Science.gov

Sample records for air traffic networks

  1. Air Traffic Network Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The high level requirement of the Air Traffic Network (ATN) project is to provide a mechanism for evaluating the impact of router scheduling modifications on a networks efficiency, without implementing the modifications in the live network.

  2. Congestion Transition in Air Traffic Networks

    PubMed Central

    Monechi, Bernardo; Servedio, Vito D. P.; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  3. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  4. Lightweight simulation of air traffic control using simple temporal networks

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    We provide a formulation of the air traffic control problem and a solver for this problem that makes use of temporal constraint networks and simple geometric reasoning. We provide results showing that this approach is practical for realistic simulated problems.

  5. An Architectural Concept for Intrusion Tolerance in Air Traffic Networks

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Miner, Paul S.

    2003-01-01

    The goal of an intrusion tolerant network is to continue to provide predictable and reliable communication in the presence of a limited num ber of compromised network components. The behavior of a compromised network component ranges from a node that no longer responds to a nod e that is under the control of a malicious entity that is actively tr ying to cause other nodes to fail. Most current data communication ne tworks do not include support for tolerating unconstrained misbehavio r of components in the network. However, the fault tolerance communit y has developed protocols that provide both predictable and reliable communication in the presence of the worst possible behavior of a limited number of nodes in the system. One may view a malicious entity in a communication network as a node that has failed and is behaving in an arbitrary manner. NASA/Langley Research Center has developed one such fault-tolerant computing platform called SPIDER (Scalable Proces sor-Independent Design for Electromagnetic Resilience). The protocols and interconnection mechanisms of SPIDER may be adapted to large-sca le, distributed communication networks such as would be required for future Air Traffic Management systems. The predictability and reliabi lity guarantees provided by the SPIDER protocols have been formally v erified. This analysis can be readily adapted to similar network stru ctures.

  6. Research on the net amount of air traffic network

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wu, Zhenya

    2013-03-01

    As accurate prediction of traffic flow states could reduce the congestion possibility, the theoretical study of air traffic was how to determinate the next time the state with fluid mechanics based on random condition. Then, a novel depicting method of air traffic flow is proposed, which calculated the change of net amount in flow conservation equation with discrete time loss queuing, further, it could determine the relationship between flow and density. Compared to the existing general algorithm, the threshold of net amount was presented in the method, and it had good adaptability.

  7. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  8. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  9. Inside the Mechanics of Network Development: How Competition and Strategy Reorganize European Air Traffic

    NASA Technical Reports Server (NTRS)

    Huber, Hans

    2006-01-01

    Air transport forms complex networks that can be measured in order to understand its structural characteristics and functional properties. Recent models for network growth (i.e., preferential attachment, etc.) remain stochastic and do not seek to understand other network-specific mechanisms that may account for their development in a more microscopic way. Air traffic is made up of many constituent airlines that are either privately or publicly owned and that operate their own networks. They follow more or less similar business policies each. The way these airline networks organize among themselves into distinct traffic distributions reveals complex interaction among them, which in turn can be aggregated into larger (macro-) traffic distributions. Our approach allows for a more deterministic methodology that will assess the impact of airline strategies on the distinct distributions for air traffic, particularly inside Europe. One key question this paper is seeking to answer is whether there are distinct patterns of preferential attachment for given classes of airline networks to distinct types of European airports. Conclusions about the advancing degree of concentration in this industry and the airline operators that accelerate this process can be drawn.

  10. Using Neural Networks to Explore Air Traffic Controller Workload

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Kozon, Thomas; Verma, Savita; Lozito, Sandra C.

    2006-01-01

    When a new system, concept, or tool is proposed in the aviation domain, one concern is the impact that this will have on operator workload. As an experience, workload is difficult to measure in a way that will allow comparison of proposed systems with those already in existence. Chatterji and Sridhar (2001) suggested a method by which airspace parameters can be translated into workload ratings, using a neural network. This approach was employed, and modified to accept input from a non-real time airspace simulation model. The following sections describe the preparations and testing work that will enable comparison of a future airspace concept with a current day baseline in terms of workload levels.

  11. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  12. Regulation of air traffic

    NASA Technical Reports Server (NTRS)

    DEVALUEZ

    1922-01-01

    The ways in which the international and internal French air traffic accords interact with each other is outlined in this report. The principal questions covered by the present legislation are as follows: 1) Conditions of safety which must be fulfilled by aircraft; 2) Licenses for members of the crew; 3) Traffic rules to be observed by French and foreign aircraft.

  13. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  14. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  15. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  16. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  17. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.

  18. Air Traffic Control Improvement Using Prioritized CSMA

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    Version 7 simulations of the industry-standard network simulation software "OPNET" are presented of two applications of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) and Automatic Dependent Surveillance-Broadcast mode (ADS-B), over VHF Data Link mode 2 (VDL-2). Communication is modeled for air traffic between just three cities. All aircraft are assumed to have the same equipage. The simulation involves Air Traffic Control (ATC) ground stations and 105 aircraft taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. All communication is modeled as unreliable. Collision-less, prioritized carrier sense multiple access (CSMA) is successfully tested. The statistics presented include latency, queue length, and packet loss. This research may show that a communications system simpler than the currently accepted standard envisioned may not only suffice, but also surpass performance of the standard at a lower cost of deployment.

  19. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.

  20. Dynamic Density: An Air Traffic Management Metric

    NASA Technical Reports Server (NTRS)

    Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.

    1998-01-01

    The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.

  1. Software for Simulating Air Traffic

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Bilimoria, Karl; Grabbe, Shon; Chatterji, Gano; Sheth, Kapil; Mulfinger, Daniel

    2006-01-01

    Future Air Traffic Management Concepts Evaluation Tool (FACET) is a system of software for performing computational simulations for evaluating advanced concepts of advanced air-traffic management. FACET includes a program that generates a graphical user interface plus programs and databases that implement computational models of weather, airspace, airports, navigation aids, aircraft performance, and aircraft trajectories. Examples of concepts studied by use of FACET include aircraft self-separation for free flight; prediction of air-traffic-controller workload; decision support for direct routing; integration of spacecraft-launch operations into the U.S. national airspace system; and traffic- flow-management using rerouting, metering, and ground delays. Aircraft can be modeled as flying along either flight-plan routes or great-circle routes as they climb, cruise, and descend according to their individual performance models. The FACET software is modular and is written in the Java and C programming languages. The architecture of FACET strikes a balance between flexibility and fidelity; as a consequence, FACET can be used to model systemwide airspace operations over the contiguous U.S., involving as many as 10,000 aircraft, all on a single desktop or laptop computer running any of a variety of operating systems. Two notable applications of FACET include: (1) reroute conformance monitoring algorithms that have been implemented in one of the Federal Aviation Administration s nationally deployed, real-time, operational systems; and (2) the licensing and integration of FACET with the commercially available Flight Explorer, which is an Internet- based, real-time flight-tracking system.

  2. Semiautomated Management Of Arriving Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1992-01-01

    System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.

  3. Traffic gridlock on complex networks

    NASA Astrophysics Data System (ADS)

    Mendes, G. A.; da Silva, L. R.; Herrmann, H. J.

    2012-01-01

    Here we study how a traffic jam spreads on complex networks when driven by an increasing flux between certain initial and final points. For that purpose, we developed two new traffic models based on vehicular traffic and applied them on the Apollonian network and the Swiss road network. The first model is an electrical analog, using ohmic and non-ohmic resistors which is a classical approach in Physics while the second one which we call the herding model, is based on human driving behavior. For both models, we study the sequence of clogged roads up to the traffic gridlock and display the fragilities of the network. In the electrical model, by increasing the external potential, resistors burn out, as the voltage drop between the ends increases above a certain threshold. Analyzing both models, we observed some power-law functions that occur only near a traffic gridlock as well as the dependence on topological features of the network and influence on flux and the robustness in Apollonian networks of different generations.

  4. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2012-01-01

    Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.

  5. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  6. A Wavelet Analysis Approach for Categorizing Air Traffic Behavior

    NASA Technical Reports Server (NTRS)

    Drew, Michael; Sheth, Kapil

    2015-01-01

    In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.

  7. Collegiate Aviation and FAA Air Traffic Control.

    ERIC Educational Resources Information Center

    Ruiz, Jose R.; Ruiz, Lorelei E.

    2003-01-01

    Based on a literature review this article describes the Air Traffic-Collegiate Training Initiative (AT-CTI) program, including objectives, the process by which postsecondary institutes become affiliated, advantages of affiliation, and the recruitment and employment of air traffic control graduates by the Federal Aviation Administration. (Contains…

  8. Automatic speech recognition in air traffic control

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.

  9. Predicting Information Flows in Network Traffic.

    ERIC Educational Resources Information Center

    Hinich, Melvin J.; Molyneux, Robert E.

    2003-01-01

    Discusses information flow in networks and predicting network traffic and describes a study that uses time series analysis on a day's worth of Internet log data. Examines nonlinearity and traffic invariants, and suggests that prediction of network traffic may not be possible with current techniques. (Author/LRW)

  10. New Zealand traffic and local air quality.

    PubMed

    Irving, Paul; Moncrieff, Ian

    2004-12-01

    Since 1996 the New Zealand Ministry of Transport (MOT) has been investigating the effects of road transport on local air quality. The outcome has been the government's Vehicle Fleet Emissions Control Strategy (VFECS). This is a programme of measures designed to assist with the improvement in local air quality, and especially in the appropriate management of transport sector emissions. Key to the VFECS has been the development of tools to assess and predict the contribution of vehicle emissions to local air pollution, in a given urban situation. Determining how vehicles behave as an emissions source, and more importantly, how the combined traffic flows contribute to the total emissions within a given airshed location was an important element of the programme. The actual emissions output of a vehicle is more than that determined by a certified emission standard, at the point of manufacture. It is the engine technology's general performance capability, in conjunction with the local driving conditions, that determines its actual emissions output. As vehicles are a mobile emissions source, to understand the effect of vehicle technology, it is necessary to work with the average fleet performance, or "fleet-weighted average emissions rate". This is the unit measure of performance of the general traffic flow that could be passing through a given road corridor or network, as an average, over time. The flow composition can be representative of the national fleet population, but also may feature particular vehicle types in a given locality, thereby have a different emissions 'signature'. A summary of the range of work that has been completed as part of the VFECS programme is provided. The NZ Vehicle Fleet Emissions Model and the derived data set available in the NZ Traffic Emission Rates provide a significant step forward in the consistent analysis of practical, sustainable vehicle emissions policy and air-quality management in New Zealand. PMID:15504517

  11. 77 FR 27835 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  12. 75 FR 63255 - Air Traffic Procedures Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee Meeting AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  13. 75 FR 22892 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  14. 76 FR 59481 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  15. 76 FR 27168 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  16. 78 FR 66098 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... that a meeting of the Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for...

  17. 77 FR 2603 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  18. 78 FR 2711 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  19. 77 FR 56698 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  20. 75 FR 68022 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... been issued for the Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC... Washington, DC, on October 29, 2010. Elizabeth Ray, Executive Director, Air Traffic Procedures...

  1. Comprehensive Software Eases Air Traffic Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.

  2. Irresponsibility clause in air traffic contracts

    NASA Technical Reports Server (NTRS)

    PORQUET

    1922-01-01

    This report examines the question of the responsibility of the carrier in air traffic. The French were concerned about the competitive advantage the English companies enjoyed because of differences in their respective laws.

  3. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  4. Traffic flow on realistic road networks with adaptive traffic lights

    NASA Astrophysics Data System (ADS)

    de Gier, Jan; Garoni, Timothy M.; Rojas, Omar

    2011-04-01

    We present a model of traffic flow on generic urban road networks based on cellular automata. We apply this model to an existing road network in the Australian city of Melbourne, using empirical data as input. For comparison, we also apply this model to a square-grid network using hypothetical input data. On both networks we compare the effects of non-adaptive versus adaptive traffic lights, in which instantaneous traffic state information feeds back into the traffic signal schedule. We observe that not only do adaptive traffic lights result in better averages of network observables, they also lead to significantly smaller fluctuations in these observables. We furthermore compare two different systems of adaptive traffic signals, one which is informed by the traffic state on both upstream and downstream links and one which is informed by upstream links only. We find that, in general, both the mean and the fluctuation of the travel time are smallest when using the joint upstream-downstream control strategy.

  5. Traffic Management for Satellite-ATM Networks

    NASA Technical Reports Server (NTRS)

    Goyal, Rohit; Jain, Raj; Fahmy, Sonia; Vandalore, Bobby; Goyal, Mukul

    1998-01-01

    Various issues associated with "Traffic Management for Satellite-ATM Networks" are presented in viewgraph form. Specific topics include: 1) Traffic management issues for TCP/IP based data services over satellite-ATM networks; 2) Design issues for TCP/IP over ATM; 3) Optimization of the performance of TCP/IP over ATM for long delay networks; and 4) Evaluation of ATM service categories for TCP/IP traffic.

  6. Traffic Dynamics of Computer Networks

    NASA Astrophysics Data System (ADS)

    Fekete, Attila

    2008-10-01

    Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer to the total packet loss rate. This formula makes it possible to treat buffer-losses as if they were link-losses. Finally, I studied computer networks from a structural perspective. I demonstrated through fluid simulations that the distribution of resources, specifically the link bandwidth, has a serious impact on the global performance of the network. Then I analyzed the distribution of edge betweenness in a growing scale-free tree under the condition that a local property, the in-degree of the "younger" node of an arbitrary edge, is known in order to find an optimum distribution of link capacity. The derived formula is exact even for finite-sized networks. I also calculated the conditional expectation of edge betweenness, rescaled for infinite networks.

  7. Network traffic analysis using dispersion patterns

    2010-03-15

    The Verilog code us used to map a measurement solution on FPGA to analyze network traffic. It realizes a set of Bloom filters and counters, besides associated control logic that can quickly measure statistics like InDegree, OutDegree, Depth, in the context of Traffic Dispersion Graphs. Such patterns are helpful in classification of network activity, like Peer to Peer and Port-Scanning, in the traffic.

  8. Network traffic behaviour near phase transition point

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  9. Traffic congestion in interconnected complex networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K.

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  10. Breakdowns in Coordination Between Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  11. Tropospheric Volcanism and Air-Traffic

    NASA Astrophysics Data System (ADS)

    Zerefos, C. S.; Kapsomenakis, J.; Amiridis, V.; Solomos, S.; Eleftheratos, K.; Gerasopoulos, E.; Repapis, C.; Eskes, H.; Inness, A.; Cuevas, E.; Hedelt, P.

    2015-12-01

    Volcanic effects and their consequences have been observed in Europe originating either from European (Icelandic, Italy) or from distant large volcanic eruptions (e.g. Kasatochi in the Aleutians and Africa). The interference of the volcanic plumes with air traffic corridors have been noticed and studied thoroughly in the case of 2010 eruptions of Eyafallajökull. There have been similar eruptions that have not interfered with air traffic in the past decade such as the recent Bárðarbunga (September 2014) whose forward trajectories where below 6000m. The present study aims at looking for evidence of columnar SO2 amounts that have followed excursions from Icelandic and volcanic eruptions of importance to Europe in general. Columnar SO2 records from remote sensing spectrophotometers over Europe and from space as well as simulated by models have been compared. The columnar SO2 measurements are also compared with ground based SO2 monitors from the Airbase dataset. Finally the impact of the above mentioned volcanic eruptions in air traffic is assessed. The atmospheric effects when air traffic was shut down seem both inside and outside of major air corridors is studied and compared to both case studies and long-term changes in contrails.

  12. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  13. 32 CFR 245.21 - ESCAT air traffic priority list.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false ESCAT air traffic priority list. 245.21 Section 245.21 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic Priority List (EATPL) § 245.21 ESCAT air...

  14. Terminal area air traffic control simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.

  15. Air Traffic Control: Economics of Flight

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2004-01-01

    Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.

  16. Situational Leadership in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Arvidsson, Marcus; Johansson, Curt R.; Ek, Asa; Akselsson, Roland

    2007-01-01

    In high-risk environments such as air traffic control, leadership on different levels plays a certain role in establishing, promoting, and maintaining a good safety culture. The current study aimed to investigate how leadership styles, leadership style adaptability, and over and under task leadership behavior differed across situations, operative conditions, leadership structures, and working tasks in an air traffic control setting. Study locations were two air traffic control centers in Sweden with different operational conditions and leadership structures, and an administrative air traffic management unit. Leadership was measured with a questionnaire based on Leader Effectiveness and Adaptability Description (LEAD; Blanchard, Zigarmi & Zigarmi, 2003; Hersey & Blanchard, 1988). The results showed that the situation had strong impact on the leadership in which the leadership behavior was more relationship oriented in Success and Group situations than in Hardship and Individual situations. The leadership adaptability was further superior in Success and Individual situations compared with Hardship and Group situations. Operational conditions, leadership structures and working tasks were, on the other hand, not associated with leadership behavior.

  17. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  18. Air Traffic Management Research at NASA

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  19. As Traffic Piles Up, So Does Air Pollution

    MedlinePlus

    ... 160914.html As Traffic Piles Up, So Does Air Pollution To minimize exposure, researchers recommend shutting windows and ... Doing so can reduce your exposure to toxic air pollution from a traffic jam by up to 76 ...

  20. Theoretical study of network design methodologies for the aerial relay system. [energy consumption and air traffic control

    NASA Technical Reports Server (NTRS)

    Rivera, J. M.; Simpson, R. W.

    1980-01-01

    The aerial relay system network design problem is discussed. A generalized branch and bound based algorithm is developed which can consider a variety of optimization criteria, such as minimum passenger travel time and minimum liner and feeder operating costs. The algorithm, although efficient, is basically useful for small size networks, due to its nature of exponentially increasing computation time with the number of variables.

  1. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  2. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  3. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  4. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  5. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Air Traffic Service (ATS) routes. 71.11... REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following apply: (a) An Air Traffic Service (ATS) route is based on a centerline that extends from one navigation...

  6. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Air Traffic Service (ATS) routes. 71.11... REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following apply: (a) An Air Traffic Service (ATS) route is based on a centerline that extends from one navigation...

  7. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  8. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  9. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  10. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  11. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  12. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  13. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  14. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  15. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  16. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  17. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  18. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  19. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  20. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  1. Multicast traffic grooming in WDM networks

    NASA Astrophysics Data System (ADS)

    Kamal, Ahmed E.; Ul-Mustafa, Raza

    2003-10-01

    This paper considers the problem of grooming multicast traffic in WDM networks, with arbitrary mesh topologies. The problem is different from grooming of unicast traffic, since traffic can be delivered to destinations through other destinations in the same set, or through branching points. The paper presents an optimal Integer Linear Programming (ILP) formulation in order to minimize the cost of the network in terms of the number of SONET Add/Drop Multiplexers (ADM). The formulation also minimizes the number of wavelength channels used in the network, and does not allow bifurcation of traffic. Since the ILP formulation is able to solve limited size problems, the paper also introduces a heuristic approach to solve the problem.

  2. Computationally Lightweight Air-Traffic-Control Simulation

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    An algorithm for computationally lightweight simulation of automated air traffic control (ATC) at a busy airport has been derived. The algorithm is expected to serve as the basis for development of software that would be incorporated into flight-simulator software, the ATC component of which is not yet capable of handling realistic airport loads. Software based on this algorithm could also be incorporated into other computer programs that simulate a variety of scenarios for purposes of training or amusement.

  3. Congestion in different topologies of traffic networks

    NASA Astrophysics Data System (ADS)

    Wu, J. J.; Gao, Z. Y.; Sun, H. J.; Huang, H. J.

    2006-05-01

    In the present paper, we consider three different types of networks (random, small-world, and scale-free) with dynamic weights and focus on how the characteristic parameters (degree distribution exponent, rewiring probability, and clustering coefficient) affect the degree of congestion and the efficiency. Experiment simulation shows that the scale-free and small-world networks are more prone to suffering from congestion than random ones at low traffic flows, but the scale-free network is more sensitive than the small-world one. Compared with other two topologies, the scale-free network, while its congestion factor rises slowly, can support much more volume of traffic as the traffic flow increases. Results also indicate that for the same value of congestion factor, there may be a different efficiency, which shows that only congestion or efficiency alone cannot evaluate the performance of networks effectively.

  4. Building Air Monitoring Networks

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The different components of air monitoring networks, the status of air monitoring in the United States, and the services and activities of the three major American network builders are detailed. International air monitoring networks and alert systems are identified, with emphasis on the Dutch air monitoring network. (BT)

  5. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  6. Traffic Driven Analysis of Cellular and WiFi Networks

    ERIC Educational Resources Information Center

    Paul, Utpal Kumar

    2012-01-01

    Since the days Internet traffic proliferated, measurement, monitoring and analysis of network traffic have been critical to not only the basic understanding of large networks, but also to seek improvements in resource management, traffic engineering and security. At the current times traffic in wireless local and wide area networks are facing…

  7. Neural network system for traffic flow management

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard

    1992-09-01

    Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.

  8. Cubesat Constellation Design for Air Traffic Monitoring

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  9. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  10. A game theory model of urban public traffic networks

    NASA Astrophysics Data System (ADS)

    Su, B. B.; Chang, H.; Chen, Y.-Z.; He, D. R.

    2007-06-01

    We have studied urban public traffic networks from the viewpoint of complex networks and game theory. Firstly, we have empirically investigated an urban public traffic network in Beijing in 2003, and obtained its statistical properties. Then a simplified game theory model is proposed for simulating the evolution of the traffic network. The basic idea is that three network manipulators, passengers, an urban public traffic company, and a government traffic management agency, play games in a network evolution process. Each manipulator tries to build the traffic lines to magnify its “benefit”. Simulation results show a good qualitative agreement with the empirical results.

  11. CSMA Versus Prioritized CSMA for Air-Traffic-Control Improvement

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    OPNET version 7.0 simulations are presented involving an important application of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) over the Very High Frequency Data Link, Mode 2 (VDL-2). Communication is modeled for essentially all incoming and outgoing nonstop air-traffic for just three United States cities: Cleveland, Cincinnati, and Detroit. There are 32 airports in the simulation, 29 of which are either sources or destinations for the air-traffic of the aforementioned three airports. The simulation involves 111 Air Traffic Control (ATC) ground stations, and 1,235 equally equipped aircraft-taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. Collisionless, Prioritized Carrier Sense Multiple Access (CSMA) is successfully tested and compared with the traditional CSMA typically associated with VDL-2. The performance measures include latency, throughput, and packet loss. As expected, Prioritized CSMA is much quicker and more efficient than traditional CSMA. These simulation results show the potency of Prioritized CSMA for implementing low latency, high throughput, and efficient connectivity.

  12. 77 FR 67862 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation Administration (FAA), DOT. SUMMARY: The FAA is issuing this notice to advise the public that the FAA's Air... Administrator. The ATPAC charter is valid for two years and provides a venue to review air traffic...

  13. The Stability of Multi-modal Traffic Network

    NASA Astrophysics Data System (ADS)

    Han, Ling-Hui; Sun, Hui-Jun; Zhu, Cheng-Juan; Wu, Jian-Jun; Jia, Bin

    2013-07-01

    There is an explicit and implicit assumption in multimodal traffic equilibrium models, that is, if the equilibrium exists, then it will also occur. The assumption is very idealized; in fact, it may be shown that the quite contrary could happen, because in multimodal traffic network, especially in mixed traffic conditions the interaction among traffic modes is asymmetric and the asymmetric interaction may result in the instability of traffic system. In this paper, to study the stability of multimodal traffic system, we respectively present the travel cost function in mixed traffic conditions and in traffic network with dedicated bus lanes. Based on a day-to-day dynamical model, we study the evolution of daily route choice of travelers in multimodal traffic network using 10000 random initial values for different cases. From the results of simulation, it can be concluded that the asymmetric interaction between the cars and buses in mixed traffic conditions can lead the traffic system to instability when traffic demand is larger. We also study the effect of travelers' perception error on the stability of multimodal traffic network. Although the larger perception error can alleviate the effect of interaction between cars and buses and improve the stability of traffic system in mixed traffic conditions, the traffic system also become instable when the traffic demand is larger than a number. For all cases simulated in this study, with the same parameters, traffic system with dedicated bus lane has better stability for traffic demand than that in mixed traffic conditions. We also find that the network with dedicated bus lane has higher portion of travelers by bus than it of mixed traffic network. So it can be concluded that building dedicated bus lane can improve the stability of traffic system and attract more travelers to choose bus reducing the traffic congestion.

  14. Dynamic traffic grooming with multigranularity traffic in WDM optical mesh networks

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zeng, Qingji; Liu, Jimin; Xiao, Pengcheng; Liu, Hua; Xiao, Shilin

    2004-04-01

    In this paper, a traffic-grooming problem for multi-granularity traffic of SDH/SONET in WDM grooming mesh networks is investigated. We propose a path select routing algorithm to solve this problem. The performances of this traffic grooming path select routing algorithm are evaluated in WDM grooming networks. Finally, we presented and compared the simulation results of this algorithm in dynamic traffic grooming WDM mesh networks with that of other algorithms.

  15. Web traffic prediction with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gluszek, Adam; Kekez, Michal; Rudzinski, Filip

    2005-02-01

    The main aim of the paper is to present application of the artificial neural network in the web traffic prediction. First, the general problem of time series modelling and forecasting is shortly described. Next, the details of building of dynamic processes models with the neural networks are discussed. At this point determination of the model structure in terms of its inputs and outputs is the most important question because this structure is a rough approximation of the dynamics of the modelled process. The following section of the paper presents the results obtained applying artificial neural network (classical multilayer perceptron trained with backpropagation algorithm) to the real-world web traffic prediction. Finally, we discuss the results, describe weak points of presented method and propose some alternative approaches.

  16. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo R.

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  17. Traffic placement policies for a multi-band network

    NASA Technical Reports Server (NTRS)

    Maly, Kurt J.; Foudriat, E. C.; Game, David; Mukkamala, R.; Overstreet, C. Michael

    1990-01-01

    Recently protocols were introduced that enable the integration of synchronous traffic (voice or video) and asynchronous traffic (data) and extend the size of local area networks without loss in speed or capacity. One of these is DRAMA, a multiband protocol based on broadband technology. It provides dynamic allocation of bandwidth among clusters of nodes in the total network. A number of traffic placement policies for such networks are proposed and evaluated. Metrics used for performance evaluation include average network access delay, degree of fairness of access among the nodes, and network throughput. The feasibility of the DRAMA protocol is established through simulation studies. DRAMA provides effective integration of synchronous and asychronous traffic due to its ability to separate traffic types. Under the suggested traffic placement policies, the DRAMA protocol is shown to handle diverse loads, mixes of traffic types, and numbers of nodes, as well as modifications to the network structure and momentary traffic overloads.

  18. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  19. Atlanta Air Route Traffic Control Center's involvement in aviation weather

    NASA Technical Reports Server (NTRS)

    Wood, W. D.

    1979-01-01

    The distribution of weather information throughout the Air Traffic Control System is discussed along with the development of meteorological radar, and the modifications to the Air Route Traffic Control Center radars for locating and determining the severity of storms' cells. The planned improvements in the availability of weather data to the control centers are listed.

  20. Analysis of Controller Communication in En Route Air Traffic Control.

    ERIC Educational Resources Information Center

    Seamster, Thomas L.; And Others

    To contribute to an understanding of the elements of good air traffic controller communication with the objective of providing recommendations to improve controller communication training, two studies analyzed team communication, ground-air communication, and ground-line communication. The simulated and live traffic analyses examined established…

  1. Delay Banking for Managing Air Traffic

    NASA Technical Reports Server (NTRS)

    Green, Steve

    2008-01-01

    Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system. Delay banking would be administered by an independent third party who would use delay banking automation to continually monitor flights, allocate delay credits, maintain accounts of delay credits for participating airlines, mediate bidding and the consumption of credits of winning bidders, analyze potential transfers of credits within and between operators, implement accepted transfers, and ensure fair treatment of all participating operators. A flow restriction can manifest itself in the form of a delay in assigned takeoff time, a reduction in assigned airspeed, a change in the position for the aircraft in a queue of all aircraft in a common stream of traffic (e.g., similar route), a change in the planned altitude profile for an aircraft, or change in the planned route for the aircraft. Flow restrictions are typically imposed to mitigate traffic congestion at an airport or in a region of airspace, particularly congestion due to inclement weather, or the unavailability of a runway or region of airspace. A delay credit would be allocated to an operator of a

  2. Dynamic traffic grooming in survivable WDM networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yonghua; Lin, Rujian

    2005-11-01

    This paper investigates the survivable traffic grooming problem for optical mesh networks employing wavelength-division multiplexing (WDM). While the transmission rate of a wavelength channel is high, the bandwidth requirement of a typical connection request can vary from the full wavelength capacity down to subwavelength. To efficiently utilize network resources, subwavelength-granularity connections can be groomed onto direct optical transmission channels, or lightpaths. Meanwhile, the failure of a network element can cause the failure of several lightpaths, thereby leading to large data and revenue loss. Fault-management schemes such as protection are essential to survive such failures. Different low-speed connections may request different bandwidth granularities as well as different protection schemes. How to efficiently groom such low-speed connections while satisfying their protection requirements is the main focus of our investigation. The paper tackles the dynamic survivable traffic grooming problems in multifiber wavelength-routed optical networks by representing the network as a layered graph model. This graph multi layers, where each layer represents a specific wavelength. Each link in the layered graph has more than one fibers and an associated cost. We use a modified Dijkstra algorithm that has a reduced complexity due to the structure of the layered graph. Heuristic algorithms for fiber selection based on a well-designed link-cost metrics are proposed. The performance of various routing algorithms is evaluated through simulation studies.

  3. Wavelet filtering of network traffic measurements

    NASA Astrophysics Data System (ADS)

    Antoniou, I.; Ivanov V., Vi.; Ivanov, Va. V.; Zrelov, P. V.

    2003-06-01

    The “Caterpillar”-SSA (Principal Components of Time Series: Caterpillar Method, St. Petersburg University Press, 1997; Analysis of Time Series Structure: SSA and Related Techiques, Chapman & Hall/CRC, London/Boca Raton, FL, 2001) and statistical analysis based on the joint utilization of χ2 and ω2 tests provided the possibility to divide the whole set of components into two classes (VIII International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT’2002, 24-28 June 2002, Moscow, Russia, Book of abstracts, p. 176 (submitted to Physica D)). The first class includes leading components responsible for the main contribution to network traffic (Physica D 167 (2002) 72), and the second class involves residual components that can be interpreted as noise. More detailed analysis of the boundary region between these two classes may give additional information on traffic components and, thus, simplify the understanding of traffic dynamics. In this connection, we apply wavelet filtering to traffic measurements, and analyze its influence both on the characteristics of individual principal components and on the sum distributions of leading and residual components.

