, has focussed on the development of key metrics for ATM DST performance, assessment of wind-prediction skill for state of the art systems, and development/validation of system enhancements to improve skill. A 13 month study was conducted for the Denver Center airspace in 1997. Two complementary wind-prediction systems were analyzed and compared to the forecast performance of the then standard 60 km Rapid Update Cycle - version 1 (RUC-1). One system, developed by NOAA, was the prototype 40-km RUC-2 that became operational at NCEP in 1999. RUC-2 introduced a faster cycle (1 hr vs. 3 hr) and improved mesoscale physics. The second system, Augmented Winds (AW), is a prototype en route wind application developed by MITLL based on the Integrated Terminal Wind System (ITWS). AW is run at a local facility (Center) level, and updates RUC predictions based on an

  11. Macroscopic modeling for traffic flow on three-lane highways

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Fang, Yuan

    2015-04-01

    In this paper, a macroscopic traffic flow model for three-lane highways is proposed. The model is an extension of the speed gradient model by taking into account the lane changing. The new source and sink terms of lane change rate are added into the continuity equations and the speed dynamic equations to describe the lane-changing behavior. The result of the steady state analysis shows that our model can describe the lane usage inversion phenomenon. The numerical results demonstrate that the present model effectively reproduces several traffic phenomena observed in real traffic such as shock and rarefaction waves, stop-and-go waves and local clusters.

  12. Environmental Assessment for Buckley Air Force Base Air Traffic Control Tower and Fire Station

    DTIC Science & Technology

    2003-05-01

    shows the location of the current air traffic control tower and crash house on the northeast side of the runway and the location of the proposed new...Army aviation site) and crash house located on the northeast side of the runway. This action would include demolishing the current air traffic...throughout the year with the wettest months occurring in spring and summer. The average annual precipitation is 16.3 inches. BAFB receives

  13. Urban traffic-network performance: flow theory and simulation experiments

    SciTech Connect

    Williams, J.C.

    1986-01-01

    Performance models for urban street networks were developed to describe the response of a traffic network to given travel-demand levels. The three basic traffic flow variables, speed, flow, and concentration, are defined at the network level, and three model systems are proposed. Each system consists of a series of interrelated, consistent functions between the three basic traffic-flow variables as well as the fraction of stopped vehicles in the network. These models are subsequently compared with the results of microscopic simulation of a small test network. The sensitivity of one of the model systems to a variety of network features was also explored. Three categories of features were considered, with the specific features tested listed in parentheses: network topology (block length and street width), traffic control (traffic signal coordination), and traffic characteristics (level of inter-vehicular interaction). Finally, a fundamental issue concerning the estimation of two network-level parameters (from a nonlinear relation in the two-fluid theory) was examined. The principal concern was that of comparability of these parameters when estimated with information from a single vehicle (or small group of vehicles), as done in conjunction with previous field studies, and when estimated with network-level information (i.e., all the vehicles), as is possible with simulation.

  14. A Vision of the Future Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.

  15. Synchronized flow and wide moving jams from balanced vehicular traffic.

    PubMed

    Siebel, Florian; Mauser, Wolfram

    2006-06-01

    Recently we proposed an extension to the traffic model of Aw, Rascle, and Greenberg. The extended traffic model can be written as a hyperbolic system of balance laws and numerically reproduces the reverse-lambda shape of the fundamental diagram of traffic flow. In the current work we analyze the steady-state solutions of the model and their stability properties. In addition to the equilibrium flow curve the trivial steady-state solutions form two additional branches in the flow-density diagram. We show that the characteristic structure excludes parts of these branches, resulting in the reverse-lambda shape of the flow-density relation. The upper branch is metastable against the formation of synchronized flow for intermediate densities and unstable for high densities, whereas the lower branch is unstable for intermediate densities and metastable for high densities. Moreover, the model can reproduce the typical speed of the downstream front of wide moving jams. It further reproduces a constant outflow from wide moving jams, which is far below the maximum free flow. Applying the model to simulate traffic flow at a bottleneck we observe a general pattern with wide moving jams traveling through the bottleneck.

  16. Air Traffic Control Decision Support Tools for Noise Mitigation

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    2001-01-01

    NASA has initiated a new five year program this year, the Quiet Aircraft Technology (QAT) Program, a program which will investigate airframe and engine system noise reduction. QAT will also address community noise impact. As part of this community noise impact component, NASA will investigate air traffic management (ATM) challenges in reducing noise. In particular, controller advisory automation aids will be developed to aid the air traffic controller in addressing noise concerns as he/she manages traffic in busy terminal areas. NASA has developed controller automation tools to address capacity concerns and the QAT strategy for ATM Low Noise Operations is to build upon this tool set to create added advisories for noise mitigation. The tools developed for capacity will be briefly reviewed, followed by the QAT plans to address ATM noise concerns. A major NASA goal in global civil aviation is to triple the aviation system throughput in all-weather conditions while maintaining safety. A centerpiece of this activity is the Center/TRACON Automation System (CTAS), an evolving suite of air traffic controller decision support tools (DSTs) to enhance capacity of arrivals and departures in both the enroute center and the TRACON. Two of these DSTs, the Traffic Management Advisor (TMA) and the passive Final approach Spacing Tool (pFAST), are in daily use at the Fort Worth Center and the Dallas/Fort Worth (DFW) TRACON, respectively, where capacity gains of 5-13% have been reported in recent NASA evaluations. Under the Federal Aviation Administration's (FAA) Free Flight Phase One Program, TMA and pFAST are each being implemented at six to eight additional sites. In addition, other DSTs are being developed by NASA under the umbrella of CTAS. This means that new software will be built upon CTAS, and the paradigm of real-time simulation evaluation followed by field site development and evaluation will be the pathway for the new tools. Additional information is included in the

  17. Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A hybrid modelling approach

    NASA Astrophysics Data System (ADS)

    Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili

    2009-06-01

    In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.

  18. Analysis of ETMS Data Quality for Traffic Flow Management Decisions

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Sridhar, Banavar; Kim, Douglas

    2003-01-01

    The data needed for air traffic flow management decision support tools is provided by the Enhanced Traffic Management System (ETMS). This includes both the tools that are in current use and the ones being developed for future deployment. Since the quality of decision support provided by all these tools will be influenced by the quality of the input ETMS data, an assessment of ETMS data quality is needed. Motivated by this desire, ETMS data quality is examined in this paper in terms of the unavailability of flight plans, deviation from the filed flight plans, departure delays, altitude errors and track data drops. Although many of these data quality issues are not new, little is known about their extent. A goal of this paper is to document the magnitude of data quality issues supported by numerical analysis of ETMS data. Guided by this goal, ETMS data for a 24-hour period were processed to determine the number of aircraft with missing flight plan messages at any given instant of time. Results are presented for aircraft above 18,000 feet altitude and also at all altitudes. Since deviation from filed flight plan is also a major cause of trajectory-modeling errors, statistics of deviations are presented. Errors in proposed departure times and ETMS-generated vertical profiles are also shown. A method for conditioning the vertical profiles for improving demand prediction accuracy is described. Graphs of actual sector counts obtained using these vertical profiles are compared with those obtained using the Host data for sectors in the Fort Worth Center to demonstrate the benefit of preprocessing. Finally, results are presented to quantify the extent of data drops. A method for propagating track positions during ETMS data drops is also described.

  19. Vehicular traffic flow at a non-signalized intersection

    NASA Astrophysics Data System (ADS)

    Ebrahim Foulaadvand, M.; Belbasi, Somayyeh

    2007-07-01

    We have developed a modified Nagel Schreckenberg cellular automata model for describing a conflicting vehicular traffic flow at the intersection of two streets. No traffic lights control the traffic flow. The approaching cars to the intersection yield to each other to avoid collision. Closed boundary condition is applied to the streets. Extensive Monte Carlo simulation is taken into account to find the model characteristics. In particular, we obtain the fundamental diagrams and show that the effect of the interaction of two streets can be regarded as a dynamic impurity located at the intersection point. Our results suggest that yielding mechanism gives rise to a high total flow throughout the intersection especially in the low density regime.

  20. A sliding mode controller for vehicular traffic flow

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Kang, Yuhao; Yang, Bin; Peeta, Srinivas; Zhang, Li; Zheng, Taixong; Li, Yinguo

    2016-11-01

    This study proposes a sliding mode controller for vehicular traffic flow based on a car-following model to enhance the smoothness and stability of traffic flow evolution. In particular, the full velocity difference (FVD) model is used to capture the characteristics of vehicular traffic flow. The proposed sliding mode controller is designed in terms of the error between the desired space headway and the actual space headway. The stability of the controller is guaranteed using the Lyapunov technique. Numerical experiments are used to compare the performance of sliding mode control (SMC) with that of feedback control. The results illustrate the effectiveness of the proposed SMC method in terms of the distribution smoothness and stability of the space headway, velocity, and acceleration profiles. They further illustrate that the SMC strategy is superior to that of the feedback control strategy, while enabling computational efficiency that can aid in practical applications.

  1. FAA Air Traffic Activity, Fiscal Year 1979,

    DTIC Science & Technology

    1979-09-30

    TRAFIC CONTROL TOWERS BY STATE si-It 641. LOCATION* U Alk AIR GENERAL 11.1.6111. NAM6 11II R AOA CAMk R681 TAXI AVIAT ION MILITARY LA1.IA L&MbA...z 25 IV TUIAL UPERATIhS 22.3 799 6 123 1321 - AI TRAFIC 39SS All CLAIS81116 AS FOLLOWS, (PERCENT OF TOTAL EEPLARID FAMSENEOES) L LARGE 1.002 N MEDuM...88 N 11 16 CHIEFL AND FL 4N 64I LIRNb’UN N 16N1 LA6E KS N 169% It RANTEd NC. N 1616 I0 ARAMS M I S 169 6 11TOUGlHANAUHN PA N 1611 16 NORTH LIMA OH 5

  2. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  3. Formal Verification of Air Traffic Conflict Prevention Bands Algorithms

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dowek, Gilles

    2010-01-01

    In air traffic management, a pairwise conflict is a predicted loss of separation between two aircraft, referred to as the ownship and the intruder. A conflict prevention bands system computes ranges of maneuvers for the ownship that characterize regions in the airspace that are either conflict-free or 'don't go' zones that the ownship has to avoid. Conflict prevention bands are surprisingly difficult to define and analyze. Errors in the calculation of prevention bands may result in incorrect separation assurance information being displayed to pilots or air traffic controllers. This paper presents provably correct 3-dimensional prevention bands algorithms for ranges of track angle; ground speed, and vertical speed maneuvers. The algorithms have been mechanically verified in the Prototype Verification System (PVS). The verification presented in this paper extends in a non-trivial way that of previously published 2-dimensional algorithms.

  4. Impact of Distracted Driving on Safety and Traffic Flow

    PubMed Central

    Stavrinos, Despina; Jones, Jennifer L.; Garner, Annie A.; Griffin, Russell; Franklin, Crystal A.; Ball, David; Welburn, Sharon C.; Ball, Karlene K.; Sisiopiku, Virginia P.; Fine, Philip R.

    2015-01-01

    Studies have documented a link between distracted driving and diminished safety; however, an association between distracted driving and traffic congestion has not been investigated in depth. The present study examined the behavior of teens and young adults operating a driving simulator while engaged in various distractions (i.e., cell phone, texting, and undistracted) and driving conditions (i.e., free flow, stable flow, and oversaturation). Seventy five participants 16 to 25 years of age (split into 2 groups: novice drivers and young adults) drove a STISIM simulator three times, each time with one of three randomly presented distractions. Each drive was designed to represent daytime scenery on a 4 lane divided roadway and included three equal roadway portions representing Levels of Service (LOS) A, C, and E as defined in the 2000 Highway Capacity Manual. Participants also completed questionnaires documenting demographics and driving history. Both safety and traffic flow related driving outcomes were considered. A Repeated Measures Multivariate Analysis of Variance was employed to analyze continuous outcome variables and a Generalized Estimate Equation (GEE) poisson model was used to analyze count variables. Results revealed that, in general more lane deviations and crashes occurred during texting. Distraction (in most cases, text messaging) had a significantly negative impact on traffic flow, such that participants exhibited greater fluctuation in speed, changed lanes significantly fewer times, and took longer to complete the scenario. In turn, more simulated vehicles passed the participant drivers while they were texting or talking on a cell phone than while undistracted. The results indicate that distracted driving, particularly texting, may lead to reduced safety and traffic flow, thus having a negative impact on traffic operations. No significant differences were detected between age groups, suggesting that all drivers, regardless of age, may drive in a manner

  5. Impact of distracted driving on safety and traffic flow.

    PubMed

    Stavrinos, Despina; Jones, Jennifer L; Garner, Annie A; Griffin, Russell; Franklin, Crystal A; Ball, David; Welburn, Sharon C; Ball, Karlene K; Sisiopiku, Virginia P; Fine, Philip R

    2013-12-01

    Studies have documented a link between distracted driving and diminished safety; however, an association between distracted driving and traffic congestion has not been investigated in depth. The present study examined the behavior of teens and young adults operating a driving simulator while engaged in various distractions (i.e., cell phone, texting, and undistracted) and driving conditions (i.e., free flow, stable flow, and oversaturation). Seventy five participants 16-25 years of age (split into 2 groups: novice drivers and young adults) drove a STISIM simulator three times, each time with one of three randomly presented distractions. Each drive was designed to represent daytime scenery on a 4 lane divided roadway and included three equal roadway portions representing Levels of Service (LOS) A, C, and E as defined in the 2000 Highway Capacity Manual. Participants also completed questionnaires documenting demographics and driving history. Both safety and traffic flow related driving outcomes were considered. A Repeated Measures Multivariate Analysis of Variance was employed to analyze continuous outcome variables and a Generalized Estimate Equation (GEE) Poisson model was used to analyze count variables. Results revealed that, in general more lane deviations and crashes occurred during texting. Distraction (in most cases, text messaging) had a significantly negative impact on traffic flow, such that participants exhibited greater fluctuation in speed, changed lanes significantly fewer times, and took longer to complete the scenario. In turn, more simulated vehicles passed the participant drivers while they were texting or talking on a cell phone than while undistracted. The results indicate that distracted driving, particularly texting, may lead to reduced safety and traffic flow, thus having a negative impact on traffic operations. No significant differences were detected between age groups, suggesting that all drivers, regardless of age, may drive in a manner

  6. Intuitiveness of Symbol Features for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Ngo, Mary Kim; Vu, Kim-Phuong L.; Thorpe, Elaine; Battiste, Vernol; Strybel, Thomas Z.

    2012-01-01

    We present the results of two online surveys asking participants to indicate what type of air traffic information might be conveyed by a number of symbols and symbol features (color, fill, text, and shape). The results of this initial study suggest that the well-developed concepts of ownership, altitude, and trajectory are readily associated with certain symbol features, while the relatively novel concept of equipage was not clearly associated with any specific symbol feature.

  7. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  8. Free flight: air traffic control evolution or revolution

    NASA Astrophysics Data System (ADS)

    Grundmann, Karl

    1996-05-01

    The Federal Aviation Administration (FAA) and industry are moving towards a more flexible, user oriented air traffic control system. The question is: does this point to a natural evolution or revolution in the world of the air traffic controllers? The National Airspace System is by all accounts the safest in the world. How will we sustain this record of performance with increased flexibility and user involvement? How will controllers and pilots react to a new more dynamic paradigm? Is the current state of automation, modeling, and analysis what is needed to make Free Flight a reality? How will the FAA insure that all human factors questions are answered before implementation? How will we quantify the impact of unanswered questions and their influence on safety? These, and many more questions need to be answered to ensure that the benefits promised by Free Flight are realized by all parties. The National Air Traffic Controllers Association supports the new concept. Yet, we are seriously concerned about the actual implementation of Free Flight's various components.

  9. CSMA Versus Prioritized CSMA for Air-Traffic-Control Improvement

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    OPNET version 7.0 simulations are presented involving an important application of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) over the Very High Frequency Data Link, Mode 2 (VDL-2). Communication is modeled for essentially all incoming and outgoing nonstop air-traffic for just three United States cities: Cleveland, Cincinnati, and Detroit. There are 32 airports in the simulation, 29 of which are either sources or destinations for the air-traffic of the aforementioned three airports. The simulation involves 111 Air Traffic Control (ATC) ground stations, and 1,235 equally equipped aircraft-taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. Collisionless, Prioritized Carrier Sense Multiple Access (CSMA) is successfully tested and compared with the traditional CSMA typically associated with VDL-2. The performance measures include latency, throughput, and packet loss. As expected, Prioritized CSMA is much quicker and more efficient than traditional CSMA. These simulation results show the potency of Prioritized CSMA for implementing low latency, high throughput, and efficient connectivity.

  10. Learning styles: The learning methods of air traffic control students

    NASA Astrophysics Data System (ADS)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  11. Road traffic noise, air pollution components and cardiovascular events.

    PubMed

    de Kluizenaar, Yvonne; van Lenthe, Frank J; Visschedijk, Antoon J H; Zandveld, Peter Y J; Miedema, Henk M E; Mackenbach, Johan P

    2013-01-01

    Traffic noise and air pollution have been associated with cardiovascular health effects. Until date, only a limited amount of prospective epidemiological studies is available on long-term effects of road traffic noise and combustion related air pollution. This study investigates the relationship between road traffic noise and air pollution and hospital admissions for ischemic heart disease (IHD: International Classification of Diseases (ICD9) 410-414) or cerebrovascular disease (cerebrovascular event [CVE]: ICD9 430-438). We linked baseline questionnaire data to 13 years of follow-up on hospital admissions and road traffic noise and air pollution exposure, for a large random sample (N = 18,213) of inhabitants of the Eindhoven region, Netherlands. Subjects with cardiovascular event during follow-up on average had higher road traffic noise day, evening, night level (L den) and air pollution exposure at the home. After adjustment for confounders (age, sex, body mass index, smoking, education, exercise, marital status, alcohol use, work situation, financial difficulties), increased exposure did not exert a significant increased risk of hospital admission for IHD or cerebrovascular disease. Relative risks (RRs) for a 5 (th) to 95 (th) percentile interval increase were 1.03 (0.88-1.20) for L den; 1.04 (0.90-1.21) for particulate matter (PM 10 ); 1.05 (0.91-1.20) for elemental carbon (EC); and 1.12 (096-1.32) for nitrogen dioxide (NO 2 ) in the full model. While the risk estimate seemed highest for NO 2 , for a 5 (th) to 95 (th) percentile interval increase, expressed as RRs per 1 μg/m 3 increases, hazard ratios seemed highest for EC (RR 1.04 [0.92-1.18]). In the subgroup of study participants with a history of cardiovascular disease, RR estimates seemed highest for noise exposure (1.19 [0.87-1.64] for L den); in the subgroup of elderly RR seemed highest for air pollution exposure (RR 1.24 [0.93-1.66] for NO 2 ).

  12. Evaluation of the Monotonic Lagrangian Grid and Lat-Long Grid for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay

    2011-01-01

    The Air Traffic Monotonic Lagrangian Grid (ATMLG) is used to simulate a 24 hour period of air traffic flow in the National Airspace System (NAS). During this time period, there are 41,594 flights over the United States, and the flight plan information (departure and arrival airports and times, and waypoints along the way) are obtained from an Federal Aviation Administration (FAA) Enhanced Traffic Management System (ETMS) dataset. Two simulation procedures are tested and compared: one based on the Monotonic Lagrangian Grid (MLG), and the other based on the stationary Latitude-Longitude (Lat- Long) grid. Simulating one full day of air traffic over the United States required the following amounts of CPU time on a single processor of an SGI Altix: 88 s for the MLG method, and 163 s for the Lat-Long grid method. We present a discussion of the amount of CPU time required for each of the simulation processes (updating aircraft trajectories, sorting, conflict detection and resolution, etc.), and show that the main advantage of the MLG method is that it is a general sorting algorithm that can sort on multiple properties. We discuss how many MLG neighbors must be considered in the separation assurance procedure in order to ensure a five-mile separation buffer between aircraft, and we investigate the effect of removing waypoints from aircraft trajectories. When aircraft choose their own trajectory, there are more flights with shorter duration times and fewer CD&R maneuvers, resulting in significant fuel savings.

  13. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  14. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    NASA Technical Reports Server (NTRS)

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  15. The Impact of a Traffic Alert and Collision Avoidance System on the Air Traffic Control Radar Beacon System and Mode S System in the Los Angeles Basin.

    DTIC Science & Technology

    1985-05-01

    FAAIPM-84130 The Impact of a Traffic Alert and Program Engineering Collision Avoidance System on the and Maintenance Service Air Traffic Control Radar...ON4 THE AIR TRAFFIC CONTROL RADAR BEACON SYSTEM 6.~ eforming organization Cede AND THE MODE :3 SYSTEM IN THE LOS ANGELES BASIN P032 7 A~,re~lIS...performed to predict the impact of the Traffic Alert and Collision Avoidance System (TCAS) on the performance of selected air traffic control and surveil

  16. Phase transitions in traffic flow on multilane roads

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases—free flow, synchronized flow, and wide moving jams—occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  17. Phase transitions in traffic flow on multilane roads.

    PubMed

    Kerner, Boris S; Klenov, Sergey L

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  18. 75 FR 61552 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC... Traffic Management Advisory Committee (ATMAC) SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) DATES:...

  19. 75 FR 39091 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC... Traffic Management Advisory Committee (ATMAC). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)....

  20. Three-phase theory of city traffic: Moving synchronized flow patterns in under-saturated city traffic at signals

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2014-03-01

    Three-phase traffic flow theory of city traffic has been developed. Based on simulations of a stochastic microscopic traffic flow model, features of moving synchronized flow patterns (MSP) have been studied, which are responsible for a random time-delayed breakdown of a green-wave (GW) organized in a city. A possibility of GW control leading to the prevention of GW breakdown has been demonstrated. A diagram of traffic breakdown in under-saturated traffic (transition from under- to over-saturated city traffic) at the signal has been found; the diagram presents regions of the average arrival flow rate, within which traffic breakdown can occur, in dependence of parameters of the time-function of the arrival flow rate or/and signal parameters. Physical reasons for a crucial difference between results of classical theory of city traffic and three-phase theory are explained. In particular, we have found that under-saturated traffic at the signal can exist during a long time interval, when the average arrival flow rate is larger than the capacity of the classical theory; the classical capacity is equal to a minimum capacity in three-phase theory. Within a range of the average arrival flow rate between the minimum and maximum signal capacities, under-saturated traffic is in a metastable state with respect to traffic breakdown. We have distinguished the following possible causes for the metastability of under-saturated traffic: (i) The arrival flow rate during the green phase is larger than the saturation flow rate. (ii) The length of the upstream front of a queue at the signal is a finite value. (iii) The outflow rate from a MSP (the rate of MSP discharge) is larger than the saturation flow rate.

  1. Wake Turbulence: An Obstacle to Increased Air Traffic Capacity

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Wingtip vortices were first described by British aerodynamicist F.W. Lanchester in 1907. A product of lift on a finite-span wing, these counterrotating masses of air trail behind an aircraft, gradually diffusing while convecting downward and moving about under mutual induction and the influence of wind and stratification. Should a smaller aircraft happen to be following the first aircraft, it could be buffeted and even flipped if it flew into the vortex, with dangerous consequences. Given the amount of air traffic in 1907, the wake vortex hazard was not initially much of a concern. The demand for air transportation continues to increase, and it is estimated that demand could double or even triple by 2025. One factor in the capacity of the air transportation system is wake turbulence and the consequent separation distances that must be maintained between aircraft to ensure safety.

  2. 76 FR 57902 - Amendment and Establishment of Air Traffic Service Routes; Northeast United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... deconflict air traffic. Some communities felt that they are unfairly impacted by low flying aircraft and that... impact is so minimal. Since this is a routine matter that will only affect air traffic procedures and air... Federal Aviation Administration 14 CFR Part 71 RIN 2120-AA66 Amendment and Establishment of Air...

  3. The influence of bus stop on traffic flow with velocity-difference-separation model

    NASA Astrophysics Data System (ADS)

    Zheng, Pengjun; Wang, Wei; Ge, Hongxia

    2016-06-01

    Based on velocity-difference-separation model, the mixed traffic flow on two-lane road is investigated. For a fixed road length, the influence of bus and bus stops on traffic flow is studied with the increasing traffic density. Compared with the result without bus stops given by Li et al., a new traffic state is found, which is valuable for studying the impacts of public transport on urban traffic flow.

  4. Spontaneous density fluctuations in granular flow and traffic

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans J.

    It is known that spontaneous density waves appear in granular material flowing through pipes or hoppers. A similar phenomenon is known from traffic jams on highways. Using numerical simulations we show that several types of waves exist and find that the density fluctuations follow a power law spectrum. We also investigate one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. Lattice gas and lattice Boltzmann models reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a non-linear dependence on density or shear rate as it is the case in traffic or granular flow.

  5. A novel lattice traffic flow model on a curved road

    NASA Astrophysics Data System (ADS)

    Cao, Jin-Liang; Shi, Zhon-Ke

    2015-03-01

    Due to the existence of curved roads in real traffic situation, a novel lattice traffic flow model on a curved road is proposed by taking the effect of friction coefficient and radius into account. The stability condition is obtained by using linear stability theory. The result shows that the traffic flow becomes stable with the decrease of friction coefficient and radius of the curved road. Using nonlinear analysis method, the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equation are derived to describe soliton waves and the kink-antikink waves in the meta-stable region and unstable region, respectively. Numerical simulations are carried out and the results are consistent with the theoretical results.

  6. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  7. Effect of adaptive cruise control systems on traffic flow.

    PubMed

    Davis, L C

    2004-06-01

    The flow of traffic composed of vehicles that are equipped with adaptive cruise control (ACC) is studied using simulations. The ACC vehicles are modeled by a linear dynamical equation that has string stability. In platoons of all ACC vehicles, perturbations due to changes in the lead vehicle's velocity do not cause jams. Simulations of merging flows near an onramp show that if the total incoming rate does not exceed the capacity of the single outgoing lane, free flow is maintained. With larger incoming flows, a state closely related to the synchronized flow phase found in manually driven vehicular traffic has been observed. This state, however, should not be considered congested because the flow is maximal for the density. Traffic composed of random sequences of ACC vehicles and manual vehicles has also been studied. At high speeds (approximately 30 m/s ) jamming occurs for concentrations of ACC vehicles of 10% or less. At 20% no jams are formed. The formation of jams is sensitive to the sequence of vehicles (ACC or manual). At lower speeds (approximately 15 m/s ), no critical concentration for complete jam suppression is found. Rather, the average velocity in the pseudojam region increases with increasing ACC concentration. Mixing 50% ACC vehicles randomly with manually driven vehicles on the primary lane in onramp simulations shows only modestly reduced travel times and larger flow rates.

  8. Effect of adaptive cruise control systems on traffic flow

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2004-06-01

    The flow of traffic composed of vehicles that are equipped with adaptive cruise control (ACC) is studied using simulations. The ACC vehicles are modeled by a linear dynamical equation that has string stability. In platoons of all ACC vehicles, perturbations due to changes in the lead vehicle’s velocity do not cause jams. Simulations of merging flows near an onramp show that if the total incoming rate does not exceed the capacity of the single outgoing lane, free flow is maintained. With larger incoming flows, a state closely related to the synchronized flow phase found in manually driven vehicular traffic has been observed. This state, however, should not be considered congested because the flow is maximal for the density. Traffic composed of random sequences of ACC vehicles and manual vehicles has also been studied. At high speeds ( ˜30 m/s ) jamming occurs for concentrations of ACC vehicles of 10% or less. At 20% no jams are formed. The formation of jams is sensitive to the sequence of vehicles (ACC or manual). At lower speeds ( ˜15 m/s ) , no critical concentration for complete jam suppression is found. Rather, the average velocity in the pseudojam region increases with increasing ACC concentration. Mixing 50% ACC vehicles randomly with manually driven vehicles on the primary lane in onramp simulations shows only modestly reduced travel times and larger flow rates.

  9. Cellular automata model for traffic flow with safe driving conditions

    NASA Astrophysics Data System (ADS)

    María, Elena Lárraga; Luis, Alvarez-Icaza

    2014-05-01

    In this paper, a recently introduced cellular automata (CA) model is used for a statistical analysis of the inner microscopic structure of synchronized traffic flow. The analysis focuses on the formation and dissolution of clusters or platoons of vehicles, as the mechanism that causes the presence of this synchronized traffic state with a high flow. This platoon formation is one of the most interesting phenomena observed in traffic flows and plays an important role both in manual and automated highway systems (AHS). Simulation results, obtained from a single-lane system under periodic boundary conditions indicate that in the density region where the synchronized state is observed, most vehicles travel together in platoons with approximately the same speed and small spatial distances. The examination of velocity variations and individual vehicle gaps shows that the flow corresponding to the synchronized state is stable, safe and highly correlated. Moreover, results indicate that the observed platoon formation in real traffic is reproduced in simulations by the relation between vehicle headway and velocity that is embedded in the dynamics definition of the CA model.

  10. Effect of desired speed variability on highway traffic flow.

    PubMed

    Lipshtat, Azi

    2009-06-01

    Traffic flow is a function of many natural, environmental, and human factors. Not only that weather and road condition can vary, but drivers' decisions and policies also can affect the flow. Here we analyze the effect of distribution of desired speeds. We show that a broader distribution can reduce the flow efficiency and increase congestions. Since different drivers react differently to changes in weather or road conditions, such a change leads to a change in desired speed distribution as well. As a result, nonintuitive changes in traffic flow may occur. Besides providing insight and analyzing the underlying mechanism of a collective phenomenon, this example sheds light on a fundamental aspect of computational modeling. Although "mean-field" models that deal with average values only and ignore variability are simpler and easier to analyze, they can very easily turn into oversimplifications and miss relevant qualitative phenomena.

  11. Effect of desired speed variability on highway traffic flow

    NASA Astrophysics Data System (ADS)

    Lipshtat, Azi

    2009-06-01

    Traffic flow is a function of many natural, environmental, and human factors. Not only that weather and road condition can vary, but drivers’ decisions and policies also can affect the flow. Here we analyze the effect of distribution of desired speeds. We show that a broader distribution can reduce the flow efficiency and increase congestions. Since different drivers react differently to changes in weather or road conditions, such a change leads to a change in desired speed distribution as well. As a result, nonintuitive changes in traffic flow may occur. Besides providing insight and analyzing the underlying mechanism of a collective phenomenon, this example sheds light on a fundamental aspect of computational modeling. Although “mean-field” models that deal with average values only and ignore variability are simpler and easier to analyze, they can very easily turn into oversimplifications and miss relevant qualitative phenomena.

  12. The Development of the Multi-Center Traffic Management Advisor (MCTMA): Traffic Flow Management Research in a Multi-Facility Environment

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.

    2001-01-01

    The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.

  13. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  14. Analytical studies on a new lattice hydrodynamic traffic flow model with consideration of traffic current cooperation among three consecutive sites

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Zhong, Chenjie; Chen, Lizhu; Xu, Shangzhi; Qian, Yeqing

    2016-09-01

    In this paper, the original lattice hydrodynamic model of traffic flow is extended to take into account the traffic current cooperation among three consecutive sites. The basic idea of the new consideration is that the cooperative traffic current of the considered site is determined by the traffic currents of the site itself, the immediately preceding site and the immediately following one. The stability criterion of the extended model is obtained by applying the linear stability analysis. The result reveals the traffic current cooperation of the immediately preceding site is positive correlation with the stability of traffic system, while negative correlation is found between the traffic stability and the traffic current cooperation of the nearest follow site. To describe the phase transition, the modified KdV equation near the critical point is derived by using the reductive perturbation method, with obtaining the dependence of the propagation kink solution for traffic jams on the traffic current cooperation among three consecutive sites. The direct numerical are conducted to verify the results of theoretical analysis, and explore the effects of the traffic current cooperation on the traffic flux of the vehicle flow system.

  15. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  16. GENERAL: A modified weighted probabilistic cellular automaton traffic flow model

    NASA Astrophysics Data System (ADS)

    Zhuang, Qian; Jia, Bin; Li, Xin-Gang

    2009-08-01

    This paper modifies the weighted probabilistic cellular automaton model (Li X L, Kuang H, Song T, et al 2008 Chin. Phys. B 17 2366) which considered a diversity of traffic behaviors under real traffic situations induced by various driving characters and habits. In the new model, the effects of the velocity at the last time step and drivers' desire for acceleration are taken into account. The fundamental diagram, spatial-temporal diagram, and the time series of one-minute data are analyzed. The results show that this model reproduces synchronized flow. Finally, it simulates the on-ramp system with the proposed model. Some characteristics including the phase diagram are studied.

  17. Towards a macroscopic modeling of the complexity in traffic flow.

    PubMed

    Rosswog, Stephan; Wagner, Peter

    2002-03-01

    Based on the assumption of a safe velocity U(e)(rho) depending on the vehicle density rho, a macroscopic model for traffic flow is presented that extends the model of the Kühne-Kerner-Konhäuser by an interaction term containing the second derivative of U(e)(rho). We explore two qualitatively different forms of U(e): a conventional Fermi-type function and, motivated by recent experimental findings, a function that exhibits a plateau at intermediate densities, i.e., in this density regime the exact distance to the car ahead is only of minor importance. To solve the fluid-like equations a Lagrangian particle scheme is developed. The suggested model shows a much richer dynamical behavior than the usual fluid-like models. A large variety of encountered effects is known from traffic observations, many of which are usually assigned to the elusive state of "synchronized flow." Furthermore, the model displays alternating regimes of stability and instability at intermediate densities. It can explain data scatter in the fundamental diagram and complicated jam patterns. Within this model, a consistent interpretation of the emergence of very different traffic phenomena is offered: they are determined by the velocity relaxation time, i.e., the time needed to relax towards U(e)(rho). This relaxation time is a measure of the average acceleration capability and can be attributed to the composition (e.g., the percentage of trucks) of the traffic flow.

  18. An augmented reality binocular system (ARBS) for air traffic controllers

    NASA Astrophysics Data System (ADS)

    Fulbrook, Jim E.; Ruffner, John W.; Labbe, Roger

    2008-04-01

    The primary means by which air traffic tower controllers obtain information is through direct out-thewindow viewing, although a considerable amount of time is spent looking at electronic displays and other information sources inside the tower cab. The Air Force Research Laboratory sponsored the development of a prototype Augmented Reality Binocular System (ARBS) that enhances tower controller performance, situation awareness, and safety. The ARBS is composed of a virtual binocular (VB) that displays real-time imagery from high resolution telephoto cameras and sensors mounted on pan/tilt units (PTUs). The selected PTU tracks to the movement of the VB, which has an inertial heading and elevation sensor. Relevant airfield situation text and graphic depictions that identify airfield features are overlaid on the imagery. In addition, the display is capable of labeling and tracking vehicles on which an Automatic Dependent Surveillance - Broadcast (ADS-B) system has been installed. The ARBS provides air traffic controllers and airfield security forces with the capability to orient toward, observe, and conduct continuous airfield operations and surveillance/security missions from any number of viewing aspects in limited visibility conditions. In this paper, we describe the ARBS in detail, discuss the results of a Usability Test of the prototype ARBS, and discuss ideas for follow-on efforts to develop the ARBS to a fieldable level.

  19. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  20. Soliton and kink jams in traffic flow with open boundaries.

    PubMed

    Muramatsu, M; Nagatani, T

    1999-07-01

    Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.

  1. CubeSat constellation design for air traffic monitoring

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Rios, Joseph L.; Gerhardt, David; Pham, Camvu

    2016-11-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska.

  2. Time-based air traffic management using expert systems

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.

  3. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  4. Air traffic control surveillance accuracy and update rate study

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Morrison, D. D.; Zipper, I.

    1973-01-01

    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.

  5. Time-based air traffic management using expert systems

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.

  6. Concept definition of traffic flow wide-area surveillance

    SciTech Connect

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.

    1994-07-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret large spatial projections of data originating from multiple sensor suites. The intent of the Wide-Area Surveillance (WAS) Project is to build upon this concept and define the operational specifications and characteristics of a Traffic Flow Wide-Area Surveillance (TFWAS) system in terms of traffic management and control. In doing so, the functional capabilities of a TFWAS will be mapped onto an operational profile that is consistent with the Federal Highway Administration`s Intelligent Vehicle Highway System. This document provides the underlying foundation of this work by offering a concept definition for the TFWAS system. It concentrates on answering the question: ``What is the system?`` In doing so, the report develops a hierarchy of specialized definitions.

  7. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  8. Modeling self-consistent multi-class dynamic traffic flow

    NASA Astrophysics Data System (ADS)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  9. Effect of driver over-acceleration on traffic breakdown in three-phase cellular automaton traffic flow models

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Schreckenberg, Michael

    2013-09-01

    Based on simulations with cellular automaton (CA) traffic flow models, a generic physical feature of the three-phase models studied in the paper is disclosed. The generic feature is a discontinuous character of driver over-acceleration caused by a combination of two qualitatively different mechanisms of over-acceleration: (i) Over-acceleration through lane changing to a faster lane, (ii) over-acceleration occurring in car-following without lane changing. Based on this generic feature a new three-phase CA traffic flow model is developed. This CA model explains the set of the fundamental empirical features of traffic breakdown in real heterogeneous traffic flow consisting of passenger vehicles and trucks. The model simulates also quantitative traffic pattern characteristics as measured in real heterogeneous flow.

  10. A refined and dynamic cellular automaton model for pedestrian-vehicle mixed traffic flow

    NASA Astrophysics Data System (ADS)

    Liu, Mianfang; Xiong, Shengwu

    2016-12-01

    Mixed traffic flow sharing the “same lane” and having no discipline on road is a common phenomenon in the developing countries. For example, motorized vehicles (m-vehicles) and nonmotorized vehicles (nm-vehicles) may share the m-vehicle lane or nm-vehicle lane and pedestrians may share the nm-vehicle lane. Simulating pedestrian-vehicle mixed traffic flow consisting of three kinds of traffic objects: m-vehicles, nm-vehicles and pedestrians, can be a challenge because there are some erratic drivers or pedestrians who fail to follow the lane disciplines. In the paper, we investigate various moving and interactive behavior associated with mixed traffic flow, such as lateral drift including illegal lane-changing and transverse crossing different lanes, overtaking and forward movement, and propose some new moving and interactive rules for pedestrian-vehicle mixed traffic flow based on a refined and dynamic cellular automaton (CA) model. Simulation results indicate that the proposed model can be used to investigate the traffic flow characteristic in a mixed traffic flow system and corresponding complicated traffic problems, such as, the moving characteristics of different traffic objects, interaction phenomenon between different traffic objects, traffic jam, traffic conflict, etc., which are consistent with the actual mixed traffic system. Therefore, the proposed model provides a solid foundation for the management, planning and evacuation of the mixed traffic flow.

  11. Development of an empirical model to estimate real-world fine particulate matter emission factors: the traffic air quality model.

    PubMed

    Soliman, Ahmed S M; Jacko, Robert B; Palmer, George M

    2006-11-01

    The purpose of the study was to quantify the impact of traffic conditions, such as free flow and congestion, on local air quality. The Borman Expressway (I-80/94) in Northwest Indiana is considered a test bed for this research because of the high volume of class 9 truck traffic traveling on it, as well as the existing and continuing installation of the Intelligent Transportation System (ITS) to improve traffic management along the highway stretch. An empirical traffic air quality (TAQ) model was developed to estimate the fine particulate matter (PM2.5) emission factors (grams per kilometer) based solely on the measured traffic parameters, namely, average speed, average acceleration, and class 9 truck density. The TAQ model has shown better predictions that matched the measured emission factor values more than the U.S. Environmental Protection Agency (EPA)-PART5 model. During congestion (defined as flow-speeds < 50 km/hr [30 mi/hr]), the TAQ model, on average, overpredicted the measured values only by a factor of 1.2, in comparison to a fourfold underprediction using the EPA-PART5 model. On the other hand, during free flow (defined as flow-speeds > 80 km/hr [50 mi/hr]), the TAQ model was conservative in that it overpredicted the measured values by 1.5-fold.

  12. Trajectory Specification for High-Capacity Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2004-01-01

    In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.

  13. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  14. Datalink in air traffic management: Human factors issues in communications.

    PubMed

    Stedmon, Alex W; Sharples, Sarah; Littlewood, Robert; Cox, Gemma; Patel, Harshada; Wilson, John R

    2007-07-01

    This paper examines issues underpinning the potential move in aviation away from real speech radiotelephony (R/T) communications towards datalink communications involving text and synthetic speech communications. Using a novel air traffic control (ATC) task, two experiments are reported. Experiment 1 compared the use of speech and text while Experiment 2 compared the use of real and synthetic speech communications. Results indicated that generally there were no significant differences between speech and text communications and that either type could be used without any main effects on performance. However, a number of specific differences were observed across the different phases of the scenarios indicating that workload levels may be more varied when speech communications are used. Experiment 2 illustrated that participants placed a greater level of trust in real speech than synthetic speech, and trusted true communications more than false communications (regardless of whether they were real or synthetic voices). The findings are considered in terms of datalink initiatives for future air traffic management, the importance placed on real speech R/T communications, and the need to develop more natural synthetic speech in this application area.

  15. Modeling activities in air traffic control systems: antecedents and consequences of a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor R; Ferreira, Bemildo

    2012-01-01

    In this article we present a model of some functions and activities of the Brazilian Air traffic Control System (ATS) in the period in which occurred a mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the ATM. Modeling in some detail activities during the collision and related them to overall behavior and antecedents that stress the organization uncover some drift into failure mechanisms that erode safety defenses provided by the Air Navigation Service Provider (ANSP), enabling a mid-air collision to be happen.

  16. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  17. The Effect of the Heterogeneity on the Traffic Flow Behavior

    NASA Astrophysics Data System (ADS)

    Jetto, K.; Ez-Zahraouy, H.; Benyoussef, A.

    We propose a traffic flow model which takes into account the disorder in the length and the maximal speed of cars. Using cellular automaton model in parallel dynamics we have studied the behavior of traffic flow, especially the condition of formation (active phase) and the dissociation (absorbing phase) of platoons. It is found that the transition from active to absorbing phase depend on the length of the slow vehicles L2. Indeed, the transition is discontinuous for L2 = 1 and continuous when L2 > 1. In the later case, the critical exponent is calculated near the transition density, and the space-time diagram shows the presence of the two phases. Furthermore, we have found that the fundamental diagram exhibit a plateau which depend on the size of the system.

  18. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  19. Precision Positional Data of General Aviation Air Traffic in Terminal Air Space

    NASA Technical Reports Server (NTRS)

    Melson, W. E., Jr.; Parker, L. C.; Northam, A. M.; Singh, R. P.

    1978-01-01

    Three dimensional radar tracks of general aviation air traffic at three uncontrolled airports are considered. Contained are data which describe the position-time histories, other derived parameters, and reference data for the approximately 1200 tracks. All information was correlated such that the date, time, flight number, and runway number match the pattern type, aircraft type, wind, visibility, and cloud conditions.