  4. Aeronautical Satellite Data Link System (SDLS) for high-density air-traffic areas

    NASA Technical Reports Server (NTRS)

    Delrieu, Alain; Loisy, Claude; Clinch, Philip; Benhaim, Philippe

    1995-01-01

    The European Space Agency has recently commissioned a study to investigate the feasibility of a low-cost aeronautical Satellite Data Link System (SDLS) to provide for the needs of Air Traffic Services, i.e. safety related communications over continental areas with high air-traffic density. This study is placed in today's context which sees the first generation of Aeronautical Mobile Satellite System (AMSS) being gradually but restrictively put into service in oceanic airspaces with low air-traffic density. This paper first discusses the case of ATS dedicated versus mixed (ATS and commercial) Comms service provision and identifies the specific ATS comms requirements context. Specific emphasis is put on the ICAO (International Civil Aviation Organization) standardization framework for both the ATN (Aeronautical Telecommunication Network) and the SSR (Secondary Surveillance Radar) Mode S specific services. An architectural system and network design for a future SDLS is then proposed, such as to meet the ATS comms requirements within the realm of existing technologies. To minimize development risk and cost, consideration is given to re-use the ESA-developed Land Mobile Communication Technology, known as MSBN (Mobile Satellite Business Network) featuring distinct subnetworks. It is particularly suited to an ATM (Air Traffic Management) decentralized architecture made of independent ATC (Air Traffic Control) Centers. Finally the study follow-on phase is introduced, which is intended to cover system design and development leading to a demonstration program, as a first step towards proposals for international standardization and acceptance.

  5. Wireless network traffic modeling based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Liu, Chunfeng; Shu, Yantai; Yang, Oliver W. W.; Liu, Jiakun; Dong, Linfang

    2006-10-01

    In this paper, Extreme Value Theory (EVT) is presented to analyze wireless network traffic. The role of EVT is to allow the development of procedures that are scientifically and statistically rational to estimate the extreme behavior of random processes. There are two primary methods for studying extremes: the Block Maximum (BM) method and the Points Over Threshold (POT) method. By taking limited traffic data that is greater than the threshold value, our experiment and analysis show the wireless network traffic model obtained with the EVT fits well with that of empirical distribution of traffic, thus illustrating that EVT has a good application foreground in the analysis of wireless network traffic.

  6. Encapsulating urban traffic rhythms into road networks.

    PubMed

    Wang, Junjie; Wei, Dong; He, Kun; Gong, Hang; Wang, Pu

    2014-01-01

    Using road GIS (geographical information systems) data and travel demand data for two U.S. urban areas, the dynamical driver sources of each road segment were located. A method to target road clusters closely related to urban traffic congestion was then developed to improve road network efficiency. The targeted road clusters show different spatial distributions at different times of a day, indicating that our method can encapsulate dynamical travel demand information into the road networks. As a proof of concept, when we lowered the speed limit or increased the capacity of road segments in the targeted road clusters, we found that both the number of congested roads and extra travel time were effectively reduced. In addition, the proposed modeling framework provided new insights on the optimization of transport efficiency in any infrastructure network with a specific supply and demand distribution. PMID:24553203

  7. Traffic chaotic dynamics modeling and analysis of deterministic network

    NASA Astrophysics Data System (ADS)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  8. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  9. Investigating the Effects of Traffic on Air Pollution.

    ERIC Educational Resources Information Center

    Taylor, Sharon

    2001-01-01

    Discusses the benefits of bringing scientists into the classroom to collaborate with children on environmental research projects. Describes one collaborative project that focused on the effects of traffic on air pollution. (DDR)

  10. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  11. Containing air pollution and traffic congestion: Transport policy and the environment in Singapore

    NASA Astrophysics Data System (ADS)

    Chin, Anthony T. H.

    Land transportation remains one of the main contributors of noise and air pollution in urban areas. This is in addition to traffic congestion and accidents which result in the loss of productive activity. While there is a close relationship between traffic volumes and levels of noise and air pollution, transport authorities often assume that solving traffic congestion would reduce noise and air pollutant levels. Tight control over automobile ownership and use in Singapore has contributed in improving traffic flows, travel speeds and air quality. The adoption of internationally accepted standards on automobile emissions and gasoline have been effective in reducing air pollution from motor vehicles. Demand management measures have largely focused on controlling the source of traffic congestion, i.e. private automobile ownership and its use especially within the Central Business District during the day. This paper reviews and analyzes the effectiveness of two measures which are instrumental in controlling congestion and automobile ownership, i.e. road pricing and the vehicle quota scheme (VQS). While these measures have been successful in achieving desired objectives, it has also led to the spreading of traffic externalities to other roads in the network, loss in consumer welfare and rent seeking by automobile traders.

  12. Traffic sharing algorithms for hybrid mobile networks

    NASA Technical Reports Server (NTRS)

    Arcand, S.; Murthy, K. M. S.; Hafez, R.

    1995-01-01

    In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.

  13. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  14. Modeling of urban traffic networks with lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Meng, Jian-ping; Qian, Yue-hong; Dai, Shi-qiang

    2008-02-01

    It is of great importance to uncover the characteristics of traffic networks. However, there have been few researches concerning kinetics models for urban traffic networks. In this work, a lattice Boltzmann model (LBM) for urban traffic networks is proposed by incorporating the ideas of the Biham-Middleton-Levine (BML) model into the LBM for road traffic. In the present model, situations at intersections with the red and green traffic signals are treated as a kind of boundary conditions varying with time. Thus, the urban traffic network could be described in the mesoscopic level. By performing numerical simulations under the periodic boundary conditions, the behavior of average velocity is investigated in detail. The numerical results agree quite well with those given by the Chowdhury-Schadschneider (ChSch) model (Chowdhury D. and Schadschneider A., Phys. Rev. E, 59 (1999) R1311). Furthermore, the statistical noise is reduced in this discrete kinetics model, thus, the present model has considerably high computational efficiency.

  15. Study of traffic statistics of assembled burst traffic in optical burst-switched networks

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Chen, Yang; Qiao, Chunming

    2002-07-01

    Optical Burst Switching (OBS) is considered as a promising switching technique for building the next generation optical Internet. In OBS networks, one important issue is how the performance will be affected by bursts assembled from packets, which is the basic transmission unit in OBS. In this paper, we study the fundamental statistic properties such as the burst length distribution, inter-arrival time distribution, as well as correlation structure of assembled burst traffic from burst assembly algorithms. From both theoretical and empirical results, it is demonstrated that after the assembly, the traffic will in general approach the Gaussian distribution. In particular, the variance of assembled traffic decreases with the increase in the assembly window size and the traffic load. However, the long range dependence in the input traffic will not change after assembly. Such smoothed assembled traffic will enhance the OBS performance by reducing burst loss and increase OBS throughput. This result is useful for the future study of OBS node and networks.

  16. Expanding Regional Airport Usage to Accommodate Increased Air Traffic Demand

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2009-01-01

    Small regional airports present an underutilized source of capacity in the national air transportation system. This study sought to determine whether a 50 percent increase in national operations could be achieved by limiting demand growth at large hub airports and instead growing traffic levels at the surrounding regional airports. This demand scenario for future air traffic in the United States was generated and used as input to a 24-hour simulation of the national airspace system. Results of the demand generation process and metrics predicting the simulation results are presented, in addition to the actual simulation results. The demand generation process showed that sufficient runway capacity exists at regional airports to offload a significant portion of traffic from hub airports. Predictive metrics forecast a large reduction of delays at most major airports when demand is shifted. The simulation results then show that offloading hub traffic can significantly reduce nationwide delays.

  17. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  18. Sensitivity of contrail cirrus radiative forcing to air traffic scheduling

    NASA Astrophysics Data System (ADS)

    Newinger, Christina; Burkhardt, Ulrike

    2012-05-01

    Air traffic effects high cloudiness and therefore the Earth's radiation budget by producing contrail cirrus. Contrail cirrus comprise of line-shaped contrails and irregularly shaped ice clouds that originate from them. The warming effect of contrail cirrus is disproportionally large at night, since at daytime the cooling due to the short wave cloud albedo effect acts toward compensating the long wave warming effect. Therefore it has been suggested to restrict air traffic to daytime in order to reduce its climate impact. The potential for reducing the contrail cirrus radiative forcing by shifting air traffic to daytime depends on the diurnal cycle of contrail cirrus coverage which is in turn determined by the diurnal cycle of air traffic and the contrail cirrus lifetimes. Simulations with a global atmospheric general circulation model indicate that the annual mean contrail cirrus coverage may be almost constant over the day even in areas where air traffic is close to zero at night. A conceptual model describing the temporal evolution of contrail cirrus coverage reveals that this is due to the large variability in contrail cirrus lifetimes in combination with the spreading of contrail cirrus. This large variability of lifetimes is consistent with observational evidence but more observations are needed to constrain the contrail lifetime distribution. An idealized mitigation experiment, shifting nighttime flights to daytime, indicates that contrail cirrus radiative forcing is not significantly changed.

  19. Air-Traffic Controllers Evaluate The Descent Advisor

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1992-01-01

    Report describes study of Descent Advisor algorithm: software automation aid intended to assist air-traffic controllers in spacing traffic and meeting specified times or arrival. Based partly on mathematical models of weather conditions and performances of aircraft, it generates suggested clearances, including top-of-descent points and speed-profile data to attain objectives. Study focused on operational characteristics with specific attention to how it can be used for prediction, spacing, and metering.

  20. Exposure to traffic related air pollutants: self reported traffic intensity versus GIS modelled exposure

    PubMed Central

    Heinrich, J; Gehring, U; Cyrys, J; Brauer, M; Hoek, G; Fischer, P; Bellander, T; Brunekreef, B

    2005-01-01

    Background: In epidemiological studies of the potential health effects of traffic related air pollution, self reported traffic intensity is a commonly used, but rarely validated, exposure variable. Methods: As part of a study on the impact of Traffic Related Air Pollution on Childhood Asthma (TRAPCA), data from 2633 and 673 infants from the Dutch and the German-Munich cohorts, respectively, were available. Parents subjectively assessed traffic intensity at the home address. Objective exposures were estimated by a combination of spatial air pollution measurements and geographic information system (GIS) based modelling using an identical method for both cohorts. Results: The agreement rates between self reported and GIS modelled exposure—accumulated over the three strata of self assessed traffic intensity—were 55–58% for PM2.5, filter absorbance (PM2.5 abs), and nitrogen dioxide in Munich and 39–40% in the Netherlands. Of the self reported low traffic exposed group, 71–73% in Munich and 45–47% in the Netherlands had low modelled exposure to these three air pollutants. Of the self assessed high exposed subgroups in Munich (15% of the total population) and the Netherlands (22% of the total population), only 22–33% and 30–32% respectively had high modelled exposure to the three air pollutants. The subjective assessments tend to overestimate the modelled estimates for PM2.5 and NO2 in both study areas. When analysis was restricted to the portion of the Dutch cohort living in non-urban areas, the agreement rates were even lower. Conclusions: Self reported and modelled assessment of exposure to air pollutants are only weakly associated. PMID:16046603

  1. The Future of Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    A system for the control of terminal area traffic to improve productivity, referred to as the Center-TRACON Automation System (CTAS), is being developed at NASA's Ames Research Center under a joint program with the FAA. CTAS consists of a set of integrated tools that provide computer-generated advisories for en-route and terminal area controllers. The premise behind the design of CTAS has been that successful planning of traffic requires accurate trajectory prediction. Data bases consisting of representative aircraft performance models, airline preferred operational procedures and a three dimensional wind model support the trajectory prediction. The research effort has been the design of a set of automation tools that make use of this trajectory prediction capability to assist controllers in overall management of traffic. The first tool, the Traffic Management Advisor (TMA), provides the overall flow management between the en route and terminal areas. A second tool, the Final Approach Spacing Tool (FAST) provides terminal area controllers with sequence and runway advisories to allow optimal use of the runways. The TMA and FAST are now being used in daily operations at Dallas/Ft. Worth airport. Additional activities include the development of several other tools. These include: 1) the En Route Descent Advisor that assist the en route controller in issuing conflict free descents and ascents; 2) the extension of FAST to include speed and heading advisories and the Expedite Departure Path (EDP) that assists the terminal controller in management of departures; and 3) the Collaborative Arrival Planner (CAP) that will assist the airlines in operational decision making. The purpose of this presentation is to review the CTAS concept and to present the results of recent field tests. The paper will first discuss the overall concept and then discuss the status of the individual tools.

  2. An extended signal control strategy for urban network traffic flow

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  3. Multicast traffic grooming in flexible optical WDM networks

    NASA Astrophysics Data System (ADS)

    Patel, Ankitkumar N.; Ji, Philip N.; Jue, Jason P.; Wang, Ting

    2012-12-01

    In Metropolitan Area Networks (MANs), point-to-multipoint applications, such as IPTV, video-on-demand, distance learning, and content distribution, can be efficiently supported through light-tree-based multicastcommunications instead of lightpath-based unicast-communications. The application of multicasting for such traffic is justified by its inherent benefits of reduced control and management overhead and elimination of redundant resource provisioning. Supporting such multicast traffic in Flexible optical WDM (FWDM) networks that can provision light-trees using optimum amount of spectrum within flexible channel spacing leads to higher wavelength and spectral efficiencies compared to the conventional ITU-T fixed grid networks. However, in spite of such flexibility, the residual channel capacity of stranded channels may not be utilized if the network does not offer channels with arbitrary line rates. Additionally, the spectrum allocated to guard bands used to isolate finer granularity channels remains unutilized. These limitations can be addressed by using traffic grooming in which low-rate multicast connections are aggregated and switched over high capacity light-trees. In this paper, we address the multicast traffic grooming problem in FWDM networks, and propose a novel auxiliary graph-based algorithm for the first time. The performance of multicast traffic grooming is evaluated in terms of spectral, cost, and energy efficiencies compared to lightpath-based transparent FWDM networks, lightpathbased traffic grooming-capable FWDM networks, multicast-enabled transparent FWDM networks, and multicast traffic grooming-capable fixed grid networks. Simulation results demonstrate that multicast traffic grooming in FWDM networks not only improves spectral efficiency, but also cost, and energy efficiencies compared to other multicast traffic provisioning approaches of FWDM and fixed grid networks.

  4. Surveying air traffic control specialist perception of scheduling regulations

    NASA Astrophysics Data System (ADS)

    Thompson, Darrius E.

    While there have been several studies conducted on air traffic controller fatigue, there is a lack of research on the subject since the scheduling policy changes that took place in 2012. The effectiveness of these changes has yet to be measured. The goal of this study was to investigate air traffic control specialist views towards the number of hours scheduled between shifts, changes in perception since 2012 regulation changes, and external factors that impact fatigue. A total of 54 FAA air traffic control specialist completed an online questionnaire. The results from the survey showed that the majority of respondents felt the 2012 regulation changes were not sufficient to address fatigue issues, and work with some amount sleep deprivation. The factors that appeared to have the most significant effect on fatigue included facility level, age group, availability of recuperative breaks, and children under 18 in the home.

  5. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    PubMed

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area. PMID:24288064

  6. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  7. Urban traffic-network performance: flow theory and simulation experiments

    SciTech Connect

    Williams, J.C.

    1986-01-01

    Performance models for urban street networks were developed to describe the response of a traffic network to given travel-demand levels. The three basic traffic flow variables, speed, flow, and concentration, are defined at the network level, and three model systems are proposed. Each system consists of a series of interrelated, consistent functions between the three basic traffic-flow variables as well as the fraction of stopped vehicles in the network. These models are subsequently compared with the results of microscopic simulation of a small test network. The sensitivity of one of the model systems to a variety of network features was also explored. Three categories of features were considered, with the specific features tested listed in parentheses: network topology (block length and street width), traffic control (traffic signal coordination), and traffic characteristics (level of inter-vehicular interaction). Finally, a fundamental issue concerning the estimation of two network-level parameters (from a nonlinear relation in the two-fluid theory) was examined. The principal concern was that of comparability of these parameters when estimated with information from a single vehicle (or small group of vehicles), as done in conjunction with previous field studies, and when estimated with network-level information (i.e., all the vehicles), as is possible with simulation.

  8. Studies of uncontrolled air traffic patterns, phase 1

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.; Scharf, L. L.; Ruedger, W. H.; Modi, J. A.; Wheelock, S. L.; Davis, C. M.

    1975-01-01

    The general aviation air traffic flow patterns at uncontrolled airports are investigated and analyzed and traffic pattern concepts are developed to minimize the midair collision hazard in uncontrolled airspace. An analytical approach to evaluate midair collision hazard probability as a function of traffic densities is established which is basically independent of path structure. Two methods of generating space-time interrelationships between terminal area aircraft are presented; one is a deterministic model to generate pseudorandom aircraft tracks, the other is a statistical model in preliminary form. Some hazard measures are presented for selected traffic densities. It is concluded that the probability of encountering a hazard should be minimized independently of any other considerations and that the number of encounters involving visible-avoidable aircraft should be maximized at the expense of encounters in other categories.

  9. Future Air Traffic Growth and Schedule Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  10. Future Air Traffic Growth and Schedule Model, Supplement

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  11. Supporting the Future Air Traffic Control Projection Process

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John, Jr.

    2002-01-01

    In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.

  12. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    NASA Astrophysics Data System (ADS)

    Zonglin, Li; Guangmin, Hu; Xingmiao, Yao; Dan, Yang

    2008-12-01

    Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation). The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  13. Enhancing Traffic Capacity of Two-Layer Complex Networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liang, Man-Gui; Zhang, Shuai; Zhou, Weixing; Jin, Huiqin

    2013-08-01

    As two-layer or multi-layer network model can more accurately reveal many real structures of complex systems such as peer-to-peer (P2P) networks on IP networks, to better understand the traffic dynamics and improve the network traffic capacity, we propose to efficiently construct the structure of upper logical layer network which can be possibly implemented. From the beginning, we assume that the logical layer network has the same structure as the lower physical layer network, and then we use link-removal strategy in which a fraction of links with maximal product (ki* kj) are removed from the logical layer, where ki and kj are the degrees of node i and node j, respectively. Traffic load is strongly redistributed from center nodes to noncenter nodes. The traffic capacity of whole complex system is enhanced several times at the expense of a little average path lengthening. In two-layer network model, the physical layer network structure is unchanged and the shortest path routing strategy is used. The structure of upper layer network can been constructed freely under our own methods. This mechanism can be employed in many real complex systems to improve the network traffic capacity.

  14. [Urban air pollutant exposure among traffic policemen].

    PubMed

    Priante, E; Schiavon, I; Boschi, G; Gori, G; Bartolucci, G B; Soave, C; Brugnone, F; Clonfero, E

    1996-01-01

    Exposure to dusts and benzene was studied in 65 traffic policemen. Samples of total dusts showed that mean personal exposure was 0.44 (SD = 0.30) mg/m3, with peaks of about 2 mg/m3. Exposure to 1-nitropyrene (1-NP), the main compound occurring in emissions from diesel engines, which was estimated from concentrations in dusts collected with high-flow samplers, was 0.28 (SD = 0.19) ng/m3 (range: 0.06-1.24 ng/m3). The mean concentration of benzene in the breathing zone was 41 (SD = 20) micrograms/m3, although a level of 100 micrograms/m3 was slightly exceeded in one subject. In urine samples collected before and after workshifts, two biological indicators of exposure to benzene were measured, urinary benzene and urinary trans, trans-muconic acid (MA). The mean values of urinary benzene before and after workshift were similar (98, SD = 81 and 83, SD = 55 ng/l; n = 63; Wilcoxon's T-test = not significant), while a moderate increase in the metabolite was observed (MA = 0.08, SD = 0.11; 0.11, SD = 0.09 mg/g creatinine, in pre- and post-shift samples respectively; Wilcoxon's T-test, z = 3.00; p < 0.01). The levels of exposure to dusts and 1-NP deriving from diesel engine emissions were comparable to those of other occupational groups with this type of risk (garage mechanics, workers operating diesel engine machinery, etc.). Traffic police exposure to benzene was similar to that of the whole population of Padova (40 micrograms/m3, mean annual 24-hour value). However, the values of urinary MA, like those reported by other authors for non-smoker controls, increased after the workshift, indicating low occupational exposure to this pollutant. It should be noted that traffic police exposure to benzene is much lower than that of other occupational categories, e.g., fuel pump distributors. PMID:9102558

  15. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  16. Measurement of Temporal Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  17. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air transport traffic and capacity elements... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  18. Final-Approach-Spacing Subsystem For Air Traffic

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1992-01-01

    Automation subsystem of computers, computer workstations, communication equipment, and radar helps air-traffic controllers in terminal radar approach-control (TRACON) facility manage sequence and spacing of arriving aircraft for both efficiency and safety. Called FAST (Final Approach Spacing Tool), subsystem enables controllers to choose among various levels of automation.

  19. The Monotonic Lagrangian Grid for Rapid Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay

    2010-01-01

    The Air Traffic Monotonic Lagrangian Grid (ATMLG) is presented as a tool to evaluate new air traffic system concepts. The model, based on an algorithm called the Monotonic Lagrangian Grid (MLG), can quickly sort, track, and update positions of many aircraft, both on the ground (at airports) and in the air. The underlying data structure is based on the MLG, which is used for sorting and ordering positions and other data needed to describe N moving bodies and their interactions. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. Recent upgrades to ATMLG include adding blank place-holders within the MLG data structure, which makes it possible to dynamically change the MLG size and also improves the quality of the MLG grid. Additional upgrades include adding FAA flight plan data, such as way-points and arrival and departure times from the Enhanced Traffic Management System (ETMS), and combining the MLG with the state-of-the-art strategic and tactical conflict detection and resolution algorithms from the NASA-developed Stratway software. In this paper, we present results from our early efforts to couple ATMLG with the Stratway software, and we demonstrate that it can be used to quickly simulate air traffic flow for a very large ETMS dataset.

  20. Planes, Politics and Oral Proficiency: Testing International Air Traffic Controllers

    ERIC Educational Resources Information Center

    Moder, Carol Lynn; Halleck, Gene B.

    2009-01-01

    This study investigates the variation in oral proficiency demonstrated by 14 Air Traffic Controllers across two types of testing tasks: work-related radio telephony-based tasks and non-specific English tasks on aviation topics. Their performance was compared statistically in terms of level ratings on the International Civil Aviation Organization…

  1. Trainer Interventions as Instructional Strategies in Air Traffic Control Training

    ERIC Educational Resources Information Center

    Koskela, Inka; Palukka, Hannele

    2011-01-01

    Purpose: This paper aims to identify methods of guidance and supervision used in air traffic control training. It also aims to show how these methods facilitate trainee participation in core work activities. Design/methodology/approach: The paper applies the tools of conversation analysis and ethnomethodology to explore the ways in which trainers…

  2. Initial Air Traffic Control Training at Tartu Aviation College.

    ERIC Educational Resources Information Center

    Kulbas, Tanel

    1997-01-01

    Development of an air traffic control (ATC) training course at Tartu Aviation College in Estonia had to start at ground zero, creating new rules and regulations for ATC, writing special study materials, building simulators, and finding enough applicants with sufficient English skills. (SK)

  3. A Course in English for Air Traffic Controllers.

    ERIC Educational Resources Information Center

    McCann, Paul; Thompson, Lesley

    A description is provided of a course, developed by the British Council in Madrid, Spain, to improve the English language training for trainee air traffic services personnel as a result of an increased demand for trained controllers over the next few years. The course aims to teach students in the areas of standard radiotelephony, non-routine…

  4. Properties of Air Traffic Conflicts for Free and Structured Routing

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2001-01-01

    This paper analyzes the properties of air traffic conflicts in a future free routing system against those in the current structured routing system. Simulation of en route air traffic operations (above 18,000 ft) over the contiguous United States for a 24-hour period, constructed with initial conditions from actual air traffic data, were conducted using the Future ATM Concepts Evaluation Tool (FACET). Free routes were modeled as great circle (direct) routes from origin to destination, and structured routes were derived from actual flight plans along the current system of air routes. The conflict properties analyzed in this study include: (1) Total number of conflicts; (2) Distributions of key conflict parameters; and, (3) Categorization of conflicts into independent conflicts and two types of interacting conflicts. Preliminary results (for Denver Center traffic) indicate that conflict properties in a free routing system are different from those in the current structured routing system. In particular, a free routing system has significantly fewer conflicts, involving a correspondingly smaller number of aircraft, compared to the current structured routing system. Additionally, the conflict parameter distributions indicate that free routing conflicts are less intrusive than structured routing conflicts, and would therefore require small trajectory deviations for resolution.

  5. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  6. Second Careers: The Air Traffic Controller Experience and Beyond.

    ERIC Educational Resources Information Center

    Batten, Michael D.

    1978-01-01

    Second careers are examined from an organizational viewpoint, and new directions for education-work policy, suggested by a unique second career program of the Federal Aviation Administration for air traffic controllers, are explored. Focus is on age, organizational and training factors, and community involvement. (Author/JMD)

  7. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  8. Cockpit displayed traffic information and distributed management in air traffic control

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.

    1980-01-01

    A graphical display of information (such as surrounding aircraft and navigation routes) in the cockpit on a cathode ray tube has been proposed for improving the safety, orderliness, and expeditiousness of the air traffic control system. An investigation of this method at NASA-Ames indicated a large reduction in controller verbal work load without increasing pilot verbal load; the visual work may be increased. The cockpit displayed traffic and navigation information system reduced response delays permitting pilots to maintain their spacing more closely and precisely than when depending entirely on controller-issued radar vectors and speed command.

  9. Traffic-driven epidemic spreading in correlated networks

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Tang, Ming; Lai, Ying-Cheng

    2015-06-01

    In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on correlated networks has not been addressed. Interestingly, we find that the epidemic threshold, a fundamental quantity underlying the spreading dynamics, exhibits a nonmonotonic behavior in that it can be minimized for some critical value of the assortativity coefficient, a parameter characterizing the network correlation. To understand this phenomenon, we use the degree-based mean-field theory to calculate the traffic-driven epidemic threshold for correlated networks. The theory predicts that the threshold is inversely proportional to the packet-generation rate and the largest eigenvalue of the betweenness matrix. We obtain consistency between theory and numerics. Our results may provide insights into the important problem of controlling and/or harnessing real-world epidemic spreading dynamics driven by traffic flows.

  10. Capacity-constrained traffic assignment in networks with residual queues

    SciTech Connect

    Lam, W.H.K.; Zhang, Y.

    2000-04-01

    This paper proposes a capacity-constrained traffic assignment model for strategic transport planning in which the steady-state user equilibrium principle is extended for road networks with residual queues. Therefore, the road-exit capacity and the queuing effects can be incorporated into the strategic transport model for traffic forecasting. The proposed model is applicable to the congested network particularly when the traffic demands exceeds the capacity of the network during the peak period. An efficient solution method is proposed for solving the steady-state traffic assignment problem with residual queues. Then a simple numerical example is employed to demonstrate the application of the proposed model and solution method, while an example of a medium-sized arterial highway network in Sioux Falls, South Dakota, is used to test the applicability of the proposed solution to real problems.

  11. A manipulator game model of urban public traffic network

    NASA Astrophysics Data System (ADS)

    Chang, Hui; Xu, Xiu-Lian; Hu, Chin-Kun; Fu, Chunhua; Feng, Ai-xia; He, Da-Ren

    2014-12-01

    Urban public traffic networks are typical complex systems. Understanding their evolution mechanism attracts much attention in recent years. Here, we propose that the evolution of urban public traffic network can be considered as a game process between two network manipulators, i.e., passengers and company, and the equilibrium solution to the game determines the steady-state behavior of the network. Both analytical solution and numerical simulations to such game model can well describe the empirical data collected from the urban public traffic systems in four Chinese cities (Beijing, Shanghai, Nanjing, and Hangzhou) and the Boston subway. Our results suggest that the manipulator game model grasps the fundamental characteristics of the evolution mechanism of the urban public traffic systems. Similar idea may be extended to other complex systems which have small number of manipulators.

  12. Using OpenSSH to secure mobile LAN network traffic

    NASA Astrophysics Data System (ADS)

    Luu, Brian B.; Gopaul, Richard D.

    2002-08-01

    Mobile Internet Protocol (IP) Local Area Network (LAN) is a technique, developed by the U.S. Army Research Laboratory, which allows a LAN to be IP mobile when attaching to a foreign IP-based network and using this network as a means to retain connectivity to its home network. In this paper, we describe a technique that uses Open Secure Shell (OpenSSH) software to ensure secure, encrypted transmission of a mobile LAN's network traffic. Whenever a mobile LAN, implemented with Mobile IP LAN, moves to a foreign network, its gateway (router) obtains an IP address from the new network. IP tunnels, using IP encapsulation, are then established from the gateway through the foreign network to a home agent on its home network. These tunnels provide a virtual two-way connection to the home network for the mobile LAN as if the LAN were connected directly to its home network. Hence, when IP mobile, a mobile LAN's tunneled network traffic must traverse one or more foreign networks that may not be trusted. This traffic could be subject to eavesdropping, interception, modification, or redirection by malicious nodes in these foreign networks. To protect network traffic passing through the tunnels, OpenSSH is used as a means of encryption because it prevents surveillance, modification, and redirection of mobile LAN traffic passing across foreign networks. Since the software is found in the public domain, is available for most current operating systems, and is commonly used to provide secure network communications, OpenSSH is the software of choice.

  13. Robustness of Interrelated Traffic Networks to Cascading Failures

    PubMed Central

    Su, Zhen; Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Xiao, Jinghua; Yang, Yixian

    2014-01-01

    The vulnerability to real-life networks against small initial attacks has been one of outstanding challenges in the study of interrelated networks. We study cascading failures in two interrelated networks S and B composed from dependency chains and connectivity links respectively. This work proposes a realistic model for cascading failures based on the redistribution of traffic flow. We study the Barabási-Albert networks (BA) and Erdős-Rényi graphs (ER) with such structure, and found that the efficiency sharply decreases with increasing percentages of the dependency nodes for removing a node randomly. Furthermore, we study the robustness of interrelated traffic networks, especially the subway and bus network in Beijing. By analyzing different attacking strategies, we uncover that the efficiency of the city traffic system has a non-equilibrium phase transition at low capacity of the networks. This explains why the pressure of the traffic overload is relaxed by singly increasing the number of small buses during rush hours. We also found that the increment of some buses may release traffic jam caused by removing a node of the bus network randomly if the damage is limited. However, the efficiencies to transfer people flow will sharper increase when the capacity of the subway network αS > α0. PMID:24957005

  14. Robustness of Interrelated Traffic Networks to Cascading Failures

    NASA Astrophysics Data System (ADS)

    Su, Zhen; Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Xiao, Jinghua; Yang, Yixian

    2014-06-01

    The vulnerability to real-life networks against small initial attacks has been one of outstanding challenges in the study of interrelated networks. We study cascading failures in two interrelated networks S and B composed from dependency chains and connectivity links respectively. This work proposes a realistic model for cascading failures based on the redistribution of traffic flow. We study the Barabási-Albert networks (BA) and Erdős-Rényi graphs (ER) with such structure, and found that the efficiency sharply decreases with increasing percentages of the dependency nodes for removing a node randomly. Furthermore, we study the robustness of interrelated traffic networks, especially the subway and bus network in Beijing. By analyzing different attacking strategies, we uncover that the efficiency of the city traffic system has a non-equilibrium phase transition at low capacity of the networks. This explains why the pressure of the traffic overload is relaxed by singly increasing the number of small buses during rush hours. We also found that the increment of some buses may release traffic jam caused by removing a node of the bus network randomly if the damage is limited. However, the efficiencies to transfer people flow will sharper increase when the capacity of the subway network αS > α0.