  20. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  1. Traffic behavior of mixed traffic flow with two kinds of different self-stabilizing control vehicles

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Li, Wenzhong; Xu, Shangzhi; Qian, Yeqing; Sun, Jian

    2015-10-01

    In this paper, we propose a heterogeneous car following model in terms of an extension to the original optimal velocity model characterizing two classes of different self-stabilizing control vehicles. Linear stability analysis method is utilized to the extended model, for purpose to explore how the varying percentages of the vehicles with short-duration self-stabilizing control influence the stability of the heterogeneous traffic flow. We obtain the neutral stability lines for different percentages of two classes of vehicles, with finding that the traffic flow trends to stable with the decrease of the percentage for short-duration self-stabilizing control vehicles. Moreover, we explore a special case that the same numbers of two different classes of vehicles with self-stabilizing control. We theoretically derive the stability condition of the special case, and conclude the effect of the average value and the standard deviation of two time gaps, on the heterogeneous traffic stability. At last, direct simulations are conducted to verify the conclusion of theoretical analysis.

  2. Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Smith, Jeremy C.; Ballin, Mark G.

    2008-01-01

    The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in

  3. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    PubMed

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  4. UAS Air Traffic Controller Acceptability Study-2: Effects of Communications Delays and Winds in Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2016-01-01

    This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.

  5. Understanding Urban Traffic Flow Characteristics from the Network Centrality Perspective at Different Granularities

    NASA Astrophysics Data System (ADS)

    Zhao, P. X.; Zhao, S. M.

    2016-06-01

    In this study, we analyze urban traffic flow using taxi trajectory data to understand the characteristics of traffic flow from the network centrality perspective at point (intersection), line (road), and area (community) granularities. The entire analysis process comprises three steps. The first step utilizes the taxi trajectory data to evaluate traffic flow at different granularities. Second, the centrality indices are calculated based on research units at different granularities. Third, correlation analysis between the centrality indices and corresponding urban traffic flow is performed. Experimental results indicate that urbaxperimental results indicate that urbaxperimental results indicate that urban traffic flow is relatively influenced by the road network structure. However, urban traffic flow also depends on the research unit size. Traditional centralities and traffic flow exhibit a low correlation at point granularity but exhibit a high correlation at line and area granularities. Furthermore, the conclusions of this study reflect the universality of the modifiable areal unit problem.

  6. Stability analysis of traffic flow with extended CACC control models

    NASA Astrophysics Data System (ADS)

    Ya-Zhou, Zheng; Rong-Jun, Cheng; Siu-Ming, Lo; Hong-Xia, Ge

    2016-06-01

    To further investigate car-following behaviors in the cooperative adaptive cruise control (CACC) strategy, a comprehensive control system which can handle three traffic conditions to guarantee driving efficiency and safety is designed by using three CACC models. In this control system, some vital comprehensive information, such as multiple preceding cars’ speed differences and headway, variable safety distance (VSD) and time-delay effect on the traffic current and the jamming transition have been investigated via analytical or numerical methods. Local and string stability criterion for the velocity control (VC) model and gap control (GC) model are derived via linear stability theory. Numerical simulations are conducted to study the performance of the simulated traffic flow. The simulation results show that the VC model and GC model can improve driving efficiency and suppress traffic congestion. Project supported by the National Natural Science Foundation of China (Grant Nos. 71571107 and 11302110). The Scientific Research Fund of Zhejiang Province, China (Grant Nos. LY15A020007, LY15E080013, and LY16G010003). The Natural Science Foundation of Ningbo City (Grant Nos. 2014A610030 and 2015A610299), the Fund from the Government of the Hong Kong Administrative Region, China (Grant No. CityU11209614), and the K C Wong Magna Fund in Ningbo University, China.

  7. Order-parameter model for unstable multilane traffic flow

    NASA Astrophysics Data System (ADS)

    Lubashevsky, Ihor A.; Mahnke, Reinhard

    2000-11-01

    We discuss a phenomenological approach to the description of unstable vehicle motion on multilane highways that explains in a simple way the observed sequence of the ``free flow <--> synchronized mode <--> jam'' phase transitions as well as the hysteresis in these transitions. We introduce a variable called an order parameter that accounts for possible correlations in the vehicle motion at different lanes. So, it is principally due to the ``many-body'' effects in the car interaction in contrast to such variables as the mean car density and velocity being actually the zeroth and first moments of the ``one-particle'' distribution function. Therefore, we regard the order parameter as an additional independent state variable of traffic flow. We assume that these correlations are due to a small group of ``fast'' drivers and by taking into account the general properties of the driver behavior we formulate a governing equation for the order parameter. In this context we analyze the instability of homogeneous traffic flow that manifested itself in the above-mentioned phase transitions and gave rise to the hysteresis in both of them. Besides, the jam is characterized by the vehicle flows at different lanes which are independent of one another. We specify a certain simplified model in order to study the general features of the car cluster self-formation under the ``free flow <--> synchronized motion'' phase transition. In particular, we show that the main local parameters of the developed cluster are determined by the state characteristics of vehicle motion only.

  8. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints

    NASA Technical Reports Server (NTRS)

    Feron, Eric; Bilimoria, Karl (Technical Monitor)

    2003-01-01

    Current air transportation in the United States relies on a system born half a century ago. While demand for air travel has kept increasing over the years, technologies at the heart of the National Airspace System (NAS) have not been able to follow an adequate evolution. For instance, computers used to centralize flight data in airspace sectors run a software developed in 1972. Safety, as well as certification and portability issues arise as major obstacles for the improvement of the system. The NAS is a structure that has never been designed, but has rather evolved over time. This has many drawbacks, mainly due to a lack of integration and engineering leading to many inefficiencies and losses of performance. To improve the operations, understanding of this complex needs to be built up to a certain level. This work presents research done on Air Traffic Management (ATM) at the level of the en-route sector.

  9. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  10. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  11. Design Principles and Algorithms for Air Traffic Arrival Scheduling

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Itoh, Eri

    2014-01-01

    This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.

  12. Trajectory Specification for Automation of Terminal Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2016-01-01

    "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.

  13. Traffic-related air pollution and spectacles use in schoolchildren

    PubMed Central

    Nieuwenhuijsen, Mark J.; Basagaña, Xavier; Alvarez-Pedrerol, Mar; Dalmau-Bueno, Albert; Cirach, Marta; Rivas, Ioar; Brunekreef, Bert; Querol, Xavier; Morgan, Ian G.; Sunyer, Jordi

    2017-01-01

    Purpose To investigate the association between exposure to traffic-related air pollution and use of spectacles (as a surrogate measure for myopia) in schoolchildren. Methods We analyzed the impact of exposure to NO2 and PM2.5 light absorbance at home (predicted by land-use regression models) and exposure to NO2 and black carbon (BC) at school (measured by monitoring campaigns) on the use of spectacles in a cohort of 2727 schoolchildren (7–10 years old) in Barcelona (2012–2015). We conducted cross-sectional analyses based on lifelong exposure to air pollution and prevalent cases of spectacles at baseline data collection campaign as well as longitudinal analyses based on incident cases of spectacles use and exposure to air pollution during the three-year period between the baseline and last data collection campaigns. Logistic regression models were developed to quantify the association between spectacles use and each of air pollutants adjusted for relevant covariates. Results An interquartile range increase in exposure to NO2 and PM2.5 absorbance at home was respectively associated with odds ratios (95% confidence intervals (CIs)) for spectacles use of 1.16 (1.03, 1.29) and 1.13 (0.99, 1.28) in cross-sectional analyses and 1.15 (1.00, 1.33) and 1.23 (1.03, 1.46) in longitudinal analyses. Similarly, odds ratio (95% CIs) of spectacles use associated with an interquartile range increase in exposures to NO2 and black carbon at school was respectively 1.32 (1.09, 1.59) and 1.13 (0.97, 1.32) in cross-sectional analyses and 1.12 (0.84, 1.50) and 1.27 (1.03, 1.56) in longitudinal analyses. These findings were robust to a range of sensitivity analyses that we conducted. Conclusion We observed increased risk of spectacles use associated with exposure to traffic-related air pollution. These findings require further confirmation by future studies applying more refined outcome measures such as quantified visual acuity and separating different types of refractive errors. PMID

  14. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RETIREMENT SYSTEM-BASIC ANNUITY Computations § 842.405 Air traffic controllers, firefighters, law enforcement... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405...

  15. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RETIREMENT SYSTEM-BASIC ANNUITY Computations § 842.405 Air traffic controllers, firefighters, law enforcement... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405...

  16. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air transport traffic and capacity elements... elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  17. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air transport traffic and capacity elements... elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  18. 76 FR 72836 - Amendment and Establishment of Air Traffic Service Routes; Northeast United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Federal Aviation Administration 14 CFR Part 71 RIN 2120-AA66 Amendment and Establishment of Air Traffic Service Routes; Northeast United States AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... Register on September 19, 2011, that amends and establishes nine Air Traffic Service Routes (ATS) in...

  19. Traffic flow equations coming from the Grad's method.

    NASA Astrophysics Data System (ADS)

    Velasco, Rosa M.; Méndez, Alma R.

    2006-11-01

    The usual Grad's method in kinetic theory of gases is developed to construct a new model in traffic flow problems. This is applied to the kinetic equation called as the Paveri-Fontana equation which tells us how the distribution function evolves in time [1]. We assume a special model for the desired velocity of drivers [2] and the Grad's method provides us with a closure relation in the macroscopic equations. The simulation results for this model allow us to find the behavior of density, mean velocity and the velocity variance in the system. All the results are consistent with the validity region of the kinetic equation and with the qualitative behavior proper to traffic models. We show some comparisons with other models in the literature [3]. [1] S.L Paveri-Fontana; Transp. Res. 9 (1975), 225. [2] R.M. Velasco, W. Marques Jr.; Phys. Rev. E72 (2005), 046102. [3] D. Helbing; Phys. Rev. E51 (1995), 3164.

  20. Flight management concepts compatible with air traffic control

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1986-01-01

    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  1. Traffic-related air pollution and brain development

    PubMed Central

    Woodward, Nicholas; Finch, Caleb E.; Morgan, Todd E.

    2016-01-01

    Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory effects from exposure are well documented, cognitive effects are only recently becoming widely recognized. This review discusses effects of TRP on brain and cognition in human and animal studies. The mechanisms underlying these epidemiological associations are studied with rodent models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. Rodent models may identify dietary and other interventions for neuroprotection to TRP. PMID:27099868

  2. Analysis of routine communication in the air traffic control system

    NASA Technical Reports Server (NTRS)

    Clark, Herbert H.; Morrow, Daniel; Rodvoid, Michelle

    1990-01-01

    The present project has three related goals. The first is to describe the organization of routine controller-pilot communication. This includes identifying the basic units of communication and how they are organized into discourse, how controllers and pilots use language to achieve their goals, and what topics they discuss. The second goal is to identify the type and frequency of problems that interrupt routine information transfer and prompt pilots and controllers to focus on the communication itself. The authors analyze the costs of these problems in terms of communication efficiency, and the techniques used to resolve these problems. Third, the authors hope to identify factors associated with communication problems, such as deviations from conventional air traffic control procedures.

  3. Analysis of routine communication in the air traffic control system

    NASA Astrophysics Data System (ADS)

    Clark, Herbert H.; Morrow, Daniel; Rodvoid, Michelle

    1990-08-01

    The present project has three related goals. The first is to describe the organization of routine controller-pilot communication. This includes identifying the basic units of communication and how they are organized into discourse, how controllers and pilots use language to achieve their goals, and what topics they discuss. The second goal is to identify the type and frequency of problems that interrupt routine information transfer and prompt pilots and controllers to focus on the communication itself. The authors analyze the costs of these problems in terms of communication efficiency, and the techniques used to resolve these problems. Third, the authors hope to identify factors associated with communication problems, such as deviations from conventional air traffic control procedures.

  4. Traffic-related air pollution biomonitoring with Tradescantia pallida (Rose) Hunt. cv. purpurea Boom in Brazil.

    PubMed

    Santos, Ana Paula M; Segura-Muñoz, Susana I; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Martinez, Carlos Alberto; Magosso Takayanagui, Angela M

    2015-02-01

    This study aimed to verify the capacity of Tradescantia pallida in the biomonitoring of air pollution in urban areas with different traffic intensities and under varying environmental conditions. Experiments were carried out in Ribeirão Preto, in the Southeastern Brazil, with more than 660,000 inhabitants and a fleet of more than 485,000 motor vehicles. Ten seedlings of T. pallida were exposed in three areas in the city, differing in traffic vehicle flow, in two seasons (wet and dry). At the end of each sampling period, which lasted 4 months, samples of leaves were collected, and the content of As, Ba, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Mn, P, Pb, S, and Zn was determined by inductively coupled plasma mass spectroscopy (ICP-MS). The same elements were determined in soil samples for a seasonal characterization in conjunction with secondary data of environmental parameters. Additionally, micronucleus assay with early pollen tetrad cells of Tradescantia (Trad-MN) was conducted by collecting flower buds and analyzing the micronuclei frequencies in pollen mother cells. Although pollutant levels in air were below the Brazilian legal limits, plants exposed in the high-traffic flow area presented higher concentrations of elements related to vehicle emissions, especially under dry conditions, and higher micronuclei frequency in pollen mother cells. These results show the sensitivity of T. pallida to low-level urban air pollution and its suitability as bioindicator for trace elements. This alternative tool for biomonitoring can serve as a support methodology for the adoption of more restrictive public environmental policies in Brazil and extendible to other developing countries.

  5. Numerical study of urban traffic flow with dedicated bus lane and intermittent bus lane

    NASA Astrophysics Data System (ADS)

    Zhu, H. B.

    2010-08-01

    Based on the cellular automaton traffic flow model and the concept of public transport priority, a two-lane traffic model with an intermittent bus lane is proposed and the properties of urban traffic flow are studied. The cases of traffic with a dedicated bus lane (DBL), an intermittent bus lane (IBL) and an ordinary two-lane traffic are simulated, and comparisons in the form of the fundamental diagrams and the velocity-density profiles are made between them. It is shown that the DBL has the advantage of freeing buses from traffic interference and also has the disadvantage of disrupting traffic, the IBL is more efficient in improving the bus flow than ordinary two-lane traffic and maintaining the car flow at a higher level at the same time than the DBL, while the ordinary two-lane traffic suppresses public transportation and is not advantageous in easing urban traffic congestion. Also it is indicated that the DBL is only appropriate for low traffic flow in a two-lane traffic system, and this limitation can be partly overcome by opening the bus lane to general traffic intermittently when the bus lane is not in use by buses.

  6. Information Requirements for Supervisory Air Traffic Controllers in Support of a Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.

    2008-01-01

    Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the

  7. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  8. Research on Air Traffic Control Automatic System Software Reliability Based on Markov Chain

    NASA Astrophysics Data System (ADS)

    Wang, Xinglong; Liu, Weixiang

    Ensuring the space of air craft and high efficiency of air traffic are the main job tasks of the air traffic control automatic system. An Air Traffic Control Automatic System (ATCAS) and Markov model is put forward in this paper, which collected the 36 month failure data of ATCAS; A method to predict the s1,s2,s3 of ATCAS is based on Markov chain which predicts and validates the Reliability of ATCTS according to the deriving theory of Reliability. The experimental results show that the method can be used for the future research and proved to be practicable.

  9. Traffic-related air pollution modeling during the 2008 Beijing Olympic Games: the effects of an odd-even day traffic restriction scheme.

    PubMed

    Cai, Hao; Xie, Shaodong

    2011-04-15

    An integrated urban air quality modeling system was applied to assess the effects of a short-term odd-even day traffic restriction scheme (TRS) on traffic-related air pollution in the urban area of Beijing (UAB) before, during and after the 2008 Olympic Games. Using traffic flow data retrieved from an on-line traffic monitoring system, concentration levels of CO, PM(10), NO(2) and O(3) on the 2nd, 3rd, 4th Ring Roads (RR) and Linkage Roads (LRs), the main roads distributed around the UAB, were predicted for the pre- (10th-19th, July), during- (20th July-20th September) and post-TRS (21st-30th, September) periods. A widely used statistical framework for model evaluation was adopted, the dependences of model performance on time-of-the-day and on wind direction were investigated, and the model predictions turned out reasonably satisfactory. Results showed that daily average concentrations on the 2nd, 3rd, 4th RR and LRs decreased significantly during the TRS period, by about 35.8, 38.5, 34.9 and 35.6% for CO, about 38.7, 31.8, 44.0 and 34.7% for PM(10), about 30.3, 31.9, 32.3 and 33.9% for NO(2), and about 36.7, 33.0, 33.4 and 34.7% for O(3), respectively, compared with the pre-TRS period. Hourly average concentrations were also reduced significantly, particularly for the morning and evening peaks for CO and PM(10), for the evening peak for NO(2), and for the afternoon peak for O(3). Consequently, both the daily and hourly concentration level of CO, PM(10), NO(2) and O(3) conformed to the China National Ambient Air Quality Standards Grade II during the Games. In addition, notable reduction of concentration levels was achieved in different regions of Beijing, with the traffic-related air pollution in the downwind northern and western areas relieved most significantly. The TRS policy was therefore effective in alleviating traffic-related air pollution and improving short-term air quality in Beijing during the Games.

  10. Improved macroscopic traffic flow model for aggressive drivers

    SciTech Connect

    Mendez, A. R.; Velasco, R. M.

    2011-03-24

    As has been done for the treatment of diluted gases, kinetic methods are formulated for the study of unidirectional freeway traffic. Fluid dynamic models obtained from kinetic equations have inherent restrictions, the principal one is the restriction to the low density regime. Macroscopic models obtained from kinetic equations tends to selfrestrict to this regime and makes impossible to observe the medium density region. In this work, we present some results heading to improve this model and extend the observable region. Now, we are presenting a fluid dynamic model for aggressive drivers obtained from kinetic assumptions to extend the model to the medium density region in order to study synchronization phenomena which is a very interesting transition phase between free flow and traffic jams. We are changing the constant variance prefactor condition imposed before by a variance prefactor density dependent, the numerical solution of the model is presented, analyzed and contrasted with the previous one. We are also comparing our results with heuristic macroscopic models and real traffic observations.

  11. Monitoring individual traffic flows within the ATLAS TDAQ network

    NASA Astrophysics Data System (ADS)

    Sjoen, R.; Stancu, S.; Ciobotaru, M.; Batraneanu, S. M.; Leahu, L.; Martin, B.; Al-Shabibi, A.

    2010-04-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  12. A traffic flow model for bio-polymerization processes

    PubMed Central

    Davis, Lisa; Gedeon, Jakub; Thorenson, Jennifer

    2013-01-01

    Bio-polymerization processes like transcription and translation are central to proper function of a cell. The speed at which the bio-polymer grows is affected both by the number of pauses of elongation machinery, as well the number of bio-polymers due to crowding effects. In order to quantify these effects in fast transcribing ribosome genes, we rigorously show that a classical traffic flow model is the limit of a mean occupancy ODE model. We compare the simulation of this model to a stochastic model and evaluate the combined effect of the polymerase density and the existence of pauses on the instantaneous transcription rate of ribosomal genes. PMID:23404039

  13. A traffic flow model for bio-polymerization processes.

    PubMed

    Davis, Lisa; Gedeon, Tomáš; Gedeon, Jakub; Thorenson, Jennifer

    2014-02-01

    Bio-polymerization processes like transcription and translation are central to proper function of a cell. The speed at which the bio-polymer grows is affected both by the number of pauses of elongation machinery, as well the number of bio-polymers due to crowding effects. In order to quantify these effects in fast transcribing ribosome genes, we rigorously show that a classical traffic flow model is the limit of a mean occupancy ODE model. We compare the simulation of this model to a stochastic model and evaluate the combined effect of the polymerase density and the existence of pauses on the instantaneous transcription rate of ribosomal genes.

  14. Environmental Assessment: Construction of Air Traffic Control Tower Tinker Air Force Base, Oklahoma

    DTIC Science & Technology

    2009-03-01

    built with limited equipment space and designed to accommodate only air traffic control (A TC) operations. Although multiple upgrades and repairs to...delay flying operations. Further, demands placed on the existing tower make it unsuitable for further expansion and degrade the adequacy of the work...would not require changes to land use designations or be considered incompatible with the Tinker AFB General Plan and Oklahoma City Southea<>t Sector

  15. Internet traffic load balancing using dynamic hashing with flow volume

    NASA Astrophysics Data System (ADS)

    Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.

    2002-07-01

    Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.

  16. Control of Future Air Traffic Systems via Complexity Bound Management

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  17. Auction Mechanism to Allocate Air Traffic Control Slots

    NASA Technical Reports Server (NTRS)

    Raffarin, Marianne

    2003-01-01

    This article deals with an auction mechanism for airspace slots, as a means of solving the European airspace congestion problem. A disequilibrium, between Air Traffic Control (ATC) services supply and ATC services demand are at the origin of almost one fourth of delays in the air transport industry in Europe. In order to tackle this congestion problem, we suggest modifying both pricing and allocation of ATC services, by setting up an auction mechanism. Objects of the auction will be the right for airlines to cross a part of the airspace, and then to benefit from ATC services over a period corresponding to the necessary time for the crossing. Allocation and payment rules have to be defined according to the objectives of this auction. The auctioneer is the public authority in charge of ATC services, whose aim is to obtain an efficient allocation. Therefore, the social value will be maximized. Another objective is to internalize congestion costs. To that end, we apply the principle of Clarke-Groves mechanism auction: each winner has to pay the externalities imposed on other bidders. The complex context of ATC leads to a specific design for this auction.

  18. Interaction Between Strategic and Local Traffic Flow Controls

    NASA Technical Reports Server (NTRS)

    Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander

    2010-01-01

    The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.

  19. 78 FR 7851 - Seventeenth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), U.S...: Standards for Air Traffic Data Communication Services meeting. SUMMARY: The FAA is issuing this notice to...: Standards for Air Traffic Data Communication Services. DATES: The meeting will be held February 19,...

  20. 75 FR 66828 - Eleventh Meeting: RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data Communication... Committee 214: Working Group 78: Standards for Air Traffic Data Communication Services. DATES: The...

  1. 78 FR 47480 - Nineteenth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), U.S...: Standards for Air Traffic Data Communication Services meeting. SUMMARY: The FAA is issuing this notice to...-78: Standards for Air Traffic Data Communication Services. DATES: The meeting will be held August...

  2. How long will the traffic flow time series keep efficacious to forecast the future?

    NASA Astrophysics Data System (ADS)

    Yuan, PengCheng; Lin, XuXun

    2017-02-01

    This paper investigate how long will the historical traffic flow time series keep efficacious to forecast the future. In this frame, we collect the traffic flow time series data with different granularity at first. Then, using the modified rescaled range analysis method, we analyze the long memory property of the traffic flow time series by computing the Hurst exponent. We calculate the long-term memory cycle and test its significance. We also compare it with the maximum Lyapunov exponent method result. Our results show that both of the freeway traffic flow time series and the ground way traffic flow time series demonstrate positively correlated trend (have long-term memory property), both of their memory cycle are about 30 h. We think this study is useful for the short-term or long-term traffic flow prediction and management.

  3. Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2009-01-01

    This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.

  4. The Effects of Very Light Jet Air Taxi Operations on Commercial Air Traffic

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2006-01-01

    This study investigates the potential effects of Very Light Jet (VLJ) air taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The affordable cost relative to existing business jets and ability to use many of the existing small, minimally equipped, but conveniently located airports is projected to stimulate a large demand for the aircraft. The resulting increase in air traffic operations will mainly be at smaller airports, but this study indicates that VLJs have the potential to increase further the pressure of demand at some medium and large airports, some of which are already operating at or near capacity at peak times. The additional delays to commercial passenger air transportation due to VLJ air taxi operations are obtained from simulation results using the Airspace Concepts Evaluation System (ACES) simulator. The direct increase in operating cost due to additional delays is estimated. VLJs will also cause an increase in traffic density, and this study shows increased potential for conflicts due to VLJ operations.

  5. Deceleration in advance in the Nagel-Schreckenberg traffic flow model

    NASA Astrophysics Data System (ADS)

    Li, Xin-Gang; Gao, Zi-You; Jia, Bin; Jiang, Rui

    2009-05-01

    Based on the Nagel-Schreckenberg model, we study the impact of deceleration in advance on the dynamics of traffic flow. In the process of deceleration in advance, the effect of reaction delay and the effect of expectation are considered respectively. The traffic flow properties are studied by analyzing the fundamental diagram, spatio-temporal patterns, distance headway distribution and car accidents. The simulation results show that reaction delay brings complex traffic flow patterns and expectation makes the serious car accidents rarely happen.

  6. The traffic crisis and a tale of two cities: Traffic and air quality in Bangkok and Mexico City

    SciTech Connect

    Pendakur, V.S.; Badami, M.G.

    1995-12-31

    This paper focuses on congestion management techniques, traffic congestion levels and air quality. By using data from Bangkok and Mexico City, it illustrates the need for drastic changes in transportation policy tools and techniques for congestion management and for improving environmental quality. New approaches to investment and regulatory policy analysis and implementation are suggested. This requires the inclusion of all costs and benefits (economic and ecological) in the policy matrix so that investment and regulatory policies act in unison. Megacities are dominant in social, political and economic terms. 30 to 60% of national GDP is typically produced in these cities. Their human and motor vehicle populations have been doubling every 15-20 and 6-10 years respectively. They also have the most severe traffic congestion and air quality problems. They have the nation`s highest incidence of poverty and absolute poverty. Large portions of their populations endure severely unhealthy housing and sanitation conditions. Following are important characteristics of urban transportation systems in the megacities: the city centres are heavily congested with motorized traffic; traffic crawl rates vary from 2 to 10 km/hr; car and motorcycle ownership are increasing at annual rates of 10-12% and 15-20% respectively; significant air pollution with no relief in sight; TDM strategies are primarily creating new supply of road capacity; fairly high transit trips with substantial transit investments; weak air pollution monitoring and enforcement; and fairly cheap fuel and high costs of vehicles.

  7. Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2016-05-01

    In a mini-review Kerner (2013) it has been shown that classical traffic flow theories and models failed to explain empirical traffic breakdown - a phase transition from metastable free flow to synchronized flow at highway bottlenecks. The main objective of this mini-review is to study the consequence of this failure of classical traffic-flow theories for an analysis of empirical stochastic highway capacity as well as for the effect of automatic driving vehicles and cooperative driving on traffic flow. To reach this goal, we show a deep connection between the understanding of empirical stochastic highway capacity and a reliable analysis of automatic driving vehicles in traffic flow. With the use of simulations in the framework of three-phase traffic theory, a probabilistic analysis of the effect of automatic driving vehicles on a mixture traffic flow consisting of a random distribution of automatic driving and manual driving vehicles has been made. We have found that the parameters of automatic driving vehicles can either decrease or increase the probability of the breakdown. The increase in the probability of traffic breakdown, i.e., the deterioration of the performance of the traffic system can occur already at a small percentage (about 5%) of automatic driving vehicles. The increase in the probability of traffic breakdown through automatic driving vehicles can be realized, even if any platoon of automatic driving vehicles satisfies condition for string stability.

  8. Stabilization of traffic flow in optimal velocity model via delayed-feedback control

    NASA Astrophysics Data System (ADS)

    Jin, Yanfei; Hu, Haiyan

    2013-04-01

    Traffic jams may occur due to various reasons, such as traffic accidents, lane reductions and on-ramps. In order to suppress the traffic congestion in an optimal velocity traffic model without any driver's delay taken into account, a delayed-feedback control of both displacement and velocity differences is proposed in this study. By using the delay-independent stability criteria and the H∞-norm, the delayed-feedback control can be determined to stabilize the unstable traffic flow and suppress the traffic jam. The numerical case studies are given to demonstrate and verify the new control method. Furthermore, a comparison is made between the new control method and the method proposed by Konishi et al. [K. Konishi, M. Hirai, H. Kokame, Decentralized delayed-feedback control of an optimal velocity traffic model, Eur. Phys. J. B 15 (2000) 715-722]. The results show that the new control method makes the traffic flow more stable and improves the control performance.

  9. Design of a final approach spacing tool for TRACON air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1989-01-01

    This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.

  10. Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system

    NASA Astrophysics Data System (ADS)

    Liu, Mianfang; Xiong, Shengwu; Li, Bixiang

    2016-05-01

    With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.

  11. Design and evaluation of an advanced air-ground data-link system for air traffic control

    NASA Technical Reports Server (NTRS)

    Denbraven, Wim

    1992-01-01

    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.

  12. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  13. FAA Air Traffic Control Operations Concepts. Volume 3. ISSS (Initial Sector Suite System) En Route Controllers. Change 1

    DTIC Science & Technology

    1988-07-29

    series of ope-rations concepts for the FAA’s Advanced Automation System (AAS). It describes how en route controllers in Air Route Traffic Control Center...facilities may perform their operational jobs in the Initial Stector Suite System (ISSS) enviroinment- ISSS functionality is assumed to be as described...in the AAS System Level Specification, 28 August 1987. Included here are: Composition Graphs, showing the logizal flow of operational tasks performed

  14. An error-resistant linguistic protocol for air traffic control

    NASA Technical Reports Server (NTRS)

    Cushing, Steven

    1989-01-01

    The research results described here are intended to enhance the effectiveness of the DATALINK interface that is scheduled by the Federal Aviation Administration (FAA) to be deployed during the 1990's to improve the safety of various aspects of aviation. While voice has a natural appeal as the preferred means of communication both among humans themselves and between humans and machines as the form of communication that people find most convenient, the complexity and flexibility of natural language are problematic, because of the confusions and misunderstandings that can arise as a result of ambiguity, unclear reference, intonation peculiarities, implicit inference, and presupposition. The DATALINK interface will avoid many of these problems by replacing voice with vision and speech with written instructions. This report describes results achieved to date on an on-going research effort to refine the protocol of the DATALINK system so as to avoid many of the linguistic problems that still remain in the visual mode. In particular, a working prototype DATALINK simulator system has been developed consisting of an unambiguous, context-free grammar and parser, based on the current air-traffic-control language and incorporated into a visual display involving simulated touch-screen buttons and three levels of menu screens. The system is written in the C programming language and runs on the Macintosh II computer. After reviewing work already done on the project, new tasks for further development are described.

  15. The Monotonic Lagrangian Grid for Fast Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kaplan, Carolyn; Oran, Elaine; Boris, Jay

    2010-01-01

    This paper describes the continued development of a dynamic air-traffic model, ATMLG, intended for rapid evaluation of rules and methods to control and optimize transport systems. The underlying data structure is based on the Monotonic Lagrangian Grid (MLG), which is used for sorting and ordering positions and other data needed to describe N moving bodies, and their interactions. In ATMLG, the MLG is combined with algorithms for collision avoidance and updating aircraft trajectories. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. In this paper, we use ATMLG to examine how the ability to maintain a required separation between aircraft decreases as the number of aircraft in the volume increases. This requires keeping track of the primary and subsequent collision avoidance maneuvers necessary to maintain a five mile separation distance between all aircraft. Simulation results show that the number of collision avoidance moves increases exponentially with the number of aircraft in the volume.

  16. Characterization of Visual Scanning Patterns in Air Traffic Control

    PubMed Central

    McClung, Sarah N.; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  17. An Architectural Concept for Intrusion Tolerance in Air Traffic Networks

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Miner, Paul S.

    2003-01-01

    The goal of an intrusion tolerant network is to continue to provide predictable and reliable communication in the presence of a limited num ber of compromised network components. The behavior of a compromised network component ranges from a node that no longer responds to a nod e that is under the control of a malicious entity that is actively tr ying to cause other nodes to fail. Most current data communication ne tworks do not include support for tolerating unconstrained misbehavio r of components in the network. However, the fault tolerance communit y has developed protocols that provide both predictable and reliable communication in the presence of the worst possible behavior of a limited number of nodes in the system. One may view a malicious entity in a communication network as a node that has failed and is behaving in an arbitrary manner. NASA/Langley Research Center has developed one such fault-tolerant computing platform called SPIDER (Scalable Proces sor-Independent Design for Electromagnetic Resilience). The protocols and interconnection mechanisms of SPIDER may be adapted to large-sca le, distributed communication networks such as would be required for future Air Traffic Management systems. The predictability and reliabi lity guarantees provided by the SPIDER protocols have been formally v erified. This analysis can be readily adapted to similar network stru ctures.

  18. Characterization of Visual Scanning Patterns in Air Traffic Control.

    PubMed

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process.

  19. Dimensions of Air Traffic Control Tower Information Needs: From Information Requests to Display Design

    ERIC Educational Resources Information Center

    Durso, Francis T.; Johnson, Brian R.; Crutchfield, Jerry M.

    2010-01-01

    In an effort to determine the information needs of tower air traffic controllers, instructors from the Federal Aviation Administration's Academy in Oklahoma City were asked to control traffic in a high-fidelity tower cab simulator. Information requests were made apparent by eliminating access to standard tower information sources. Instead,…

  20. Acceleration of aircraft-level Traffic Flow Management

    NASA Astrophysics Data System (ADS)

    Rios, Joseph Lucio

    This dissertation describes novel approaches to solving large-scale, high fidelity, aircraft-level Traffic Flow Management scheduling problems. Depending on the methods employed, solving these problems to optimality can take longer than the length of the planning horizon in question. Research in this domain typically focuses on the quality of the modeling used to describe the problem and the benefits achieved from the optimized solution, often treating computational aspects as secondary or tertiary. The work presented here takes the complementary view and considers the computational aspect as the primary concern. To this end, a previously published model for solving this Traffic Flow Management scheduling problem is used as starting point for this study. The model proposed by Bertsimas and Stock-Patterson is a binary integer program taking into account all major resource capacities and the trajectories of each flight to decide which flights should be held in which resource for what amount of time in order to satisfy all capacity requirements. For large instances, the solve time using state-of-the-art solvers is prohibitive for use within a potential decision support tool. With this dissertation, however, it will be shown that solving can be achieved in reasonable time for instances of real-world size. Five other techniques developed and tested for this dissertation will be described in detail. These are heuristic methods that provide good results. Performance is measured in terms of runtime and "optimality gap." We then describe the most successful method presented in this dissertation: Dantzig-Wolfe Decomposition. Results indicate that a parallel implementation of Dantzig-Wolfe Decomposition optimally solves the original problem in much reduced time and with better integrality and smaller optimality gap than any of the heuristic methods or state-of-the-art, commercial solvers. The solution quality improves in every measureable way as the number of subproblems

  1. Effects of speed bottleneck on traffic flow with feedback control signal

    NASA Astrophysics Data System (ADS)

    Zhu, Kangli; Bi, Jiantao; Wu, Jianjun; Li, Shubin

    2016-09-01

    Various car-following models (CMs) have been developed to capture the complex characteristics of microscopic traffic flow, among which the coupled map CM can better reveal and reflect various phenomena of practical traffic flow. Capacity change at bottleneck contributes to high-density traffic flow upstream the bottleneck and contains very complex dynamic behavior. In this paper, we analyze the effect of speed bottleneck on the spatial-temporal evolution characteristics of traffic flow, and propose a method to reduce traffic congestion with the feedback control signal based on CM. Simulation results highlight the potential of using the feedback signal to control the stop-and-go wave and furthermore to alleviate the traffic congestion effectively.

  2. Factors Influencing the Decisions and Actions of Pilots and Air Traffic Controllers in Three Plausible NextGen Environments

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter

    2011-01-01

    In the current air traffic management (ATM) system, pilots and air traffic controllers have well-established roles and responsibilities: pilots fly aircraft and are concerned with energy management, fuel efficiency, and passenger comfort; controllers separate aircraft and are concerned with safety and management of traffic flows. Despite having different goals and obligations, both groups must be able to effectively communicate and interact with each other for the ATM system to work. This interaction will become even more challenging as traffic volume increases dramatically in the near future. To accommodate this increase, by 2025 the national air transportation system in the U.S. will go through a transformation that will modernize the ATM system and make it safer, more effective, and more efficient. This new system, NextGen, will change how pilots and controllers perform their tasks by incorporating advanced technologies and employing new procedures. It will also distribute responsibility between pilots, controllers and automation over such tasks as maintaining aircraft separation. The present chapter describes three plausible concepts of operations that allocate different ATM responsibilities to these groups. We describe how each concept changes the role of each operator and the types of decisions and actions performed by them.

  3. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  4. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  5. The influence of nonmonotonic synchronized flow branch in a cellular automaton traffic flow model

    NASA Astrophysics Data System (ADS)

    Jin, Cheng-Jie; Wang, Wei

    2011-11-01

    In this paper we study the congested patterns upstream of an isolated on-ramp in a cellular automaton traffic flow model, which is proposed in our previous paper [Cheng-Jie Jin, Wei Wang, Rui Jiang, Kun Gao, J. Stat. Mech (2010) P03018]. The simulation results under open boundary conditions are presented by spatiotemporal diagrams. Our diagram of congested patterns is quite similar to that of the cellular automaton models within Kerner’s three-phase traffic theory, while some differences in the “moving synchronized flow pattern” (MSP) should be noted. In our model the upstream front of MSP propagates not only upstream, but also downstream. The propagation direction depends on the flow rates and densities of free flow and synchronized flow. Besides, in our model the outflow of wide moving jams or bottlenecks could be free flow or synchronized flow, as reported in many empirical data. In the dissolving of congestions, the form of free flow may be hindered and stable synchronized flow may emerge. This phenomenon can help us understand more about the outflow. All the interesting characteristics of our model are due to the nonmonotonic structure of synchronized flow branch in the fundamental diagram, which has not been found in previous models.

  6. Jin–Xin relaxation method for solving a traffic flow problem in one dimension

    NASA Astrophysics Data System (ADS)

    Ambar Sulistiyawati, Bernadetta; Mungkasi, Sudi

    2017-01-01

    We test the performance of the Jin–Xin relaxation and Lax–Friedrichs finite volume numerical methods in solving a traffic flow problem. In particular, we focus on traffic flow at a traffic light turning from red to green. Numerical solutions are compared with the analytical solution to the mathematical model. We find that the Jin–Xin relaxation solution is more accurate than the Lax–Friedrichs finite volume solution.

  7. Incorporating User Preferences Within an Optimal Traffic Flow Management Framework

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio; Sheth, Kapil S.; Guiterrez-Nolasco, Sebastian Armardo

    2010-01-01

    The effectiveness of future decision support tools for Traffic Flow Management in the National Airspace System will depend on two major factors: computational burden and collaboration. Previous research has focused separately on these two aspects without consideration of their interaction. In this paper, their explicit combination is examined. It is shown that when user preferences are incorporated with an optimal approach to scheduling, runtime is not adversely affected. A benefit-cost ratio is used to measure the influence of user preferences on an optimal solution. This metric shows user preferences can be accommodated without inordinately, negatively affecting the overall system delay. Specifically, incorporating user preferences will increase delays proportionally to increased user satisfaction.

  8. The effect of lateral interaction on traffic flow

    NASA Astrophysics Data System (ADS)

    Bouadi, M.; Jetto, K.; Benyoussef, A.; Kenz, A.

    2016-10-01

    We propose an extended cellular automaton model for traffic flow, taking into account lateral interactions with defects and between vehicles. The fundamental diagram for a given defects density on the road is studied. It is found that the plateau size increases linearly with the decreasing road width for little defects densities. Furthermore, the capacity increases linearly with the increasing road width. However, for a fixed road width, the capacity decreases exponentially with the increasing defects density. The lateral effects for non-mutual interactions between lanes and for the same maximal velocity is also investigated. It is found that the lateral effects on one lane are meaningful only when the density on the other lane is above the critical density. However, the lateral effects are always present if fast and slow lanes exist. Little differences have been found for the mutual interactions.

  9. The Effect of Damaged Vehicles Evacuation on Traffic Flow Behavior

    NASA Astrophysics Data System (ADS)

    Mhirech, Abdelaziz; Ez-Zahraouy, Hamid; Ismaili, Assia Alaoui

    The effect of the damaged car evacuation on the traffic flow behavior is investigated, in the one-dimensional deterministic Nagel-Schreckenberg model, using parallel dynamics. A realistic model applied to the cars involved in collisions is considered. Indeed, in this model we suppose that the damaged cars must be removed from the ring with a probability Pexit. This investigation enables us to understand how the combination of the two probabilities, namely Pcol and Pexit, acts on density and current. It is found that the current and density at the steady state, depend strongly on the initial density of cars in the ring. However, for the intermediate initial density ρi, the current J decreases when increasing either Pexit and/or Pcol. While, for high initial density, J increases passes through a maximum and decreases for large values of Pexit. Furthermore, the current can decrease or increase with the collision probability depending on the initial density.

  10. Detecting air traffic controller interventions in recorded air transportation system data

    NASA Astrophysics Data System (ADS)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  11. Domain Engineering Validation Case Study: Synthesis for the Air Traffic Display/Collision Warning Monitor Domain

    DTIC Science & Technology

    1992-11-01

    AD-A259 407 DTIC itELECTE JANI2 6 1993 C DOMAIN ENGINEERING VALIDATION CASE STUDY: SYNTHESIS FOR THE AIR TRAFFIC DISPLAY/COLLISION WARNING MONITOR...Kramer, DARPA/ SISTO, Arl., VA 22203 1-26-93 JK DOMAIN ENGINEERING VALIDATION CASE STUDY: SYNTHESIS FOR THE AIR TRAFFIC DISPLAY/COLLISION WARNING MONITOR...COLLISION WARNING MONITOR CASE STUDY WITH AUTOMATION ............... C-1 C .1 Introduction .............................................................. C -1

  12. Mobile Phones in a Traffic Flow: A Geographical Perspective to Evening Rush Hour Traffic Analysis Using Call Detail Records

    PubMed Central

    Järv, Olle; Ahas, Rein; Saluveer, Erki; Derudder, Ben; Witlox, Frank

    2012-01-01

    Excessive land use and suburbanisation around densely populated urban areas has gone hand in hand with a growth in overall transportation and discussions about causality of traffic congestions. The objective of this paper is to gain new insight regarding the composition of traffic flows, and to reveal how and to what extent suburbanites’ travelling affects rush hour traffic. We put forward an alternative methodological approach using call detail records of mobile phones to assess the composition of traffic flows during the evening rush hour in Tallinn, Estonia. We found that daily commuting and suburbanites influence transportation demand by amplifying the evening rush hour traffic, although daily commuting trips comprises only 31% of all movement at that time. The geography of the Friday evening rush hour is distinctive from other working days, presumably in connection with domestic tourism and leisure time activities. This suggests that the rise of the overall mobility of individuals due to societal changes may play a greater role in evening rush hour traffic conditions than does the impact of suburbanisation. PMID:23155461

  13. Methods of Modeling the Bicycle Traffic Flows on the Roundabouts

    NASA Astrophysics Data System (ADS)

    Macioszek, Elżbieta; Sierpiński, Grzegorz; Czapkowski, Leszek

    The paper deals with the bicycle traffic issues on the roundabouts and their nearby areas. The fundamental elements of traffic management and infrastructure used in traffic regulation on the roundabouts have been presented. The authors present also the examples of typical settings of the bicycle paths. Amongst the conventional solutions some interesting ones from abroad, from the Netherlands in particular, which grant a huge level of traffic safety while crossing a roundabout, have also been introduced.