  15. FPGA Based Real-time Network Traffic Analysis using Traffic Dispersion Patterns

    SciTech Connect

    Khan, F; Gokhale, M; Chuah, C N

    2010-03-26

    The problem of Network Traffic Classification (NTC) has attracted significant amount of interest in the research community, offering a wide range of solutions at various levels. The core challenge is in addressing high amounts of traffic diversity found in today's networks. The problem becomes more challenging if a quick detection is required as in the case of identifying malicious network behavior or new applications like peer-to-peer traffic that have potential to quickly throttle the network bandwidth or cause significant damage. Recently, Traffic Dispersion Graphs (TDGs) have been introduced as a viable candidate for NTC. The TDGs work by forming a network wide communication graphs that embed characteristic patterns of underlying network applications. However, these patterns need to be quickly evaluated for mounting real-time response against them. This paper addresses these concerns and presents a novel solution for real-time analysis of Traffic Dispersion Metrics (TDMs) in the TDGs. We evaluate the dispersion metrics of interest and present a dedicated solution on an FPGA for their analysis. We also present analytical measures and empirically evaluate operating effectiveness of our design. The mapped design on Virtex-5 device can process 7.4 million packets/second for a TDG comprising of 10k flows at very high accuracies of over 96%.

  16. Target-tracking and identity management algorithms for air traffic surveillance

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Hamsa

    The air traffic control system of the United States is responsible for managing traffic in the National Airspace System; safety is a paramount concern. The air traffic surveillance network has the task of collecting and processing information on the positions, velocities and identities of the aircraft in the system, before presenting it to air traffic controllers to use in maintaining an orderly flow of traffic. This dissertation attempts to design techniques that provide controllers with high-fidelity information about the aircraft in their controlled airspace, using the observations of the air traffic surveillance network. We propose algorithms for the efficient tracking of aircraft, as well as for maintaining beliefs of their identities. Such methods would improve the processing of aircraft situation data, particularly in a congested airspace with general aviation. In this thesis, we propose an algorithmic framework for the simultaneous tracking and identity management of multiple maneuvering targets. We design an algorithm that efficiently tracks the positions, velocities, flight modes, and identities of multiple aircraft in cluttered environments. We tackle the challenges of data association, identity management and state estimation of aircraft trajectories by proposing a modification of the Joint Probabilistic Data Association algorithm, an algorithm based on identity-mass flow, and a state estimation algorithm for tracking hybrid systems, respectively. The identity of each aircraft, an essential feature of aircraft situation data, is often not available but needs to be inferred from radar observations, and maintained in terms of probabilities. We present an algorithm to update the probabilistic matrices that represent the belief of aircraft identities, in the presence of intermittent measurements. We demonstrate the performance of the framework using examples drawn from air traffic surveillance. We also consider the problem of identifying stochastic hybrid

  17. Nonuniform traffic spots (NUTS) in multistage interconnection networks

    SciTech Connect

    Lang, T.; Kurisaki, L. . Dept. of Computer Science)

    1990-09-01

    The performance of multistage interconnection networks for multiprocessors is degraded when the traffic pattern produces nonuniform congestion in the blocking switches, that is, when there exist nonuniform traffic spots. For some specific patterns the authors evaluate this degradation in performance and propose modifications to the network organization and operation to reduce the degradation. Successful modifications are the use of diverting switches and the extension of the network with additional links. The use of these modifications makes the network more effective for a larger variety of traffic patterns. The authors also consider the case in which the network carries the superposition of two types of traffic. One type is the high throughput data and instruction traffic, while the other consists of control and I/O packets which are of low throughput but have severe real-time constraints. The authors conclude that diverting switches and networks with additional links are also suitable for assuring low latency for the real-time traffic, especially when using the displacing mode.

  18. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  19. Air quality of Prague: traffic as a main pollution source.

    PubMed

    Branis, Martin

    2009-09-01

    Political and economical transition in the Central and Eastern Europe at the end of eighties significantly influenced all aspects of life as well as technological infrastructure. Collapse of outdated energy demanding industry and adoption of environmental legislation resulted in seeming improvements of urban environmental quality. Hand in hand with modernization the newly adopted regulations also helped to phase out low quality coal frequently used for domestic heating. However, at the same time, the number of vehicles registered in the city increased. The two processes interestingly acted as parallel but antagonistic forces. To interpret the trends in urban air quality of Prague, Czech capital, monthly averages of PM(10), SO(2), NO(2), NO, O(3) and CO concentrations from the national network of automated monitoring stations were analyzed together with long term trends in fuel consumption and number of vehicles registered in Prague within a period of 1992-2005. The results showed that concentrations of SO(2) (a pollutant strongly related to fossil fuel burning) dropped significantly during the period of concern. Similarly NO(X) and PM(10) concentrations decreased significantly in the first half of the nineties (as a result of solid fuel use drop), but remained rather stable or increased after 2000, presumably reflecting rapid increase of traffic density. In conclusion, infrastructural changes in early nineties had a strong positive effect on Prague air quality namely in the first half of the period studied, nevertheless, the current trend in concentrations of automotive exhaust related pollutants (such as PM(10), NO(X)) needs adoption of stricter measures. PMID:18709434

  20. Hybrid Verification of an Air Traffic Operational Concept

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2005-01-01

    A concept of operations for air traffic management consists of a set of flight rules and procedures aimed to keep aircraft safely separated. This paper reports on the formal verification of separation properties of the NASA's Small Aircraft Transportation System, Higher Volume Operations (SATS HVO) concept for non-towered, non-radar airports. Based on a geometric description of the SATS HVO air space, we derive analytical formulas to compute spacing requirements on nominal approaches. Then, we model the operational concept by a hybrid non-deterministic asynchronous state transition system. Using an explicit state exploration technique, we show that the spacing requirements are always satisfied on nominal approaches. All the mathematical development presented in this paper has been formally verified in the Prototype Verification System (PVS). Keywords. Formal verification, hybrid systems, air traffic management, theorem proving

  1. Network-wide BGP route prediction for traffic engineering

    NASA Astrophysics Data System (ADS)

    Feamster, Nick; Rexford, Jennifer

    2002-07-01

    The Internet consists of about 13,000 Autonomous Systems (AS's) that exchange routing information using the Border Gateway Protocol (BGP). The operators of each AS must have control over the flow of traffic through their network and between neighboring AS's. However, BGP is a complicated, policy-based protocol that does not include any direct support for traffic engineering. In previous work, we have demonstrated that network operators can adapt the flow of traffic in an efficient and predictable fashion through careful adjustments to the BGP policies running on their edge routers. Nevertheless, many details of the BGP protocol and decision process make predicting the effects of these policy changes difficult. In this paper, we describe a tool that predicts traffic flow at network exit points based on the network topology, the import policy associated with each BGP session, and the routing advertisements received from neighboring AS's. We present a linear-time algorithm that computes a network-wide view of the best BGP routes for each destination prefix given a static snapshot of the network state, without simulating the complex details of BGP message passing. We describe how to construct this snapshot using the BGP routing tables and router configuration files available from operational routers. We verify the accuracy of our algorithm by applying our tool to routing and configuration data from AT&T's commercial IP network. Our route prediction techniques help support the operation of large IP backbone networks, where interdomain routing is an important aspect of traffic engineering.

  2. How to reduce workload--augmented reality to ease the work of air traffic controllers.

    PubMed

    Hofmann, Thomas; König, Christina; Bruder, Ralph; Bergner, Jörg

    2012-01-01

    In the future the air traffic will rise--the workload of the controllers will do the same. In the BMWi research project, one of the tasks is, how to ensure safe air traffic, and a reasonable workload for the air traffic controllers. In this project it was the goal to find ways how to reduce the workload (and stress) for the controllers to allow safe air traffic, esp. at huge hub-airports by implementing augmented reality visualization and interaction. PMID:22316878

  3. Principled negotiation and distributed optimization for advanced air traffic management

    NASA Astrophysics Data System (ADS)

    Wangermann, John Paul

    Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring

  4. 75 FR 1116 - RTCA Government/Industry Air Traffic Management Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Government/Industry Air Traffic... RTCA Government/Industry Air Traffic Management Advisory Committee. DATES: The meeting will be...

  5. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  6. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  7. Simulating Timescale Dynamics of Network Traffic Using Homogeneous Modeling

    PubMed Central

    Yuan, Jian; Mills, Kevin L.

    2006-01-01

    Simulating and understanding traffic dynamics in large networks are difficult and challenging due to the complexity of such networks and the limitations inherent in simulation modeling. Typically, simulation models used to study traffic dynamics include substantial detail representing protocol mechanisms across several layers of functionality. Such models must be restricted in space and time in order to be computationally tractable. We propose an alternative simulation approach that uses homogeneous modeling with an increased level of abstraction, in order to explore networks at larger space-time scales than otherwise feasible and to develop intuition and insight about the space-time dynamics of large networks. To illustrate the utility of our approach, we examine some current understandings of the timescale dynamics of network traffic, and we discuss some speculative results obtained with homogeneous modeling. Using a wavelet-based technique, we show correlation structures, and changes in correlation structures, of network traffic under variations in traffic sources, transport mechanisms, and network structure. Our simulation results justify further investigation of our approach, which might benefit from cross-verifications against more detailed simulation models. PMID:27274931

  8. Traffic Management in ATM Networks Over Satellite Links

    NASA Technical Reports Server (NTRS)

    Goyal, Rohit; Jain, Raj; Goyal, Mukul; Fahmy, Sonia; Vandalore, Bobby; vonDeak, Thomas

    1999-01-01

    This report presents a survey of the traffic management Issues in the design and implementation of satellite Asynchronous Transfer Mode (ATM) networks. The report focuses on the efficient transport of Transmission Control Protocol (TCP) traffic over satellite ATM. First, a reference satellite ATM network architecture is presented along with an overview of the service categories available in ATM networks. A delay model for satellite networks and the major components of delay and delay variation are described. A survey of design options for TCP over Unspecified Bit Rate (UBR), Guaranteed Frame Rate (GFR) and Available Bit Rate (ABR) services in ATM is presented. The main focus is on traffic management issues. Several recommendations on the design options for efficiently carrying data services over satellite ATM networks are presented. Most of the results are based on experiments performed on Geosynchronous (GEO) latencies. Some results for Low Earth Orbits (LEO) and Medium Earth Orbit (MEO) latencies are also provided.

  9. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  10. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  11. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  12. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  13. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  14. A Vision of the Future Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.

  15. Time-based collision risk modeling for air traffic management

    NASA Astrophysics Data System (ADS)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  16. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  17. Fluctuation-induced traffic congestion in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Stepanenko, A. S.; Yurkevich, I. V.; Constantinou, C. C.; Lerner, I. V.

    2012-11-01

    In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion —a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible.

  18. Traffic network and distribution of cars: Maximum-entropy approach

    SciTech Connect

    Das, N.C.; Chakrabarti, C.G.; Mazumder, S.K.

    2000-02-01

    An urban transport system plays a vital role in the modeling of the modern cosmopolis. A great emphasis is needed for the proper development of a transport system, particularly the traffic network and flow, to meet possible future demand. There are various mathematical models of traffic network and flow. The role of Shannon entropy in the modeling of traffic network and flow was stressed by Tomlin and Tomlin (1968) and Tomlin (1969). In the present note the authors study the role of maximum-entropy principle in the solution of an important problem associated with the traffic network flow. The maximum-entropy principle initiated by Jaynes is a powerful optimization technique of determining the distribution of a random system in the case of partial or incomplete information or data available about the system. This principle has now been broadened and extended and has found wide applications in different fields of science and technology. In the present note the authors show how the Jaynes' maximum-entropy principle, slightly modified, can be successfully applied in determining the flow or distribution of cars in different paths of a traffic network when incomplete information is available about the network.

  19. Formal Verification of Air Traffic Conflict Prevention Bands Algorithms

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dowek, Gilles

    2010-01-01

    In air traffic management, a pairwise conflict is a predicted loss of separation between two aircraft, referred to as the ownship and the intruder. A conflict prevention bands system computes ranges of maneuvers for the ownship that characterize regions in the airspace that are either conflict-free or 'don't go' zones that the ownship has to avoid. Conflict prevention bands are surprisingly difficult to define and analyze. Errors in the calculation of prevention bands may result in incorrect separation assurance information being displayed to pilots or air traffic controllers. This paper presents provably correct 3-dimensional prevention bands algorithms for ranges of track angle; ground speed, and vertical speed maneuvers. The algorithms have been mechanically verified in the Prototype Verification System (PVS). The verification presented in this paper extends in a non-trivial way that of previously published 2-dimensional algorithms.

  20. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  1. Intuitiveness of Symbol Features for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Ngo, Mary Kim; Vu, Kim-Phuong L.; Thorpe, Elaine; Battiste, Vernol; Strybel, Thomas Z.

    2012-01-01

    We present the results of two online surveys asking participants to indicate what type of air traffic information might be conveyed by a number of symbols and symbol features (color, fill, text, and shape). The results of this initial study suggest that the well-developed concepts of ownership, altitude, and trajectory are readily associated with certain symbol features, while the relatively novel concept of equipage was not clearly associated with any specific symbol feature.

  2. The use of speech technology in air traffic control simulators

    NASA Astrophysics Data System (ADS)

    Harrison, J. A.; Hobbs, G. R.; Howes, J. R.; Cope, N.

    The advantages of applying speech technology to air traffic control (ATC) simulators are discussed with emphasis placed on the simulation of the pilot end of the pilot-controller dialog. Speech I/O in an ATC simulator is described as well as technology capability, and research on an electronic blip driver. It is found that the system is easier to use and performs better for less experienced controllers.

  3. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study

    PubMed Central

    2013-01-01

    Background A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as “Bicycle Boulevards.” We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. Methods We recruited 15 healthy adults to cycle on two routes – a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. Results We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. Conclusions These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and

  4. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  5. Learning styles: The learning methods of air traffic control students

    NASA Astrophysics Data System (ADS)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  6. Free flight: air traffic control evolution or revolution

    NASA Astrophysics Data System (ADS)

    Grundmann, Karl

    1996-05-01

    The Federal Aviation Administration (FAA) and industry are moving towards a more flexible, user oriented air traffic control system. The question is: does this point to a natural evolution or revolution in the world of the air traffic controllers? The National Airspace System is by all accounts the safest in the world. How will we sustain this record of performance with increased flexibility and user involvement? How will controllers and pilots react to a new more dynamic paradigm? Is the current state of automation, modeling, and analysis what is needed to make Free Flight a reality? How will the FAA insure that all human factors questions are answered before implementation? How will we quantify the impact of unanswered questions and their influence on safety? These, and many more questions need to be answered to ensure that the benefits promised by Free Flight are realized by all parties. The National Air Traffic Controllers Association supports the new concept. Yet, we are seriously concerned about the actual implementation of Free Flight's various components.

  7. Modeling network traffic with the extreme value theory

    NASA Astrophysics Data System (ADS)

    Liu, Jiakun; Shu, Yantai; Yang, Oliver W. W.; Gao, Deyun

    2003-08-01

    This paper introduced the Extreme Value Theory (EVT) for analysis of network traffic. The role of EVT is to allow the development of procedures that are scientifically and statistically rational to estimate the extreme behavior of random processes. In this paper, we propose an EVT_based procedure to fit a model to the traffic trace. We have performed some simulation experiments on real-traffic traces such as video data to study the feasibility of our proposed method. Our experiments showed that the EVT method can be applied to statistical analysis of real traffic. Furthermore, since only the data greater than the threshold are processed, the computation overhead is reduced greatly. It indicates that EVT method could be applied to real time network control.

  8. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    NASA Technical Reports Server (NTRS)

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  9. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  10. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  11. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors. PMID:24946571

  12. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  13. Traffic-Related Air Pollution and Congenital Anomalies in Barcelona

    PubMed Central

    Nieuwenhuijsen, Mark J.; Salvador, Joaquin; de Nazelle, Audrey; Cirach, Marta; Dadvand, Payam; Beelen, Rob; Hoek, Gerard; Basagaña, Xavier; Vrijheid, Martine

    2014-01-01

    Background: A recent meta-analysis suggested evidence for an effect of exposure to ambient air pollutants on risk of certain congenital heart defects. However, few studies have investigated the effects of traffic-related air pollutants with sufficient spatial accuracy. Objectives: We estimated associations between congenital anomalies and exposure to traffic-related air pollution in Barcelona, Spain. Method: Cases with nonchromosomal anomalies (n = 2,247) and controls (n = 2,991) were selected from the Barcelona congenital anomaly register during 1994–2006. Land use regression models from the European Study of Cohorts for Air Pollution Effects (ESCAPE), were applied to residential addresses at birth to estimate spatial exposure to nitrogen oxides and dioxide (NOx, NO2), particulate matter with diameter ≤ 10 μm (PM10), 10–2.5 μm (PMcoarse), ≤ 2.5 μm (PM2.5), and PM2.5 absorbance. Spatial estimates were adjusted for temporal trends using data from routine monitoring stations for weeks 3–8 of each pregnancy. Logistic regression models were used to calculate odds ratios (ORs) for 18 congenital anomaly groups associated with an interquartile-range (IQR) increase in exposure estimates. Results: In spatial and spatiotemporal exposure models, we estimated statistically significant associations between an IQR increase in NO2 (12.2 μg/m3) and coarctation of the aorta (ORspatiotemporal = 1.15; 95% CI: 1.01, 1.31) and digestive system defects (ORspatiotemporal = 1.11; 95% CI: 1.00, 1.23), and between an IQR increase in PMcoarse (3.6 μg/m3) and abdominal wall defects (ORspatiotemporal = 1.93; 95% CI: 1.37, 2.73). Other statistically significant increased and decreased ORs were estimated based on the spatial model only or the spatiotemporal model only, but not both. Conclusions: Our results overall do not indicate an association between traffic-related air pollution and most groups of congenital anomalies. Findings for coarctation of the aorta are consistent with

  14. Network Traffic Generator for Low-rate Small Network Equipment Software

    SciTech Connect

    Lanzisera, Steven

    2013-05-28

    Application that uses the Python low-level socket interface to pass network traffic between devices on the local side of a NAT router and the WAN side of the NAT router. This application is designed to generate traffic that complies with the Energy Star Small Network Equipment Test Method.

  15. Weighted multiplex network of air transportation

    NASA Astrophysics Data System (ADS)

    Varga, Imre

    2016-06-01

    In several real networks large heterogeneity of links is present either in intensity or in the nature of relationships. Therefore, recent studies in network science indicate that more detailed topological information are available if weighted or multi-layer aspect is applied. In the age of globalization air transportation is a representative example of huge complex infrastructure systems, which has been analyzed from different points of view. In this paper a novel approach is applied to study the airport network as a weighted multiplex taking into account the fact that the rules and fashion of domestic and international flights differ. Restricting study to only topological features and their correlations in the system (disregarding traffic) one can see reasons why simple network approximation is not adequate.

  16. Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon

    2010-01-01

    The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.

  17. Traffic-driven SIR epidemic spreading in networks

    NASA Astrophysics Data System (ADS)

    Pu, Cunlai; Li, Siyuan; Yang, XianXia; Xu, Zhongqi; Ji, Zexuan; Yang, Jian

    2016-03-01

    We study SIR epidemic spreading in networks driven by traffic dynamics, which are further governed by static routing protocols. We obtain the maximum instantaneous population of infected nodes and the maximum population of ever infected nodes through simulation. We find that generally more balanced load distribution leads to more intense and wide spread of an epidemic in networks. Increasing either average node degree or homogeneity of degree distribution will facilitate epidemic spreading. When packet generation rate ρ is small, increasing ρ favors epidemic spreading. However, when ρ is large enough, traffic congestion appears which inhibits epidemic spreading.

  18. Noise measurements as proxies for traffic parameters in monitoring networks.

    PubMed

    Can, A; Dekoninck, L; Rademaker, M; Van Renterghem, T; De Baets, B; Botteldooren, D

    2011-12-01

    The present research describes how microphones could be used as proxies for traffic parameter measurements for the estimation of airborne pollutant emissions. We consider two distinct measurement campaigns of 7 and 12 days, at two different locations along the urban ring road in Antwerp, Belgium, where sound pressure levels and traffic parameters were measured simultaneously. Noise indicators are calculated and used to construct models to estimate traffic parameters. It is found that relying on different statistical levels and selecting specific sound frequencies permits an accurate estimation of traffic intensities and mean vehicle speeds, both for light and heavy vehicles. Estimations of R(2) values ranging between 0.81 and 0.92 are obtained, depending on the location and traffic parameters. Furthermore, the usefulness of these estimated traffic parameters in a monitoring strategy is assessed. Carbon monoxide, hydrocarbon and nitrogen oxide emissions are calculated with the airborne pollutant emission model Artemis. The Artemis outputs fed with directly measured and estimated traffic parameters (based on noise measurements) are very similar. Finally, a method is proposed to enable using a model calibrated at one location at another location without the need for new calibration, making it straightforward to include new measurement locations in a monitoring network. PMID:22000916

  19. Neural network approach to classification of traffic flow states

    SciTech Connect

    Yang, H.; Qiao, F.

    1998-11-01

    The classification of traffic flow states in China has traditionally been based on the Highway Capacity Manual, published in the United States. Because traffic conditions are generally different from country to country, though, it is important to develop a practical and useful classification method applicable to Chinese highway traffic. In view of the difficulty and complexity of a mathematical and physical realization, modern pattern recognition methods are considered practical in fulfilling this goal. This study applies a self-organizing neural network pattern recognition method to classify highway traffic states into some distinctive cluster centers. A small scale test with actual data is conducted, and the method is found to be potentially applicable in practice.

  20. Failure cascade in interdependent network with traffic loads

    NASA Astrophysics Data System (ADS)

    Hong, Sheng; Wang, Baoqing; Ma, Xiaomin; Wang, Jianghui; Zhao, Tingdi

    2015-12-01

    Complex networks have been widely studied recent years, but most researches focus on the single, non-interacting networks. With the development of modern systems, many infrastructure networks are coupled together and therefore should be modeled as interdependent networks. For interdependent networks, failure of nodes in one network may lead to failure of dependent nodes in the other networks. This may happen recursively and lead to a failure cascade. In the real world, different networks carry different traffic loads. Overload and load redistribution may lead to more nodes’ failure. Considering the dependency between the interdependent networks and the traffic load, a small fraction of fault nodes may lead to complete fragmentation of a system. Based on the robust analysis of interdependent networks, we propose a costless defense strategy to suppress the failure cascade. Our findings highlight the need to consider the load and coupling preference when designing robust interdependent networks. And it is necessary to take actions in the early stage of the failure cascade to decrease the losses caused by the large-scale breakdown of infrastructure networks.

  1. Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Smith, Jeremy C.; Ballin, Mark G.

    2008-01-01

    The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in

  2. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  3. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  4. Synchronization analysis of complex networks with multi-weights and its application in public traffic network

    NASA Astrophysics Data System (ADS)

    An, Xin-lei; Zhang, Li; Li, Yin-zhen; Zhang, Jian-gang

    2014-10-01

    On the basis of traditional weighted network, we study a new complex network model with multi-weights, which has one or several different types of weights between any two nodes. According to the method of network split, we split the complex network with multi-weights into several different complex networks with single weight, and study its global synchronization. Taking bus lines as the network nodes, a new public traffic roads network model with multi-weights is established by the proposed network model and space R modeling approach. Then based on the Lyapunov stability theory, the criteria is designed for the global synchronization of the public traffic roads networks with multi-weights. By changing the different weights and taking the Lorenz chaotic system for example, some numerical examples are given to discuss the balance of the whole public traffic roads network.

  5. Time-based air traffic management using expert systems

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.

  6. Time-based air traffic management using expert systems

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.

  7. Air traffic control surveillance accuracy and update rate study

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Morrison, D. D.; Zipper, I.

    1973-01-01

    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.

  8. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  9. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  10. The organization and traffic engineering of a quantum cryptography network

    NASA Astrophysics Data System (ADS)

    Zhao, YuKang; Zhao, MeiSheng; Zhao, Yong; Chen, ZengBing

    2012-09-01

    How many users can a quantum cryptography network support when certain services are demanded? The answer to this question depends on three factors: the speed of quantum key distribution, the organization and traffic engineering of the quantum cryptography network, and the engineering of services. In this article we focus on the second factor which is lacked in the literature to our knowledge but in urgent need for constructing an optimized large-scale quantum cryptography network. In order to provide an overall understanding about a quantum cryptography network, we also briefly introduce the characteristics of quantum cryptography and service engineering.

  11. Toward an optimal convolutional neural network for traffic sign recognition

    NASA Astrophysics Data System (ADS)

    Habibi Aghdam, Hamed; Jahani Heravi, Elnaz; Puig, Domenec

    2015-12-01

    Convolutional Neural Networks (CNN) beat the human performance on German Traffic Sign Benchmark competition. Both the winner and the runner-up teams trained CNNs to recognize 43 traffic signs. However, both networks are not computationally efficient since they have many free parameters and they use highly computational activation functions. In this paper, we propose a new architecture that reduces the number of the parameters 27% and 22% compared with the two networks. Furthermore, our network uses Leaky Rectified Linear Units (ReLU) as the activation function that only needs a few operations to produce the result. Specifically, compared with the hyperbolic tangent and rectified sigmoid activation functions utilized in the two networks, Leaky ReLU needs only one multiplication operation which makes it computationally much more efficient than the two other functions. Our experiments on the Gertman Traffic Sign Benchmark dataset shows 0:6% improvement on the best reported classification accuracy while it reduces the overall number of parameters 85% compared with the winner network in the competition.

  12. A Learning System for Discriminating Variants of Malicious Network Traffic

    SciTech Connect

    Beaver, Justin M; Symons, Christopher T; Gillen, Rob

    2013-01-01

    Modern computer network defense systems rely primarily on signature-based intrusion detection tools, which generate alerts when patterns that are pre-determined to be malicious are encountered in network data streams. Signatures are created reactively, and only after in-depth manual analysis of a network intrusion. There is little ability for signature-based detectors to identify intrusions that are new or even variants of an existing attack, and little ability to adapt the detectors to the patterns unique to a network environment. Due to these limitations, the need exists for network intrusion detection techniques that can more comprehensively address both known unknown networkbased attacks and can be optimized for the target environment. This work describes a system that leverages machine learning to provide a network intrusion detection capability that analyzes behaviors in channels of communication between individual computers. Using examples of malicious and non-malicious traffic in the target environment, the system can be trained to discriminate between traffic types. The machine learning provides insight that would be difficult for a human to explicitly code as a signature because it evaluates many interdependent metrics simultaneously. With this approach, zero day detection is possible by focusing on similarity to known traffic types rather than mining for specific bit patterns or conditions. This also reduces the burden on organizations to account for all possible attack variant combinations through signatures. The approach is presented along with results from a third-party evaluation of its performance.

  13. 75 FR 39091 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Government/Industry Air... public of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)....

  14. 75 FR 61552 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Government/Industry Air... of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) DATES:...

  15. 75 FR 27618 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Government/Industry Air... public of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)....

  16. Trajectory Specification for High-Capacity Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2004-01-01

    In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.

  17. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  18. Design and Operational Evaluation of the Traffic Management Advisor at the Ft. Worth Air Route Traffic Control Center

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)

    1997-01-01

    NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.

  19. Efficient traffic grooming in SONET/WDM BLSR Networks

    SciTech Connect

    Awwal, A S; Billah, A B; Wang, B

    2004-04-02

    In this paper, we study traffic grooming in SONET/WDM BLSR networks under the uniform all-to-all traffic model with an objective to reduce total network costs (wavelength and electronic multiplexing costs), in particular, to minimize the number of ADMs while using the optimal number of wavelengths. We derive a new tighter lower bound for the number of wavelengths when the number of nodes is a multiple of 4. We show that this lower bound is achievable. All previous ADM lower bounds except perhaps that in were derived under the assumption that the magnitude of the traffic streams (r) is one unit (r = 1) with respect to the wavelength capacity granularity g. We then derive new, more general and tighter lower bounds for the number of ADMs subject to that the optimal number of wavelengths is used, and propose heuristic algorithms (circle construction algorithm and circle grooming algorithm) that try to minimize the number of ADMs while using the optimal number of wavelengths in BLSR networks. Both the bounds and algorithms are applicable to any value of r and for different wavelength granularity g. Performance evaluation shows that wherever applicable, our lower bounds are at least as good as existing bounds and are much tighter than existing ones in many cases. Our proposed heuristic grooming algorithms perform very well with traffic streams of larger magnitude. The resulting number of ADMs required is very close to the corresponding lower bounds derived in this paper.

  20. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  1. Precision Positional Data of General Aviation Air Traffic in Terminal Air Space

    NASA Technical Reports Server (NTRS)

    Melson, W. E., Jr.; Parker, L. C.; Northam, A. M.; Singh, R. P.

    1978-01-01

    Three dimensional radar tracks of general aviation air traffic at three uncontrolled airports are considered. Contained are data which describe the position-time histories, other derived parameters, and reference data for the approximately 1200 tracks. All information was correlated such that the date, time, flight number, and runway number match the pattern type, aircraft type, wind, visibility, and cloud conditions.

  2. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  3. Dynamics of TCP traffic over ATM networks

    NASA Astrophysics Data System (ADS)

    Romanow, Allyn; Floyd, Sally

    1995-05-01

    We investigate the performance of TCP connections over ATM networks without ATM-level congestion control and compare it to the performance of TCP over packet-based networks. For simulations of congested networks, the effective throughput of TCP over ATM can be quite low when cells are dropped at the congested ATM switch. The low throughput is due to wasted bandwidth as the congested link transmits cells from 'corrupted' packets, i.e., packets in which at least one cell is dropped by the switch. We investigate two packet-discard strategies that alleviate the effects of fragmentation. Partial packet discard, in which remaining cells are discarded after one cell has been dropped from a packet, somewhat improves throughput. We introduce early packet discard, a strategy in which the switch drops whole packets prior to buffer overflow. This mechanism prevents fragmentation and restores throughput to maximal levels.

  4. Traffic disruption and recovery in road networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lele; de Gier, Jan; Garoni, Timothy M.

    2014-05-01

    We study the impact of disruptions on road networks, and the recovery process after the disruption is removed from the system. Such disruptions could be caused by vehicle breakdown or illegal parking. We analyze the transient behavior using domain wall theory, and compare these predictions with simulations of a stochastic cellular automaton model. We find that the domain wall model can reproduce the time evolution of flow and density during the disruption and the recovery processes, for both one-dimensional systems and two-dimensional networks.

  5. A Belief-Based Model of Air Traffic Controllers Performing Separation Assurance

    NASA Technical Reports Server (NTRS)

    Landry, S.J.

    2009-01-01

    A model of an air traffic controller performing a separation assurance task was produced. The model was designed to be simple to use and deploy in a simulator, but still provide realistic behavior. The model is based upon an evaluation of the safety function of the controller for separation assurance, and utilizes fast and frugal heuristics and belief networks to establish a knowledge set for the controller model. Based on this knowledge set, the controller acts to keep aircraft separated. Validation results are provided to demonstrate the model s performance.