  14. Analysis of traffic flow models in phase space

    NASA Astrophysics Data System (ADS)

    Velasco, R. M.; Saavedra, P.

    2008-11-01

    Traffic flow can be studied by means of hydrodynamic concepts, through an analogy with Navier-Stokes compressible flow or with models coming from kinetic equations. In this work we will consider two models for which the density and the average velocity are the relevant variables. The Kerner-Konhäuser [1] is a phenomenological model proposed in complete analogy with a viscous flow, whereas the so called kinetic model [2] comes from the Paveri-Fontana kinetic equation [3]. Both models are seen from a moving reference frame and a phase space is defined where all the analysis is done, some orbits exemplify and contrast the behavior in these models [4]. [1] B.S. Kerner, P. Konhäuser; Phys. Rev. E 48, R2335 (1993). [2] R.M. Velasco, W. Marques Jr.; Phys. Rev. E 72, 046102 (2005). [3] S.L. Paveri-Fontana; Transp.. Res. 9, 225 (1975). [4] H.K. Lee, H.W. Lee, D. Kim; Phys. Rev. E 69, 016118 (2004).

  15. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints

    NASA Technical Reports Server (NTRS)

    Feron, Eric; Bilimoria, Karl (Technical Monitor)

    2001-01-01

    The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."

  16. Defining the drivers for accepting decision making automation in air traffic management.

    PubMed

    Bekier, Marek; Molesworth, Brett R C; Williamson, Ann

    2011-04-01

    Air Traffic Management (ATM) operators are under increasing pressure to improve the efficiency of their operation to cater for forecasted increases in air traffic movements. One solution involves increasing the utilisation of automation within the ATM system. The success of this approach is contingent on Air Traffic Control Operators' (ATCOs) willingness to accept increased levels of automation. The main aim of the present research was to examine the drivers underpinning ATCOs' willingness to accept increased utilisation of automation within their role. Two fictitious scenarios involving the application of two new automated decision-making tools were created. The results of an online survey revealed traditional predictors of automation acceptance such as age, trust and job satisfaction explain between 4 and 7% of the variance. Furthermore, these predictors varied depending on the purpose in which the automation was to be employed. These results are discussed from an applied and theoretical perspective. STATEMENT OF RELEVANCE: Efficiency improvements in ATM are required to cater for forecasted increases in air traffic movements. One solution is to increase the utilisation of automation within Air Traffic Control. The present research examines the drivers underpinning air traffic controllers' willingness to accept increased levels of automation in their role.

  17. An observation tool to study air traffic control and flightdeck collaboration.

    PubMed

    Cox, Gemma; Sharples, Sarah; Stedmon, Alex; Wilson, John

    2007-07-01

    The complex systems of the flightdeck (FD) and the Air Traffic Control Centre (ATC) are characterised by numerous concurrently operating and interacting communication channels between people and between people and machines/computer systems. This paper describes work in support of investigating the impact of changes to technologies and responsibilities within this system with respect to human factors. It focuses primarily on the introduction of datalink (text-based communication rather than traditional radio communication) and the move towards freeflight (pilot-mediated air traffic control). Air traffic management investigations have outlined these specific changes as strategies to enable further increases in the volume of air traffic. A systems approach was taken and field studies were conducted. Small numbers of domain experts such as air traffic controllers (ATCOs) were involved in the field-based observations of how people interact with systems and each other. This paper summarises the overall research approach taken and then specifically reports on the field-based observations including the justification, development, and findings of the observation tool used. The observation tool examined information propagation through the air traffic control-flightdeck (ATC-FD) system, and resulted in models of possible information trajectories through the system.

  18. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  19. Development, Validation, and Deployment of a Revised Air Traffic Control Color Vision Test: Incorporating Advanced Technologies and Oceanic Procedures and En Route Automation Modernization Systems

    DTIC Science & Technology

    2013-09-01

    traffic in the U.S. National Airspace System. Color is an integral element of the air traffic control environment. Color is...REFERENCES American Institutes for Research (2006a). Air traffic control job analysis: A summary of job analytic information for air traf- fic en route... controllers . Contractor Report. Washington, DC: Federal Aviation Administration. American Institutes for Research (2006b). Air traffic control

  20. A User Guide for Smoothing Air Traffic Radar Data

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  1. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  2. Format and basic geometry of a perspective display of air traffic for the cockpit

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael Wallace; Ellis, Stephen R.

    1991-01-01

    The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes allowances for exploration of perspective parameters and their interactions. The display was initially used to study the cases of horizontal maneuver biases found in experiments involving a plan view air traffic display format. Experiments to determine the effect of perspective geometry on spatial judgements have evolved from the display program. Several scaling techniques and other adjustments to the perspective are used to tailor the geometry for effective presentation of 3-D traffic situations.

  3. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic

  4. Effects of changing orders in the update rules on traffic flow.

    PubMed

    Xue, Yu; Dong, Li-Yun; Li, Lei; Dai, Shi-Qiang

    2005-02-01

    Based on the Nagel-Schreckenberg (NaSch) model of traffic flow, we study the effects of the orders of the evolutive rule on traffic flow. It has been found from simulation that the cellular automaton (CA) traffic model is very sensitively dependent on the orders of the evolutive rule. Changing the evolutive steps of the NaSch model will result in two modified models, called the SDNaSch model and the noise-first model, with different fundamental diagrams and jamming states. We analyze the mechanism of these two different traffic models and corresponding traffic behaviors in detail and compare the two modified model with the NaSch model. It is concluded that the order arrangement of the stochastic delay and deterministic deceleration indeed has remarkable effects on traffic flow.

  5. A cellular automata model of traffic flow with variable probability of randomization

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-Fan; Zhang, Ji-Ye

    2015-05-01

    Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver’s random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow-density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172247, 61273021, 61373009, and 61100118).

  6. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Grewe, Volker; Jöckel, Patrick; Linke, Florian; Schaefer, Martin; Sasaki, Daisuke

    2016-09-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate-sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO2 but also non-CO2 emissions must be considered. CO2 is a long-lived gas, while non-CO2 emissions are short-lived and are inhomogeneously distributed. This study introduces AirTraf (version 1.0) that performs global air traffic simulations, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol's Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a genetic algorithm (GA) with respect to a selected routing option. In the model development phase, benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to -0.004 %, compared to those calculated by the Movable Type script. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of

  7. Impact of Operating Context on the Use of Structure in Air Traffic Controller Cognitive Processes

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Histon, Jonathan M.; Ragnarsdottir, Margret Dora; Major, Laura M.; Hansman, R. John

    2004-01-01

    This paper investigates the influence of structure on air traffic controllers cognitive processes in the TRACON, En Route, and Oceanic environments. Radar data and voice command analyses were conducted to support hypotheses generated through observations and interviews conducted at the various facilities. Three general types of structure-based abstractions (standard flows, groupings, and critical points) have been identified as being used in each context, though the details of their application varied in accordance with the constraints of the particular operational environment. Projection emerged as a key cognitive process aided by the structure-based abstractions, and there appears to be a significant difference between how time-based versus spatial-based projection is performed by controllers. It is recommended that consideration be given to the value provided by the structure-based abstractions to the controller as well as to maintain consistency between the type (time or spatial) of information support provided to the controller.

  8. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways.

  9. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    PubMed

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.

  10. Development of a Laboratory for Improving Communication between Air Traffic Controllers and Pilots

    NASA Technical Reports Server (NTRS)

    Brammer, Anthony

    2003-01-01

    Runway incursions and other surface incidents are known to be significant threats to aviation safety and efficiency. Though the number of near mid-air collisions in U.S. air space has remained unchanged during the last five years, the number of runway incursions has increased and they are almost all due to human error. The three most common factors contributing to air traffic controller and pilot error in airport operations include two that involve failed auditory communication. This project addressed the problems of auditory communication in air traffic control from an acoustical standpoint, by establishing an acoustics laboratory designed for this purpose and initiating research into selected topics that show promise for improving voice communications between air traffic controllers and pilots.

  11. Modeling traffic flow at a single-lane urban roundabout

    NASA Astrophysics Data System (ADS)

    Wang, Ruili; Ruskin, Heather J.

    2002-08-01

    In this paper, we propose a new model to study traffic flow at a single-lane urban roundabout, using a multi-state cellular automata (CA) ring under the offside-priority rule (by which a vehicle entering gives way to one already on the roundabout). Each vehicle entering the roundabout is randomly characterized by a predetermined exit with specified probability. Driver behavior at the roundabout entrance is randomly grouped into four categories based on space required to enter the roundabout. Three aspects of roundabout performance in particular have been studied. The first looks at overall throughput (the number of vehicles that navigate the roundabout in a given time). This is considered for different geometries, turning and arrival rates (vehicles arrive at random with a Poisson distribution, with parameter λ⩽0.5 in general for free flow). The second investigates changes in queue length, delay time and vehicle density (ratio of the number vehicles to the number of cells) for an individual road. The third considers the impact of driver choices on throughput and operation of the roundabout. We find that throughput is influenced by the topology of the roundabout and turning rates, but only incidentally by size. Throughput reaches a maximum for critical arrival rate on one or more roads. Driver behavior has considerable impact on overall performance, with rapid congestion resulting from reckless choices. Vehicles drive on the left in Ireland, but rules are generally applicable.

  12. Dynamics of Motorized Vehicle Flow under Mixed Traffic Circumstance

    NASA Astrophysics Data System (ADS)

    Guo, Hong-Wei; Gao, Zi-You; Zhao, Xiao-Mei; Xie, Dong-Fan

    2011-04-01

    To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a car-following model based on the principle of collision free and cautious driving is proposed. Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles. By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail. The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%. Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low. Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle density increases. The results also stress the necessity for separating motorized vehicles from non-motorized vehicles.

  13. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  14. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  15. Simulation model for urban ternary mix-traffic flow

    NASA Astrophysics Data System (ADS)

    Deo, Lalit; Akkawi, Faisal; Deo, Puspita

    2007-12-01

    A two-lane two-way traffic light controlled X-intersection for ternary mix traffic (cars + buses (equivalent vehicles) + very large trucks/ buses) is developed based on cellular automata model. This model can provide different matrices such as throughput, queue length and delay time. This paper will describe how the model works and how composition of traffic mix effects the throughput (numbers of vehicles navigate through the intersection per unit of time (vph)) and also compare the result with homogeneous counterpart.

  16. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    NASA Astrophysics Data System (ADS)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  17. Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Kopardekar, Parimal

    2001-01-01

    The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.

  18. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be... equipment. The number of days that aircraft owned or acquired through rental or lease (but not...

  19. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  20. Heterogeneous traffic flow modelling using second-order macroscopic continuum model

    NASA Astrophysics Data System (ADS)

    Mohan, Ranju; Ramadurai, Gitakrishnan

    2017-01-01

    Modelling heterogeneous traffic flow lacking in lane discipline is one of the emerging research areas in the past few years. The two main challenges in modelling are: capturing the effect of varying size of vehicles, and the lack in lane discipline, both of which together lead to the 'gap filling' behaviour of vehicles. The same section length of the road can be occupied by different types of vehicles at the same time, and the conventional measure of traffic concentration, density (vehicles per lane per unit length), is not a good measure for heterogeneous traffic modelling. First aim of this paper is to have a parsimonious model of heterogeneous traffic that can capture the unique phenomena of gap filling. Second aim is to emphasize the suitability of higher-order models for modelling heterogeneous traffic. Third, the paper aims to suggest area occupancy as concentration measure of heterogeneous traffic lacking in lane discipline. The above mentioned two main challenges of heterogeneous traffic flow are addressed by extending an existing second-order continuum model of traffic flow, using area occupancy for traffic concentration instead of density. The extended model is calibrated and validated with field data from an arterial road in Chennai city, and the results are compared with those from few existing generalized multi-class models.

  1. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  2. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    PubMed

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias; Andersen, Zorana J; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2014-08-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association with risk for stroke. In a population-based cohort of 57,053 people aged 50-64 years at enrollment, we identified 1999 incident stroke cases in national registries, followed by validation through medical records. Mean follow-up time was 11.2 years. Present and historical residential addresses from 1987 to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10 µg/m(3) nitrogen dioxide (NO2) and 10 dB road traffic noise at the residential address was associated with ischemic stroke with incidence rate ratios (IRR) of 1.11 (95% CI: 1.03, 1.20) and 1.16 (95% CI: 1.07, 1.24), respectively, in single exposure models. In two-exposure models road traffic noise (IRR: 1.15) and not NO2 (IRR: 1.02) was associated with ischemic stroke. The strongest association was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air pollution affected risk for fatal strokes. There were indications of combined effects.

  3. The Impact of Trajectory Prediction Uncertainty on Air Traffic Controller Performance and Acceptability

    NASA Technical Reports Server (NTRS)

    Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.

    2013-01-01

    A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.

  4. Traffic flow of a roundabout crossing with an open boundary condition

    NASA Astrophysics Data System (ADS)

    Bai, Ke-Zhao; Tan, Hui-Li; Kong, Ling-Jiang; Liu, Mu-Ren

    2010-04-01

    This paper presents a cellular automaton traffic flow model with an open boundary condition to describe the traffic flow at a roundabout crossing with an inner roundabout lane and an outer roundabout lane. The simulation results show that the boundary condition, bottlenecks and the self-organization affect the traffic flow at the roundabout crossing. Because of the effect of bottlenecks, jams easily appear on the inner roundabout lane. To improve the capacity of the roundabout system, proper values of the enter probability α and the out probability β can be chosen.

  5. Urban air quality and carboxyhemoglobin levels in a group of traffic policemen.

    PubMed

    Bono, R; Piccioni, P; Traversi, D; Degan, R; Grosa, M; Bosello, G; Gilli, G; Arossa, W; Bugiani, M

    2007-04-15

    Toxicological potential of carbon monoxide (CO) on humans is well known. Nevertheless, CO is still considered as a useful marker to detect some environmental and occupational human risk factors typical of cities. The role played by traffic pollution, indoor air quality in offices and tobacco smoke on the expression of carboxyhemoglobin (COHb%) levels was investigated in a large group of traffic policemen in Torino city (North-Western Italy). At the end of the working shift, 228 policemen responded to a questionnaire, weight and height recorded, urine spot samples collected to measure cotinine as biomarker of tobacco smoke exposure, and an arterial blood sample was taken to measure COHb levels. Data of outdoor urban air-CO were collected and to each subject a "CO outdoor air measurement" was related to his/her COHb level. Considering the annual trend of air-CO pollution from 2002 to 2004, one can assume that a general improvement of air quality in Torino was evident. Taking into account the environments where policemen work (urban outdoor and indoor), and analyzing their COHb% content, the traffic-congested areas, and, in general, the outdoor urban environment were equally risky as offices. Furthermore, if compared to CO arising from traffic-congested areas or other outdoor environments, the traffic policemen in Torino city demonstrate COHb% levels largely due to smoking habits.

  6. The Challenges of Field Testing the Traffic Management Advisor (TMA) in an Operational Air Traffic Control Facility

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Swenson, Harry N.

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.

  7. A SPATIOTEMPORAL APPROACH FOR HIGH RESOLUTION TRAFFIC FLOW IMPUTATION

    SciTech Connect

    Han, Lee; Chin, Shih-Miao; Hwang, Ho-Ling

    2016-01-01

    Along with the rapid development of Intelligent Transportation Systems (ITS), traffic data collection technologies have been evolving dramatically. The emergence of innovative data collection technologies such as Remote Traffic Microwave Sensor (RTMS), Bluetooth sensor, GPS-based Floating Car method, automated license plate recognition (ALPR) (1), etc., creates an explosion of traffic data, which brings transportation engineering into the new era of Big Data. However, despite the advance of technologies, the missing data issue is still inevitable and has posed great challenges for research such as traffic forecasting, real-time incident detection and management, dynamic route guidance, and massive evacuation optimization, because the degree of success of these endeavors depends on the timely availability of relatively complete and reasonably accurate traffic data. A thorough literature review suggests most current imputation models, if not all, focus largely on the temporal nature of the traffic data and fail to consider the fact that traffic stream characteristics at a certain location are closely related to those at neighboring locations and utilize these correlations for data imputation. To this end, this paper presents a Kriging based spatiotemporal data imputation approach that is able to fully utilize the spatiotemporal information underlying in traffic data. Imputation performance of the proposed approach was tested using simulated scenarios and achieved stable imputation accuracy. Moreover, the proposed Kriging imputation model is more flexible compared to current models.

  8. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  9. Navier-Stokes-like equations applicable to adaptive cruise control traffic flows

    NASA Astrophysics Data System (ADS)

    Liu, Y. G.; You, Z. S.; Zhou, J. L.

    2008-02-01

    Under the scenario in which, within a traffic flow, each vehicle is controlled by adaptive cruise control (ACC), and the macroscopic one-vehicle probability distribution function fits the Paveri-Fontana hypothesis, a set of reduced Paveri-Fontana equations considering the ACC effect is derived. With the set, by maximizing the specially defined informational entropy deviating from a certain reference homogeneous steady state, the Navier-Stokes-like equations considering ACC are introduced. For a homogeneous steady traffic flow in a single circular lane, when the steady velocity or density is perturbed along the lane, numerical simulations indicate that ACC-controlled vehicles require less time for re-equilibration than manually driven vehicles. The re-equilibrated steady densities for ACC and manually driven traffic flows are all close to the original values; the same is true for the re-equilibrated steady velocity for manually driven traffic flows. For ACC traffic flows, the re-equilibrated steady velocity may be higher or lower than the original value, depending upon a parameter ω (introduced to solve the distribution function of the reference steady state), and the headway time (introduced in ACC models). Also, the simulations indicate that only an appropriate parameter set can ensure the performance of ACC; otherwise, ACC may result in low traffic running efficiency, although traffic flow stability becomes better.

  10. Flight Operations Centers: Transforming NextGen Air Traffic Management FOC Study Team Report

    DTIC Science & Technology

    2012-07-01

    Traffic Management FOC Study Team Report 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...decision processes. The FOC’s role is key to initiating trajectories. The FOC should also play an important role in the Air Traffic Management ...formalize data sharing. Uniform rules for data sharing should be developed that address roles, responsibilities, quality , timing, and

  11. Impact of bicycle route type on exposure to traffic-related air pollution.

    PubMed

    MacNaughton, Piers; Melly, Steven; Vallarino, Jose; Adamkiewicz, Gary; Spengler, John D

    2014-08-15

    Cyclists are exposed to traffic-related air pollution (TRAP) during their commutes due to their proximity to vehicular traffic. Two of the main components of TRAP are black carbon (BC) and nitrogen dioxide (NO2), which have both been causally associated with increased mortality. To assess the impact of cyclists' exposure to TRAP, a battery-powered mobile monitoring station was designed to sample air pollutants along five bike routes in Boston, Massachusetts. The bike routes were categorized into three types: bike paths, which are separated from vehicle traffic; bike lanes, which are adjacent to traffic; and designated bike lanes, which are shared traffic lanes for buses and cyclists. Bike lanes were found to have significantly higher concentrations of BC and NO2 than bike paths in both adjusted and unadjusted generalized linear models. Higher concentrations were observed in designated bike lanes than bike paths; however, this association was only significant for NO2. After adjusting for traffic density, background concentration, and proximity to intersections, bike lanes were found to have concentrations of BC and NO2 that were approximately 33% higher than bike paths. Distance from the road, vegetation barriers, and reduced intersection density appear to influence these variations. These findings suggest that cyclists can reduce their exposure to TRAP during their commute by using bike paths preferentially over bike lanes regardless of the potential increase of traffic near these routes.

  12. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  13. Air Traffic Control Response to Delays: A System Study of Newark International Airport

    NASA Technical Reports Server (NTRS)

    Evans, Antony D.; Clarke, John-Paul

    2002-01-01

    Airport delays are a significant problem in the United States air transportation system. Between 1999 and 2000 the number of flights delayed increased by 20 percent despite only a 0.4% increase in total operations. Newark International Airport (EWR), one of New York City's primary airports, is one of the airports in the United States most impacted by delays. Newark had the highest percentage of operations delayed in 1999, and was second only to LaGuardia Airport in 2000. Nearly 85% of delays at Newark are caused by adverse weather impacting an airport that may be characterized as having limited capacity and a very full schedule. Although Newark is heavily impacted by weather, delays have not increased significantly since 1998. This indicates that the airlines, air traffic control (ATC), and the Port Authority of New York and New Jersey have successfully adapted. On June 29, 2000, a research team from MIT visited Newark airport to assess the effectiveness of any adaptations made, and to collect data on airline and ATC departure operations, and of the national and local weather affecting the airport. Airline and ATC personnel were also interviewed. Results of this study indicate that airspace capacity limitations downstream of the airport are a primary flow constraint at the airport, and that these constraints are the source of most surface delays. A number of tactical ATC responses to delays were examined, including the application of restrictions, re-routing with the help of the National Playbook, and the use of decision-aiding tools such as the Dynamic Spacing Program (DSP) and the Integrated Terminal Weather System (ITWS). Improved interfacility communications and further utilization of runway 11-29 were identified as other tactical responses to delays, whilst the formation of the Air Traffic Control System Command Center and the New York Airspace redesign were identified as thekey strategic ATC responses to delays. Particularly the New York airspace redesign has

  14. Managing emergencies and abnormal situations in air traffic control (part I): taskwork strategies.

    PubMed

    Malakis, Stathis; Kontogiannis, Tom; Kirwan, Barry

    2010-07-01

    A lot of research in Air Traffic Control (ATC) has focused on human errors in decision making whilst little attention has been paid to the cognitive strategies employed by controllers in managing abnormal situations. This study looks into cognitive strategies in taskwork that enable controllers to become resilient decision-makers. Two field studies were carried out where novice and experienced controllers were observed in simulator training in emergency and unusual scenarios. A prototype model of taskwork strategies in air traffic management was developed and its construct validity was tested in the context of the field studies. A companion study (part II), follows that investigates aspects of teamwork in the same field and contributes to the development of a generic model of Taskwork & Teamwork strategies in Emergencies in Air traffic Management (T(2)EAM). The final section addresses the difficulties experienced by novice controllers and explains taskwork strategies employed by experts to manage uncertainty and balance workload in simulator emergencies.