  6. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  7. Vehicular motion in 2D city traffic network with signals controlled by phase shift

    NASA Astrophysics Data System (ADS)

    Komada, Kazuhito; Kojima, Kengo; Nagatani, Takashi

    2011-03-01

    We study the dynamic behavior of vehicular traffic through the series of traffic lights controlled by phase shift in two-dimensional (2D) city traffic network. The nonlinear-map model is presented for the vehicular traffic. The city traffic network is made of one-way perpendicular streets arranged in a square lattice with traffic signals where vertical streets are oriented upwards and horizontal streets are oriented rightwards. There are two traffic lights for the movement to north or that to east at each crossing. The traffic lights are controlled by the cycle time, split, and phase shift. The vehicle moves through the series of signals on a path selected by the driver. The city traffic with a heterogeneous density distribution is also studied. The dependence of the arrival time on cycle time, split, phase shift, selected path, and density is clarified for 2D city traffic. It is shown that the vehicular traffic is efficiently controlled by the phase shift.

  8. Design Principles and Algorithms for Air Traffic Arrival Scheduling

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Itoh, Eri

    2014-01-01

    This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.

  9. Trajectory Specification for Automation of Terminal Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2016-01-01

    "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.

  10. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  11. Traffic-related air pollution and brain development

    PubMed Central

    Woodward, Nicholas; Finch, Caleb E.; Morgan, Todd E.

    2016-01-01

    Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory effects from exposure are well documented, cognitive effects are only recently becoming widely recognized. This review discusses effects of TRP on brain and cognition in human and animal studies. The mechanisms underlying these epidemiological associations are studied with rodent models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. Rodent models may identify dietary and other interventions for neuroprotection to TRP. PMID:27099868

  12. Analysis of routine communication in the air traffic control system

    NASA Technical Reports Server (NTRS)

    Clark, Herbert H.; Morrow, Daniel; Rodvoid, Michelle

    1990-01-01

    The present project has three related goals. The first is to describe the organization of routine controller-pilot communication. This includes identifying the basic units of communication and how they are organized into discourse, how controllers and pilots use language to achieve their goals, and what topics they discuss. The second goal is to identify the type and frequency of problems that interrupt routine information transfer and prompt pilots and controllers to focus on the communication itself. The authors analyze the costs of these problems in terms of communication efficiency, and the techniques used to resolve these problems. Third, the authors hope to identify factors associated with communication problems, such as deviations from conventional air traffic control procedures.

  13. Flight management concepts compatible with air traffic control

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1986-01-01

    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  14. Atypical Behavior Identification in Large Scale Network Traffic

    SciTech Connect

    Best, Daniel M.; Hafen, Ryan P.; Olsen, Bryan K.; Pike, William A.

    2011-10-23

    Cyber analysts are faced with the daunting challenge of identifying exploits and threats within potentially billions of daily records of network traffic. Enterprise-wide cyber traffic involves hundreds of millions of distinct IP addresses and results in data sets ranging from terabytes to petabytes of raw data. Creating behavioral models and identifying trends based on those models requires data intensive architectures and techniques that can scale as data volume increases. Analysts need scalable visualization methods that foster interactive exploration of data and enable identification of behavioral anomalies. Developers must carefully consider application design, storage, processing, and display to provide usability and interactivity with large-scale data. We present an application that highlights atypical behavior in enterprise network flow records. This is accomplished by utilizing data intensive architectures to store the data, aggregation techniques to optimize data access, statistical techniques to characterize behavior, and a visual analytic environment to render the behavioral trends, highlight atypical activity, and allow for exploration.

  15. Traffic analysis of a medical multimedia communication network

    NASA Astrophysics Data System (ADS)

    Zoupas, Vasilios; Kotsopoulos, Stavros A.; Lymberopoulos, Dimitris C.

    1993-09-01

    Within the framework of the integration of medical information environment (MIE), special groupware multimedia services (GMS) should be developed. The application of GMSs to specially designed medical communication networks (MCN) creates an integrated user collaboration scheme for supporting and handling special medical cases. The present paper deals with the study and analysis of the traffic performance of a private multimedia ISDN MCN with a dynamic bandwidth allocation.

  16. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Air traffic controllers, firefighters... RETIREMENT SYSTEM-BASIC ANNUITY Computations § 842.405 Air traffic controllers, firefighters, law enforcement... or a law enforcement officer, firefighter or nuclear materials courier retiring under § 842.208...

  17. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Classification of Air Traffic Service (ATS... ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless otherwise specified, ATS routes are classified as follows: (a) In subpart A of this part: (1) Jet routes. (2)...

  18. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Classification of Air Traffic Service (ATS... ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless otherwise specified, ATS routes are classified as follows: (a) In subpart A of this part: (1) Jet routes. (2)...

  19. Study and Simulation of Traffic Behavior in Cellular Network

    NASA Astrophysics Data System (ADS)

    Madhup, D. K.; Shrestha, C. L.; Sharma, R. K.

    2007-07-01

    Cellular radio systems accommodate a large number of users with a limited radio spectrum. The concept of trunking allows a large number of users to share the relatively small number of channels in a cell by providing access to each user, on demand, from a pool of available channels. Traffic engineering deals with provisioning of communication circuits in a given area for a number of subscribers with a required grade of service. Traffic in any cell depends upon the number of users, the average request rate and average call duration. Certain number of channels is required for the required GOS. To design an optimum capacity cellular system, traffic behavior on that system is important. The number of channel required can be estimated by using Erlang formula and Erlang table. Erlang table is not always useful to calculate the probability of blocking in various complex scenarios such as channel borrowing strategies. When the total number of channel available in a given cell are divided to serve partly for newly generated calls and partly for handover calls, and if they use dynamic channel assignment strategies like channel borrowing, then the probability of blocking can't be calculated from Erlang table. Simulation model of the behavior help us to determine the blocking and the channel utilization while using various channel assignment strategies. The title "Study and Simulation of Traffic Behavior in Cellular Network" entail the study of the blocking probability of traffic in cellular network for static channel assignment strategies and dynamic channel borrowing strategies through MATLAB programming language and graphic user interface (GUI). The result shows that the dynamic scheme can perform better than static maximizing the overall utilization of the circuits and minimizing the overall blocking.

  20. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  1. Technical Seminar: "Modeling and Optimization in Air Traffic Management"

    NASA Video Gallery

    Traffic Flow Management (TFM) is the efficient organization of traffic flows to meet demand taking into account capacity constraints at airports and in en route airspace. TFM involves thousands of ...

  2. Traffic Time Series Forecasting by Feedforward Neural Network: a Case Study Based on Traffic Data of Monroe

    NASA Astrophysics Data System (ADS)

    Raeesi, M.; Mesgari, M. S.; Mahmoudi, P.

    2014-10-01

    Short time prediction is one of the most important factors in intelligence transportation system (ITS). In this research, the use of feed forward neural network for traffic time-series prediction is presented. In this paper, the traffic in one direction of the road segment is predicted. The input of the neural network is the time delay data exported from the road traffic data of Monroe city. The time delay data is used for training the network. For generating the time delay data, the traffic data related to the first 300 days of 2008 is used. The performance of the feed forward neural network model is validated using the real observation data of the 301st day.

  3. A Concept for Robust, High Density Terminal Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Robinson, John E.; Swenson, Harry N.; Denery, Dallas G.

    2010-01-01

    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team.

  4. Auction Mechanism to Allocate Air Traffic Control Slots

    NASA Technical Reports Server (NTRS)

    Raffarin, Marianne

    2003-01-01

    This article deals with an auction mechanism for airspace slots, as a means of solving the European airspace congestion problem. A disequilibrium, between Air Traffic Control (ATC) services supply and ATC services demand are at the origin of almost one fourth of delays in the air transport industry in Europe. In order to tackle this congestion problem, we suggest modifying both pricing and allocation of ATC services, by setting up an auction mechanism. Objects of the auction will be the right for airlines to cross a part of the airspace, and then to benefit from ATC services over a period corresponding to the necessary time for the crossing. Allocation and payment rules have to be defined according to the objectives of this auction. The auctioneer is the public authority in charge of ATC services, whose aim is to obtain an efficient allocation. Therefore, the social value will be maximized. Another objective is to internalize congestion costs. To that end, we apply the principle of Clarke-Groves mechanism auction: each winner has to pay the externalities imposed on other bidders. The complex context of ATC leads to a specific design for this auction.

  5. Control of Future Air Traffic Systems via Complexity Bound Management

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  6. Heterogeneous delivering capability promotes traffic efficiency in complex networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Bo; Guan, Xiang-Min; Zhang, Xue-Jun

    2015-12-01

    Traffic is one of the most fundamental dynamical processes in networked systems. With the homogeneous delivery capability of nodes, the global dynamic routing strategy proposed by Ling et al. [Phys. Rev. E81, 016113 (2010)] adequately uses the dynamic information during the process and thus it can reach a quite high network capacity. In this paper, based on the global dynamic routing strategy, we proposed a heterogeneous delivery allocation strategy of nodes on scale-free networks with consideration of nodes degree. It is found that the network capacity as well as some other indexes reflecting transportation efficiency are further improved. Our work may be useful for the design of more efficient routing strategies in communication or transportation systems.

  7. Towards a physics of Internet traffic in a geographic network

    NASA Astrophysics Data System (ADS)

    Baker, R. G. V.

    2012-02-01

    A set of equations from a biased random walk are shown to describe the time-based Gaussian distributions of Internet traffic relative to the Earth's time zones. The Internet is an example of a more general physical problem dealing with motion near the speed of light relative to different time frames of reference. The second order differential equation (DE) takes the form of 'time diffusion' near the speed of light or alternatively considered as a complex variable with real time and imaginary longitudinal components. Congestion waves are generated by peak global traffic from different time zones following the Earth's revolution. The DE is divided into space and time operators for discussion and each component solution, including constants, is illustrated using data from a global network compiled by the Stanford Linear Accelerator Centre (SLAC). Indices of global and regional phase congestion for the monitoring sites are calculated from standardised regressions from the Earth's rotation. There is also a J-curve limit to transferring information by the Internet and this is expressed as an inequality underpinned by the speed of light with examples from US and European traffic. The research returns to an often little known theme of Isaac Newton's: mixing physics with geography. In our case, the equations define trajectories of information packets travelling near the speed of light, navigating within networks and between longitudes, relative to the Earth's rotation.

  8. Entropy-based heavy tailed distribution transformation and visual analytics for monitoring massive network traffic

    NASA Astrophysics Data System (ADS)

    Han, Keesook J.; Hodge, Matthew; Ross, Virginia W.

    2011-06-01

    For monitoring network traffic, there is an enormous cost in collecting, storing, and analyzing network traffic datasets. Data mining based network traffic analysis has a growing interest in the cyber security community, but is computationally expensive for finding correlations between attributes in massive network traffic datasets. To lower the cost and reduce computational complexity, it is desirable to perform feasible statistical processing on effective reduced datasets instead of on the original full datasets. Because of the dynamic behavior of network traffic, traffic traces exhibit mixtures of heavy tailed statistical distributions or overdispersion. Heavy tailed network traffic characterization and visualization are important and essential tasks to measure network performance for the Quality of Services. However, heavy tailed distributions are limited in their ability to characterize real-time network traffic due to the difficulty of parameter estimation. The Entropy-Based Heavy Tailed Distribution Transformation (EHTDT) was developed to convert the heavy tailed distribution into a transformed distribution to find the linear approximation. The EHTDT linearization has the advantage of being amenable to characterize and aggregate overdispersion of network traffic in realtime. Results of applying the EHTDT for innovative visual analytics to real network traffic data are presented.

  9. The Effects of Very Light Jet Air Taxi Operations on Commercial Air Traffic

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2006-01-01

    This study investigates the potential effects of Very Light Jet (VLJ) air taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The affordable cost relative to existing business jets and ability to use many of the existing small, minimally equipped, but conveniently located airports is projected to stimulate a large demand for the aircraft. The resulting increase in air traffic operations will mainly be at smaller airports, but this study indicates that VLJs have the potential to increase further the pressure of demand at some medium and large airports, some of which are already operating at or near capacity at peak times. The additional delays to commercial passenger air transportation due to VLJ air taxi operations are obtained from simulation results using the Airspace Concepts Evaluation System (ACES) simulator. The direct increase in operating cost due to additional delays is estimated. VLJs will also cause an increase in traffic density, and this study shows increased potential for conflicts due to VLJ operations.

  10. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  11. The traffic crisis and a tale of two cities: Traffic and air quality in Bangkok and Mexico City

    SciTech Connect

    Pendakur, V.S.; Badami, M.G.

    1995-12-31

    This paper focuses on congestion management techniques, traffic congestion levels and air quality. By using data from Bangkok and Mexico City, it illustrates the need for drastic changes in transportation policy tools and techniques for congestion management and for improving environmental quality. New approaches to investment and regulatory policy analysis and implementation are suggested. This requires the inclusion of all costs and benefits (economic and ecological) in the policy matrix so that investment and regulatory policies act in unison. Megacities are dominant in social, political and economic terms. 30 to 60% of national GDP is typically produced in these cities. Their human and motor vehicle populations have been doubling every 15-20 and 6-10 years respectively. They also have the most severe traffic congestion and air quality problems. They have the nation`s highest incidence of poverty and absolute poverty. Large portions of their populations endure severely unhealthy housing and sanitation conditions. Following are important characteristics of urban transportation systems in the megacities: the city centres are heavily congested with motorized traffic; traffic crawl rates vary from 2 to 10 km/hr; car and motorcycle ownership are increasing at annual rates of 10-12% and 15-20% respectively; significant air pollution with no relief in sight; TDM strategies are primarily creating new supply of road capacity; fairly high transit trips with substantial transit investments; weak air pollution monitoring and enforcement; and fairly cheap fuel and high costs of vehicles.

  12. Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2009-01-01

    This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.

  13. 78 FR 47480 - Nineteenth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), U.S...: Standards for Air Traffic Data Communication Services meeting. SUMMARY: The FAA is issuing this notice to...-78: Standards for Air Traffic Data Communication Services. DATES: The meeting will be held August...

  14. Performance measurements of mixed data acquisition and LAN traffic on a credit-based flow-controlled ATM network

    SciTech Connect

    Nomachi, M.; Sugaya, Y.; Togawa, H.; Yasuda, K.; Mandjavidze, I.

    1998-08-01

    The high speed network is a key component in networked data acquisition systems. An ATM switch is a candidate for the network system in DAQ (data acquisition system). The authors have studied the DAQ performance of the ATM network at RCNP (Research Center for Nuclear Physics), Osaka University. Data traffic on DAQ system has a very much different traffic pattern from the other network traffic. It may slow down the network performance. The authors have studied the network performance on several traffic patterns.

  15. Fiber fault location utilizing traffic signal in optical network.

    PubMed

    Zhao, Tong; Wang, Anbang; Wang, Yuncai; Zhang, Mingjiang; Chang, Xiaoming; Xiong, Lijuan; Hao, Yi

    2013-10-01

    We propose and experimentally demonstrate a method for fault location in optical communication network. This method utilizes the traffic signal transmitted across the network as probe signal, and then locates the fault by correlation technique. Compared with conventional techniques, our method has a simple structure and low operation expenditure, because no additional device is used, such as light source, modulator and signal generator. The correlation detection in this method overcomes the tradeoff between spatial resolution and measurement range in pulse ranging technique. Moreover, signal extraction process can improve the location result considerably. Experimental results show that we achieve a spatial resolution of 8 cm and detection range of over 23 km with -8-dBm mean launched power in optical network based on synchronous digital hierarchy protocols. PMID:24104308

  16. Design of a final approach spacing tool for TRACON air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1989-01-01

    This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.

  17. Geometric origin of scaling in large traffic networks.

    PubMed

    Popović, Marko; Štefančić, Hrvoje; Zlatić, Vinko

    2012-11-16

    Large scale traffic networks are an indispensable part of contemporary human mobility and international trade. Networks of airport travel and cargo ship movements are invaluable for the understanding of human mobility patterns [R. Guimera et al., Proc. Natl. Acad. Sci. U.S.A. 102, 7794 (2005))], epidemic spreading [V. Colizza et al., Proc. Natl. Acad. Sci. U.S.A. 103, 2015 (2006)], global trade [International Maritime Organization, http://www.imo.org/], and spread of invasive species [G. M. Ruiz et al., Nature (London) 408, 49 (2000)]. Different studies [M. Barthelemy, Phys. Rept. 499, 1 (2011)] point to the universal character of some of the exponents measured in such networks. Here we show that exponents which relate (i) the strength of nodes to their degree and (ii) weights of links to degrees of nodes that they connect have a geometric origin. We present a simple robust model which exhibits the observed power laws and relates exponents to the dimensionality of 2D space in which traffic networks are embedded. We show that the relation between weight strength and degree is s(k)~k(3/2), the relation between distance strength and degree is s(d)(k)~k(3/2), and the relation between weight of link and degrees of linked nodes is w(ij)~(k(i)k(j))(1/2) on the plane 2D surface. We further analyze the influence of spherical geometry, relevant for the whole planet, on exact values of these exponents. Our model predicts that these exponents should be found in future studies of port networks and it imposes constraints on more refined models of port networks. PMID:23215527

  18. Characterization of Visual Scanning Patterns in Air Traffic Control

    PubMed Central

    McClung, Sarah N.; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  19. An error-resistant linguistic protocol for air traffic control

    NASA Technical Reports Server (NTRS)

    Cushing, Steven

    1989-01-01

    The research results described here are intended to enhance the effectiveness of the DATALINK interface that is scheduled by the Federal Aviation Administration (FAA) to be deployed during the 1990's to improve the safety of various aspects of aviation. While voice has a natural appeal as the preferred means of communication both among humans themselves and between humans and machines as the form of communication that people find most convenient, the complexity and flexibility of natural language are problematic, because of the confusions and misunderstandings that can arise as a result of ambiguity, unclear reference, intonation peculiarities, implicit inference, and presupposition. The DATALINK interface will avoid many of these problems by replacing voice with vision and speech with written instructions. This report describes results achieved to date on an on-going research effort to refine the protocol of the DATALINK system so as to avoid many of the linguistic problems that still remain in the visual mode. In particular, a working prototype DATALINK simulator system has been developed consisting of an unambiguous, context-free grammar and parser, based on the current air-traffic-control language and incorporated into a visual display involving simulated touch-screen buttons and three levels of menu screens. The system is written in the C programming language and runs on the Macintosh II computer. After reviewing work already done on the project, new tasks for further development are described.

  20. The Monotonic Lagrangian Grid for Fast Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kaplan, Carolyn; Oran, Elaine; Boris, Jay

    2010-01-01

    This paper describes the continued development of a dynamic air-traffic model, ATMLG, intended for rapid evaluation of rules and methods to control and optimize transport systems. The underlying data structure is based on the Monotonic Lagrangian Grid (MLG), which is used for sorting and ordering positions and other data needed to describe N moving bodies, and their interactions. In ATMLG, the MLG is combined with algorithms for collision avoidance and updating aircraft trajectories. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. In this paper, we use ATMLG to examine how the ability to maintain a required separation between aircraft decreases as the number of aircraft in the volume increases. This requires keeping track of the primary and subsequent collision avoidance maneuvers necessary to maintain a five mile separation distance between all aircraft. Simulation results show that the number of collision avoidance moves increases exponentially with the number of aircraft in the volume.

  1. Characterization of Visual Scanning Patterns in Air Traffic Control.

    PubMed

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  2. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  3. Monitoring individual traffic flows within the ATLAS TDAQ network

    NASA Astrophysics Data System (ADS)

    Sjoen, R.; Stancu, S.; Ciobotaru, M.; Batraneanu, S. M.; Leahu, L.; Martin, B.; Al-Shabibi, A.

    2010-04-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  4. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  5. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  6. Wind Prediction Accuracy for Air Traffic Management Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Cole, Rod; Green, Steve; Jardin, Matt; Schwartz, Barry; Benjamin, Stan

    2000-01-01

    The performance of Air Traffic Management and flight deck decision support tools depends in large part on the accuracy of the supporting 4D trajectory predictions. This is particularly relevant to conflict prediction and active advisories for the resolution of conflicts and the conformance with of traffic-flow management flow-rate constraints (e.g., arrival metering / required time of arrival). Flight test results have indicated that wind prediction errors may represent the largest source of trajectory prediction error. The tests also discovered relatively large errors (e.g., greater than 20 knots), existing in pockets of space and time critical to ATM DST performance (one or more sectors, greater than 20 minutes), are inadequately represented by the classic RMS aggregate prediction-accuracy studies of the past. To facilitate the identification and reduction of DST-critical wind-prediction errors, NASA has lead a collaborative research and development activity with MIT Lincoln Laboratories and the Forecast Systems Lab of the National Oceanographic and Atmospheric Administration (NOAA). This activity, begun in 1996, has focussed on the development of key metrics for ATM DST performance, assessment of wind-prediction skill for state of the art systems, and development/validation of system enhancements to improve skill. A 13 month study was conducted for the Denver Center airspace in 1997. Two complementary wind-prediction systems were analyzed and compared to the forecast performance of the then standard 60 km Rapid Update Cycle - version 1 (RUC-1). One system, developed by NOAA, was the prototype 40-km RUC-2 that became operational at NCEP in 1999. RUC-2 introduced a faster cycle (1 hr vs. 3 hr) and improved mesoscale physics. The second system, Augmented Winds (AW), is a prototype en route wind application developed by MITLL based on the Integrated Terminal Wind System (ITWS). AW is run at a local facility (Center) level, and updates RUC predictions based on an

  7. Dimensions of Air Traffic Control Tower Information Needs: From Information Requests to Display Design

    ERIC Educational Resources Information Center

    Durso, Francis T.; Johnson, Brian R.; Crutchfield, Jerry M.

    2010-01-01

    In an effort to determine the information needs of tower air traffic controllers, instructors from the Federal Aviation Administration's Academy in Oklahoma City were asked to control traffic in a high-fidelity tower cab simulator. Information requests were made apparent by eliminating access to standard tower information sources. Instead,…

  8. Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy

    PubMed Central

    Su, Jason G.; Jerrett, Michael; Beckerman, Bernardo; Wilhelm, Michelle; Ghosh, Jo Kay; Ritz, Beate

    2013-01-01

    Land use regression (LUR) has emerged as an effective means of estimating exposure to air pollution in epidemiological studies. We created the first LUR models of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx) for the complex megalopolis of Los Angeles (LA), California. Two-hundred and one sampling sites (the largest sampling design to date for LUR estimation) for two seasons were selected using a location-allocation algorithm that maximized the potential variability in measured pollutant concentrations and represented populations in the health study. Traffic volumes, truck routes and road networks, land use data, satellite-derived vegetation greenness and soil brightness, and truck route slope gradients were used for predicting NOx concentrations. A novel model selection strategy known as “ADDRESS” (A Distance Decay REgression Selection Strategy) was used to select optimized buffer distances for potential predictor variables and maximize model performance. Final regression models explained 81%, 86% and 85% of the variance in measured NO, NO2 and NOx concentrations, respectively. Cross-validation analyses suggested a prediction accuracy of 87–91%. Remote sensing-derived variables were significantly correlated with NOx concentrations, suggesting these data are useful surrogates for modeling traffic-related pollution when certain land use data are unavailable. Our study also demonstrated that reactive pollutants such as NO and NO2 could have high spatial extents of influence (e.g., > 5000 m from expressway) and high background concentrations in certain geographic areas. This paper represents the first attempt to model traffic-related air pollutants at a fine scale within such a complex and large urban region. PMID:19540476

  9. Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy.

    PubMed

    Su, Jason G; Jerrett, Michael; Beckerman, Bernardo; Wilhelm, Michelle; Ghosh, Jo Kay; Ritz, Beate

    2009-08-01

    Land use regression (LUR) has emerged as an effective means of estimating exposure to air pollution in epidemiological studies. We created the first LUR models of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOX) for the complex megalopolis of Los Angeles (LA), California. Two-hundred and one sampling sites (the largest sampling design to date for LUR estimation) for two seasons were selected using a location-allocation algorithm that maximized the potential variability in measured pollutant concentrations and represented populations in the health study. Traffic volumes, truck routes and road networks, land use data, satellite-derived vegetation greenness and soil brightness, and truck route slope gradients were used for predicting NOX concentrations. A novel model selection strategy known as "ADDRESS" (A Distance Decay REgression Selection Strategy) was used to select optimized buffer distances for potential predictor variables and maximize model performance. Final regression models explained 81%, 86% and 85% of the variance in measured NO, NO2 and NOX concentrations, respectively. Cross-validation analyses suggested a prediction accuracy of 87-91%. Remote sensing-derived variables were significantly correlated with NOX concentrations, suggesting these data are useful surrogates for modeling traffic-related pollution when certain land use data are unavailable. Our study also demonstrated that reactive pollutants such as NO and NO2 could have high spatial extents of influence (e.g., > 5000 m from expressway) and high background concentrations in certain geographic areas. This paper represents the first attempt to model traffic-related air pollutants at a fine scale within such a complex and large urban region. PMID:19540476

  10. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis

    PubMed Central

    2014-01-01

    Background Biologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5–11 years. Methods Participants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002–2010 and analyzed in 2011–12. Results Traffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models. Conclusions Traffic pollution was positively associated with growth in BMI in children aged 5–11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children. PMID:24913018

  11. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally

  12. A new traffic control design method for large networks with signalized intersections

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.; Colony, D. C.; Seldner, K.

    1979-01-01

    The paper presents a traffic control design technique for application to large traffic networks with signalized intersections. It is shown that the design method adopts a macroscopic viewpoint to establish a new traffic modelling procedure in which vehicle platoons are subdivided into main stream queues and turning queues. Optimization of the signal splits minimizes queue lengths in the steady state condition and improves traffic flow conditions, from the viewpoint of the traveling public. Finally, an application of the design method to a traffic network with thirty-three signalized intersections is used to demonstrate the effectiveness of the proposed technique.

  13. Detecting air traffic controller interventions in recorded air transportation system data

    NASA Astrophysics Data System (ADS)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  14. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  15. Dynamic traffic grooming for port number optimization in WDM optical mesh networks

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zeng, Qingji; Liu, Jimin; Xiao, Pengcheng; Liu, Hua; Xiao, Shilin

    2004-04-01

    In this paper, the objective was optimizing the port number with dynamic traffic grooming of SDH/SONET WDM mesh networks to give useful referenced data to networks design and the cost control of networks. The performances of different path select routing algorithms were evaluated in WDM grooming networks by considering traffic of different bandwidth requests. Finally, the results were presented and compared with in distributed-controlled WDM mesh networks.

  16. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  17. A User Guide for Smoothing Air Traffic Radar Data

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  18. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic

  19. Controller evaluation of initial data link en route air traffic control services: Mini study 3

    NASA Astrophysics Data System (ADS)

    Marek, Hank; Shochet, Ephraim; Darby, Evan; Buck, Frank; Sweeney, David; Cratch, Preston

    1991-06-01

    The results of Mini Study 3 conducted November 5-9, 1990 are presented. This Mini Study was conducted at the Federal Aviation Administration (FAA) Technical Center utilizing the Washington Air Route Traffic Control Center (ARTCC) airspace in the Data Link test bed. Initial Data Link en route services were evaluated in order to identify service delivery methods which optimize the human computer interface. Controllers from the Air Traffic Data Link Validation Team participated in this study.

  20. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    1990-01-01

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  1. An observation tool to study air traffic control and flightdeck collaboration.

    PubMed

    Cox, Gemma; Sharples, Sarah; Stedmon, Alex; Wilson, John

    2007-07-01

    The complex systems of the flightdeck (FD) and the Air Traffic Control Centre (ATC) are characterised by numerous concurrently operating and interacting communication channels between people and between people and machines/computer systems. This paper describes work in support of investigating the impact of changes to technologies and responsibilities within this system with respect to human factors. It focuses primarily on the introduction of datalink (text-based communication rather than traditional radio communication) and the move towards freeflight (pilot-mediated air traffic control). Air traffic management investigations have outlined these specific changes as strategies to enable further increases in the volume of air traffic. A systems approach was taken and field studies were conducted. Small numbers of domain experts such as air traffic controllers (ATCOs) were involved in the field-based observations of how people interact with systems and each other. This paper summarises the overall research approach taken and then specifically reports on the field-based observations including the justification, development, and findings of the observation tool used. The observation tool examined information propagation through the air traffic control-flightdeck (ATC-FD) system, and resulted in models of possible information trajectories through the system. PMID:17498641

  2. Defining the drivers for accepting decision making automation in air traffic management.

    PubMed

    Bekier, Marek; Molesworth, Brett R C; Williamson, Ann

    2011-04-01

    Air Traffic Management (ATM) operators are under increasing pressure to improve the efficiency of their operation to cater for forecasted increases in air traffic movements. One solution involves increasing the utilisation of automation within the ATM system. The success of this approach is contingent on Air Traffic Control Operators' (ATCOs) willingness to accept increased levels of automation. The main aim of the present research was to examine the drivers underpinning ATCOs' willingness to accept increased utilisation of automation within their role. Two fictitious scenarios involving the application of two new automated decision-making tools were created. The results of an online survey revealed traditional predictors of automation acceptance such as age, trust and job satisfaction explain between 4 and 7% of the variance. Furthermore, these predictors varied depending on the purpose in which the automation was to be employed. These results are discussed from an applied and theoretical perspective. STATEMENT OF RELEVANCE: Efficiency improvements in ATM are required to cater for forecasted increases in air traffic movements. One solution is to increase the utilisation of automation within Air Traffic Control. The present research examines the drivers underpinning air traffic controllers' willingness to accept increased levels of automation in their role. PMID:21491277

  3. Controller Strategies for Managing Air Traffic in High Altitude Arrival Sectors

    NASA Technical Reports Server (NTRS)

    Smith, Nancy; Palmer, Everett; Prevot, Thomas

    1998-01-01

    Substantial increases in the volume of air traffic in the National Airspace System (NAS) are forecast for the next decade, with the number of passengers travelling on U.S. airlines expected to increase by as much as 60%. This increased demand on system capacity will be accompanied by increases in traffic complexity as air traffic service providers routinely accommodate user preferred routing requests. Changes to the NAS to meet these new demands are currently underway, including development of new decision support tools to aid controllers in monitoring and managing air traffic, and increased air-to-air and air-to-ground information exchange. Changes in roles and responsibilities of pilots and controllers in flight path management will accompany these changes in traffic patterns and information technology, however the ultimate responsibility for maintaining aircraft separation will remain with the air traffic controller. A thorough understanding of the methods controllers use to manage air traffic will help ensure that changes to the NAS are implemented in a way that maintains the controller's ability to separate aircraft as the system evolves. This presentation describes the strategies controllers use today to manage arrival traffic in its descent from cruise altitude to the Terminal Radar Approach Control (TRACON) boundary. Factors that increase the complexity of this task include the presence of overflight traffic, varying aircraft performance characteristics, winds aloft, ground speed variations with altitude, the need to merge arrival traffic into a single stream, and, when arrival traffic exceeds airport runway capacity, the added task of metering flow into the TRACON. Because of the limited information available to controllers to manage arrival traffic, their strategies are often driven by the need to reduce the task's complexity, which can result in de-optimized flight paths for individual aircraft (e.g., sub-optimal descent or speed profiles). Understanding

  4. Format and basic geometry of a perspective display of air traffic for the cockpit

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael Wallace; Ellis, Stephen R.