  15. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  16. Multiservice Procedures for Joint Air Traffic Control (JATC)

    DTIC Science & Technology

    1999-01-01

    AFM 11-225, FAA08200.1A) and Terminal Instrument Procedures Manual (TM 95-226, OPNAVINST 3722.16C, AFM 11-226, CG 318, FAAH 8260.3B). The approaches...Air Defense System (USA) FAAH Federal Aviation Administration Handbook FAC forward air controller FAC(A) forward air controller (airborne) FAR Federal

  17. Effects of quenched randomness induced by car accidents on traffic flow in a cellular automata model.

    PubMed

    Yang, Xian-Qing; Ma, Yu-Qiang; Zhao, Yue-Min

    2004-10-01

    In this paper we numerically study the impact of quenched disorder induced by car accidents on traffic flow in the Nagel-Schreckenberg (NS) model. Car accidents occur when the necessary conditions proposed by [J. Phys. A 30, 3329 (1997)

  18. The impact of iterated games on traffic flow at noncontrolled intersections

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Jia, Ning

    2015-05-01

    Intersections without signal control widely exist in urban road networks. This paper studied the traffic flow in a noncontrolled intersection within an iterated game framework. We assume drivers have learning ability and can repetitively adjust their strategies (to give way or to rush through) in the intersection according to memories. A cellular automata model is applied to investigate the characteristics of the traffic flow. Numerical experiments indicate two main findings. First, the traffic flow experiences a "volcano-shaped" fundamental diagram with three different phases. Second, most drivers choose to give way in the intersection, but the aggressive drivers cannot be completely eliminated, which is coincident with field observations. Analysis are also given out to explain the observed phenomena. These findings allow deeper insight of the real-world bottleneck traffic flow.

  19. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments.

    PubMed

    Briggs, D J; de Hoogh, C; Gulliver, J; Wills, J; Elliott, P; Kingham, S; Smallbone, K

    2000-05-15

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model--developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project--uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to provide

  20. The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship

    DTIC Science & Technology

    2007-01-01

    The entropy solutions for the Lighthill-Whitham-Richards traffic flow model with a discontinuous flow-density relationship Yadong Lu1, S.C. Wong2...Mengping Zhang3, Chi-Wang Shu4 Abstract In this paper we explicitly construct the entropy solutions for the Lighthill-Whitham- Richards (LWR) traffic...polynomials meet, and with piecewise linear initial condition and piecewise constant boundary conditions. The existence and uniqueness of entropy solutions

  1. Ergodicity of Traffic Flow with Constant Penetration Rate for Traffic Monitoring via Floating Vehicle Technique

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Abbas, Bahtiar S.; Atmadja, Wiedjaja; Yoseph Chandra, Fajar; Agung, Alexander AS; Kusnandar, Erwin

    2014-03-01

    Traffic congestion in Asian megacities has become extremely worse, and any means to lessen the congestion level is urgently needed. Building an efficient mass transportation system is clearly necessary. However, implementing Intelligent Transportation Systems (ITS) have also been demonstrated effective in various advanced countries. Recently, the floating vehicle technique (FVT), an ITS implementation, has become cost effective to provide real-time traffic information with proliferation of the smartphones. Although many publications have discussed various issues related to the technique, none of them elaborates the discrepancy of a single floating car data (FCD) and the associated fleet data. This work addresses the issue based on an analysis of Sugiyama et al's experimental data. The results indicate that there is an optimum averaging time interval such that the estimated velocity by the FVT reasonably representing the traffic velocity.

  2. Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio; Ross, Kevin

    2009-01-01

    Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.

  3. Ultradiscrete optimal velocity model: a cellular-automaton model for traffic flow and linear instability of high-flux traffic.

    PubMed

    Kanai, Masahiro; Isojima, Shin; Nishinari, Katsuhiro; Tokihiro, Tetsuji

    2009-05-01

    In this paper, we propose the ultradiscrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultradiscrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the modified Korteweg-de Vries (mkdV) equation, a soliton equation. Meanwhile, the ultradiscrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.

  4. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  5. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  6. The effect of interruption probability in lattice model of two-lane traffic flow with passing

    NASA Astrophysics Data System (ADS)

    Peng, Guanghan

    2016-11-01

    A new lattice model is proposed by taking into account the interruption probability with passing for two-lane freeway. The effect of interruption probability with passing is investigated about the linear stability condition and the mKdV equation through linear stability analysis and nonlinear analysis, respectively. Furthermore, numerical simulation is carried out to study traffic phenomena resulted from the interruption probability with passing in two-lane system. The results show that the interruption probability with passing can improve the stability of traffic flow for low reaction coefficient while the interruption probability with passing can destroy the stability of traffic flow for high reaction coefficient on two-lane highway.

  7. Dynamics of traffic flows on crossing roads induced by real-time information

    NASA Astrophysics Data System (ADS)

    Fukui, Minoru; Ishibashi, Yoshihiro; Nishinari, Katsuhiro

    2013-02-01

    Traffic flows on crossing roads with an information board installed at the intersection have been simulated by a cellular automaton model. In the model, drivers have to enter the road with a shorter trip-time indicated on the information board, by making a turn at the intersection if necessary. The movement of drivers induces various traffic states, which are classified into six phases as a function of the car density. The dynamics of the traffic is expressed as the return map in the density-flow space, and analyzed on the basis of the car configuration on the roads.

  8. Traffic flow on a toll highway with electronic and traditional tollgates

    NASA Astrophysics Data System (ADS)

    Komada, Kazuhito; Masukura, Shuichi; Nagatani, Takashi

    2009-12-01

    We study the traffic states and jams occurring in traffic flow on a two-lane toll highway with electronic and manual (traditional) tollgates. The electronic and manual collection vehicles sort themselves into their respective lanes at low density, while they mix at each tollgate at high density. We derive the fundamental diagrams (flow-density diagrams) for the electronic and manual collection vehicles. The traffic states change with increasing density and varying the ratio. Dynamical phase transitions occur. It is shown that the fundamental diagrams for the two tollgates depend greatly on the density and fraction of both vehicles.

  9. Clean air matters: an overview of traffic-related air pollution and pregnancy.

    PubMed

    Slovic, Anne Dorothée; Diniz, Carmen Simone; Ribeiro, Helena

    2017-02-16

    The right to a healthy pregnancy and to giving birth in a safe environment is source of comprehensive research. Decent birth facilities, respect, and no discrimination are already recognized as fundamental rights, but an accurate look at the outdoor environment is required. Air pollution is a dangerous factor to pregnant women and newborns, many of whom highly exposed to traffic-related atmospheric pollutants in urban areas. Such exposure can lead to low birth weight and long-lasting effects, such as respiratory diseases and premature death. Thus, this commentary, based on the analysis of literature, presents the importance of the exposome concept and of epigenetics in identifying the role of the environment for better health conditions of pregnant women and newborns. In the final considerations, this study proposes the deepening of the subject and the mobilization in this regard, with a human rights-based approach to environmental health and to the increased awareness of pregnant women on the risks of air pollution and its effects on health.

  10. Clean air matters: an overview of traffic-related air pollution and pregnancy

    PubMed Central

    Slovic, Anne Dorothée; Diniz, Carmen Simone; Ribeiro, Helena

    2017-01-01

    ABSTRACT The right to a healthy pregnancy and to giving birth in a safe environment is source of comprehensive research. Decent birth facilities, respect, and no discrimination are already recognized as fundamental rights, but an accurate look at the outdoor environment is required. Air pollution is a dangerous factor to pregnant women and newborns, many of whom highly exposed to traffic-related atmospheric pollutants in urban areas. Such exposure can lead to low birth weight and long-lasting effects, such as respiratory diseases and premature death. Thus, this commentary, based on the analysis of literature, presents the importance of the exposome concept and of epigenetics in identifying the role of the environment for better health conditions of pregnant women and newborns. In the final considerations, this study proposes the deepening of the subject and the mobilization in this regard, with a human rights-based approach to environmental health and to the increased awareness of pregnant women on the risks of air pollution and its effects on health. PMID:28225911

  11. Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.

    2013-10-01

    This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.

  12. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S →F instability. Whereas the S →F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S →F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S →F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S →F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S →F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S →F instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F →S transition) at the bottleneck: The nucleation nature of the S →F instability explains the metastability of free flow with respect to an F →S transition at the bottleneck.

  13. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow.

    PubMed

    Kerner, Boris S

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck.

  14. Socioeconomic Position and Low Birth Weight among Mothers Exposed to Traffic-Related Air Pollution

    PubMed Central

    Habermann, Mateus; Gouveia, Nelson

    2014-01-01

    Background Atmospheric pollution is a major public health concern. It can affect placental function and restricts fetal growth. However, scientific knowledge remains too limited to make inferences regarding causal associations between maternal exposure to air pollution and adverse effects on pregnancy. This study evaluated the association between low birth weight (LBW) and maternal exposure during pregnancy to traffic related air pollutants (TRAP) in São Paulo, Brazil. Methods and findings Analysis included 5,772 cases of term-LBW (<2,500 g) and 5,814 controls matched by sex and month of birth selected from the birth registration system. Mothers’ addresses were geocoded to estimate exposure according to 3 indicators: distance from home to heavy traffic roads, distance-weighted traffic density (DWTD) and levels of particulate matter ≤10 µg/m3 estimated through land use regression (LUR-PM10). Final models were evaluated using multiple logistic regression adjusting for birth, maternal and pregnancy characteristics. We found decreased odds in the risk of LBW associated with DWTD and LUR-PM10 in the highest quartiles of exposure with a significant linear trend of decrease in risk. The analysis with distance from heavy traffic roads was less consistent. It was also observed that mothers with higher education and neighborhood-level income were potentially more exposed to TRAP. Conclusions This study found an unexpected decreased risk of LBW associated with traffic related air pollution. Mothers with advantaged socioeconomic position (SEP) although residing in areas of higher vehicular traffic might not in fact be more expose to air pollution. It can also be that the protection against LBW arising from a better SEP is stronger than the effect of exposure to air pollution, and this exposure may not be sufficient to increase the risk of LBW for these mothers. PMID:25426640

  15. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Kupfer, Michael; Mercer, Joey S.; Cabrall, Christopher; Callantine, Todd

    2013-01-01

    Well prepared traffic scenarios contribute greatly to the success of controller-in-the-loop simulations. This paper describes each stage in the design process of realistic scenarios based on real-world traffic, to be used in the Airspace Operations Laboratory for simulations within the Air Traffic Management Technology Demonstration 1 effort. The steps from the initial analysis of real-world traffic, to the editing of individual aircraft records in the scenario file, until the final testing of the scenarios before the simulation conduct, are all described. The iterative nature of the design process and the various efforts necessary to reach the required fidelity, as well as the applied design strategies, challenges, and tools used during this process are also discussed.

  16. Design and evaluation of an air traffic control Final Approach Spacing Tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.; Nedell, William

    1991-01-01

    This paper describes the design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arriving aircraft as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated as a stand-alone in the terminal radar approach control facility or as an element of a system integrated with automation tools in the air route traffic control center. FAST was evaluated by experienced air traffic controllers in a real-time air traffic control simulation. simulation results summarized in the paper show that the automation tools significantly reduced controller work load and demonstrated a potential for an increase in landing rate.

  17. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2002-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  18. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2001-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  19. Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna

    2015-03-01

    In this paper, a new two-lane lattice hydrodynamic traffic flow model is proposed by considering the aggressive or timid characteristics of driver's behavior. The effect of driver's characteristic on the stability of traffic flow is examined through linear stability analysis. It is shown that for both the cases of lane changing or without lane changing the stability region significantly enlarges (reduces) as the proportion of aggressive (timid) drivers increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink-antikink soliton is derived. The effect of anticipation parameter with more aggressive (timid) drivers is also investigated and found that it has a positive (negative) effect on the stability of two-lane traffic flow dynamics. Simulation results are found consistent with the theoretical findings which confirm that the driver's characteristics play a significant role in a two-lane traffic system.

  20. The effect of moving bottlenecks on a two-lane traffic flow

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Chen, Jian-Zhong; Peng, Zhi-Yuan

    2013-10-01

    In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to reproduce the vehicular lane changing behavior. Using this model, we derive the fundamental current—density diagrams for the traffic flow with the effect of moving bottleneck. Moreover, typical time—space diagram for a two-lane highway shows the formation and dissipation of a moving bottleneck. Results demonstrate that the effect of moving bottleneck enlarges with the increase of traffic density, but the effect can be reduced by increasing the maximum velocity of heavy truck. The effects of multiple moving bottlenecks under different conditions are investigated. The effect becomes more remarkable when the coupling effect of multiple moving bottlenecks occurs.

  1. 76 FR 58078 - Thirteenth Meeting: RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Federal Aviation Administration Thirteenth Meeting: RTCA Special Committee 214: Working Group 78.... ACTION: Notice of RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data... Special Committee 214: Working Group 78: Standards for Air Traffic Data Communication Services. DATES:...

  2. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  3. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects among Children with Asthma in Detroit, Michigan

    EPA Science Inventory

    Vehicular traffic is a major source of ambient air pollution in urban areas, and traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter under 2.5 microns in diameter (PM2.5) and diesel exhaust emissions, have been associated with...

  4. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules "acceleration," "deceleration," "randomization," and "motion" of the Nagel-Schreckenberg CA model as well as "overacceleration through lane changing to the faster lane," "comparison of vehicle gap with the synchronization gap," and "speed adaptation within the synchronization gap" of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  5. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules “acceleration,” “deceleration,” “randomization,” and “motion” of the Nagel-Schreckenberg CA model as well as “overacceleration through lane changing to the faster lane,” “comparison of vehicle gap with the synchronization gap,” and “speed adaptation within the synchronization gap” of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  6. Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Tobita, Kazuhiro

    2012-10-01

    We study the dynamical behavior of counter traffic flow through a sequence of signals (traffic lights) controlled by a phase shift. There are two lanes for the counter traffic flow: the first lane is for east-bound vehicles and the second lane is for west-bound vehicles. The green-wave strategy is studied in the counter traffic flow where the phase shift of signals in the second lane has opposite sign to that in the first lane. A nonlinear dynamic model of the vehicular motion is presented by nonlinear maps at a low density. There is a distinct difference between the traffic flow in the first lane and that in the second lane. The counter traffic flow exhibits very complex behavior on varying the cycle time, the phase difference, and the split. Also, the fundamental diagram is derived by the use of the cellular automaton (CA) model. The dependence of east-bound and west-bound vehicles on cycle time, phase difference, and density is clarified.

  7. Human-Centered Technologies and Procedures for Future Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Smith, Philip; Woods, David; McCoy, Elaine; Billings, Charles; Sarter, Nadine; Denning, Rebecca; Dekker, Sidney

    1997-01-01

    The use of various methodologies to predict the impact of future Air Traffic Management (ATM) concepts and technologies is explored. The emphasis has been on the importance of modeling coordination and cooperation among multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, identifying critical problem areas and looking for examples suggestive of general approaches for solving such problems. Using the results of these field studies, we have developed a set of concrete scenarios centered around future designs, and have studied performance in these scenarios with a set of 40 controllers, dispatchers, pilots and traffic managers.

  8. In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Chartrand, Ryan C.; Hewitt, Katrin P.; Sweeney, Peter B.; Graff, Thomas J.; Jones, Kenneth M.

    2012-01-01

    In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results.

  9. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  10. Enterprise network control and management: traffic flow models

    NASA Astrophysics Data System (ADS)

    Maruyama, William; George, Mark S.; Hernandez, Eileen; LoPresto, Keith; Uang, Yea

    1999-11-01

    The exponential growth and dramatic increase in demand for network bandwidth is expanding the market for broadband satellite networks. It is critical to rapidly deliver ubiquitous satellite communication networks that are differentiated by lower cost and increased Quality of Service (QoS). There is a need to develop new network architectures, control and management systems to meet the future commercial and military traffic requirements, services and applications. The next generation communication networks must support legacy and emerging network traffic while providing user negotiated levels of QoS. Network resources control algorithms must be designed to provide the guaranteed performance levels for voice, video and data having different service requirements. To evaluate network architectures and performance, it is essential to understand the network traffic characteristics.

  11. Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity

    NASA Technical Reports Server (NTRS)

    Brinton, Christopher R.

    1996-01-01

    The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.

  12. Vehicular traffic flow at an intersection with the possibility of turning

    NASA Astrophysics Data System (ADS)

    Ebrahim Foulaadvand, M.; Belbasi, Somayyeh

    2011-03-01

    We have developed a Nagel-Schreckenberg cellular automata model for describing a vehicular traffic flow at a single intersection. A set of traffic lights operating in a fixed-time scheme controls the traffic flow. An open boundary condition is applied to the streets each of which conducts a unidirectional flow. Streets are single lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flow dependence on signalization parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exists a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.

  13. Effect of real-time information upon traffic flows on crossing roads

    NASA Astrophysics Data System (ADS)

    Fukui, Minoru; Nishinari, Katsuhiro; Yokoya, Yasushi; Ishibashi, Yoshihiro

    2009-04-01

    The effect of real-time information on the traffic flows of the crossing roads is studied by simulations based on a cellular automaton model. At the intersection, drivers have to enter a road of a shorter trip-time, by making a turn if necessary, as indicated on the information board. Dynamics of the traffic are expressed as a return map in the density-flow space. The traffic flow is classified into six phases, as a function of the car density. It is found that such a behavior of drivers induces too much concentration of cars on one road and, as a result, causes oscillation of the flow and the density of cars on both roads. The oscillation usually results in a reduced total flow, except for the cases of high car density.

  14. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  15. The role of vegetation in mitigating air quality impacts from traffic emissions--journal

    EPA Science Inventory

    On Apri1 27-28, 2019, a multi-disciplinary group of researchers and po1icymakers met to discuss the state-of-the-science regarding the potential of roadside vegetation to mitigate near-road air quality impacts. Concerns over population exposures to traffic-generated pollutants ne...

  16. Personalised Adaptive Task Selection in Air Traffic Control: Effects on Training Efficiency and Transfer

    ERIC Educational Resources Information Center

    Salden, Ron J. C. M.; Paas, Fred; van Merrienboer, Jeroen J. G.

    2006-01-01

    The differential effects of four task selection methods on training efficiency and transfer in a computer-based training for Air Traffic Control were investigated. Two personalised conditions were compared with two corresponding yoked control conditions. The hypothesis that personalised adaptive task selection leads to more efficient training than…

  17. Hematological and immunological effects of stress of air traffic controllers in northeastern Brazil

    PubMed Central

    Ribas, Valdenilson Ribeiro; Martins, Hugo André de Lima; Viana, Marcelo Tavares; Fraga, Simone do Nascimento; Carneiro, Severino Marcos de Oliveira; Galvão, Bruno Henrique Andrade; Bezerra, Alice Andrade; de Castro, Célia Maria Machado Barbosa; Sougey, Everton Botelho; de Castro, Raul Manhães

    2011-01-01

    Background Several studies have shown that stress and emotional reactions can affect immune responses in animals and humans. Objective The aim of this study was to evaluate hematological and immunological effects of stress on air traffic controllers. Methods Thirty air traffic controllers and 15 aeronautical information service operators were evaluated. The groups were divided as information service operators with 10 years or more of experience (AIS≥10) and with less than 10 years in the profession (AIS<10) and air traffic controllers with 10 years or more of experience (ATCo≥10) and with less than 10 years in the profession (ATCo<10). Blood samples were drawn at 8:00 a.m. and 2:00 p.m. The paired t-test was used to compare monocyte and nitric oxide concentrations and ANOVA was used for the other parameters. Results The ATCo≥10 group presented a significantly lower phagocytosis rate of monocytes at 2:00 p.m. compared to 8:00 a.m. Moreover, the ATCo≥10 group presented lower hemoglobin, mean corpuscular hemoglobin concentration, platelet and leukocyte levels, and increased cortisol concentrations at 8:00 a.m. compared to the other groups. Additionally, this group had lower phagocytosis rate of monocytes, and hemoglobin, platelet, leukocyte, basophils and nitric oxide levels at 2:00 p.m. compared to the other groups. Conclusion Stress seems to greatly affect immune responses of air traffic controllers with more than ten years of experience. PMID:23049295

  18. The Evaluation of Alternative Exposure Metrics for Traffic-related Air Pollutant Exposure in North Carolina

    EPA Science Inventory

    Transportation plays an important role in the modern society but can cause significant health impacts. To quantify the associated health impacts, an appropriate traffic-related air pollution exposure metric is required. In this study, we evaluate the suitability of four exposure ...

  19. 78 FR 10560 - Proposed Modification and Revocation of Air Traffic Service Routes; Jackson, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... Modification and Revocation of Air Traffic Service Routes; Jackson, MS AGENCY: Federal Aviation Administration... jet routes and seven VOR Federal airways; and remove two VOR Federal airways in the vicinity of... amendment to Title 14, Code of Federal Regulations (14 CFR) part 71 to modify two jet routes and seven...

  20. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning...

  1. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning...

  2. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning...

  3. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning...

  4. 14 CFR Special Federal Aviation... - Air Traffic Control System Emergency Operation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Operation Federal Special Federal Aviation Regulation No. 60 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 60 Special Federal Aviation Regulation No. 60—Air Traffic... Aviation Regulations (14 CFR chapter I), be familiar with all available information concerning...

  5. 77 FR 30437 - Proposed Amendment of Air Traffic Service Routes; Southwestern United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Routes; Southwestern United States AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Federal Register proposing to amend various Air Traffic Service Routes in the Southwestern United States...; Southwestern United States as published in the Federal Register of April 23, 2010 (77 FR 24156) FR Doc....

  6. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  7. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  8. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  9. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  10. Cognitive Task Analysis of En Route Air Traffic Control: Model Extension and Validation.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    Phase II of a project extended data collection and analytic procedures to develop a model of expertise and skill development for en route air traffic control (ATC). New data were collected by recording the Dynamic Simulator (DYSIM) performance of five experts with a work overload problem. Expert controllers were interviewed in depth for mental…

  11. A Theory and Model of Conflict Detection in Air Traffic Control: Incorporating Environmental Constraints

    ERIC Educational Resources Information Center

    Loft, Shayne; Bolland, Scott; Humphreys, Michael S.; Neal, Andrew

    2009-01-01

    A performance theory for conflict detection in air traffic control is presented that specifies how controllers adapt decisions to compensate for environmental constraints. This theory is then used as a framework for a model that can fit controller intervention decisions. The performance theory proposes that controllers apply safety margins to…

  12. TRAFFIC-RELATED AIR POLLUTION AND CHILDREN'S RESPIRATORY HEALTH: BEYOND PROXIMITY TO MAJOR ROADWAYS

    EPA Science Inventory

    Introduction: Previous studies of the respiratory health impact of mobile source air pollutants on

    children have relied heavily on simple exposure metrics such as proximity to roadways and traffic

    density near the home or school. Few studies have conducted area-wide...

  13. Air Traffic Communication in a Second Language: Implications of Cognitive Factors for Training and Assessment

    ERIC Educational Resources Information Center

    Farris, Candace; Trofimovich, Pavel; Segalowitz, Norman; Gatbonton, Elizabeth

    2008-01-01

    This study investigated the effects of second language (L2) proficiency and task-induced cognitive workload on participants' speech production and retention of information in an environment designed to simulate the demands faced by pilots receiving instructions from air-traffic controllers. Three groups of 20 participants (one…

  14. The future role of satellite communications in an improved air traffic management

    NASA Astrophysics Data System (ADS)

    Gauthier, Patrice

    1992-07-01

    The need for air to ground communication in Air Traffic Control (ATC) is discussed and a summary on the birth of aeronautical satellite communication is given. The standardization of an aeronautical mobile communications service by the International Civil Aviation Organization is reported. The feasibility analysis of satellite communications for ATC carried out by the French civil aviation is described. This 'South Pacific Trial' is regarded as a first step towards a full operational implementation.

  15. Spontaneous phase transition from free flow to synchronized flow in traffic on a single-lane highway

    NASA Astrophysics Data System (ADS)

    Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Zhang, H. M.; Wang, Hao

    2013-01-01

    Traffic flow complexity comes from the car-following and lane-changing behavior. Based on empirical data for individual vehicle speeds and time headways measured on a single-lane highway section, we have studied the traffic flow properties induced by pure car-following behavior. We have found that a spontaneous sudden drop in velocity could happen in a platoon of vehicles when the velocity of the leading vehicle is quite high (˜70 km/h). In contrast, when the velocity of the leading vehicle in a platoon slows down, such a spontaneous sudden drop of velocity has not been observed. Our finding indicates that traffic breakdown on a single-lane road might be a phase transition from free flow to synchronized flow (F→S transition). We have found that the flow rate within the emergent synchronized flow can be either smaller or larger than the flow rate in the free flow within which the synchronized flow propagates. Our empirical findings support Kerner's three-phase theory in which traffic breakdown is associated with an F→S transition.

  16. Spontaneous phase transition from free flow to synchronized flow in traffic on a single-lane highway.

    PubMed

    Jin, Cheng-Jie; Wang, Wei; Jiang, Rui; Zhang, H M; Wang, Hao

    2013-01-01

    Traffic flow complexity comes from the car-following and lane-changing behavior. Based on empirical data for individual vehicle speeds and time headways measured on a single-lane highway section, we have studied the traffic flow properties induced by pure car-following behavior. We have found that a spontaneous sudden drop in velocity could happen in a platoon of vehicles when the velocity of the leading vehicle is quite high (~70 km/h). In contrast, when the velocity of the leading vehicle in a platoon slows down, such a spontaneous sudden drop of velocity has not been observed. Our finding indicates that traffic breakdown on a single-lane road might be a phase transition from free flow to synchronized flow (F→S transition). We have found that the flow rate within the emergent synchronized flow can be either smaller or larger than the flow rate in the free flow within which the synchronized flow propagates. Our empirical findings support Kerner's three-phase theory in which traffic breakdown is associated with an F→S transition.

  17. Health woes tied to low air flow

    SciTech Connect

    Barber, J.

    1984-01-23

    Occupants in buildings with heating, ventilating, and air conditioning (HVAC) systems which limit fresh air flow may suffer a variety of illnesses because of the buildup of noxious contaminants. Building managers need to continue conservation efforts, but they should also meet the air standards set by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) which are in the process of being strengthened. Cases of building sickness caused by indoor air pollution have increased during the past decade, prompting ASHRAE to expedite the revision of its specifications.

  18. Indoor air quality assessment in the air traffic control tower of the Athens Airport, Greece.

    PubMed

    Helmis, Costas G; Assimakopoulos, Vasiliki D; Flocas, Helena A; Stathopoulou, Ourania I; Sgouros, George; Hatzaki, Maria

    2009-01-01

    In this study, an assessment of indoor air quality (IAQ) and thermal comfort in the Athens Traffic Control Tower (ATCT) offices of Hellinicon building complex, which is mechanically ventilated, is presented. Measurements of PM(10), PM(2.5), TVOCs and CO(2) concentrations were performed during three experimental cycles, while the Thom Discomfort Index was calculated to describe the employees' feeling of discomfort. The aim of the first cycle was to identify the IAQ status, the second to investigate the effectiveness of certain measures taken, and the third to continuously monitor and control IAQ. During the first two cycles, daily spot measurements of TVOCs and CO(2) were performed at various indoor locations and at the respective outdoor air intake positions, in addition with mean 24-h spot measurements of indoor PM(10) and PM(2.5). Results revealed that pollution levels vary according to the occupancy and the kind of activity. Following that, an automated system (IMAS) was designed and employed to continuously monitor indoor and outdoor CO(2), TVOCs, temperature and relative humidity. The ultimate scope was to control the IAQ and offer acceptable comfort conditions to the employees, whose work is of special nature and extremely demanding. Intervention scenarios were formulated and applied to the system to improve indoor conditions, when and where necessary. Regarding the third cycle, 1-year measurements collected from the system to examine its effectiveness. While it was shown that discomfort may be attributed to co-existence of unsatisfactory thermal comfort conditions and IAQ, usually the sole predominant factor of discomfort feeling is thermal comfort.

  19. Price of anarchy on heterogeneous traffic-flow networks

    NASA Astrophysics Data System (ADS)

    Rose, A.; O'Dea, R.; Hopcraft, K. I.

    2016-09-01

    The efficiency of routing traffic through a network, comprising nodes connected by links whose cost of traversal is either fixed or varies in proportion to volume of usage, can be measured by the "price of anarchy." This is the ratio of the cost incurred by agents who act to minimize their individual expenditure to the optimal cost borne by the entire system. As the total traffic load and the network variability—parameterized by the proportion of variable-cost links in the network—changes, the behaviors that the system presents can be understood with the introduction of a network of simpler structure. This is constructed from classes of nonoverlapping paths connecting source to destination nodes that are characterized by the number of variable-cost edges they contain. It is shown that localized peaks in the price of anarchy occur at critical traffic volumes at which it becomes beneficial to exploit ostensibly more expensive paths as the network becomes more congested. Simulation results verifying these findings are presented for the variation of the price of anarchy with the network's size, aspect ratio, variability, and traffic load.

  20. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  1. Structural equation modeling of the inflammatory response to traffic air pollution.

    PubMed

    Baja, Emmanuel S; Schwartz, Joel D; Coull, Brent A; Wellenius, Gregory A; Wellenuis, Gregory A; Vokonas, Pantel S; Suh, Helen H

    2013-01-01

    Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0-4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9-36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution-cardiovascular epidemiological studies.

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  3. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  4. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  5. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  6. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  7. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors

    PubMed Central

    Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian

    2016-01-01

    The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments. PMID:27827974

  8. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors.

    PubMed

    Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian

    2016-11-06

    The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a "tailgating effect" between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.

  9. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  10. Health effects of metropolitan traffic-related air pollutants on street vendors

    NASA Astrophysics Data System (ADS)

    Kongtip, P.; Thongsuk, W.; Yoosook, W.; Chantanakul, S.

    Traffic-related air pollutants are a commonly important source of air pollution. Research on the effects of multiple traffic-related air pollutants on street vendors is scarce. This study evaluated the health effect of traffic-related air pollutants in street vendors. It was designed as a panel study, covering 61 d of data collection, on the daily concentration of air pollutants and daily percentage of respiratory and other health symptoms reported. An adjusted odds ratio was used to estimate the risk of developing respiratory and other adverse health symptoms for street vendors exposed to multiple air pollutants, fine particulate (PM 2.5), nitrogen dioxide (NO 2), ozone (O 3), carbon monoxide (CO) and total volatile organic chemicals (VOCs), after controlling for confounding factors. In the first model, significant associations were found with the adjusted odds ratios of 1.022 and 1.027 for eye irritation and dizziness for PM 2.5 respectively. The adjusted odds ratio of total VOCs was 1.381 for phlegm, 4.840 for chest tightness and 1.429 for upper respiratory symptoms, and the adjusted odds ratio for CO was 1.748 for a sore throat and 1.880 for a cold and 1.655 for a cough. In the second model, the effect of PM 2.5, total VOCs and CO gave a slightly lower effect with the symptoms. The results clearly show the health effects of traffic-related air pollutants on street vendors, and imply suggestions about how to reduce exposure of street vendors.

  11. Dangerous drivers foster social dilemma structures hidden behind a traffic flow with lane changes

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun; Fujiki, Takuya; Wang, Zhen; Hagishima, Aya; Ikegaya, Naoki

    2014-11-01

    Motivated by the fact that there are quite a few ill-mannered drivers who disregard traffic rules concerning lane-changing and maximum speed, we investigated an interesting question: whether or not social dilemma structures can be formed from a frequent dangerous lane-changing attitude in a typical traffic flow without any explicit bottlenecks. In our model system, two classes of driver-agents coexist: C agents (cooperative strategy) always keep to traffic regulations with respect to lane-changing and speed, while D agents (defective strategy) disregard them to move ahead. In relatively high-density flows, such as the metastable and high-density phases, we found structures that correspond to either n-person Prisoner's Dilemma (n-PD) games or to quasi-PD games. In these situations, existing ill-mannered drivers create heavy traffic jams that reduce social efficiency.

  12. Traffic flow through multi-lane tollbooths on a toll highway

    NASA Astrophysics Data System (ADS)

    Komada, Kazuhito; Nagatani, Takashi

    2010-06-01

    We study the traffic states and queuing occurring in traffic flow on a toll highway with multi-lane tollgates. The traffic states change with increasing density and varying number of tollgates. When the manual-collection vehicles sort themselves into the tollgates, the queues occur just in front of the tollgates if the vehicular density is higher than a critical value. The queuing in front of tollgates is induced by the competition between the lane expansion and slowdown effects. When the lane expansion effect is superior to the slowdown effect, no queuing occurs. We derive the fundamental diagrams (current-density diagrams) for the traffic flow on the toll highway. The current saturates at the nearest tollgate at a low density and the saturation extends to the next-nearest tollgate with increasing density.

  13. Modeling Spatial Patterns of Traffic-Related Air Pollutants in Complex Urban Terrain

    PubMed Central

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-01-01

    Background The relationship between traffic emissions and mobile-source air pollutant concentrations is highly variable over space and time and therefore difficult to model accurately, especially in urban settings with complex terrain. Regression-based approaches using continuous real-time mobile measurements may be able to characterize spatiotemporal variability in traffic-related pollutant concentrations but require methods to incorporate temporally varying meteorology and source strength in a physically interpretable fashion. Objective We developed a statistical model to assess the joint impact of both meteorology and traffic on measured concentrations of mobile-source air pollutants over space and time. Methods In this study, traffic-related air pollutants were continuously measured in the Williamsburg neighborhood of Brooklyn, New York (USA), which is affected by traffic on a large bridge and major highway. One-minute average concentrations of ultrafine particulate matter (UFP), fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)], and particle-bound polycyclic aromatic hydrocarbons were measured using a mobile-monitoring protocol. Regression modeling approaches to quantify the influence of meteorology, traffic volume, and proximity to major roadways on pollutant concentrations were used. These models incorporated techniques to capture spatial variability, long- and short-term temporal trends, and multiple sources. Results We observed spatial heterogeneity of both UFP and PM2.5 concentrations. A variety of statistical methods consistently found a 15–20% decrease in UFP concentrations within the first 100 m from each of the two major roadways. For PM2.5, temporal variability dominated spatial variability, but we observed a consistent linear decrease in concentrations from the roadways. Conclusions The combination of mobile monitoring and regression analysis was able to quantify local source contributions relative to background while

  14. Traffic-related air pollution. A pilot exposure assessment in Beirut, Lebanon.

    PubMed

    Borgie, Mireille; Garat, Anne; Cazier, Fabrice; Delbende, Agnes; Allorge, Delphine; Ledoux, Frederic; Courcot, Dominique; Shirali, Pirouz; Dagher, Zeina

    2014-02-01

    Traffic-related volatile organic compounds (VOCs) pollution has frequently been demonstrated to be a serious problem in the developing countries. Benzene and 1,3-butadiene (BD) have been classified as a human carcinogen based on evidence for an increased genotoxic and epigenotoxic effects in both occupational exposure assessment and in vivo/in vitro studies. We have undertaken a biomonitoring of 25 traffic policemen and 23 office policemen in Beirut, through personal air monitoring, assessed by diffusive samplers, as well as through the use of biomarkers of exposure to benzene and BD. Personal benzene, toluene, ethylbenzene, and xylene (BTEX) exposure were quantified by GC-MS/MS, urinary trans, trans-muconic acid (t,t-MA) by HPLC/UV, S-phenyl mercapturic acid (S-PMA), monohydroxy-butenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA) by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC/ESI(-)-MS/MS) in MRM (Multiple Reaction Monitoring) mode. We found that individual exposure to benzene in the traffic policemen was higher than that measured in traffic policemen in Prague, in Bologna, in Ioannina and in Bangkok. t,t-MA levels could distinguish between office and traffic policemen. However, median MHBMA levels in traffic policemen were slightly elevated, though not significantly higher than in office policemen. Alternatively, DHBMA concentrations could significantly distinguish between office and traffic policemen and showed a better correlation with personal total BTEX exposure. DHMBA, measured in the post-shift urine samples, correlated with both pre-shift MHMBA and pre-shift DHMBA. Moreover, there was not a marked effect of smoking habits on DHBMA. Taken together, these findings suggested that DHBMA is more suitable than MHBMA as biomarker of exposure to BD in humans. Traffic policemen, who are exposed to benzene and BD at the roadside in central Beirut, are potentially at a higher risk for development of

  15. Traffic-Adaptive, Flow-Specific Medium Access for Wireless Networks

    DTIC Science & Technology

    2009-09-01

    free medium access and proposes a flow-specific medium access scheme for networked satellite systems that is based on traffic-adaptive CWS-MAC and...layer; Medium access control; Wireless; Energy-efficiency; Preamble sampling; Networked satellite systems 16. PRICE CODE 17. SECURITY... systems that is based on traffic-adaptive CWS- MAC and is shown to outperform both CSMA- and TDMA-based solutions. vi THIS PAGE INTENTIONALLY LEFT

  16. Cellular Automaton Model Simulating Traffic Flow at AN Uncontrolled T-Shaped Intersection

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Bai; Jiang, Rui; Wu, Qing-Song

    Traffic flow at an uncontrolled T-shaped intersection is modelled by a cellular automaton model. A priority probability of the through car is introduced. The phase diagram of the system and the effect of the turning car on the whole traffic situation are investigated. Our simulation results suggest that priority should be given to either through cars or to turning cars according to the ratio of the turning cars in order to obtain the optimization of the system.

  17. Proximity to Traffic, Ambient Air Pollution, and Community Noise in Relation to Incident Rheumatoid Arthritis

    PubMed Central

    Koehoorn, Mieke; Tamburic, Lillian; Davies, Hugh W.; Brauer, Michael

    2014-01-01

    Background: The risk of rheumatoid arthritis (RA) has been associated with living near traffic; however, there is evidence suggesting that air pollution may not be responsible for this association. Noise, another traffic-generated exposure, has not been studied as a risk factor for RA. Objectives: We investigated proximity to traffic, ambient air pollution, and community noise in relation to RA in the Vancouver and Victoria regions of British Columbia, Canada. Methods: Cases and controls were identified in a cohort of adults that was assembled using health insurance registration records. Incident RA cases from 1999 through 2002 were identified by diagnostic codes in combination with prescriptions and type of physician (e.g., rheumatologist). Controls were matched to RA cases by age and sex. Environmental exposures were assigned to each member of the study population by their residential postal code(s). We estimated relative risks using conditional logistic regression, with additional adjustment for median income at the postal code. Results: RA incidence was increased with proximity to traffic, with an odds ratio (OR) of 1.37 (95% CI: 1.11, 1.68) for residence ≤ 50 m from a highway compared with residence > 150 m away. We found no association with traffic-related exposures such as PM2.5, nitrogen oxides, or noise. Ground-level ozone, which was highest in suburban areas, was associated with an increased risk of RA (OR = 1.26; 95% CI: 1.18, 1.36 per interquartile range increase). Conclusions: Our study confirms a previously observed association of RA risk with proximity to traffic and suggests that neither noise levels nor traffic-related air pollutants are responsible for this relationship. Additional investigation of neighborhood and individual correlates of residence near roadways may provide new insight into risk factors for RA. Citation: De Roos AJ, Koehoorn M, Tamburic L, Davies HW, Brauer M. 2014. Proximity to traffic, ambient air pollution, and community

  18. Inside the Mechanics of Network Development: How Competition and Strategy Reorganize European Air Traffic

    NASA Technical Reports Server (NTRS)

    Huber, Hans

    2006-01-01

    Air transport forms complex networks that can be measured in order to understand its structural characteristics and functional properties. Recent models for network growth (i.e., preferential attachment, etc.) remain stochastic and do not seek to understand other network-specific mechanisms that may account for their development in a more microscopic way. Air traffic is made up of many constituent airlines that are either privately or publicly owned and that operate their own networks. They follow more or less similar business policies each. The way these airline networks organize among themselves into distinct traffic distributions reveals complex interaction among them, which in turn can be aggregated into larger (macro-) traffic distributions. Our approach allows for a more deterministic methodology that will assess the impact of airline strategies on the distinct distributions for air traffic, particularly inside Europe. One key question this paper is seeking to answer is whether there are distinct patterns of preferential attachment for given classes of airline networks to distinct types of European airports. Conclusions about the advancing degree of concentration in this industry and the airline operators that accelerate this process can be drawn.

  19. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mie; Eshow, Michelle

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  20. Continuing Studies of Air Traffic Control System Capacity

    DTIC Science & Technology

    The goals of the work are: To define the capacity of an ATC system and its major elements; To find quantitative relations between capacity and the...overall performance of the air transportation system; and To find quantitative relations between capacity and the specifications, operating parameters, and environment of the ATC system.

  1. Traffic-related air pollution is related to interrupter resistance in 4-year-old children.

    PubMed

    Eenhuizen, Esther; Gehring, Ulrike; Wijga, Alet H; Smit, Henriette A; Fischer, Paul H; Brauer, Michael; Koppelman, Gerard H; Kerkhof, Marjan; de Jongste, Johan C; Brunekreef, Bert; Hoek, Gerard

    2013-06-01

    Outdoor air pollution has been associated with decrements in lung function and growth of lung function in school-age children. Lung function effects have not been examined in preschoolers, with the exception of one study on minute ventilation in newborns. Our goal was to assess the relationship between long- and short-term exposure to traffic-related air pollution and interrupter resistance in 4-year-old children. Lung function was measured using the interrupter resistance method in children participating in a Dutch birth cohort study. Long-term average air pollution concentrations of fine particulate matter, nitrogen dioxide and soot at the residential address at birth were assessed using land-use regression models. Daily average air pollution concentrations on the day of clinical examination were obtained from the Dutch National Air Quality Monitoring Network. Significant associations were found between long-term average air pollution concentrations and interrupter resistance. Interrupter resistance increased by 0.04 kPa·s·L(-1) (95% CI 0.01-0.07) per interquartile range increase (3.3 μg·m(-3)) in fine particle concentration. Short-term exposure was not associated with interrupter resistance. Long-term exposure to traffic-related air pollution was associated with increased interrupter resistance in 4-year-old children, supporting previous birth cohort studies reporting effects of air pollution on subjectively reported respiratory symptoms in preschool children.