    1991-01-01

    The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes allowances for exploration of perspective parameters and their interactions. The display was initially used to study the cases of horizontal maneuver biases found in experiments involving a plan view air traffic display format. Experiments to determine the effect of perspective geometry on spatial judgements have evolved from the display program. Several scaling techniques and other adjustments to the perspective are used to tailor the geometry for effective presentation of 3-D traffic situations.

  5. Study on a self-similar traffic shaping mechanism with QoS in transport networks

    NASA Astrophysics Data System (ADS)

    Bo, Mingxia; Lee, Peiyuan; Pan, Xiaofei; Gu, Wanyi

    2005-11-01

    Due to easy realization and high bandwidth utilization, SDH/WDM technology becomes the important way to carry IP traffic over the backbone network. On the other hand, the feature of the data traffic which is much different from the voice traffic is dynamic, burst and self-similar, and many proofs show that the self-similar traffic can lead to some adverse effects on the network performance due to the property of long-range dependence (LRD). For this reason it is widely recognized that self-similarity of the traffic is a significant problem as far as network engineering is concerned. So any reduction in the degree of self-similarity will be greatly beneficial. One possible strategy for mitigating the deleterious effects of the self-similarity is to reduce the burstiness of the input traffic through traffic shaping function at the edge nodes. According to this scheme, in this paper, we present a new self-similar traffic shaping mechanism with QoS in transport networks, called double threshold algorithm (DTA). Simulation results show that the proposed mechanism can effectively reduce the degree of input self-similar traffic, and performs better in the terms of network packet-loss rate and blocking probability than the non-traffic shaping schemes. At the same time it guarantees good quality of service.

  6. Development of a Laboratory for Improving Communication between Air Traffic Controllers and Pilots

    NASA Technical Reports Server (NTRS)

    Brammer, Anthony

    2003-01-01

    Runway incursions and other surface incidents are known to be significant threats to aviation safety and efficiency. Though the number of near mid-air collisions in U.S. air space has remained unchanged during the last five years, the number of runway incursions has increased and they are almost all due to human error. The three most common factors contributing to air traffic controller and pilot error in airport operations include two that involve failed auditory communication. This project addressed the problems of auditory communication in air traffic control from an acoustical standpoint, by establishing an acoustics laboratory designed for this purpose and initiating research into selected topics that show promise for improving voice communications between air traffic controllers and pilots.

  7. Understanding Urban Traffic Flow Characteristics from the Network Centrality Perspective at Different Granularities

    NASA Astrophysics Data System (ADS)

    Zhao, P. X.; Zhao, S. M.

    2016-06-01

    In this study, we analyze urban traffic flow using taxi trajectory data to understand the characteristics of traffic flow from the network centrality perspective at point (intersection), line (road), and area (community) granularities. The entire analysis process comprises three steps. The first step utilizes the taxi trajectory data to evaluate traffic flow at different granularities. Second, the centrality indices are calculated based on research units at different granularities. Third, correlation analysis between the centrality indices and corresponding urban traffic flow is performed. Experimental results indicate that urbaxperimental results indicate that urbaxperimental results indicate that urban traffic flow is relatively influenced by the road network structure. However, urban traffic flow also depends on the research unit size. Traditional centralities and traffic flow exhibit a low correlation at point granularity but exhibit a high correlation at line and area granularities. Furthermore, the conclusions of this study reflect the universality of the modifiable areal unit problem.

  8. Nuclear traffic and peloton formation in fungal networks

    NASA Astrophysics Data System (ADS)

    Roper, Marcus; Hickey, Patrick; Lewkiewicz, Stephanie; Dressaire, Emilie; Read, Nick

    2013-11-01

    Hyphae, the network of microfluidic pipes that make up a growing fungal cell, must balance their function as conduits for the transport of nuclei with other cellular functions including secretion and growth. Constant flow of nuclei may interfere with the protein traffic that enables other functions to be performed. Live-cell imaging reveals that nuclear flows are anti-congestive; that groups of nuclei flow faster than single nuclei, and that nuclei sweep through the colony in dense clumps. We call these clumps pelotons, after the term used to describe groups of cycle racers slip-streaming off each other. Because of the pelotons, individual hyphae transport nuclei only intermittently, producing long intervals in which hyphae can perform their other functions. Modeling reveals how pelotons are created by interactions between nuclei and the hyphal cytoskeleton, and reveal the control that the fungus enjoys over peloton assembly and timing.

  9. The Impact of Traffic Prioritization on Deep Space Network Mission Traffic

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Segui, John; Gao, Jay; Clare, Loren; Abraham, Douglas

    2011-01-01

    A select number of missions supported by NASA's Deep Space Network (DSN) are demanding very high data rates. For example, the Kepler Mission was launched March 7, 2009 and at that time required the highest data rate of any NASA mission, with maximum rates of 4.33 Mb/s being provided via Ka band downlinks. The James Webb Space Telescope will require a maximum 28 Mb/s science downlink data rate also using Ka band links; as of this writing the launch is scheduled for a June 2014 launch. The Lunar Reconnaissance Orbiter, launched June 18, 2009, has demonstrated data rates at 100 Mb/s at lunar-Earth distances using NASA's Near Earth Network (NEN) and K-band. As further advances are made in high data rate space telecommunications, particularly with emerging optical systems, it is expected that large surges in demand on the supporting ground systems will ensue. A performance analysis of the impact of high variance in demand has been conducted using our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) simulation tool. A comparison is made regarding the incorporation of Quality of Service (QoS) mechanisms and the resulting ground-to-ground Wide Area Network (WAN) bandwidth necessary to meet latency requirements across different user missions. It is shown that substantial reduction in WAN bandwidth may be realized through QoS techniques when low data rate users with low-latency needs are mixed with high data rate users having delay-tolerant traffic.

  10. The accelerated growth of the worldwide air transportation network

    NASA Astrophysics Data System (ADS)

    Azzam, Mark; Klingauf, Uwe; Zock, Alexander

    2013-01-01

    Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.

  11. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  12. Optimal control of systems governed by differential equations with applications in air traffic management and systems biology

    NASA Astrophysics Data System (ADS)

    Raffard, Robin L.

    Differential equations are arguably the most widespread formalism to model dynamical systems in sciences and engineering. In this dissertation, we strive to design a practical methodology which can be used for the optimal control of most systems modeled by differential equations. Namely, the method is applicable to ordinary differential equations (ODEs), partial differential equations (PDEs) and stochastic differential equations (SDEs) driven by deterministic control. The algorithm draws from both optimization and control theory. It solves the Pontryagin Maximum Principle conditions in an iterative fashion via a novel approximate Newton method. We also extend the method to the case in which multiple agents are involved in the optimal control problem. For this purpose, we use dual decomposition techniques which allow us to decentralize the control algorithm and to distribute the computational load among each individual agent. Most of the dissertation is devoted to promoting the applicability of the method to practical problems in air traffic management and systems biology. In air traffic management; we use the technique to optimize a new PDE-based Eulerian model of the airspace; suitable to represent and control air traffic flow at the scale of the US national airspace. We also apply the technique to aircraft coordination problems in the context of formation flight, in which aircraft dynamics are described by ODEs. In systems biology, we use the method to perform fast parameter identification in the analysis of protein networks, which allows us to gain some insights about the biological processes regulating the system. In particular we perform parameter identification for a PDE model of a spatially distributed network of proteins, playing a key role in the planar cell polarity of Drosophila wings. We also study a general representation of intra-cellular genetic networks, described as a stochastic nonlinear regulatory network, in which our control system approach

  13. Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Kopardekar, Parimal

    2001-01-01

    The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.

  14. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  15. 77 FR 52107 - Air Traffic Data in the Possession of Government Contractors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ...The recently enacted Pilot's Bill of Rights (PBR) provides, among other things, that ``air traffic data'' should be made accessible to, or obtainable by, an airman in Federal Aviation Administration (FAA) investigations when such data are in the FAA's possession and the data will facilitate the individual's ability to participate in a proceeding related to an FAA investigation. Some ``air......

  16. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    PubMed Central

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835

  17. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.

    2004-03-01

    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.

  18. The Challenges of Field Testing the Traffic Management Advisor (TMA) in an Operational Air Traffic Control Facility

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Swenson, Harry N.

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.

  19. The Impact of Trajectory Prediction Uncertainty on Air Traffic Controller Performance and Acceptability

    NASA Technical Reports Server (NTRS)

    Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.

    2013-01-01

    A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.

  20. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  1. Enhancing traffic capacity of scale-free networks by link-directed strategy

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai

    2016-08-01

    The transport efficiency of a network is strongly related to the underlying structure. In this paper, we propose an efficient strategy named high-betweenness-first (HBF) for the purpose of improving the traffic handling capacity of scale-free networks by limiting a fraction of undirected links to be unidirectional ones based on the links’ betweenness. Compared with the high-degree-first (HDF) strategy, the traffic capacity can be more significantly enhanced under the proposed link-directed strategy with the shortest path (SP) routing protocol. Simulation results in the Barabási-Albert (BA) model for scale-free networks show that the critical generating rate Rc which can evaluate the overall traffic capacity of a network system is larger after applying the HBF strategy, especially with nonrandom direction-determining rules. Because of the strongly improved traffic capacity, this work is helpful to design and optimize modern communication networks such as the software defined network.

  2. Network Analysis of the Evolution of Traffic Flow with Speed Information

    NASA Astrophysics Data System (ADS)

    Li, Xin-Gang; Gao, Zi-You; Zheng, Jian-Feng; Jia, Bin

    In the cellular automata traffic flow model, the traffic state can be represented by the discrete speed value of vehicles, thus the traffic flow can be deemed as a discrete dynamical system. In the evolution process of traffic flow, complex networks are constructed by representing the traffic state as node and the evolution relationship in timescale as link. The emerging times of link is defined as its weight, then the node strength is equal to the emerging times of the corresponding traffic state. As a result, a weighted network is obtained. The dynamics of stop-and-go traffic are studied by investigating the statistical properties of the network. Simulation results show that scale-free behavior commonly exists in the evolution process of stop-and-go traffic. The degree distribution, node strength distribution and link weight distribution have the power law form. The node with high degree also has large strength. The structure of the network is not influenced by the randomization probability and density as long as the stop-and-go traffic is reproduced.

  3. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing

    NASA Astrophysics Data System (ADS)

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-01

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  4. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation. PMID:16778887

  5. Impact of bicycle route type on exposure to traffic-related air pollution.

    PubMed

    MacNaughton, Piers; Melly, Steven; Vallarino, Jose; Adamkiewicz, Gary; Spengler, John D

    2014-08-15

    Cyclists are exposed to traffic-related air pollution (TRAP) during their commutes due to their proximity to vehicular traffic. Two of the main components of TRAP are black carbon (BC) and nitrogen dioxide (NO2), which have both been causally associated with increased mortality. To assess the impact of cyclists' exposure to TRAP, a battery-powered mobile monitoring station was designed to sample air pollutants along five bike routes in Boston, Massachusetts. The bike routes were categorized into three types: bike paths, which are separated from vehicle traffic; bike lanes, which are adjacent to traffic; and designated bike lanes, which are shared traffic lanes for buses and cyclists. Bike lanes were found to have significantly higher concentrations of BC and NO2 than bike paths in both adjusted and unadjusted generalized linear models. Higher concentrations were observed in designated bike lanes than bike paths; however, this association was only significant for NO2. After adjusting for traffic density, background concentration, and proximity to intersections, bike lanes were found to have concentrations of BC and NO2 that were approximately 33% higher than bike paths. Distance from the road, vegetation barriers, and reduced intersection density appear to influence these variations. These findings suggest that cyclists can reduce their exposure to TRAP during their commute by using bike paths preferentially over bike lanes regardless of the potential increase of traffic near these routes. PMID:24840278

  6. The employment of a spoken language computer applied to an air traffic control task.

    NASA Technical Reports Server (NTRS)

    Laveson, J. I.; Silver, C. A.

    1972-01-01

    Assessment of the merits of a limited spoken language (56 words) computer in a simulated air traffic control (ATC) task. An airport zone approximately 60 miles in diameter with a traffic flow simulation ranging from single-engine to commercial jet aircraft provided the workload for the controllers. This research determined that, under the circumstances of the experiments carried out, the use of a spoken-language computer would not improve the controller performance.

  7. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study

    PubMed Central

    Sunyer, Jordi; Esnaola, Mikel; Alvarez-Pedrerol, Mar; Forns, Joan; Rivas, Ioar; López-Vicente, Mònica; Suades-González, Elisabet; Foraster, Maria; Garcia-Esteban, Raquel; Basagaña, Xavier; Viana, Mar; Cirach, Marta; Moreno, Teresa; Alastuey, Andrés; Sebastian-Galles, Núria; Nieuwenhuijsen, Mark; Querol, Xavier

    2015-01-01

    Background Air pollution is a suspected developmental neurotoxicant. Many schools are located in close proximity to busy roads, and traffic air pollution peaks when children are at school. We aimed to assess whether exposure of children in primary school to traffic-related air pollutants is associated with impaired cognitive development. Methods and Findings We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by school socioeconomic index; children were tested four times (i.e., to assess the 12-mo developmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution (elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10–700 nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside the classroom (indoor) simultaneously in each school pair. Cognitive development was assessed with the n-back and the attentional network tests, in particular, working memory (two-back detectability), superior working memory (three-back detectability), and inattentiveness (hit reaction time standard error). Linear mixed effects models were adjusted for age, sex, maternal education, socioeconomic status, and air pollution exposure at home. Children from highly polluted schools had a smaller growth in cognitive development than children from the paired lowly polluted schools, both in crude and adjusted models (e.g., 7.4% [95% CI 5.6%–8.8%] versus 11.5% [95% CI 8.9%–12.5%] improvement in working memory, p = 0.0024). Cogently, children attending schools with higher levels of EC, NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements; for example, a change from the first to the fourth quartile in indoor EC reduced the gain in working memory by 13.0% (95% CI 4.2%–23.1%). Residual confounding for social class could

  8. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    SciTech Connect

    Nedic, Vladimir; Despotovic, Danijela; Cvetanovic, Slobodan; Despotovic, Milan; Babic, Sasa

    2014-11-15

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.

  9. Air Traffic Forecasting at the Port Authority of New York and New Jersey

    NASA Technical Reports Server (NTRS)

    Augustine, J. G.

    1972-01-01

    Procedures for conducting air traffic forecasts with specific application to the Port Authority of New York and New Jersey are discussed. The procedure relates air travel growth to detailed socio-economic and demographic characteristics of the U.S. population rather than to aggregate economic data such as Gross National Product, personal income, and industrial production. Charts are presented to show the relationship between various selected characteristics and the use of air transportation facilities.

  10. Research on urban public traffic network with multi-weights based on single bus transfer junction

    NASA Astrophysics Data System (ADS)

    An, Xin-lei; Zhang, Li; Zhang, Jian-gang

    2015-10-01

    Regarding single bus transfer junction as a research object, this paper constructs the urban traffic network models with multi-weights taking different bus lines in bus transfer junction as the network nodes, that is, the urban traffic network with multi-weights is given different properties weights at every edge. According to the method of network split, the complex network with multi-weights is split into several different single weighted complex networks. Then, we study the global synchronization of the new network model by changing congestion degrees, transfers coefficient and passenger flow density between different bus lines. Finally, analytical and simulated results are given to show the impact of different properties weights to the public traffic network balance.

  11. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  12. Enhancing the Quality of Service for Real Time Traffic over Optical Burst Switching (OBS) Networks with Ensuring the Fairness for Other Traffics.

    PubMed

    Al-Shargabi, Mohammed A; Shaikh, Asadullah; Ismail, Abdulsamad S

    2016-01-01

    Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. A solution for enhancing the Quality of Service (QoS) for high priority real time traffic over OBS with the fairness among the traffic types is absent in current OBS' QoS schemes. In this paper we present a novel Real Time Quality of Service with Fairness Ratio (RT-QoSFR) scheme that can adapt the burst assembly parameters according to the traffic QoS needs in order to enhance the real time traffic QoS requirements and to ensure the fairness for other traffic. The results show that RT-QoSFR scheme is able to fulfill the real time traffic requirements (end to end delay, and loss rate) ensuring the fairness for other traffics under various conditions such as the type of real time traffic and traffic load. RT-QoSFR can guarantee that the delay of the real time traffic packets does not exceed the maximum packets transfer delay value. Furthermore, it can reduce the real time traffic packets loss, at the same time guarantee the fairness for non real time traffic packets by determining the ratio of real time traffic inside the burst to be 50-60%, 30-40%, and 10-20% for high, normal, and low traffic loads respectively. PMID:27583557

  13. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.

  14. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments.

    PubMed

    Briggs, D J; de Hoogh, C; Gulliver, J; Wills, J; Elliott, P; Kingham, S; Smallbone, K

    2000-05-15

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model--developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project--uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to provide

  15. LINEBACkER: Bio-inspired Data Reduction Toward Real Time Network Traffic Analysis

    SciTech Connect

    Teuton, Jeremy R.; Peterson, Elena S.; Nordwall, Douglas J.; Akyol, Bora A.; Oehmen, Christopher S.

    2013-09-28

    Abstract—One essential component of resilient cyber applications is the ability to detect adversaries and protect systems with the same flexibility adversaries will use to achieve their goals. Current detection techniques do not enable this degree of flexibility because most existing applications are built using exact or regular-expression matching to libraries of rule sets. Further, network traffic defies traditional cyber security approaches that focus on limiting access based on the use of passwords and examination of lists of installed or downloaded programs. These approaches do not readily apply to network traffic occurring beyond the access control point, and when the data in question are combined control and payload data of ever increasing speed and volume. Manual analysis of network traffic is not normally possible because of the magnitude of the data that is being exchanged and the length of time that this analysis takes. At the same time, using an exact matching scheme to identify malicious traffic in real time often fails because the lists against which such searches must operate grow too large. In this work, we introduce an alternative method for cyber network detection based on similarity-measuring algorithms for gene sequence analysis. These methods are ideal because they were designed to identify similar but nonidentical sequences. We demonstrate that our method is generally applicable to the problem of network traffic analysis by illustrating its use in two different areas both based on different attributes of network traffic. Our approach provides a logical framework for organizing large collections of network data, prioritizing traffic of interest to human analysts, and makes it possible to discover traffic signatures without the bias introduced by expert-directed signature generation. Pattern recognition on reduced representations of network traffic offers a fast, efficient, and more robust way to detect anomalies.

  16. Childhood Incident Asthma and Traffic-Related Air Pollution at Home and School

    PubMed Central

    McConnell, Rob; Islam, Talat; Shankardass, Ketan; Jerrett, Michael; Lurmann, Fred; Gilliland, Frank; Gauderman, Jim; Avol, Ed; Künzli, Nino; Yao, Ling; Peters, John; Berhane, Kiros

    2010-01-01

    Background Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma. Objectives We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. Methods Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children’s Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric. Results Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25–1.82] and near schools (HR 1.45; 95% CI, 1.06–1.98). Ambient NO2 measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18–4.01). In models with both NO2 and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO2 was attenuated (HR 1.37; 95% CI, 0.69–2.71). Conclusions Traffic-related pollution exposure at school and homes may both contribute to the development of asthma. PMID:20371422

  17. Traffic-Related Air Toxics and Term Low Birth Weight in Los Angeles County, California

    PubMed Central

    Ghosh, Jo Kay; Su, Jason; Cockburn, Myles; Jerrett, Michael; Ritz, Beate

    2011-01-01

    Background: Numerous studies have linked criteria air pollutants with adverse birth outcomes, but there is less information on the importance of specific emission sources, such as traffic, and air toxics. Objectives: We used three exposure data sources to examine odds of term low birth weight (LBW) in Los Angeles, California, women when exposed to high levels of traffic-related air pollutants during pregnancy. Methods: We identified term births during 1 June 2004 to 30 March 2006 to women residing within 5 miles of a South Coast Air Quality Management District (SCAQMD) Multiple Air Toxics Exposure Study (MATES III) monitoring station. Pregnancy period average exposures were estimated for air toxics, including polycyclic aromatic hydrocarbons (PAHs), source-specific particulate matter < 2.5 μm in aerodynamic diameter (PM2.5) based on a chemical mass balance model, criteria air pollutants from government monitoring data, and land use regression (LUR) model estimates of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx). Associations between these metrics and odds of term LBW (< 2,500 g) were examined using logistic regression. Results: Odds of term LBW increased approximately 5% per interquartile range increase in entire pregnancy exposures to several correlated traffic pollutants: LUR measures of NO, NO2, and NOx, elemental carbon, and PM2.5 from diesel and gasoline combustion and paved road dust (geological PM2.5). Conclusions: These analyses provide additional evidence of the potential impact of traffic-related air pollution on fetal growth. Particles from traffic sources should be a focus of future studies. PMID:21835727

  18. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  19. Single and Combined Effects of Air, Road, and Rail Traffic Noise on Sleep and Recuperation

    PubMed Central

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria

    2011-01-01

    Study Objective: Traffic noise disturbs sleep and may impair recuperation. There is limited information on single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Design: Repeated measures. Setting: Polysomnographic laboratory study. Participants: 72 healthy subjects, mean ± standard deviation 40 ± 13 years, range 18-71 years, 32 male. Interventions: Exposure to 40, 80, or 120 rail, road, and/or air traffic noise events. Measurement and Results: Subjects were investigated for 11 consecutive nights, which included 8 noise exposure nights and one noise-free control night. Noise effects on sleep structure and continuity were subtle, even in nights with combined exposure, most likely because of habituation and an increase in arousal thresholds both within and across nights. However, cardiac arousals did not habituate across nights. Noise exposure significantly affected subjective assessments of sleep quality and recuperation, whereas objective performance was unaffected, except for a small increase in mean PVT reaction time (+4 ms, adjusted P < 0.05). Road traffic noise led to the strongest changes in sleep structure and continuity, whereas subjective assessments of sleep were worse after nights with air and rail traffic noise exposure. In contrast to daytime annoyance, cortical arousal probabilities and cardiac responses were significantly lower for air than for road and rail traffic noise (all P < 0.0001). These differences were explained by sound pressure level rise time and high frequency (> 3 kHz) noise event components. Conclusions: Road, rail, and air traffic noise differentially affect objective and subjective assessments of sleep. Differences in the degree of noise-induced sleep fragmentation between traffic modes were explained by the specific spectral and temporal composition of noise events, indicating potential targets for active and passive noise control. Field studies are needed to validate our findings in a setting

  20. Association of Traffic-Related Air Pollution with Children’s Neurobehavioral Functions in Quanzhou, China

    PubMed Central

    Wang, Shunqin; Zhang, Jinliang; Zeng, Xiaodong; Zeng, Yimin; Wang, Shengchun; Chen, Shuyun

    2009-01-01

    Background With the increase of motor vehicles, ambient air pollution related to traffic exhaust has become an important environmental issue in China. Because of their fast growth and development, children are more susceptible to ambient air pollution exposure. Many chemicals from traffic exhaust, such as carbon monoxide, nitrogen dioxide, and lead, have been reported to show adverse effects on neurobehavioral functions. Several studies in China have suggested that traffic exhaust might affect neurobehavioral functions of adults who have occupational traffic exhaust exposure. However, few data have been reported on the effects on neurobehavioral function in children. Objectives The objective of this study was to explore the association between traffic-related air pollution exposure and its effects on neurobehavioral function in children. Methods This field study was conducted in Quanzhou, China, where two primary schools were chosen based on traffic density and monitoring data of ambient air pollutants. School A was located in a clear area and school B in a polluted area. We monitored NO2 and particulate matter with aerodynamic diameter ≤ 10 μm as indicators for traffic-related air pollution on the campuses and in classrooms for 2 consecutive days in May 2005. The children from second grade (8–9 years of age) and third grade (9–10 years of age) of the two schools (n = 928) participated in a questionnaire survey and manual-assisted neurobehavioral testing. We selected 282 third-grade children (school A, 136; school B, 146) to participate in computer-assisted neurobehavioral testing. We conducted the fieldwork between May and June 2005. We used data from 861 participants (school A, 431; school B, 430) with manual neurobehavioral testing and from all participants with computerized testing for data analyses. Results Media concentrations of NO2 in school A and school B campus were 7 μg/m3 and 36 μg/m3, respectively (p < 0.05). The ordinal logistic regression

  1. High-speed and high-fidelity system and method for collecting network traffic

    DOEpatents

    Weigle, Eric H.

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  2. Populations potentially exposed to traffic-related air pollution in seven world cities.

    PubMed

    Su, Jason G; Apte, Joshua S; Lipsitt, Jonah; Garcia-Gonzales, Diane A; Beckerman, Bernardo S; de Nazelle, Audrey; Texcalac-Sangrador, José Luis; Jerrett, Michael

    2015-05-01

    Traffic-related air pollution (TRAP) likely exerts a large burden of disease globally, and in many places, traffic is increasing dramatically. The impact, however, of urban form on the portion of population potentially exposed to TRAP remains poorly understood. In this study, we estimate portions of population potentially exposed to TRAP across seven global cities of various urban forms. Data on population distributions and road networks were collected from the best available sources in each city and from remote sensing analysis. Using spatial mapping techniques, we first overlaid road buffers onto population data to estimate the portions of population potentially exposed for four plausible impact zones. Based on a most likely scenario with impacts from highways up to 300meters and major roadways up to 50meters, we identified that the portions of population potentially exposed for the seven cities ranged from 23 to 96%. High-income North American cities had the lowest potential exposure portions, while those in Europe had the highest. Second, we adjusted exposure zone concentration levels based on a literature suggested multiplier for each city using corresponding background concentrations. Though Beijing and Mexico City did not have the highest portion of population exposure, those in their exposure zones had the highest levels of exposure. For all seven cities, the portion of population potentially exposed was positively correlated with roadway density and, to a lesser extent, with population density. These analyses suggest that urban form may influence the portion of population exposed to TRAP and vehicle emissions and other factors may influence the exposure levels. Greater understanding of urban form and other factors influencing potential exposure to TRAP may help inform interventions that protect public health. PMID:25770919

  3. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Kupfer, Michael; Mercer, Joey S.; Cabrall, Christopher; Callantine, Todd

    2013-01-01

    Well prepared traffic scenarios contribute greatly to the success of controller-in-the-loop simulations. This paper describes each stage in the design process of realistic scenarios based on real-world traffic, to be used in the Airspace Operations Laboratory for simulations within the Air Traffic Management Technology Demonstration 1 effort. The steps from the initial analysis of real-world traffic, to the editing of individual aircraft records in the scenario file, until the final testing of the scenarios before the simulation conduct, are all described. The iterative nature of the design process and the various efforts necessary to reach the required fidelity, as well as the applied design strategies, challenges, and tools used during this process are also discussed.

  4. Air traffic management system design using satellite based geo-positioning and communications assets

    NASA Technical Reports Server (NTRS)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  5. Socioeconomic Position and Low Birth Weight among Mothers Exposed to Traffic-Related Air Pollution

    PubMed Central

    Habermann, Mateus; Gouveia, Nelson

    2014-01-01

    Background Atmospheric pollution is a major public health concern. It can affect placental function and restricts fetal growth. However, scientific knowledge remains too limited to make inferences regarding causal associations between maternal exposure to air pollution and adverse effects on pregnancy. This study evaluated the association between low birth weight (LBW) and maternal exposure during pregnancy to traffic related air pollutants (TRAP) in São Paulo, Brazil. Methods and findings Analysis included 5,772 cases of term-LBW (<2,500 g) and 5,814 controls matched by sex and month of birth selected from the birth registration system. Mothers’ addresses were geocoded to estimate exposure according to 3 indicators: distance from home to heavy traffic roads, distance-weighted traffic density (DWTD) and levels of particulate matter ≤10 µg/m3 estimated through land use regression (LUR-PM10). Final models were evaluated using multiple logistic regression adjusting for birth, maternal and pregnancy characteristics. We found decreased odds in the risk of LBW associated with DWTD and LUR-PM10 in the highest quartiles of exposure with a significant linear trend of decrease in risk. The analysis with distance from heavy traffic roads was less consistent. It was also observed that mothers with higher education and neighborhood-level income were potentially more exposed to TRAP. Conclusions This study found an unexpected decreased risk of LBW associated with traffic related air pollution. Mothers with advantaged socioeconomic position (SEP) although residing in areas of higher vehicular traffic might not in fact be more expose to air pollution. It can also be that the protection against LBW arising from a better SEP is stronger than the effect of exposure to air pollution, and this exposure may not be sufficient to increase the risk of LBW for these mothers. PMID:25426640

  6. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2001-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  7. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2002-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  8. A novel flux-fluctuation law for network with self-similar traffic

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Huang, Ning; Xing, Liudong

    2016-06-01

    The actual network traffic can show self-similar and long-range dependent features, however, the revealed flux-fluctuation laws are only applicable to networks with short-range dependent traffic. In this paper, we propose an improved theoretical flux-fluctuation law of the self-similar traffic based on Pareto ON/OFF model. The proposed law shows that (i) the greater the self-similarity is, the stronger the influence of the internal factor is; (ii) the influence of the external factor is only determined by a single parameter characterizing the external network load. Numerical simulations illustrate the validity of the proposed flux-fluctuation law under diverse network scales and topologies with various self-similarity of traffic and time windows. We also demonstrate the effectiveness of the proposed law on the actual traffic data in the real GEANT network. As compared to the existing laws, the flux-fluctuation law proposed in this paper can better fit the actual variation of self-similar traffic and facilitate the detection of nodes with abnormal traffic.

  9. Traffic dynamics on two-layer complex networks with limited delivering capacity

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong

    2016-08-01

    The traffic dynamics of multi-layer networks has attracted a great deal of interest since many real networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the average delivery capacity allocation strategy is susceptible to congestion with the wildly used shortest path routing protocol on two-layer complex networks. In this paper, we introduce a delivery capacity allocation strategy into the traffic dynamics on two-layer complex networks and focus on its effect on the traffic capacity measured by the critical point Rc of phase transition from free flow to congestion. When the total nodes delivering capacity is fixed, the delivering capacity of each node in physical layer is assigned to the degree distributions of both the physical and logical layers. Simulation results show that the proposed strategy can bring much better traffic capacity than that with the average delivery capacity allocation strategy. Because of the significantly improved traffic performance, this work may be useful for optimal design of networked traffic dynamics.

  10. Design and evaluation of an air traffic control Final Approach Spacing Tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.; Nedell, William

    1991-01-01

    This paper describes the design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arriving aircraft as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated as a stand-alone in the terminal radar approach control facility or as an element of a system integrated with automation tools in the air route traffic control center. FAST was evaluated by experienced air traffic controllers in a real-time air traffic control simulation. simulation results summarized in the paper show that the automation tools significantly reduced controller work load and demonstrated a potential for an increase in landing rate.

  11. Percolation transition in dynamical traffic network with evolving critical bottlenecks

    PubMed Central

    Li, Daqing; Fu, Bowen; Wang, Yunpeng; Lu, Guangquan; Berezin, Yehiel; Stanley, H. Eugene; Havlin, Shlomo

    2015-01-01

    A critical phenomenon is an intrinsic feature of traffic dynamics, during which transition between isolated local flows and global flows occurs. However, very little attention has been given to the question of how the local flows in the roads are organized collectively into a global city flow. Here we characterize this organization process of traffic as “traffic percolation,” where the giant cluster of local flows disintegrates when the second largest cluster reaches its maximum. We find in real-time data of city road traffic that global traffic is dynamically composed of clusters of local flows, which are connected by bottleneck links. This organization evolves during a day with different bottleneck links appearing in different hours, but similar in the same hours in different days. A small improvement of critical bottleneck roads is found to benefit significantly the global traffic, providing a method to improve city traffic with low cost. Our results may provide insights on the relation between traffic dynamics and percolation, which can be useful for efficient transportation, epidemic control, and emergency evacuation. PMID:25552558

  12. Percolation transition in dynamical traffic network with evolving critical bottlenecks

    NASA Astrophysics Data System (ADS)

    Li, Daqing

    A critical phenomenon is an intrinsic feature of traffic dynamics, during which transition between isolated local flows and global flows occurs. However, very little attention has been given to the question of how the local flows in the roads are organized collectively into a global city flow. Here we characterize this organization process of traffic as ``traffic percolation,'' where the giant cluster of local flows disintegrates when the second largest cluster reaches its maximum. We find in real-time data of city road traffic that global traffic is dynamically composed of clusters of local flows, which are connected by bottleneck links. This organization evolves during a day with different bottleneck links appearing in different hours, but similar in the same hours in different days. A small improvement of critical bottleneck roads is found to benefit significantly the global traffic, providing a method to improve city traffic with low cost. Our results may provide insights on the relation between traffic dynamics and percolation, which can be useful for efficient transportation, epidemic control, and emergency evacuation.

  13. Self-control of traffic lights and vehicle flows in urban road networks

    NASA Astrophysics Data System (ADS)

    Lämmer, Stefan; Helbing, Dirk

    2008-04-01

    Based on fluid-dynamic and many-particle (car-following) simulations of traffic flows in (urban) networks, we study the problem of coordinating incompatible traffic flows at intersections. Inspired by the observation of self-organized oscillations of pedestrian flows at bottlenecks, we propose a self-organization approach to traffic light control. The problem can be treated as a multi-agent problem with interactions between vehicles and traffic lights. Specifically, our approach assumes a priority-based control of traffic lights by the vehicle flows themselves, taking into account short-sighted anticipation of vehicle flows and platoons. The considered local interactions lead to emergent coordination patterns such as 'green waves' and achieve an efficient, decentralized traffic light control. While the proposed self-control adapts flexibly to local flow conditions and often leads to non-cyclical switching patterns with changing service sequences of different traffic flows, an almost periodic service may evolve under certain conditions and suggests the existence of a spontaneous synchronization of traffic lights despite the varying delays due to variable vehicle queues and travel times. The self-organized traffic light control is based on an optimization and a stabilization rule, each of which performs poorly at high utilizations of the road network, while their proper combination reaches a superior performance. The result is a considerable reduction not only in the average travel times, but also of their variation. Similar control approaches could be applied to the coordination of logistic and production processes.

  14. Home air-conditioning, traffic exposure, and asthma and allergic symptoms among preschool children.

    PubMed

    Zuraimi, Mohamed Sultan; Tham, Kwok-Wai; Chew, Fook-Tim; Ooi, Peng-Lim; Koh, David

    2011-02-01

    Epidemiological data suggest that traffic exposures can influence asthma and allergic symptoms among preschool children; however, there is no information on risk reduction via home air-conditioning (AC). The aim of this study is to evaluate the associations of self-reported traffic densities with asthma and allergic symptoms among preschool children and determine whether AC is an effect modifier. A cross-sectional study adopting an expanded and modified ISAAC--International Study of Asthma and Allergies in Childhood conducted on randomly selected 2994 children living in homes without any indoor risk factors. Specific information on demographics, indoor home risk factors, and traffic variables were obtained. Adjusted prevalence ratios (PR) and 95% confidence interval (CI) were determined by Cox proportional hazard regression model with assumption of a constant risk period controlled for covariates. We found dose-response significant relationships between validated self-reported traffic densities and asthma and rhinitis symptoms. Among children sleeping in non-air-conditioned homes, there were stronger associations between asthma and rhinitis symptoms studied. PRs for heavy traffic density were 2.06 for wheeze (95% CI 0.97-4.38), 2.89 for asthma (1.14-7.32), 1.73 for rhinitis (1.00-2.99), and 3.39 for rhinoconjunctivitis (1.24-9.27). There were no associations found for children sleeping in air-conditioned homes. Our results suggest that AC in the bedroom modifies the health effects of traffic among preschool children. This finding suggests that attention should also be paid to ventilation characteristics of the homes to remediate health-related traffic pollution problems. PMID:20561230

  15. Classification and Prediction of Traffic Flow Based on Real Data Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Pamuła, Teresa

    2012-12-01

    This paper presents a method of classification of time series of traffic flow, on the section of the main road leading into the city of Gliwice. Video detectors recorded traffic volume data was used, covering the period of one year in 5-minute intervals - from June 2011 to May 2012. In order to classify the data a statistical analysis was performed, which resulted in the proposition of splitting the daily time series into four classes. The series were smoothed to obtain hourly flow rates. The classification was performed using neural networks with different structures and using a variable number of input data. The purpose of classification is the prediction of traffic flow rates in the afternoon basing on the morning traffic and the assessment of daily traffic volumes for a particular day of the week. The results can be utilized by intelligent urban traffic management systems.

  16. Human-Centered Technologies and Procedures for Future Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Smith, Philip; Woods, David; McCoy, Elaine; Billings, Charles; Sarter, Nadine; Denning, Rebecca; Dekker, Sidney

    1997-01-01

    The use of various methodologies to predict the impact of future Air Traffic Management (ATM) concepts and technologies is explored. The emphasis has been on the importance of modeling coordination and cooperation among multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, identifying critical problem areas and looking for examples suggestive of general approaches for solving such problems. Using the results of these field studies, we have developed a set of concrete scenarios centered around future designs, and have studied performance in these scenarios with a set of 40 controllers, dispatchers, pilots and traffic managers.

  17. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  18. In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Chartrand, Ryan C.; Hewitt, Katrin P.; Sweeney, Peter B.; Graff, Thomas J.; Jones, Kenneth M.

    2012-01-01

    In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results.

  19. Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks

    NASA Astrophysics Data System (ADS)

    Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie

    2015-12-01

    Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.

  20. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects among Children with Asthma in Detroit, Michigan

    EPA Science Inventory

    Vehicular traffic is a major source of ambient air pollution in urban areas, and traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter under 2.5 microns in diameter (PM2.5) and diesel exhaust emissions, have been associated with...

  1. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  2. 75 FR 66828 - Eleventh Meeting: RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Services. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of the RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data Communication Services. DATES: The...

  3. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RETIREMENT SYSTEM-BASIC ANNUITY Law Enforcement Officers, Firefighters, and Air Traffic Controllers Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air traffic... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Deposits for second-level supervisory...

  4. Valiant Load-Balancing: Building Networks That Can Support All Traffic Matrices

    NASA Astrophysics Data System (ADS)

    Zhang-Shen, Rui

    This paper is a brief survey on how Valiant load-balancing (VLB) can be used to build networks that can efficiently and reliably support all traffic matrices. We discuss how to extend VLB to networks with heterogeneous capacities, how to protect against failures in a VLB network, and how to interconnect two VLB networks. For the readers' reference, included also is a list of work that uses VLB in various aspects of networking.

  5. Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity

    NASA Technical Reports Server (NTRS)

    Brinton, Christopher R.

    1996-01-01

    The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.

  6. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  7. Manpower Requirements for Air Traffic Control and Flight Service Specialists in Indiana.

    ERIC Educational Resources Information Center

    Purdue Univ., Lafayette, IN. Office of Manpower Studies.

    As of January 1, 1968 the Federal Aviation Administration (FAA) of the United States Department of Transportation employed 6,963 controllers in airport towers, 7,617 controllers in Air Route Traffic Control Centers, and 4,459 flight service specialists at airport locations. Projected needs are as follows: (1) Controllers in airport towers:…

  8. Air Route Traffic Control Center. Controller Over-The-Shoulder Training Review: Instruction Manual.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The instruction manual provides 12 step-by-step instructions for air traffic control supervisors in conducting over-the-shoulder training observations of enroute center controllers. Since the primary purpose of the review is to quickly identify training needs and requirements, the control responsibilities are approached from a deficiency…

  9. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  10. The Evaluation of Alternative Exposure Metrics for Traffic-related Air Pollutant Exposure in North Carolina

    EPA Science Inventory

    Transportation plays an important role in the modern society but can cause significant health impacts. To quantify the associated health impacts, an appropriate traffic-related air pollution exposure metric is required. In this study, we evaluate the suitability of four exposure ...

  11. Hematological and immunological effects of stress of air traffic controllers in northeastern Brazil

    PubMed Central

    Ribas, Valdenilson Ribeiro; Martins, Hugo André de Lima; Viana, Marcelo Tavares; Fraga, Simone do Nascimento; Carneiro, Severino Marcos de Oliveira; Galvão, Bruno Henrique Andrade; Bezerra, Alice Andrade; de Castro, Célia Maria Machado Barbosa; Sougey, Everton Botelho; de Castro, Raul Manhães

    2011-01-01

    Background Several studies have shown that stress and emotional reactions can affect immune responses in animals and humans. Objective The aim of this study was to evaluate hematological and immunological effects of stress on air traffic controllers. Methods Thirty air traffic controllers and 15 aeronautical information service operators were evaluated. The groups were divided as information service operators with 10 years or more of experience (AIS≥10) and with less than 10 years in the profession (AIS<10) and air traffic controllers with 10 years or more of experience (ATCo≥10) and with less than 10 years in the profession (ATCo<10). Blood samples were drawn at 8:00 a.m. and 2:00 p.m. The paired t-test was used to compare monocyte and nitric oxide concentrations and ANOVA was used for the other parameters. Results The ATCo≥10 group presented a significantly lower phagocytosis rate of monocytes at 2:00 p.m. compared to 8:00 a.m. Moreover, the ATCo≥10 group presented lower hemoglobin, mean corpuscular hemoglobin concentration, platelet and leukocyte levels, and increased cortisol concentrations at 8:00 a.m. compared to the other groups. Additionally, this group had lower phagocytosis rate of monocytes, and hemoglobin, platelet, leukocyte, basophils and nitric oxide levels at 2:00 p.m. compared to the other groups. Conclusion Stress seems to greatly affect immune responses of air traffic controllers with more than ten years of experience. PMID:23049295

  12. TRAFFIC-RELATED AIR POLLUTION AND CHILDREN'S RESPIRATORY HEALTH: BEYOND PROXIMITY TO MAJOR ROADWAYS

    EPA Science Inventory

    Introduction: Previous studies of the respiratory health impact of mobile source air pollutants on

    children have relied heavily on simple exposure metrics such as proximity to roadways and traffic

    density near the home or school. Few studies have conducted area-wide...

  13. Cognitive Task Analysis of En Route Air Traffic Control: Model Extension and Validation.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    Phase II of a project extended data collection and analytic procedures to develop a model of expertise and skill development for en route air traffic control (ATC). New data were collected by recording the Dynamic Simulator (DYSIM) performance of five experts with a work overload problem. Expert controllers were interviewed in depth for mental…

  14. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  15. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  16. Training of U.S. Air Traffic Controllers. (IDA Report No. R-206).

    ERIC Educational Resources Information Center

    Henry, James H.; And Others

    The report reviews the evolution of existing national programs for air traffic controller training, estimates the number of persons requiring developmental and supplementary training, examines present controller selection and training programs, investigates performance measurement methods, considers standardization and quality control, discusses…

  17. Draft Cognitive Skills Training Program for En-Route Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Redding, Richard E.

    This document begins with a discussion of the cognitive task analysis (CTA) that was commissioned by the Federal Aviation Administration to identify the cognitive skills-related training needs of en-route air traffic controllers. Concluding the introductory section are a brief list of recommendations regarding the design of a training program…

  18. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  19. Air Traffic Communication in a Second Language: Implications of Cognitive Factors for Training and Assessment

    ERIC Educational Resources Information Center

    Farris, Candace; Trofimovich, Pavel; Segalowitz, Norman; Gatbonton, Elizabeth

    2008-01-01

    This study investigated the effects of second language (L2) proficiency and task-induced cognitive workload on participants' speech production and retention of information in an environment designed to simulate the demands faced by pilots receiving instructions from air-traffic controllers. Three groups of 20 participants (one…

  20. A Theory and Model of Conflict Detection in Air Traffic Control: Incorporating Environmental Constraints

    ERIC Educational Resources Information Center

    Loft, Shayne; Bolland, Scott; Humphreys, Michael S.; Neal, Andrew

    2009-01-01

    A performance theory for conflict detection in air traffic control is presented that specifies how controllers adapt decisions to compensate for environmental constraints. This theory is then used as a framework for a model that can fit controller intervention decisions. The performance theory proposes that controllers apply safety margins to…

  1. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations...

  2. The role of vegetation in mitigating air quality impacts from traffic emissions--journal

    EPA Science Inventory

    On Apri1 27-28, 2019, a multi-disciplinary group of researchers and po1icymakers met to discuss the state-of-the-science regarding the potential of roadside vegetation to mitigate near-road air quality impacts. Concerns over population exposures to traffic-generated pollutants ne...

  3. Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-05-01

    The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.

  4. Betweenness centrality and its applications from modeling traffic flows to network community detection

    NASA Astrophysics Data System (ADS)

    Ren, Yihui

    As real-world complex networks are heterogeneous structures, not all their components such as nodes, edges and subgraphs carry the same role or importance in the functions performed by the networks: some elements are more critical than others. Understanding the roles of the components of a network is crucial for understanding the behavior of the network as a whole. One the most basic function of networks is transport; transport of vehicles/people, information, materials, forces, etc., and these quantities are transported along edges between source and destination nodes. For this reason, network path-based importance measures, also called centralities, play a crucial role in the understanding of the transport functions of the network and the network's structural and dynamical behavior in general. In this thesis we study the notion of betweenness centrality, which measures the fraction of lowest-cost (or shortest) paths running through a network component, in particular through a node or an edge. High betweenness centrality nodes/edges are those that will be frequently used by the entities transported through the network and thus they play a key role in the overall transport properties of the network. In the first part of the thesis we present a first-principles based method for traffic prediction using a cost-based generalization of the radiation model (emission/absorbtion model) for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. We then focus on studying the extent of changes in traffic flows in the wake of a localized damage or alteration to the

  5. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  6. Minimizing the disruptive effects of prospective memory in simulated air traffic control.

    PubMed

    Loft, Shayne; Smith, Rebekah E; Remington, Roger W

    2013-09-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or nonadjacent to each of the 20 target aircraft presented over the 40-min test phase reduced prospective memory error by 11% compared with a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39-42 min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of nonprospective memory air traffic management (nontarget aircraft acceptance response time, conflict detection response time) were reduced by nonadjacent aids compared with no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared with nonadjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multitask performance in work settings where operators monitor and control demanding perceptual displays. PMID:24059825

  7. Minimizing the Disruptive Effects of Prospective Memory in Simulated Air Traffic Control

    PubMed Central

    Loft, Shayne; Smith, Rebekah E.; Remington, Roger

    2015-01-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or non-adjacent to each of the 20 target aircraft presented over the 40min test phase reduced prospective memory error by 11% compared to a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39min–42min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of non-prospective memory air traffic management (non-target aircraft acceptance response time, conflict detection response time) were reduced by non-adjacent aids compared to no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared to non-adjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multi-task performance in work settings where operators monitor and control demanding perceptual displays. PMID:24059825

  8. Research Lasers and Air Traffic Safety: Issues, Concerns and Responsibilities of the Research Community

    NASA Technical Reports Server (NTRS)

    Nessler, Phillip J., Jr.

    1998-01-01

    The subject of outdoor use of lasers relative to air traffic has become a diverse and dynamic topic. During the past several decades, the use of lasers in outdoor research activities have increased significantly. Increases in the outdoor use of lasers and increases in air traffic densities have changed the levels of risk involved. To date there have been no documented incidents of air traffic interference from research lasers; however, incidents involving display lasers have shown a marked increase. As a result of the national response to these incidents, new concerns over lasers have arisen. Through the efforts of the SAE G-10T Laser Safety Hazards Subcommittee and the ANSI Z136.6 development committee, potential detrimental effects to air traffic beyond the traditional eye damage concerns have been identified. An increased emphasis from the Federal Aviation Administration (FAA), the Center for Devices and Radiological Hazards (CDRH), and the National Transportation Safety Board (NTSB) along with increased concern by the public have resulted in focused scrutiny of potential hazards presented by lasers. The research community needs to rethink the traditional methods of risk evaluation and application of protective measures. The best current approach to assure adequate protection of air traffic is the application of viable hazard and risk analysis and the use of validated protective measures. Standards making efforts and regulatory development must be supported by the research community to assure that reasonable measures are developed. Without input, standards and regulations can be developed that are not compatible with the needs of the research community. Finally, support is needed for the continued development and validation of protective measures.

  9. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  10. Traffic-related air pollution. A pilot exposure assessment in Beirut, Lebanon.

    PubMed

    Borgie, Mireille; Garat, Anne; Cazier, Fabrice; Delbende, Agnes; Allorge, Delphine; Ledoux, Frederic; Courcot, Dominique; Shirali, Pirouz; Dagher, Zeina

    2014-02-01

    Traffic-related volatile organic compounds (VOCs) pollution has frequently been demonstrated to be a serious problem in the developing countries. Benzene and 1,3-butadiene (BD) have been classified as a human carcinogen based on evidence for an increased genotoxic and epigenotoxic effects in both occupational exposure assessment and in vivo/in vitro studies. We have undertaken a biomonitoring of 25 traffic policemen and 23 office policemen in Beirut, through personal air monitoring, assessed by diffusive samplers, as well as through the use of biomarkers of exposure to benzene and BD. Personal benzene, toluene, ethylbenzene, and xylene (BTEX) exposure were quantified by GC-MS/MS, urinary trans, trans-muconic acid (t,t-MA) by HPLC/UV, S-phenyl mercapturic acid (S-PMA), monohydroxy-butenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA) by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC/ESI(-)-MS/MS) in MRM (Multiple Reaction Monitoring) mode. We found that individual exposure to benzene in the traffic policemen was higher than that measured in traffic policemen in Prague, in Bologna, in Ioannina and in Bangkok. t,t-MA levels could distinguish between office and traffic policemen. However, median MHBMA levels in traffic policemen were slightly elevated, though not significantly higher than in office policemen. Alternatively, DHBMA concentrations could significantly distinguish between office and traffic policemen and showed a better correlation with personal total BTEX exposure. DHMBA, measured in the post-shift urine samples, correlated with both pre-shift MHMBA and pre-shift DHMBA. Moreover, there was not a marked effect of smoking habits on DHBMA. Taken together, these findings suggested that DHBMA is more suitable than MHBMA as biomarker of exposure to BD in humans. Traffic policemen, who are exposed to benzene and BD at the roadside in central Beirut, are potentially at a higher risk for development of

  11. Health effects of metropolitan traffic-related air pollutants on street vendors

    NASA Astrophysics Data System (ADS)

    Kongtip, P.; Thongsuk, W.; Yoosook, W.; Chantanakul, S.

    Traffic-related air pollutants are a commonly important source of air pollution. Research on the effects of multiple traffic-related air pollutants on street vendors is scarce. This study evaluated the health effect of traffic-related air pollutants in street vendors. It was designed as a panel study, covering 61 d of data collection, on the daily concentration of air pollutants and daily percentage of respiratory and other health symptoms reported. An adjusted odds ratio was used to estimate the risk of developing respiratory and other adverse health symptoms for street vendors exposed to multiple air pollutants, fine particulate (PM 2.5), nitrogen dioxide (NO 2), ozone (O 3), carbon monoxide (CO) and total volatile organic chemicals (VOCs), after controlling for confounding factors. In the first model, significant associations were found with the adjusted odds ratios of 1.022 and 1.027 for eye irritation and dizziness for PM 2.5 respectively. The adjusted odds ratio of total VOCs was 1.381 for phlegm, 4.840 for chest tightness and 1.429 for upper respiratory symptoms, and the adjusted odds ratio for CO was 1.748 for a sore throat and 1.880 for a cold and 1.655 for a cough. In the second model, the effect of PM 2.5, total VOCs and CO gave a slightly lower effect with the symptoms. The results clearly show the health effects of traffic-related air pollutants on street vendors, and imply suggestions about how to reduce exposure of street vendors.

  12. A Survey on Urban Traffic Management System Using Wireless Sensor Networks.

    PubMed

    Nellore, Kapileswar; Hancke, Gerhard P

    2016-01-01

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research. PMID:26828489

  13. A Survey on Urban Traffic Management System Using Wireless Sensor Networks

    PubMed Central

    Nellore, Kapileswar; Hancke, Gerhard P.

    2016-01-01

    Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs) have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT) of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research. PMID:26828489

  14. Proximity to Traffic, Ambient Air Pollution, and Community Noise in Relation to Incident Rheumatoid Arthritis

    PubMed Central

    Koehoorn, Mieke; Tamburic, Lillian; Davies, Hugh W.; Brauer, Michael

    2014-01-01

    Background: The risk of rheumatoid arthritis (RA) has been associated with living near traffic; however, there is evidence suggesting that air pollution may not be responsible for this association. Noise, another traffic-generated exposure, has not been studied as a risk factor for RA. Objectives: We investigated proximity to traffic, ambient air pollution, and community noise in relation to RA in the Vancouver and Victoria regions of British Columbia, Canada. Methods: Cases and controls were identified in a cohort of adults that was assembled using health insurance registration records. Incident RA cases from 1999 through 2002 were identified by diagnostic codes in combination with prescriptions and type of physician (e.g., rheumatologist). Controls were matched to RA cases by age and sex. Environmental exposures were assigned to each member of the study population by their residential postal code(s). We estimated relative risks using conditional logistic regression, with additional adjustment for median income at the postal code. Results: RA incidence was increased with proximity to traffic, with an odds ratio (OR) of 1.37 (95% CI: 1.11, 1.68) for residence ≤ 50 m from a highway compared with residence > 150 m away. We found no association with traffic-related exposures such as PM2.5, nitrogen oxides, or noise. Ground-level ozone, which was highest in suburban areas, was associated with an increased risk of RA (OR = 1.26; 95% CI: 1.18, 1.36 per interquartile range increase). Conclusions: Our study confirms a previously observed association of RA risk with proximity to traffic and suggests that neither noise levels nor traffic-related air pollutants are responsible for this relationship. Additional investigation of neighborhood and individual correlates of residence near roadways may provide new insight into risk factors for RA. Citation: De Roos AJ, Koehoorn M, Tamburic L, Davies HW, Brauer M. 2014. Proximity to traffic, ambient air pollution, and community

  15. Traffic-Related Air Pollution and Perinatal Mortality: A Case–Control Study

    PubMed Central

    de Medeiros, Andréa Paula Peneluppi; Gouveia, Nelson; Machado, Reinaldo Paul Pérez; de Souza, Miriam Regina; Alencar, Gizelton Pereira; Novaes, Hillegonda Maria Dutilh; de Almeida, Márcia Furquim

    2009-01-01

    Background Ambient levels of air pollution may affect the health of children, as indicated by studies of infant and perinatal mortality. Scientific evidence has also correlated low birth weight and preterm birth, which are important determinants of perinatal death, with air pollution. However, most of these studies used ambient concentrations measured at monitoring sites, which may not consider differential exposure to pollutants found at elevated concentrations near heavy-traffic roadways. Objectives Our goal was to examine the association between traffic-related pollution and perinatal mortality. Methods We used the information collected for a case–control study conducted in 14 districts in the City of São Paulo, Brazil, regarding risk factors for perinatal deaths. We geocoded the residential addresses of cases (fetal and early neonatal deaths) and controls (children who survived the 28th day of life) and calculated a distance-weighted traffic density (DWTD) measure considering all roads contained in a buffer surrounding these homes. Results Logistic regression revealed a gradient of increasing risk of early neonatal death with higher exposure to traffic-related air pollution. Mothers exposed to the highest quartile of the DWTD compared with those less exposed exhibited approximately 50% increased risk (adjusted odds ratio = 1.47; 95% confidence interval, 0.67–3.19). Associations for fetal mortality were less consistent. Conclusions These results suggest that motor vehicle exhaust exposures may be a risk factor for perinatal mortality. PMID:19165399

  16. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  17. Evaluation of the Monotonic Lagrangian Grid and Lat-Long Grid for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay

    2011-01-01

    The Air Traffic Monotonic Lagrangian Grid (ATMLG) is used to simulate a 24 hour period of air traffic flow in the National Airspace System (NAS). During this time period, there are 41,594 flights over the United States, and the flight plan information (departure and arrival airports and times, and waypoints along the way) are obtained from an Federal Aviation Administration (FAA) Enhanced Traffic Management System (ETMS) dataset. Two simulation procedures are tested and compared: one based on the Monotonic Lagrangian Grid (MLG), and the other based on the stationary Latitude-Longitude (Lat- Long) grid. Simulating one full day of air traffic over the United States required the following amounts of CPU time on a single processor of an SGI Altix: 88 s for the MLG method, and 163 s for the Lat-Long grid method. We present a discussion of the amount of CPU time required for each of the simulation processes (updating aircraft trajectories, sorting, conflict detection and resolution, etc.), and show that the main advantage of the MLG method is that it is a general sorting algorithm that can sort on multiple properties. We discuss how many MLG neighbors must be considered in the separation assurance procedure in order to ensure a five-mile separation buffer between aircraft, and we investigate the effect of removing waypoints from aircraft trajectories. When aircraft choose their own trajectory, there are more flights with shorter duration times and fewer CD&R maneuvers, resulting in significant fuel savings.

  18. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    PubMed

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. PMID:27590973

  19. Traffic emission factors of ultrafine particles: effects from ambient air.

    PubMed

    Janhäll, Sara; Molnar, Peter; Hallquist, Mattias

    2012-09-01

    Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the Göte-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8 × 10(15) × (1 - 0.095 × CO - 3.2 × 10(-3) × T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented. PMID:22858604

  20. A Framework for Dimensioning VDL-2 Air-Ground Networks

    NASA Technical Reports Server (NTRS)

    Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven

    2014-01-01

    This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.

  1. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  2. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mie; Eshow, Michelle

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  3. Air pollution exposure monitoring and estimation. Part V. Traffic exposure in adults.

    PubMed

    Bartonova, A; Clench-Aas, J; Gram, F; Grønskei, K E; Guerreiro, C; Larssen, S; Tønnesen, D A; Walker, S E

    1999-08-01

    In Oslo, traffic has been one of the dominating sources of air pollution in the last decade. In one part of the city where most traffic collects, two tunnels were built. A series of before and after studies was carried out in connection with the tunnels in use. Dispersion models were used as a basis for estimating exposure to nitrogen dioxide and particulate matter in two fractions. Exposure estimates were based on the results of the dispersion model providing estimates of outdoor pollutant concentrations on an hourly basis. The estimates represent concentrations in receptor points and in a square kilometre grid. The estimates were used to assess development of air pollution load in the area, compliance with air quality guidelines, and to provide a basis for quantifying exposure-effect relationships in epidemiological studies. After both tunnels were taken in use, the pollution levels in the study area were lower than when the traffic was on the surface (a drop from 50 to 40 micrograms m-3). Compliance with air quality guidelines and other prescribed values has improved, even if high exposures still exist. The most important residential areas are now much less exposed, while areas around tunnel openings can be in periods exposed to high pollutant concentrations. The daily pattern of exposure shows smaller differences between peak and minimum concentrations than prior to the traffic changes. Exposures at home (in the investigation area) were reduced most, while exposures in other locations than at home showed only a small decrease. Highest hourly exposures are encountered in traffic. PMID:11529132

  4. Traffic-related air pollution and lung cancer: A meta-analysis

    PubMed Central

    Chen, Gongbo; Wan, Xia; Yang, Gonghuan; Zou, Xiaonong

    2015-01-01

    Background We conducted a meta-analysis to evaluate the association between traffic-related air pollution and lung cancer in order to provide evidence for control of traffic-related air pollution. Methods Several databases were searched for relevant studies up to December 2013. The quality of articles obtained was evaluated by the Strengthening the Reporting of Observational Studies in Epidemiology checklist. Statistical analysis, including pooling effective sizes and confidential intervals, was performed. Results A total of 1106 records were obtained through the database and 36 studies were included in our analysis. Among the studies included, 14 evaluated the association between ambient exposure to traffic-related air pollution and lung cancer and 22 studies involved occupational exposure to air pollution among professional drivers. Twenty-two studies were marked A level regarding quality, 13 were B level, and one was C level. Exposure to nitrogen dioxide (meta-odds ratio [OR]: 1.06, 95% confidence interval [CI]: 0.99–1.13), nitrogen oxide (meta-OR: 1.04, 95% CI: 1.01–1.07), sulfur dioxide (meta-OR: 1.03, 95% CI: 1.02–1.05), and fine particulate matter (meta-OR: 1.11, 95% CI: 1.00–1.22) were positively associated with a risk of lung cancer. Occupational exposure to air pollution among professional drivers significantly increased the incidence (meta-OR: 1.27, 95% CI: 1.19–1.36) and mortality of lung cancer (meta-OR: 1.14, 95% CI: 1.04–1.26). Conclusion Exposure to traffic-related air pollution significantly increased the risk of lung cancer. PMID:26273377

  5. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  6. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    PubMed Central

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-01-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042

  7. Efficient traffic grooming with dynamic ONU grouping for multiple-OLT-based access network

    NASA Astrophysics Data System (ADS)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Wang, Hongxiang

    2015-12-01

    Fast bandwidth growth urges large-scale high-density access scenarios, where the multiple Passive Optical Networking (PON) system clustered deployment can be adopted as an appropriate solution to fulfill the huge bandwidth demands, especially for a future 5G mobile network. However, the lack of interaction between different optical line terminals (OLTs) results in part of the bandwidth resources waste. To increase the bandwidth efficiency, as well as reduce bandwidth pressure at the edge of a network, we propose a centralized flexible PON architecture based on Time- and Wavelength-Division Multiplexing PON (TWDM PON). It can provide flexible affiliation for optical network units (ONUs) and different OLTs to support access network traffic localization. Specifically, a dynamic ONU grouping algorithm (DGA) is provided to obtain the minimal OLT outbound traffic. Simulation results show that DGA obtains an average 25.23% traffic gain increment under different OLT numbers within a small ONU number situation, and the traffic gain will increase dramatically with the increment of the ONU number. As the DGA can be deployed easily as an application running above the centralized control plane, the proposed architecture can be helpful to improve the network efficiency for future traffic-intensive access scenarios.