  2. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    PubMed

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2016-07-20

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  3. Traffic-related air pollution and lung cancer: A meta-analysis

    PubMed Central

    Chen, Gongbo; Wan, Xia; Yang, Gonghuan; Zou, Xiaonong

    2015-01-01

    Background We conducted a meta-analysis to evaluate the association between traffic-related air pollution and lung cancer in order to provide evidence for control of traffic-related air pollution. Methods Several databases were searched for relevant studies up to December 2013. The quality of articles obtained was evaluated by the Strengthening the Reporting of Observational Studies in Epidemiology checklist. Statistical analysis, including pooling effective sizes and confidential intervals, was performed. Results A total of 1106 records were obtained through the database and 36 studies were included in our analysis. Among the studies included, 14 evaluated the association between ambient exposure to traffic-related air pollution and lung cancer and 22 studies involved occupational exposure to air pollution among professional drivers. Twenty-two studies were marked A level regarding quality, 13 were B level, and one was C level. Exposure to nitrogen dioxide (meta-odds ratio [OR]: 1.06, 95% confidence interval [CI]: 0.99–1.13), nitrogen oxide (meta-OR: 1.04, 95% CI: 1.01–1.07), sulfur dioxide (meta-OR: 1.03, 95% CI: 1.02–1.05), and fine particulate matter (meta-OR: 1.11, 95% CI: 1.00–1.22) were positively associated with a risk of lung cancer. Occupational exposure to air pollution among professional drivers significantly increased the incidence (meta-OR: 1.27, 95% CI: 1.19–1.36) and mortality of lung cancer (meta-OR: 1.14, 95% CI: 1.04–1.26). Conclusion Exposure to traffic-related air pollution significantly increased the risk of lung cancer. PMID:26273377

  4. FAA Air Traffic Control Operations Concepts. Volume 7. ATCT (Airport Traffic Control Towers) Tower Controllers

    DTIC Science & Technology

    1989-04-21

    t.’, Vf~pS UWI * Jn0 Iji T~/ APA ’-1-5 3.C #? vALA" .,TI 21 IdRI .. ’tFb9 iYCiCKAflI TASK STATEMViENTS Courdinotion Icsk Number Tok !btotomjnt Media...HI Tl.4.9.7.i PERFORM TEE, Communicating Norma ~illy Air-To-Ground *clearance non-compliance query’§ TL.4.9.9 SUGGEST CLEARANCE ALTERNATIVES TO PILOT...Sarasota - Bradenton, Florida PWA Oklahoma City (Wiley Post ), Oklahoma APA Denvr (Centennial), Colorado COS Colorado Sprieigs, Colorado DAB Daytona

  5. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    separated from each other geographically and in altitude during tenninal airspace approach and departure operations, and each use a different arrival runway. AvTeminal implements its unique Focal-point Scheduling Process to sequence, space and delay aircraft to resolve spacing and overtake conflicts among flights in the airspace and airport system serving KEWR. This Process effectively models integrated arrival and departure operations. AvTerminal assesses acceptance rates and delay magnitude and causality at selected locations, including en route outer boundary fixes, tenninal airspace arrival and departure boundary fixes, terminal airspace arrival merge and departure diverge fixes, and runway landing and takeoff runways. The analysis compares the resulting capacity impacts, flight delays and delay sources between CESTOL and conventional KEWR operations. AvTerminal quantitative results showed that CESTOL has significant capability to increase airport arrival acceptance rates (35-40% at KEWR) by taking advantage of otherwise underused airspace and runways where available. The study extrapolates the AvTerminal-derived KEWR peak arrival and departure acceptance rates to estimate capacity parameter values for each of the OEP airports in the ACES modeling of traffic through the entire NAS network. The extrapolations of acceptance rates allow full, partial or no achievement of CESTOL capacity gains at an OEP airport as determined by assessments of the degree to which local procedures allow leveraging of CESTOL capabilities. These assessments consider each OEP airport's runway geometries, runway system configurations, airport and airspace operations, and potential CESTOL traffic loadings. The ACES modeling, simulates airport and airspace spacing constraints imposed by airport runway system, terminal and en route air traffic control and traffic flow management operations using airport acceptance rates representing conventional-aircraft-only and CESTOL-mixed operations. CEOL

  6. Traffic-related air quality assessment for open road tolling highway facility.

    PubMed

    Lin, Jie; Yu, Dan

    2008-09-01

    Open road tolling (ORT) design has been considered as an effective means of smoothing highway traffic and reducing travel delay on toll highways. In this paper it is demonstrated that ORT can also achieve significant air quality benefits over the conventional toll plaza design. The near roadside carbon monoxide (CO) concentration levels can be reduced by up to 37%, and diesel particulate matter (DPM) emissions can decrease by as much as 58%. These large expected air quality benefits have great implications to the regional efforts of reducing mobile source air pollution toward achieving attainment status and healthier living environment.

  7. UAS Air Traffic Controller Acceptability Study. 2; Evaluating Detect and Avoid Technology and Communication Delays in Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2015-01-01

    This study evaluated the effects of communications delays and winds on air traffic controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between Unmanned Aircraft Systems (UAS) and manned aircraft in a simulation of the Dallas-Ft. Worth (DFW) airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from Detect and Avoid (DAA) self-separation algorithms (Stratway+) displayed on the Multi-Aircraft Control System. This guidance consisted of amber "bands" on the heading scale of the UAS navigation display indicating headings that would result in a loss of well clear between the UAS and nearby traffic. Winds tested were successfully handled by the DAA algorithms and did not affect the controller acceptability ratings of the HMDs. Voice communications delays for the UAS were also tested and included one-way delay times of 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS. Information from this study will also be of value to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 228 - Minimum Performance Standards for UAS.

  8. Optimal control of systems governed by differential equations with applications in air traffic management and systems biology

    NASA Astrophysics Data System (ADS)

    Raffard, Robin L.

    Differential equations are arguably the most widespread formalism to model dynamical systems in sciences and engineering. In this dissertation, we strive to design a practical methodology which can be used for the optimal control of most systems modeled by differential equations. Namely, the method is applicable to ordinary differential equations (ODEs), partial differential equations (PDEs) and stochastic differential equations (SDEs) driven by deterministic control. The algorithm draws from both optimization and control theory. It solves the Pontryagin Maximum Principle conditions in an iterative fashion via a novel approximate Newton method. We also extend the method to the case in which multiple agents are involved in the optimal control problem. For this purpose, we use dual decomposition techniques which allow us to decentralize the control algorithm and to distribute the computational load among each individual agent. Most of the dissertation is devoted to promoting the applicability of the method to practical problems in air traffic management and systems biology. In air traffic management; we use the technique to optimize a new PDE-based Eulerian model of the airspace; suitable to represent and control air traffic flow at the scale of the US national airspace. We also apply the technique to aircraft coordination problems in the context of formation flight, in which aircraft dynamics are described by ODEs. In systems biology, we use the method to perform fast parameter identification in the analysis of protein networks, which allows us to gain some insights about the biological processes regulating the system. In particular we perform parameter identification for a PDE model of a spatially distributed network of proteins, playing a key role in the planar cell polarity of Drosophila wings. We also study a general representation of intra-cellular genetic networks, described as a stochastic nonlinear regulatory network, in which our control system approach

  9. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  10. Remodeling the Marine Air Traffic Control Officer Training Progression

    DTIC Science & Technology

    2008-01-07

    Skill RFC/TGC, National Airspace, Combat Airspace, FAA/ICAO [WTI MMT Leader’s Crs, Airspace Management Crs] [ MAJIC , ATC Manager’s Crs, Joint Air... MAJIC (Multi-TADIL Joint Interoperability Course) MOS Qualifications & WTI MMT Leaders Course & Airspace Management WTI C3 Course or ATC Facility...Manager’s Crs MAJIC or JTIDS or Terminal Instrument Procedures Crs (TERPS) ATC School Initial MOS Training at MCAS Det Cmdr JAOSC/JATOPC MEU

  11. Mosul Air Traffic Control Tower and Navigational Aids, Mosul, Iraq

    DTIC Science & Technology

    2006-04-25

    Range ( DVOR ) • Ground-to-air radio communications systems • Glide-Slope/Precision Approach Path Indicator (PAPI) Lights • Wind Direction Indicator...16 • Doppler VHF Omni-Directional Radio Range ( DVOR ) • Glide-Slope/Precision Approach Path Indicator (PAPI) Lights • Wind Direction Indicator...Contractor Quality Control DVOR Doppler VHF Omni-Directional Radio Range ER Engineering Regulation FOB Forward Operating Base GRN Gulf Region North

  12. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  13. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  14. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  15. Compressible Flow Tables for Air

    NASA Technical Reports Server (NTRS)

    Burcher, Marie A.

    1947-01-01

    This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.

  16. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    NASA Technical Reports Server (NTRS)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  17. Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality

    NASA Astrophysics Data System (ADS)

    Fourrate, K.; Loulidi, M.

    2006-01-01

    We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.

  18. Anticipation Driving Behavior and Related Reduction of Energy Consumption in Traffic Flow

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wei, Yan-Fang; Song, Tao; Dai, Shi-Qiang; Dong, Li-Yun

    In view that drivers would pay attention to the variation of headway on roads, an extended optimal velocity model is proposed by considering anticipation driving behavior. A stability criterion is given through linear stability analysis of traffic flows. The mKdV equation is derived with the reductive perturbation method for headway evolution which could be used to describe the stop-and-go traffic phenomenon. The results show a good effect of anticipation driving behavior on the stabilization of car flows and the anticipation driving behavior can improve the numerical stability of the model as well. In addition, the fluctuation of kinetic energy and the consumption of average energy in congested traffic flows are systematically analyzed. The results show that the reasonable level of anticipation driving behavior can save energy consumption in deceleration process effectively and lead to an associated relation like a "bow-tie" between the energy-saving and the value of anticipation factor.

  19. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk.

    PubMed

    Pratt, Gregory C; Vadali, Monika L; Kvale, Dorian L; Ellickson, Kristie M

    2015-05-19

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities.

  20. Traffic-related air pollution and risk for leukaemia of an adult population.

    PubMed

    Raaschou-Nielsen, Ole; Ketzel, Matthias; Harbo Poulsen, Aslak; Sørensen, Mette

    2016-03-01

    Air pollution causes lung cancer, but associations with other cancers have not been established. We investigated whether long-term exposure to traffic-related air pollution is associated with the risk of the general population for leukaemia. We identified 1,967 people in whom leukaemia was diagnosed in 1992-2010 from a nation-wide cancer registry and selected 3,381 control people at random, matched on sex and year of birth, from the entire Danish population. Residential addresses since 1971 were traced in a population registry, and outdoor concentrations of NOx and NO2 , as indicators of traffic-related air pollution, were calculated at each address in a dispersion model. We used conditional logistic regression to estimate the risk for leukaemia after adjustment for income, educational level, cohabitation status and co-morbidity. In linear analyses, we found odds ratios for acute myeloid leukaemia of 1.20 (95% confidence interval: 1.04-1.38) per 20 µg/m(3) increase in NOx and 1.31 (1.02-1.68) per 10 µg/m(3) increase in NO2 , calculated as time-weighted average exposure at all addresses since 1971. We found no association with chronic myeloid or lymphocytic leukaemia. This study indicates an association between long-term exposure to traffic-related air pollution and acute myeloid leukaemia in the general population, but not for other subtypes of leukaemia.

  1. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm.

    PubMed

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m(3) in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83-1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m(3) corresponded to a hazard ratio of 1.14 (95% CI 0.68-1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution.

  2. Temporal distribution of air quality related to meteorology and road traffic in Madrid.

    PubMed

    Perez-Martinez, Pedro J; Miranda, Regina M

    2015-04-01

    The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

  3. FAA (Federal Aviation Administration) Air Traffic Activity FY 1986.

    DTIC Science & Technology

    1986-09-30

    AIRPORTS WITH FAA-3PSRATEO TRAFIC CONTROL TVWERS RY STATE (CONTINUED) STAT? AND LOCATION U AIR AI6 GENERAL LOCATION NAME IENTIFIPR 8 TOTAL CARRISR...0 0 0 LINUE "I 1 ZM4 3497 1273 99 74 251 LIMA ALLEN COUNTY 31 N ZI0 17 0 2 15 3LINCNFIELO IL N iC 4 0 0 4 2 LINCOLN LOGAN COUNTY IL S I S*I 9 0 0 9 0...VIRGINIA LENISBURG GREENBRIER ELWIS N 2100. %v TABLE n FISCAL YEAR 196 OPEIRATIONS AT AtFPORTS WITN CONTIRACTOR-3PERATED TRAFIC C0N11)L VtflERS BY STATE

  4. Cellular automaton models for traffic flow considering opposite driving of an emergency vehicle

    NASA Astrophysics Data System (ADS)

    Zhao, Han-Tao; Li, Jing-Ru; Nie, Cen

    2015-12-01

    Aiming at two-lane road, this paper establishes three models to analyze the opposite-overtaking rules of emergency vehicle based on cellular automaton (CCA) model. Based on the simulation of mixed traffic flow for multi-density conditions, the density-speed diagrams have been obtained consequently. According to the analysis, when the traffic density of the opposite lane is low, the opposite driving behavior of emergency vehicle can improve the average speed effectively. At the same time, if the cocurrent lane is in high-density traffic, the traffic in the opposite lane will be disturbed, but the vehicles in the cocurrent lane will not be affected. The paper has further discussed the influence of different emergency vehicle driving behaviors on traffic. The results reveal that as the traffic of the opposite lane is in a low-density range, if emergency vehicle operates overtaking behavior precisely, the greater the density of the cocurrent lane is, the more obviously the speed improve. Meanwhile large random fluctuation of overtaking times will occur. While the risky lane change behavior displays different traffic characteristics, that is when the same direction lane is in high density, the speed increases slightly and the lane change number is changed regularly.

  5. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  6. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  7. Complexity analysis of the Next Gen Air Traffic Management System: trajectory based operations.

    PubMed

    Lyons, Rhonda

    2012-01-01

    According to Federal Aviation Administration traffic predictions currently our Air Traffic Management (ATM) system is operating at 150 percent capacity; forecasting that within the next two decades, the traffic with increase to a staggering 250 percent [17]. This will require a major redesign of our system. Today's ATM system is complex. It is designed to safely, economically, and efficiently provide air traffic services through the cost-effective provision of facilities and seamless services in collaboration with multiple agents however, contrary the vision, the system is loosely integrated and is suffering tremendously from antiquated equipment and saturated airways. The new Next Generation (Next Gen) ATM system is designed to transform the current system into an agile, robust and responsive set of operations that are designed to safely manage the growing needs of the projected increasingly complex, diverse set of air transportation system users and massive projected worldwide traffic rates. This new revolutionary technology-centric system is dynamically complex and is much more sophisticated than it's soon to be predecessor. ATM system failures could yield large scale catastrophic consequences as it is a safety critical system. This work will attempt to describe complexity and the complex nature of the NextGen ATM system and Trajectory Based Operational. Complex human factors interactions within Next Gen will be analyzed using a proposed dual experimental approach designed to identify hazards, gaps and elicit emergent hazards that would not be visible if conducted in isolation. Suggestions will be made along with a proposal for future human factors research in the TBO safety critical Next Gen environment.

  8. Traffic air pollution and mortality from cardiovascular disease and all causes: a Danish cohort study

    PubMed Central

    2012-01-01

    Background Traffic air pollution has been linked to cardiovascular mortality, which might be due to co-exposure to road traffic noise. Further, personal and lifestyle characteristics might modify any association. Methods We followed up 52 061 participants in a Danish cohort for mortality in the nationwide Register of Causes of Death, from enrollment in 1993–1997 through 2009, and traced their residential addresses from 1971 onwards in the Central Population Registry. We used dispersion-modelled concentration of nitrogen dioxide (NO2) since 1971 as indicator of traffic air pollution and used Cox regression models to estimate mortality rate ratios (MRRs) with adjustment for potential confounders. Results Mean levels of NO2 at the residence since 1971 were significantly associated with mortality from cardiovascular disease (MRR, 1.26; 95% confidence interval [CI], 1.06–1.51, per doubling of NO2 concentration) and all causes (MRR, 1.13; 95% CI, 1.04–1.23, per doubling of NO2 concentration) after adjustment for potential confounders. For participants who ate < 200 g of fruit and vegetables per day, the MRR was 1.45 (95% CI, 1.13–1.87) for mortality from cardiovascular disease and 1.25 (95% CI, 1.11–1.42) for mortality from all causes. Conclusions Traffic air pollution is associated with mortality from cardiovascular diseases and all causes, after adjustment for traffic noise. The association was strongest for people with a low fruit and vegetable intake. PMID:22950554

  9. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  10. 3D Markov Process for Traffic Flow Prediction in Real-Time

    PubMed Central

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-01

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025

  11. GENERAL: The effect of ACC vehicles to mixed traffic flow consisting of manual and ACC vehicles

    NASA Astrophysics Data System (ADS)

    Xie, Dong-Fan; Gao, Zi-You; Zhao, Xiao-Mei

    2008-12-01

    This paper studies the effect of adaptive cruise control (ACC) system on traffic flow by using simulations. The multiple headway and velocity direrence (MHVD) model is used to depict the motion of ACC vehicles, and the simulation results are compared with the optimal velocity (OV) model which is used to depict the motion of manual vehicles. Compared the cases between the manual and the ACC vehicle flow, the fundamental diagram can be classified into four regions: I, II, III, IV. In low and high density the flux of the two models is the same; in region II the free flow region of the MHVD model is enlarged, and the flux of the MHVD model is larger than that of the OV model; in region III serious jams occur in the OV model while the ACC system suppresses the jams in the MHVD model and the traffic flow is in order, but the flux of the OV model is larger than that of the MHVD model. Similar phenomena also appeared in mixed traffic flow which consists of manual and ACC vehicles. The results indicate that ACC vehicles have significant effect on traffic flow. The improvement induced by ACC vehicles decreases with the increasing proportion of ACC vehicles.

  12. The physics of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Koller, Micha; Klenov, Sergey L.; Rehborn, Hubert; Leibel, Michael

    2015-11-01

    Based on an empirical study of real field traffic data measured in 1996-2014 through road detectors installed on German freeways, we reveal physical features of empirical nuclei for spontaneous traffic breakdown in free flow at highway bottlenecks. A microscopic stochastic three-phase traffic model of the nucleation of spontaneous traffic breakdown presented in the article explains the empirical findings. It turns out that in the most cases a nucleus for the breakdown occurs through an interaction of one of waves in free flow with an empirical permanent speed disturbance localized at a highway bottleneck. The wave is a localized structure in free flow, in which the total flow rate is larger and the speed averaged across the highway is smaller than outside the wave. The waves in free flow appear due to oscillations in the percentage of slow vehicles; these waves propagate with the average speed of slow vehicles in free flow. Any of the empirical waves exhibits a two-dimensional asymmetric spatiotemporal structure: Wave's characteristics are different in different highway lanes.

  13. Impact of road traffic emissions on ambient air quality in an industrialized area.

    PubMed

    Garcia, Sílvia M; Domingues, Gonçalo; Gomes, Carla; Silva, Alexandra V; Almeida, S Marta

    2013-01-01

    Several epidemiological studies showed a correlation between airborne particulate matter(PM) and the incidence of several diseases in exposed populations. Consequently, the European Commission reinforced the need and obligation of member-states to monitor exposure levels of PM and adopt measures to reduce this exposure. However, in order to plan appropriate actions, it is necessary to understand the main sources of air pollution and their relative contributions to the formation of the ambient aerosol. The aim of this study was to develop a methodology to assess the contribution of vehicles to the atmospheric aerosol,which may constitute a useful tool to assess the effectiveness of planned mitigation actions.This methodology is based on three main steps: (1) estimation of traffic emissions provided from the vehicles exhaust and resuspension; (2) use of the dispersion model TAPM (“The Air Pollution Model”) to estimate the contribution of traffic for the atmospheric aerosol; and(3) use of geographic information system (GIS) tools to map the PM10 concentrations provided from traffic in the surroundings of a target area. The methodology was applied to an industrial area, and results showed that the highest contribution of traffic for the PM10 concentrations resulted from dust resuspension and that heavy vehicles were the type that most contributed to the PM10 concentration.

  14. The Influence of Traffic on Air Quality in an Urban Neighborhood: A Community–University Partnership

    PubMed Central

    Lee, Harrison J.; Levy, Jonathan I.

    2009-01-01

    Objectives. We evaluated the spatial and temporal patterns of traffic-related air pollutants in an urban neighborhood to determine factors contributing to elevated concentrations and to inform environmental justice concerns. Methods. In the summer of 2007, we continuously monitored multiple air pollutants at a community site in the Mission Hill neighborhood of Boston, Massachussetts, and local high school students conducted mobile continuous monitoring throughout the neighborhood. We used regression models to explain variability in concentrations, considering various attributes of traffic, proximity to major roadways, and meteorology. Results. Different attributes of traffic explained variability in fixed-site concentrations of ultrafine particles, fine particulate matter, and black carbon, with diurnal patterns and meteorological effects indicative of a greater local effect on ultrafine particles and black carbon. Mobile monitoring demonstrated that multiple traffic variables predict elevated levels of ultrafine particles, with concentrations of ultrafine particles decreasing by 50% within 400 meters of 2 major roadways. Conclusions. Unlike fine particulate matter, ultrafine particles demonstrate significant spatial and temporal variability within an urban neighborhood, contributing to environmental justice concerns, and patterns can be well characterized with a community-based participatory research design. PMID:19890168

  15. Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    PubMed

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC.

  16. Evacuation Process in Two-Dimensional Traffic Flow Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem

    Within the framework of Biham-Middleton-Levine traffic model with origin-destination trips, we study the evacuation processes of cars in cities. Cars move from the origin to the destination points. A driver which reaches its destination disappears with rate β. It is found that the evacuation processes are greatly influenced by the origin-destination distance probability distribution. We also find that the evacuation time of drivers diverges in the form of a power law τ ∝ β-ν, with ν = 1.

  17. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  18. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  19. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  20. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...