  8. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    NASA Astrophysics Data System (ADS)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  9. Architectural impact of FDDI network on scheduling hard real-time traffic

    NASA Technical Reports Server (NTRS)

    Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh

    1991-01-01

    The architectural impact on guaranteeing synchronous message deadlines in FDDI (Fiber Distributed Data Interface) token ring networks is examined. The FDDI network does not have facility to support (global) priority arbitration which is a useful facility for scheduling hard real time activities. As a result, it was found that the worst case utilization of synchronous traffic in an FDDI network can be far less than that in a centralized single processor system. Nevertheless, it is proposed and analyzed that a scheduling method can guarantee deadlines of synchronous messages having traffic utilization up to 33 pct., the highest to date.

  10. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  11. Study on a novel traffic engineering model for IP over ASON network

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Li, Yanhe; Zheng, Xiaoping; Zhang, Hanyi

    2005-02-01

    The major goal of TE (traffic engineering) is to facilitate efficient and reliable network operations while simultaneously optimizing network utilization and traffic performance. Therefore it is necessary to introduce TE mechanism to ISPs" (Internet Service Providers") networks with the purpose of improving network performance and reducing costs. In this paper, a novel TE mechanism based on GMPLS (Generalized Multi-Protocol Label Switching) is proposed and analyzed in detail, and is demonstrated on a network with IP over ASON (automatically switched optical network) architecture. The ASON layer acts as the server of IP layer which uses traditional IP protocols, and realizes TE mechanism through the method of dynamically changing bandwidth seen by IP layer through UNI (User-Network Interface). Simulation results have shown that the model has a superior operational agility to the conventional method and lower congestion probability in certain conditions.

  12. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. PMID:26412198

  13. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  14. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm.

    PubMed

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m(3) in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83-1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m(3) corresponded to a hazard ratio of 1.14 (95% CI 0.68-1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution. PMID:25827311

  15. Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk

    PubMed Central

    Pratt, Gregory C.; Vadali, Monika L.; Kvale, Dorian L.; Ellickson, Kristie M.

    2015-01-01

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities. PMID:25996888

  16. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm

    PubMed Central

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m3 in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83–1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m3 corresponded to a hazard ratio of 1.14 (95% CI 0.68–1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution. PMID:25827311

  17. Traffic-related air pollution and risk for leukaemia of an adult population.

    PubMed

    Raaschou-Nielsen, Ole; Ketzel, Matthias; Harbo Poulsen, Aslak; Sørensen, Mette

    2016-03-01

    Air pollution causes lung cancer, but associations with other cancers have not been established. We investigated whether long-term exposure to traffic-related air pollution is associated with the risk of the general population for leukaemia. We identified 1,967 people in whom leukaemia was diagnosed in 1992-2010 from a nation-wide cancer registry and selected 3,381 control people at random, matched on sex and year of birth, from the entire Danish population. Residential addresses since 1971 were traced in a population registry, and outdoor concentrations of NOx and NO2 , as indicators of traffic-related air pollution, were calculated at each address in a dispersion model. We used conditional logistic regression to estimate the risk for leukaemia after adjustment for income, educational level, cohabitation status and co-morbidity. In linear analyses, we found odds ratios for acute myeloid leukaemia of 1.20 (95% confidence interval: 1.04-1.38) per 20 µg/m(3) increase in NOx and 1.31 (1.02-1.68) per 10 µg/m(3) increase in NO2 , calculated as time-weighted average exposure at all addresses since 1971. We found no association with chronic myeloid or lymphocytic leukaemia. This study indicates an association between long-term exposure to traffic-related air pollution and acute myeloid leukaemia in the general population, but not for other subtypes of leukaemia. PMID:26415047

  18. Traffic air pollution and mortality from cardiovascular disease and all causes: a Danish cohort study

    PubMed Central

    2012-01-01

    Background Traffic air pollution has been linked to cardiovascular mortality, which might be due to co-exposure to road traffic noise. Further, personal and lifestyle characteristics might modify any association. Methods We followed up 52 061 participants in a Danish cohort for mortality in the nationwide Register of Causes of Death, from enrollment in 1993–1997 through 2009, and traced their residential addresses from 1971 onwards in the Central Population Registry. We used dispersion-modelled concentration of nitrogen dioxide (NO2) since 1971 as indicator of traffic air pollution and used Cox regression models to estimate mortality rate ratios (MRRs) with adjustment for potential confounders. Results Mean levels of NO2 at the residence since 1971 were significantly associated with mortality from cardiovascular disease (MRR, 1.26; 95% confidence interval [CI], 1.06–1.51, per doubling of NO2 concentration) and all causes (MRR, 1.13; 95% CI, 1.04–1.23, per doubling of NO2 concentration) after adjustment for potential confounders. For participants who ate < 200 g of fruit and vegetables per day, the MRR was 1.45 (95% CI, 1.13–1.87) for mortality from cardiovascular disease and 1.25 (95% CI, 1.11–1.42) for mortality from all causes. Conclusions Traffic air pollution is associated with mortality from cardiovascular diseases and all causes, after adjustment for traffic noise. The association was strongest for people with a low fruit and vegetable intake. PMID:22950554

  19. Traffic-related Air Pollution and the Right Ventricle. The Multi-ethnic Study of Atherosclerosis

    PubMed Central

    Kaufman, Joel D.; Barr, R. Graham; Bluemke, David A.; Curl, Cynthia L.; Hough, Catherine L.; Lima, Joao A.; Szpiro, Adam A.; Van Hee, Victor C.; Kawut, Steven M.

    2014-01-01

    Rationale: Right heart failure is a cause of morbidity and mortality in common and rare heart and lung diseases. Exposure to traffic-related air pollution is linked to left ventricular hypertrophy, heart failure, and death. Relationships between traffic-related air pollution and right ventricular (RV) structure and function have not been studied. Objectives: To characterize the relationship between traffic-related air pollutants and RV structure and function. Methods: We included men and women with magnetic resonance imaging assessment of RV structure and function and estimated residential outdoor nitrogen dioxide (NO2) concentrations from the Multi-ethnic Study of Atherosclerosis, a study of individuals free of clinical cardiovascular disease at baseline. Multivariable linear regression estimated associations between NO2 exposure (averaged over the year prior to magnetic resonance imaging) and measures of RV structure and function after adjusting for demographics, anthropometrics, smoking status, diabetes mellitus, and hypertension. Adjustment for corresponding left ventricular parameters, traffic-related noise, markers of inflammation, and lung disease were considered in separate models. Secondary analyses considered oxides of nitrogen (NOx) as the exposure. Measurements and Main Results: The study sample included 3,896 participants. In fully adjusted models, higher NO2 was associated with greater RV mass and larger RV end-diastolic volume with or without further adjustment for corresponding left ventricular parameters, traffic-related noise, inflammatory markers, or lung disease (all P < 0.05). There was no association between NO2 and RV ejection fraction. Relationships between NOx and RV morphology were similar. Conclusions: Higher levels of NO2 exposure were associated with greater RV mass and larger RV end-diastolic volume. PMID:24593877

  20. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  1. Short-term exposure to traffic-related air pollution and daily mortality in London, UK

    PubMed Central

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m3, respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC. PMID:26464095

  2. Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    PubMed

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC. PMID:26464095

  3. Impact of road traffic emissions on ambient air quality in an industrialized area.

    PubMed

    Garcia, Sílvia M; Domingues, Gonçalo; Gomes, Carla; Silva, Alexandra V; Almeida, S Marta

    2013-01-01

    Several epidemiological studies showed a correlation between airborne particulate matter(PM) and the incidence of several diseases in exposed populations. Consequently, the European Commission reinforced the need and obligation of member-states to monitor exposure levels of PM and adopt measures to reduce this exposure. However, in order to plan appropriate actions, it is necessary to understand the main sources of air pollution and their relative contributions to the formation of the ambient aerosol. The aim of this study was to develop a methodology to assess the contribution of vehicles to the atmospheric aerosol,which may constitute a useful tool to assess the effectiveness of planned mitigation actions.This methodology is based on three main steps: (1) estimation of traffic emissions provided from the vehicles exhaust and resuspension; (2) use of the dispersion model TAPM (“The Air Pollution Model”) to estimate the contribution of traffic for the atmospheric aerosol; and(3) use of geographic information system (GIS) tools to map the PM10 concentrations provided from traffic in the surroundings of a target area. The methodology was applied to an industrial area, and results showed that the highest contribution of traffic for the PM10 concentrations resulted from dust resuspension and that heavy vehicles were the type that most contributed to the PM10 concentration. PMID:23738394

  4. The Influence of Traffic on Air Quality in an Urban Neighborhood: A Community–University Partnership

    PubMed Central

    Lee, Harrison J.; Levy, Jonathan I.

    2009-01-01

    Objectives. We evaluated the spatial and temporal patterns of traffic-related air pollutants in an urban neighborhood to determine factors contributing to elevated concentrations and to inform environmental justice concerns. Methods. In the summer of 2007, we continuously monitored multiple air pollutants at a community site in the Mission Hill neighborhood of Boston, Massachussetts, and local high school students conducted mobile continuous monitoring throughout the neighborhood. We used regression models to explain variability in concentrations, considering various attributes of traffic, proximity to major roadways, and meteorology. Results. Different attributes of traffic explained variability in fixed-site concentrations of ultrafine particles, fine particulate matter, and black carbon, with diurnal patterns and meteorological effects indicative of a greater local effect on ultrafine particles and black carbon. Mobile monitoring demonstrated that multiple traffic variables predict elevated levels of ultrafine particles, with concentrations of ultrafine particles decreasing by 50% within 400 meters of 2 major roadways. Conclusions. Unlike fine particulate matter, ultrafine particles demonstrate significant spatial and temporal variability within an urban neighborhood, contributing to environmental justice concerns, and patterns can be well characterized with a community-based participatory research design. PMID:19890168

  5. ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks

    PubMed Central

    Rahman, Md. Obaidur; Hong, Choong Seon; Lee, Sungwon; Bang, Young-Cheol

    2011-01-01

    In collaborative body sensor networks, namely wireless body area networks (WBANs), each of the physical sensor applications is used to collaboratively monitor the health status of the human body. The applications of WBANs comprise diverse and dynamic traffic loads such as very low-rate periodic monitoring (i.e., observation) data and high-rate traffic including event-triggered bursts. Therefore, in designing a medium access control (MAC) protocol for WBANs, energy conservation should be the primary concern during low-traffic periods, whereas a balance between satisfying high-throughput demand and efficient energy usage is necessary during high-traffic times. In this paper, we design a traffic load-aware innovative MAC solution for WBANs, called ATLAS. The design exploits the superframe structure of the IEEE 802.15.4 standard, and it adaptively uses the contention access period (CAP), contention free period (CFP) and inactive period (IP) of the superframe based on estimated traffic load, by applying a dynamic “wh” (whenever which is required) approach. Unlike earlier work, the proposed MAC design includes load estimation for network load-status awareness and a multi-hop communication pattern in order to prevent energy loss associated with long range transmission. Finally, ATLAS is evaluated through extensive simulations in ns-2 and the results demonstrate the effectiveness of the protocol. PMID:22247681

  6. ATLAS: a traffic load aware sensor MAC design for collaborative body area sensor networks.

    PubMed

    Rahman, Md Obaidur; Hong, Choong Seon; Lee, Sungwon; Bang, Young-Cheol

    2011-01-01

    In collaborative body sensor networks, namely wireless body area networks (WBANs), each of the physical sensor applications is used to collaboratively monitor the health status of the human body. The applications of WBANs comprise diverse and dynamic traffic loads such as very low-rate periodic monitoring (i.e., observation) data and high-rate traffic including event-triggered bursts. Therefore, in designing a medium access control (MAC) protocol for WBANs, energy conservation should be the primary concern during low-traffic periods, whereas a balance between satisfying high-throughput demand and efficient energy usage is necessary during high-traffic times. In this paper, we design a traffic load-aware innovative MAC solution for WBANs, called ATLAS. The design exploits the superframe structure of the IEEE 802.15.4 standard, and it adaptively uses the contention access period (CAP), contention free period (CFP) and inactive period (IP) of the superframe based on estimated traffic load, by applying a dynamic "wh" (whenever which is required) approach. Unlike earlier work, the proposed MAC design includes load estimation for network load-status awareness and a multi-hop communication pattern in order to prevent energy loss associated with long range transmission. Finally, ATLAS is evaluated through extensive simulations in ns-2 and the results demonstrate the effectiveness of the protocol. PMID:22247681

  7. Towards a Functionally-Formed Air Traffic System-of-Systems

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.; Consiglio, Maria C.

    2005-01-01

    Incremental improvements to the national aviation infrastructure have not resulted in sufficient increases in capacity and flexibility to meet emerging demand. Unfortunately, revolutionary changes capable of substantial and rapid increases in capacity have proven elusive. Moreover, significant changes have been difficult to implement, and the operational consequences of such change, difficult to predict due to the system s complexity. Some research suggests redistributing air traffic control functions through the system, but this work has largely been dismissed out of hand, accused of being impractical. However, the case for functionally-based reorganization of form can be made from a theoretical, systems perspective. This paper investigates Air Traffic Management functions and their intrinsic biases towards centralized/distributed operations, grounded in systems engineering and information technology theories. Application of these concepts to a small airport operations design is discussed. From this groundwork, a robust, scalable system transformation plan may be made in light of uncertain demand.

  8. A Mathematical Model and Algorithm for Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.

    2016-01-01

    A central challenge in managing today's commercial en route air traffic is the task of routing the aircraft in the presence of adverse weather. Such weather can make regions of the airspace unusable, so all affected flights must be re-routed. Today this task is carried out by conference and negotiation between human air traffic controllers (ATC) responsible for the involved sectors of the airspace. One can argue that, in so doing, ATC try to solve an optimization problem without giving it a precise quantitative formulation. Such a formulation gives the mathematical machinery for constructing and verifying algorithms that are aimed at solving the problem. This paper contributes one such formulation and a corresponding algorithm. The algorithm addresses weather uncertainty and has closed form, which allows transparent analysis of correctness, realism, and computational costs.

  9. Quality of Life, Sleep, and Health of Air Traffic Controllers With Rapid Counterclockwise Shift Rotation.

    PubMed

    Sonati, Jaqueline Girnos; De Martino, Milva Maria Figueiredo; Vilarta, Roberto; da Silva Maciel, Érika; Sonati, Renato José Ferreira; Paduan, Paulo Cézar

    2016-08-01

    Rotating shiftwork is common for air traffic controllers and usually causes sleep deprivation, biological adaptations, and life changes for these workers. This study assessed quality of life, the sleep, and the health of 30 air traffic controllers employed at an international airport in Brazil. The objective was to identify health and quality of life concerns of these professionals. The results identified physical inactivity, overweight, excess body fat, low scores for physical and social relationships, and sleep deprivation for workers in all four workshifts. In conclusion, these workers are at risk for chronic non-transmittable diseases and compromised work performance, suggesting the need for more rest time before working nightshifts and work environments that stimulate physical activity and healthy diets. PMID:27147608

  10. Information Presentation and Control in a Modern Air Traffic Control Tower Simulator

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton

    1996-01-01

    The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.

  11. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    PubMed

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  12. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution

    PubMed Central

    Laumbach, Robert J.; Kipen, Howard M.

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases including asthma, chronic obstructive pulmonary disease, pneumonia and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time due to varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory disease. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  13. Aeronautical Communications Research and Development Needs for Future Air Traffic Management Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2002-01-01

    Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.

  14. Traffic-related air quality trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, Pedro José; Fátima Andrade, María.; Miranda, Regina Maura

    2015-06-01

    The urban population of South America has grown at 1.05%/yr, greater urbanization increasing problems related to air pollution. In most large cities in South America, there has been no continuous long-term measurement of regulated pollutants. One exception is São Paulo, Brazil, where an air quality monitoring network has been in place since the 1970s. In this paper, we used an air quality-based approach to determine pollutant trends for emissions of carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), and coarse particulate matter (PM10), mostly from mobile sources, in the Metropolitan Region of São Paulo for the 2000-2013 period. Mobile sources included light-duty vehicles (LDVs, comprising gasoline- or ethanol-powered cars and motorcycles) and heavy-duty vehicles (HDVs, comprising diesel-powered trucks and buses). Pollutant concentrations for mobile source emissions were measured and correlated with fuel sales by the emission factors. Over the 2000-2013 period, concentrations of NOx, CO, and PM10 decreased by 0.65, 0.37, and 0.71% month-1, respectively, whereas sales of gasoline, ethanol, and diesel increased by 0.26, 1.96, and 0.38% month-1, respectively. LDVs were the major mobile source of CO, whereas LDVs were the major source of NOx and PM10. Increases in fuel sales and in the corresponding traffic volume were partially offset by decreases in pollutant concentrations. Between 2000 and 2013, there was a sharp (-5 ppb month-1) decrease in the concentrations of LDV-emitted CO, together with (less dramatic) decreases in the concentrations of HDV-emitted NOx and PM10 (-0.25 and -0.09 ppb month-1, respectively). Variability was greater for HDV-emitted NOx and PM10 (R = -0.47 and -0.41, respectively) than for LDV-emitted CO (R = -0.72). We draw the following conclusions: the observed concentrations of LDV-emitted CO decreased at a sharper rate than did those of HDV-emitted NOx and PM10; mobile source contributions to O3 formation varied significantly, LDVs

  15. 76 FR 28379 - Proposed Amendment and Establishment of Air Traffic Service Routes; Northeast United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ...This action proposes to amend five Air Traffic Service (ATS) routes and establish four new ATS routes. The existing routes that would be amended are Q-42, J-60, V-16, V-229 and V-449. The proposed new routes are Q-62, Q-406, Q-448 and Q-480. The FAA is proposing this action to increase National Airspace System (NAS) efficiency, enhance safety and reduce delays within the New York Metropolitan......

  16. How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Hagen, George; Maddalon, Jeffrey M.; Munoz, Cesar A.; Narkawicz, Anthony; Dowek, Gilles

    2010-01-01

    In this paper we describe a process of algorithmic discovery that was driven by our goal of achieving complete, mechanically verified algorithms that compute conflict prevention bands for use in en route air traffic management. The algorithms were originally defined in the PVS specification language and subsequently have been implemented in Java and C++. We do not present the proofs in this paper: instead, we describe the process of discovery and the key ideas that enabled the final formal proof of correctness

  17. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  18. Automation for "Direct-to" Clearances in Air-Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McNally, David

    2006-01-01

    A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.

  19. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  20. Using Historical Data to Automatically Identify Air-Traffic Control Behavior

    NASA Technical Reports Server (NTRS)

    Lauderdale, Todd A.; Wu, Yuefeng; Tretto, Celeste

    2014-01-01

    This project seeks to develop statistical-based machine learning models to characterize the types of errors present when using current systems to predict future aircraft states. These models will be data-driven - based on large quantities of historical data. Once these models are developed, they will be used to infer situations in the historical data where an air-traffic controller intervened on an aircraft's route, even when there is no direct recording of this action.

  1. Evaluation of traffic management implementation and testing issues within an ATM network

    NASA Astrophysics Data System (ADS)

    Owens, Kenneth R.; Burin, Kay

    1997-10-01

    Data and telecommunications industries are using ATM in a number of applications and in several configurations, enabling companies to re-engineer important functions and effectively distribute the workforce as needed. In this paper, the authors will define and offer solutions to the issues and concerns of telecom/datacom mangers when providing enhanced network access via ATM. We quantify several important traffic management implementation and testing issues within an ATM network. Guidelines are presented for meeting quality of service requirements, for mapping source traffic descriptors into different service classes, and for measuring various traffic management parameters. Abstract test suite development is discussed with respect to performance testing, and guidelines are presented on performance testing in network and in application designs.

  2. Traffic-driven epidemic outbreak on complex networks: How long does it take?

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Wen-Xu; Lai, Ying-Cheng

    2012-12-01

    Recent studies have suggested the necessity to incorporate traffic dynamics into the process of epidemic spreading on complex networks, as the former provides support for the latter in many real-world situations. While there are results on the asymptotic scope of the spreading dynamics, the issue of how fast an epidemic outbreak can occur remains outstanding. We observe numerically that the density of the infected nodes exhibits an exponential increase with time initially, rendering definable a characteristic time for the outbreak. We then derive a formula for scale-free networks, which relates this time to parameters characterizing the traffic dynamics and the network structure such as packet-generation rate and betweenness distribution. The validity of the formula is tested numerically. Our study indicates that increasing the average degree and/or inducing traffic congestion can slow down the spreading process significantly.

  3. Achieving QoS for TCP Traffic in Satellite Networks with Differentiated Services

    NASA Technical Reports Server (NTRS)

    Durresi, Arjan; Kota, Sastri; Goyal, Mukul; Jain, Raj; Bharani, Venkata

    2001-01-01

    Satellite networks play an indispensable role in providing global Internet access and electronic connectivity. To achieve such a global communications, provisioning of quality of service (QoS) within the advanced satellite systems is the main requirement. One of the key mechanisms of implementing the quality of service is traffic management. Traffic management becomes a crucial factor in the case of satellite network because of the limited availability of their resources. Currently, Internet Protocol (IP) only has minimal traffic management capabilities and provides best effort services. In this paper, we presented a broadband satellite network QoS model and simulated performance results. In particular, we discussed the TCP flow aggregates performance for their good behavior in the presence of competing UDP flow aggregates in the same assured forwarding. We identified several factors that affect the performance in the mixed environments and quantified their effects using a full factorial design of experiment methodology.

  4. Energy conservation in ad hoc multimedia networks using traffic-shaping mechanisms

    NASA Astrophysics Data System (ADS)

    Chandra, Surendar

    2003-12-01

    In this work, we explore network traffic shaping mechanisms that deliver packets at pre-determined intervals; allowing the network interface to transition to a lower power consuming sleep state. We focus our efforts on commodity devices, IEEE 802.11b ad hoc mode and popular streaming formats. We argue that factors such as the lack of scheduling clock phase synchronization among the participants and scheduling delays introduced by back ground tasks affect the potential energy savings. Increasing the periodic transmission delays to transmit data infrequently can offset some of these effects at the expense of flooding the wireless channel for longer periods of time; potentially increasing the time to acquire the channel for non-multimedia traffic. Buffering mechanisms built into media browsers can mitigate the effects of these added delays from being mis-interpreted as network congestion. We show that practical implementations of such traffic shaping mechanisms can offer significant energy savings.

  5. Queue Resource Reallocation Strategy for Traffic Systems in Scale-Free Network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Liang, Man-Gui; Jiang, Zhong-Yuan; Li, Hui-Jia

    2013-03-01

    In real communication systems, each node has a finite queue length to store packets due to physical constraints. In this paper, we propose a queue resource allocation strategy for traffic dynamics in scale-free networks. With a finite resource of queue, the allocation of queue length on node i is based on Bi, where Bi is the generalized betweenness centrality of node i. The overall traffic capacity of a network system can be evaluated by the critical packet generating rate (Rc). Through the use of the proposed queue allocation scheme for the shortest path protocol and efficient routing protocol, our strategy performs better than the uniform queue length allocation strategy, which is demonstrated by a larger value of the critical generating rate. We also give a method to estimate the network traffic capacity theoretically.

  6. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  7. Development concerns for satellite-based air traffic control surveillance systems

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.

    1985-01-01

    Preliminary results of an investigation directed toward the configuration of a practical system design which can form the baseline for assessing the applications and value of a satellite based air traffic surveillance system for future use in the National Airspace System (NAS) are described. This work initially studied the characteristics and capabilities of a satellite configuration which would operate compatibly with the signal structure and avionics of the next generation air traffic control secondary surveillance radar system, the Mode S system. A compatible satellite surveillance system concept is described and an analysis is presented of the link budgets for the various transmission paths. From this, the satellite characteristics are established involving a large multiple feed L band antenna of approximately 50 meter aperture dimension. Trade offs involved in several of the alternative large aperture antennas considered are presented as well as the influence of various antenna configurations on the performance capabilities of the surveillance system. The features and limitations of the use of large aperture antenna systems for air traffic surveillance are discussed. Tentative results of this continuing effort are summarized with a brief description of follow on investigations involving other space based antenna systems concepts.

  8. Analysis of Air Traffic Track Data with the AutoBayes Synthesis System

    NASA Technical Reports Server (NTRS)

    Schumann, Johann Martin Philip; Cate, Karen; Lee, Alan G.

    2010-01-01

    The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controllers. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties. We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and the detection of continuous descent approaches can be accomplished with compact task-specific AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.

  9. Design Issues for Traffic Management for the ATM UBR + Service for TCP Over Satellite Networks

    NASA Technical Reports Server (NTRS)

    Jain, Raj

    1999-01-01

    This project was a comprehensive research program for developing techniques for improving the performance of Internet protocols over Asynchronous Transfer Mode (ATM) based satellite networks. Among the service categories provided by ATM networks, the most commonly used category for data traffic is the unspecified bit rate (UBR) service. UBR allows sources to send data into the network without any feedback control. The project resulted in the numerous ATM Forum contributions and papers.

  10. A Cognitive-System Model for En Route Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    NASA Ames Research Center has been engaged in the development of advanced air traffic management technologies whose basic form is cognitive aiding systems for air traffic controller and flight deck operations. In the design and evaluation of such systems the dynamic interaction between the airborne aiding system and the ground-based aiding systems forms a critical coupling for control. The human operator is an integral control element in the system and the optimal integration of human decision and performance parameters with those of the automation aiding systems offers a significant challenge to cognitive engineering. This paper presents a study in full mission simulation and the development of a predictive computational model of human performance. We have found that this combination of methodologies provide a powerful design-aiding process. We have extended the computational model Man Machine Integrated Design and Analysis System (N13DAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems), operating aircraft airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require the representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. We have exercised this model in a multi-air traffic sector scenario with potential conflict among aircraft at and across sector boundaries. We have modeled the control situation as a multiple closed loop system. The inner and outer

  11. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    PubMed

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  12. Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions.

    PubMed

    Manley, Ed

    2015-01-01

    The emergence of large, fine-grained mobility datasets offers significant opportunities for the development and application of new methodologies for transportation analysis. In this paper, the link between routing behaviour and traffic patterns in urban areas is examined, introducing a method to derive estimates of traffic patterns from a large collection of fine-grained routing data. Using this dataset, the interconnectivity between road network junctions is extracted in the form of a Markov chain. This representation encodes the probability of the successive usage of adjacent road junctions, encoding routes as flows between decision points rather than flows along road segments. This network of functional interactions is then integrated within a modified Markov chain Monte Carlo (MCMC) framework, adapted for the estimation of urban traffic patterns. As part of this approach, the data-derived links between major junctions influence the movement of directed random walks executed across the network to model origin-destination journeys. The simulation process yields estimates of traffic distribution across the road network. The paper presents an implementation of the modified MCMC approach for London, United Kingdom, building an MCMC model based on a dataset of nearly 700000 minicab routes. Validation of the approach clarifies how each element of the MCMC framework contributes to junction prediction performance, and finds promising results in relation to the estimation of junction choice and minicab traffic distribution. The paper concludes by summarising the potential for the development and extension of this approach to the wider urban modelling domain. PMID:26009884

  13. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    PubMed Central

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  14. Mapping edge-based traffic measurements onto the internal links in MPLS network

    NASA Astrophysics Data System (ADS)

    Zhao, Guofeng; Tang, Hong; Zhang, Yi

    2004-09-01

    Applying multi-protocol label switching techniques to IP-based backbone for traffic engineering goals has shown advantageous. Obtaining a volume of load on each internal link of the network is crucial for traffic engineering applying. Though collecting can be available for each link, such as applying traditional SNMP scheme, the approach may cause heavy processing load and sharply degrade the throughput of the core routers. Then monitoring merely at the edge of the network and mapping the measurements onto the core provides a good alternative way. In this paper, we explore a scheme for traffic mapping with edge-based measurements in MPLS network. It is supposed that the volume of traffic on each internal link over the domain would be mapped onto by measurements available only at ingress nodes. We apply path-based measurements at ingress nodes without enabling measurements in the core of the network. We propose a method that can infer a path from the ingress to the egress node using label distribution protocol without collecting routing data from core routers. Based on flow theory and queuing theory, we prove that our approach is effective and present the algorithm for traffic mapping. We also show performance simulation results that indicate potential of our approach.

  15. Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions

    PubMed Central

    Manley, Ed

    2015-01-01

    The emergence of large, fine-grained mobility datasets offers significant opportunities for the development and application of new methodologies for transportation analysis. In this paper, the link between routing behaviour and traffic patterns in urban areas is examined, introducing a method to derive estimates of traffic patterns from a large collection of fine-grained routing data. Using this dataset, the interconnectivity between road network junctions is extracted in the form of a Markov chain. This representation encodes the probability of the successive usage of adjacent road junctions, encoding routes as flows between decision points rather than flows along road segments. This network of functional interactions is then integrated within a modified Markov chain Monte Carlo (MCMC) framework, adapted for the estimation of urban traffic patterns. As part of this approach, the data-derived links between major junctions influence the movement of directed random walks executed across the network to model origin-destination journeys. The simulation process yields estimates of traffic distribution across the road network. The paper presents an implementation of the modified MCMC approach for London, United Kingdom, building an MCMC model based on a dataset of nearly 700000 minicab routes. Validation of the approach clarifies how each element of the MCMC framework contributes to junction prediction performance, and finds promising results in relation to the estimation of junction choice and minicab traffic distribution. The paper concludes by summarising the potential for the development and extension of this approach to the wider urban modelling domain. PMID:26009884

  16. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    NASA Astrophysics Data System (ADS)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  17. Traffic Impacts on PM2.5 Air Quality in Nairobi, Kenya

    PubMed Central

    Kinney, Patrick L.; Gichuru, Michael Gatari; Volavka-Close, Nicole; Ngo, Nicole; Ndiba, Peter K.; Law, Anna; Gachanja, Anthony; Gaita, Samuel Mwaniki; Chillrud, Steven N.; Sclar, Elliott

    2011-01-01

    Motor vehicle traffic is an important source of particulate pollution in cities of the developing world, where rapid growth, coupled with a lack of effective transport and land use planning, may result in harmful levels of fine particles (PM2.5) in the air. However, a lack of air monitoring data hinders health impact assessments and the development of transportation and land use policies that could reduce health burdens due to outdoor air pollution. To address this important need, a study of traffic-related PM2.5 was carried out in the city of Nairobi, Kenya, a model city for sub-Saharan Africa, in July 2009. Sampling was carried out using portable filter-based air samplers carried in backpacks by technicians on weekdays over two weeks at several sites in and around Nairobi ranging from high-traffic roadways to rural background. Mean daytime concentrations of PM2.5 ranged from 10.7 at the rural background site to 98.1 μg/m3 on a sidewalk in the central business district. Horizontal dispersion measurements demonstrated a decrease in PM2.5 concentration from 128.7 to 18.7 μg/m3 over 100 meters downwind of a major intersection in Nairobi. A vertical dispersion experiment revealed a decrease from 119.5 μg/m3 at street level to 42.8 μg/m3 on a third-floor rooftop in the central business district. Though not directly comparable to air quality guidelines, which are based on 24-hour or annual averages, the urban concentrations we observed raise concern with regard to public health and related policy. Taken together with survey data on commuting patterns within Nairobi, these results suggest that many Nairobi residents are exposed on a regular basis to elevated concentrations of fine particle air pollution, with potentially serious long-term implications for health. PMID:21779151

  18. Traffic Impacts on PM(2.5) Air Quality in Nairobi, Kenya.

    PubMed

    Kinney, Patrick L; Gichuru, Michael Gatari; Volavka-Close, Nicole; Ngo, Nicole; Ndiba, Peter K; Law, Anna; Gachanja, Anthony; Gaita, Samuel Mwaniki; Chillrud, Steven N; Sclar, Elliott

    2011-06-01

    Motor vehicle traffic is an important source of particulate pollution in cities of the developing world, where rapid growth, coupled with a lack of effective transport and land use planning, may result in harmful levels of fine particles (PM(2.5)) in the air. However, a lack of air monitoring data hinders health impact assessments and the development of transportation and land use policies that could reduce health burdens due to outdoor air pollution. To address this important need, a study of traffic-related PM(2.5) was carried out in the city of Nairobi, Kenya, a model city for sub-Saharan Africa, in July 2009. Sampling was carried out using portable filter-based air samplers carried in backpacks by technicians on weekdays over two weeks at several sites in and around Nairobi ranging from high-traffic roadways to rural background. Mean daytime concentrations of PM(2.5) ranged from 10.7 at the rural background site to 98.1 μg/m(3) on a sidewalk in the central business district. Horizontal dispersion measurements demonstrated a decrease in PM(2.5) concentration from 128.7 to 18.7 μg/m(3) over 100 meters downwind of a major intersection in Nairobi. A vertical dispersion experiment revealed a decrease from 119.5 μg/m(3) at street level to 42.8 μg/m(3) on a third-floor rooftop in the central business district. Though not directly comparable to air quality guidelines, which are based on 24-hour or annual averages, the urban concentrations we observed raise concern with regard to public health and related policy. Taken together with survey data on commuting patterns within Nairobi, these results suggest that many Nairobi residents are exposed on a regular basis to elevated concentrations of fine particle air pollution, with potentially serious long-term implications for health. PMID:21779151

  19. Structural equation modeling of the inflammatory response to traffic air pollution

    PubMed Central

    Baja, Emmanuel S.; Schwartz, Joel D.; Coull, Brent A.; Wellenius, Gregory A.; Vokonas, Pantel S.; Suh, Helen H.

    2015-01-01

    Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–cardiovascular epidemiological studies. PMID:23232970

  20. Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: Implications for exposure assessment and siting schools in urban areas

    NASA Astrophysics Data System (ADS)

    Raysoni, Amit U.; Stock, Thomas H.; Sarnat, Jeremy A.; Montoya Sosa, Teresa; Ebelt Sarnat, Stefanie; Holguin, Fernando; Greenwald, Roby; Johnson, Brent; Li, Wen-Whai

    2013-12-01

    Children spend substantial amount of time within school microenvironments; therefore, assessing school-based exposures is essential for characterizing and preventing children's health risks to air pollutants. Indeed, the importance of characterizing children's exposures in schools is recognized by the US Environmental Protection Agency's recent initiative to promote outdoor air monitoring networks near schools. As part of a health effects study investigating the impact of traffic-related air pollution on asthmatic children along the US-Mexico border, this research examines children's exposures to, and spatio-temporal heterogeneity in concentrations of, traffic-related air pollutants at four elementary schools in El Paso, Texas. Three schools were located in an area of high traffic density and one school in an area of low traffic density. Paired indoor and outdoor concentrations of 48-h fine and coarse particulate matter (PM2.5 and PM10-2.5), 48-h black carbon (BC), 96-h nitrogen dioxide (NO2), and 96-h volatile organic compounds (VOCs) were measured for 13 weeks at each school. Outdoor concentrations of PM, NO2, BC, and BTEX (benzene, toluene, ethylbenzene, m,p-xylene, o-xylene) compounds were similar among the three schools in the high-traffic zone in contrast to the school in the low-traffic zone. Results from this study and previous studies in this region corroborate the fact that PM pollution in El Paso is dominated by coarse PM (PM10-2.5) and fine fraction (PM2.5) accounts for only 25-30% of the total PM mass in PM10. BTEX species and BC are better surrogates for traffic air pollution in this region. Correlation analyses indicate a range of association between indoor and outdoor pollutant concentrations due to uncontrollable factors like student foot traffic and varying building and ventilation configurations across the four schools. Results suggest the need of micro-scale monitoring for children's exposure assessment, which may not be adequately characterized

  1. Effects of Exposure Measurement Error in the Analysis of Health Effects from Traffic-Related Air Pollution

    EPA Science Inventory

    In large epidemiological studies, many researchers use surrogates of air pollution exposure such as geographic information system (GIS)-based characterizations of traffic or simple housing characteristics. It is important to validate these surrogates against measured pollutant co...

  2. Numerical evaluation of the effect of traffic pollution on indoor air quality of a naturally ventilated building.

    PubMed

    Chang, Tsang-Jung

    2002-09-01

    A computational fluid dynamics technique was used to evaluate the effect of traffic pollution on indoor air quality of a naturally ventilated building for various ventilation control strategies. The transport of street-level nonreactive pollutants emitted from motor vehicles through the indoor environment was simulated using the large eddy simulation (LES) of the turbulent flows and the pollutant transport equations. The numerical model developed herein was verified by available wind-tunnel measurements. Good agreement with the measured velocity and concentration data was found. Twelve sets of numerical scenario simulations for various roof- and side-vent openness and outdoor wind speeds were carried out. The effects of the air change rate, the indoor airflow pattern, and the external pollutant dispersion on indoor air quality were investigated. The control strategies of ventilation rates and paths for reducing incoming vehicle pollutants and maintaining a desirable air change rate are proposed to reduce the impact of outdoor traffic pollution during traffic rush hours. It was concluded that the windward side vent is a significant factor contributing to air change rate and indoor air quality. Air intakes on the leeward side of the building can effectively reduce the peak and average indoor concentration of traffic pollutants, but the corresponding air change rate is relatively low. Using the leeward cross-flow ventilation with the windward roof vent can effectively lower incoming vehicle pollutants and maintain a desirable air change rate during traffic rush hours. PMID:12269665

  3. 75 FR 20423 - Tenth Meeting: RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ..., SPAIN, Air Europa Lineas Aereas, S.A., Centro Empresarial Globalia, Ctra. Arenal-- Llucmajor, km 21,5...., Appendix 2), notice is hereby given for a RTCA Special Committee 214: Working Group 78: Standards for Air...: Notice of RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

  4. Reduction of the air traffic's contribution to climate change: A REACT4C case study

    NASA Astrophysics Data System (ADS)

    Grewe, Volker; Champougny, Thierry; Matthes, Sigrun; Frömming, Christine; Brinkop, Sabine; Søvde, Ole Amund; Irvine, Emma A.; Halscheidt, Lucia

    2014-09-01

    Air traffic alters the atmospheric composition and thereby contributes to climate change. Here we investigate the trans-Atlantic air traffic for one specific winter day and analyse, which routing changes were required to achieve a reduction in the air traffic's contribution to climate change. We have applied an atmosphere-chemistry model to calculate so-called five dimensional climate cost functions (CCF), which describe the climate effect of a locally confined emission. The five dimensions result from the emission location (3D), time (1D) and the type of emission (1D; carbon dioxide, water vapour, nitrogen oxides). In other words, carbon dioxide (CO2), water vapour (H2O) and nitrogen oxides (NOx) are emitted in amounts typical for aviation at many confined locations and times and their impacts on climate calculated with the atmosphere-chemistry model. The impact on climate results from direct effects, such as the changes in the concentration of the greenhouse gases CO2 and H2O and indirect effects such as contrail cirrus formation and chemical changes of ozone and methane by emissions of NOx. These climate cost functions are used by a flight planning tool to optimise flight routes with respect to their climate impact and economic costs of these routes. The results for this specific winter day show that large reductions in the air traffic's contribution to climate warming (up to 60%) can be achieved for westbound flights and smaller reductions for eastbound flights (around 25%). Eastbound flights take advantage of the tail winds from the jet stream and hence routings with lower climate impacts have a large fuel penalty, whenever they leave the jet stream. Maximum reduction in climate impact increases the economic costs by 10-15%, due to higher fuel consumption, caused by a longer flight distance and lower flight levels. However, with only small changes to the air traffic routings and flight altitudes, climate reductions up to 25% can be achieved by only small

  5. Traffic flow collection wireless sensor network node for intersection light control

    NASA Astrophysics Data System (ADS)

    Li, Xu; Li, Xue

    2011-10-01

    Wireless sensor network (WSN) is expected to be deployed in intersection to monitor the traffic flow continuously, and the monitoring datum can be used as the foundation of traffic light control. In this paper, a WSN based on ZigBee protocol for monitoring traffic flow is proposed. Structure, hardware and work flow of WSN nodes are designed. CC2431 from Texas Instrument is chosen as the main computational and transmission unit, and CC2591 as the amplification unit. The stability experiment and the actual environment experiment are carried out in the last of the paper. The results of experiments show that WSN has the ability to collect traffic flow information quickly and transmit the datum to the processing center in real time.

  6. Accurate and fast replication on the generation of fractal network traffic using alternative probability models

    NASA Astrophysics Data System (ADS)

    Fernandes, Stenio; Kamienski, Carlos; Sadok, Djamel

    2003-08-01

    Synthetic self-similar traffic in computer networks simulation is of imperative significance for the capturing and reproducing of actual Internet data traffic behavior. A universally used procedure for generating self-similar traffic is achieved by aggregating On/Off sources where the active (On) and idle (Off) periods exhibit heavy tailed distributions. This work analyzes the balance between accuracy and computational efficiency in generating self-similar traffic and presents important results that can be useful to parameterize existing heavy tailed distributions such as Pareto, Weibull and Lognormal in a simulation analysis. Our results were obtained through the simulation of various scenarios and were evaluated by estimating the Hurst (H) parameter, which measures the self-similarity level, using several methods.

  7. Traffic-Related Air Pollution and Dementia Incidence in Northern Sweden: A Longitudinal Study

    PubMed Central

    Oudin, Anna; Forsberg, Bertil; Adolfsson, Annelie Nordin; Lind, Nina; Modig, Lars; Nordin, Maria; Nordin, Steven; Adolfsson, Rolf; Nilsson, Lars-Göran

    2015-01-01

    Background Exposure to ambient air pollution is suspected to cause cognitive effects, but a prospective cohort is needed to study exposure to air pollution at the home address and the incidence of dementia. Objectives We aimed to assess the association between long-term exposure to traffic-related air pollution and dementia incidence in a major city in northern Sweden. Methods Data on dementia incidence over a 15-year period were obtained from the longitudinal Betula study. Traffic air pollution exposure was assessed using a land-use regression model with a spatial resolution of 50 m × 50 m. Annual mean nitrogen oxide levels at the residential address of the participants at baseline (the start of follow-up) were used as markers for long-term exposure to air pollution. Results Out of 1,806 participants at baseline, 191 were diagnosed with Alzheimer’s disease during follow-up, and 111 were diagnosed with vascular dementia. Participants in the group with the highest exposure were more likely than those in the group with the lowest exposure to be diagnosed with dementia (Alzheimer’s disease or vascular dementia), with a hazard ratio (HR) of 1.43 (95% CI: 0.998, 2.05 for the highest vs. the lowest quartile). The estimates were similar for Alzheimer’s disease (HR 1.38) and vascular dementia (HR 1.47). The HR for dementia associated with the third quartile versus the lowest quartile was 1.48 (95% CI: 1.03, 2.11). A subanalysis that excluded a younger sample that had been retested after only 5 years of follow-up suggested stronger associations with exposure than were present in the full cohort (HR = 1.71; 95% CI: 1.08, 2.73 for the highest vs. the lowest quartile). Conclusions If the associations we observed are causal, then air pollution from traffic might be an important risk factor for vascular dementia and Alzheimer’s disease. Citation Oudin A, Forsberg B, Nordin Adolfsson A, Lind N, Modig L, Nordin M, Nordin S, Adolfsson R, Nilsson LG. 2016. Traffic

  8. 77 FR 3544 - Meeting and Webinar on the Active Traffic and Demand Management and Intelligent Network Flow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Meeting and Webinar on the Active Traffic and Demand Management and Intelligent Network Flow Optimization... obtain stakeholder input on the Active Traffic and Demand Management (ADTM) and Intelligent Network...

  9. Biomagnetic monitoring of traffic air pollution in Toulouse (France) using magnetic properties of tree bark

    NASA Astrophysics Data System (ADS)

    Macouin, M.; Rousse, S.; Brulfert, F.; Durand, M.; Feida, N.; Durand, X.; Becaud, L.

    2012-12-01

    Magnetic properties of various atmospheric samples represent rapid and economic proxies in the pollution studies based on their strong linkage to heavy metals and/or volatile organic carbons. We report a biomonitoring study of air pollution in Toulouse (France) based on the magnetic properties of tree (Platanus acerifolia) bark. More than 250 bark samples were taken at different areas of the city. Both mass specific magnetic susceptibility and isothermal remanent magnetization (IRM) at 1 Tesla display relationships with the traffic intensity and the distance to the road. Urban roadside tree bark exhibit significant enhancement in their values of susceptibility and IRM reflecting surface accumulation of particulate pollutants, compared with tree growing at lower traffic sites. To estimate the deposition time and accumulation on bark, we have deposited 20 "clean" bark samples from low traffic area with susceptibility inferior to 10 SI, near the city ring road. Samples were then collected during three months. Samples were imparted a 1 Tesla IRM both prior the deposition and after the resampling. Results are useful to apprehend the process of magnetic particulates accumulation and to evaluate the potential of tree bark for the air quality monitoring.

  10. Redistribution of traffic related air pollution associated with a new road tunnel.

    PubMed

    Cowie, Christine T; Rose, Nectarios; Gillett, Robert; Walter, Scott; Marks, Guy B

    2012-03-01

    The aim of this study was to assess the effect of a new road tunnel on the concentration and distribution of traffic-related air pollution (TRAP), specifically nitrogen dioxide (NO(2)) and particulate matter (PM), and to determine its relationship to change in traffic flow. We used continuously recorded data from four monitoring stations at nonroadside locations within the study area and three regional monitors outside the area. The four monitors in the study area were in background locations where smaller pollutant changes were expected compared with changes near the bypassed main road. We also deployed passive samplers to assess finer spatial variability in NO(2) including application of a land use regression model (LUR). The study was conducted from 2006 to 2008. Analysis of the continuously recorded data showed that the tunnel intervention did not lead to consistent reductions in NO(2) or PM over the wider study area. However, there were significant decreases in NO(2), NO(x), and PM(10) in the eastern section of the study area. Analysis of passive sampler data indicated that the greatest reductions in NO(2) concentrations occurred within 100 m of the bypassed main road. The LUR model also demonstrated that changes in NO(2) were most marked adjacent to the bypassed main road. These findings support the use of methods that highlight fine spatial variability in TRAP and demonstrate the utility of traffic interventions in reducing air pollution exposures for populations living close to main roads. PMID:22289123

  11. Modeling the impacts of traffic emissions on air toxics concentrations near roadways

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Isakov, Vlad; Seila, Robert; Baldauf, Richard

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs - benzene, 1,3-butadiene, toluene - to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.

  12. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  13. Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

    NASA Astrophysics Data System (ADS)

    Xie, Wei-Hao; Zhou, Bin; Liu, En-Xiao; Lu, Wei-Dang; Zhou, Ting

    2015-09-01

    Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. Project supported by the Youth Science Funds of Shandong Academy of Sciences, China (Grant No. 2014QN032).

  14. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people. PMID:26323778

  15. Route guidance strategies revisited: Comparison and evaluation in an asymmetric two-route traffic network

    NASA Astrophysics Data System (ADS)

    He, Zhengbing; Chen, Bokui; Jia, Ning; Guan, Wei; Lin, Benchuan; Wang, Binghong

    2014-12-01

    To alleviate traffic congestion, a variety of route guidance strategies have been proposed for intelligent transportation systems. A number of strategies are introduced and investigated on a symmetric two-route traffic network over the past decade. To evaluate the strategies in a more general scenario, this paper conducts eight prevalent strategies on an asymmetric two-route traffic network with different slowdown behaviors on alternative routes. The results show that only mean velocity feedback strategy (MVFS) is able to equalize travel time, i.e. approximate user optimality (UO); while the others fail due to incapability of establishing relations between the feedback parameters and travel time. The paper helps better understand these strategies, and suggests MVFS if the authority intends to achieve user optimality.

  16. Interdomain traffic engineering in ASON/GMPLS controlled multilayer optical networks

    NASA Astrophysics Data System (ADS)

    Guo, Aihua; Zhu, Zhonghua; (Ray) Chen, Yung Jui

    2007-06-01

    Optical control planes such as automatically switched optical networks or generalized multiprotocol label switching (GMPLS) have been viewed as one key enabling technology for future broadband communication networks for their capabilities of dynamic provisioning of flexible and effective services. To support end-to-end service delivery in optical networks, one of the most challenging issues for the optical control plane to address is how to design traffic engineering (TE) under a heterogeneous interdomain scenario. We propose a dynamic TE scheme for interdomain multilayer optical networks that supports setting up paths transparently for both intradomain and interdomain requests. The proposed scheme also disseminates through advertisement precomputed cost tables pertaining to traffic quality of service requirements, which can help optimize the utilization of both all-optical and optical-electrical-optical resources during the TE process throughout the network. We studied the TE scheme in networks with either instantaneous status update or with periodical status update. Our simulation results show that in both cases the proposed TE scheme outperforms existing TE solutions by setting up intradomain and interdomain paths integrally using the cost tables. Furthermore, we find that optimal network status update interval should vary with traffic load.

  17. Information Requirements for Supervisory Air Traffic Controllers in Support of a Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.

    2008-01-01

    Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the

  18. UAS Air Traffic Controller Acceptability Study-2: Effects of Communications Delays and Winds in Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2016-01-01

    This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.

  19. Flight tests using data link for air traffic control and weather information exchange

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.; Scanlon, Charles H.

    1990-01-01

    Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.

  20. Flight tests with a data link used for air traffic control information exchange

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.; Scanlon, Charles H.

    1991-01-01

    Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.

  1. Forecast of the general aviation air traffic control environment for the 1980's

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.

    1976-01-01

    The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.

  2. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Kupfer, Michael; Mercer, Joey; Cabrall, Chris; Homola, Jeff; Callantine, Todd

    2013-01-01

    Within the Human Factors Division at NASA Ames Research Center the Airspace Operations Laboratory (AOL) is developing advanced automation concepts that help to transform the National Airspace System into NextGen, the Next Generation Air Transportation System. High-fidelity human-in-the-loop (HITL) simulations are used as a means to investigate and develop roles, responsibilities, support tools, and requirements for human operators and automation. This paper describes the traffic scenario design process and strategies as used by AOL researchers. Details are presented on building scenarios for specific simulation objectives using various design strategies. A focus is set on creating scenarios based on recorded real world traffic for terminal-area simulations.

  3. Quantification of Road Network Vulnerability and Traffic Impacts to Regional Landslide Hazards.

    NASA Astrophysics Data System (ADS)

    Postance, Benjamin; Hillier, John; Dixon, Neil; Dijkstra, Tom

    2015-04-01

    Slope instability represents a prevalent hazard to transport networks. In the UK regional road networks are frequently disrupted by multiple slope failures triggered during intense precipitation events; primarily due to a degree of regional homogeneity of slope materials, geomorphology and weather conditions. It is of interest to examine how different locations and combinations of slope failure impact road networks, particularly in the context of projected climate change and a 40% increase in UK road demand by 2040. In this study an extensive number (>50 000) of multiple failure event scenarios are simulated within a dynamic micro simulation to assess traffic impacts during peak flow (7 - 10 AM). Possible failure locations are selected within the county of Gloucestershire (3150 km2) using historic failure sites and British Geological Survey GeoSure data. Initial investigations employ a multiple linear regression analyses to consider the severity of traffic impacts, as measured by time, in respect of spatial and topographical network characteristics including connectivity, density and capacity in proximity to failure sites; the network distance between disruptions in multiple failure scenarios is used to consider the effects of spatial clustering. The UK Department of Transport road travel demand and UKCP09 weather projection data to 2080 provide a suitable basis for traffic simulations and probabilistic slope stability assessments. Future work will thus focus on the development of a catastrophe risk model to simulate traffic impacts under various narratives of future travel demand and slope instability under climatic change. The results of this investigation shall contribute to the understanding of road network vulnerabilities and traffic impacts from climate driven slope hazards.

  4. Nitric Oxide and Superoxide Mediate Diesel Particle Effects in Cytokine-Treated Mice and Murine Lung Epithelial Cells ─ Implications for Susceptibility to Traffic-Related Air Pollution

    EPA Science Inventory

    Abstract Background: Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in in...

  5. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    PubMed

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  6. The Deployment of Carbon Monoxide Wireless Sensor Network (CO-WSN) for Ambient Air Monitoring

    PubMed Central

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C.; Khang, Soon-Jai

    2014-01-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011–2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1–1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  7. Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment.

    PubMed

    Liu, Hai-Ying; Skjetne, Erik; Kobernus, Mike

    2013-01-01

    We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations. PMID:24188173

  8. Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment

    PubMed Central

    2013-01-01

    We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations. PMID:24188173

  9. Planning air transport network in Appalachia

    NASA Technical Reports Server (NTRS)

    Carter, E. C.; Morlok, E. K.

    1975-01-01

    Main issues to be considered in designing an air transport system are discussed, and a model for the selection of an optimal air network for a region is presented. It was desired to have the ability to consider a dense network of nodes and air routes and variations in schedules on routes, which in combination would represent virtually all conceivable alternatives. Linear and integer programming were chosen as the most promising analysis methodologies. Integer programming was found to be intractable, while linear programming provided efficient solutions. The model was applied to studying the feasibility of a STOL network in West Virginia. Based on allowable paths, an examination of intercity demands, and established growth points, desired levels of service expressed as minimum flights were determined for certain city pairs.

  10. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    PubMed Central

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-01

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels. PMID:26784204

  11. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.

    PubMed

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-01

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels. PMID:26784204

  12. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  13. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  14. Dynamic routing control in heterogeneous tactical networks with multiple traffic priorities

    NASA Astrophysics Data System (ADS)

    Fecko, Mariusz A.; Wong, Larry; Kang, Jaewong; Cichocki, Andrzej; Kaul, Vikram; Samtani, Sunil

    2012-05-01

    To efficiently use alternate paths during periods of congestion, we have devised prioritized Dynamic Routing Control Agent (pDRCA) that (1) selects best links to meet the bandwidth and delay requirements of traffic, (2) provides load-balancing and traffic prioritization when multiple topologies are available, and (3) handles changes in link quality and traffic demand, and link outages. pDRCA provides multiplatform load balancing to maximize SATCOM (both P2P and multi-point) and airborne links utilization. It influences link selection by configuring the cost metrics on a router's interface, which does not require any changes to the routing protocol itself. It supports service differentiation of multiple traffic priorities by providing more network resources to the highest priority flows. pDRCA does so by solving an optimization problem to find optimal links weights that increase throughput and decrease E2E delay; avoid congested, low quality, and long delay links; and exploit path diversity in the network. These optimal link weights are sent to the local agents to be configured on individual routers per traffic priority. The pDRCA optimization algorithm has been proven effective in improving application performance. We created a variety of different test scenarios by varying traffic profile and link behavior (stable links, varying capacity, and link outages). In the scenarios where high priority traffic experienced significant loss without pDRCA, the average loss was reduced from 49.5% to 13% and in some cases dropped to 0%. Currently, pDRCA is integrated with an open-source software router and priority queues on Linux as a component of Open Tactical Router (OTR), which is being developed by ONR DTCN program.

  15. Human-System Safety Methods for Development of Advanced Air Traffic Management Systems

    SciTech Connect

    Nelson, W.R.

    1999-05-24

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.

  16. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  17. The association between greenness and traffic-related air pollution at schools.

    PubMed

    Dadvand, Payam; Rivas, Ioar; Basagaña, Xavier; Alvarez-Pedrerol, Mar; Su, Jason; De Castro Pascual, Montserrat; Amato, Fulvio; Jerret, Michael; Querol, Xavier; Sunyer, Jordi; Nieuwenhuijsen, Mark J

    2015-08-01

    Greenness has been reported to improve mental and physical health. Reduction in exposure to air pollution has been suggested to underlie the health benefits of greenness; however, the available evidence on the mitigating effect of greenness on air pollution remains limited and inconsistent. We investigated the association between greenness within and surrounding school boundaries and monitored indoor and outdoor levels of traffic-related air pollutants (TRAPs) including NO2, ultrafine particles, black carbon, and traffic-related PM2.5 at 39 schools across Barcelona, Spain, in 2012. TRAP levels at schools were measured twice during two one-week campaigns separated by 6months. Greenness within and surrounding school boundaries was measured as the average of satellite-derived normalized difference vegetation index (NDVI) within boundaries of school and a 50m buffer around the school, respectively. Mixed effects models were used to quantify the associations between school greenness and TRAP levels, adjusted for relevant covariates. Higher greenness within and surrounding school boundaries was consistently associated with lower indoor and outdoor TRAP levels. Reduction in indoor TRAP levels was partly mediated by the reduction in outdoor TRAP levels. We also observed some suggestions for stronger associations between school surrounding greenness and outdoor TRAP levels for schools with higher number of trees around them. Our observed reduction of TRAP levels at schools associated with school greenness can be of public importance, considering the burden of health effects of exposure to TRAPs in schoolchildren. PMID:25862991

  18. Prenatal Exposure to Traffic-related Air Pollution and Risk of Early Childhood Cancers

    PubMed Central

    Ghosh, Jo Kay C.; Heck, Julia E.; Cockburn, Myles; Su, Jason; Jerrett, Michael; Ritz, Beate

    2013-01-01

    Exposure to air pollution during pregnancy has been linked to the risk of childhood cancer, but the evidence remains inconclusive. In the present study, we used land use regression modeling to estimate prenatal exposures to traffic exhaust and evaluate the associations with cancer risk in very young children. Participants in the Air Pollution and Childhood Cancers Study who were 5 years of age or younger and diagnosed with cancer between 1988 and 2008 were had their records linked to California birth certificates, and controls were selected from birth certificates. Land use regression–based estimates of exposures to nitric oxide, nitrogen dioxide, and nitrogen oxides were assigned based on birthplace residence and temporally adjusted using routine monitoring station data to evaluate air pollution exposures during specific pregnancy periods. Logistic regression models were adjusted for maternal age, race/ethnicity, educational level, parity, insurance type, and Census-based socioeconomic status, as well as child's sex and birth year. The odds of acute lymphoblastic leukemia increased by 9%, 23%, and 8% for each 25-ppb increase in average nitric oxide, nitrogen dioxide, and nitrogen oxide levels, respectively, over the entire pregnancy. Second- and third-trimester exposures increased the odds of bilateral retinoblastoma. No associations were found for annual average exposures without temporal components or for any other cancer type. These results lend support to a link between prenatal exposure to traffic exhaust and the risk of acute lymphoblastic leukemia and bilateral retinoblastoma. PMID:23989198

  19. Prenatal exposure to traffic-related air pollution and risk of early childhood cancers.

    PubMed

    Ghosh, Jo Kay C; Heck, Julia E; Cockburn, Myles; Su, Jason; Jerrett, Michael; Ritz, Beate

    2013-10-15

    Exposure to air pollution during pregnancy has been linked to the risk of childhood cancer, but the evidence remains inconclusive. In the present study, we used land use regression modeling to estimate prenatal exposures to traffic exhaust and evaluate the associations with cancer risk in very young children. Participants in the Air Pollution and Childhood Cancers Study who were 5 years of age or younger and diagnosed with cancer between 1988 and 2008 were had their records linked to California birth certificates, and controls were selected from birth certificates. Land use regression-based estimates of exposures to nitric oxide, nitrogen dioxide, and nitrogen oxides were assigned based on birthplace residence and temporally adjusted using routine monitoring station data to evaluate air pollution exposures during specific pregnancy periods. Logistic regression models were adjusted for maternal age, race/ethnicity, educational level, parity, insurance type, and Census-based socioeconomic status, as well as child's sex and birth year. The odds of acute lymphoblastic leukemia increased by 9%, 23%, and 8% for each 25-ppb increase in average nitric oxide, nitrogen dioxide, and nitrogen oxide levels, respectively, over the entire pregnancy. Second- and third-trimester exposures increased the odds of bilateral retinoblastoma. No associations were found for annual average exposures without temporal components or for any other cancer type. These results lend support to a link between prenatal exposure to traffic exhaust and the risk of acute lymphoblastic leukemia and bilateral retinoblastoma. PMID:23989198

  20. Synergistic Effects of Traffic-Related Air Pollution and Exposure to Violence on Urban Asthma Etiology

    PubMed Central

    Clougherty, Jane E.; Levy, Jonathan I.; Kubzansky, Laura D.; Ryan, P. Barry; Suglia, Shakira Franco; Canner, Marina Jacobson; Wright, Rosalind J.

    2007-01-01

    Background Disproportionate life stress and consequent physiologic alteration (i.e., immune dysregulation) has been proposed as a major pathway linking socioeconomic position, environmental exposures, and health disparities. Asthma, for example, disproportionately affects lower-income urban communities, where air pollution and social stressors may be elevated. Objectives We aimed to examine the role of exposure to violence (ETV), as a chronic stressor, in altering susceptibility to traffic-related air pollution in asthma etiology. Methods We developed geographic information systems (GIS)–based models to retrospectively estimate residential exposures to traffic-related pollution for 413 children in a community-based pregnancy cohort, recruited in East Boston, Massachusetts, between 1987 and 1993, using monthly nitrogen dioxide measurements for 13 sites over 18 years. We merged pollution estimates with questionnaire data on lifetime ETV and examined the effects of both on childhood asthma etiology. Results Correcting for potential confounders, we found an elevated risk of asthma with a 1-SD (4.3 ppb) increase in NO2 exposure solely among children with above-median ETV [odds ratio (OR) = 1.63; 95% confidence interval (CI), 1.14–2.33)]. Among children always living in the same community, with lesser exposure measurement error, this association was magnified (OR = 2.40; 95% CI, 1.48–3.88). Of multiple exposure periods, year-of-diagnosis NO2 was most predictive of asthma outcomes. Conclusions We found an association between traffic-related air pollution and asthma solely among urban children exposed to violence. Future studies should consider socially patterned susceptibility, common spatial distributions of social and physical environmental factors, and potential synergies among these. Prospective assessment of physical and social exposures may help determine causal pathways and critical exposure periods. PMID:17687439

  1. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A joint simulation was carried out using a piloted simulator and an advanced-concept air traffic control simulation to study the acceptability and accuracy of the ground-based four-dimensional descent advisor (DA), an automation aid based on accurate models of aircraft performance and weather conditions. In the piloted simulation, airline crews executed controller-issued descent advisories along standard curved-path arrival routes and were able to achieve an arrival-time precision of plus or minus 20 s at the metering fix. An analysis of errors generated in turns resulted in a further enhancement of the DA algorithm.

  2. System and technology considerations for space-based air traffic surveillance

    NASA Technical Reports Server (NTRS)

    Vaisnys, A.

    1986-01-01

    This paper describes the system trade-offs examined in a recent study of space-based air traffic surveillance. Three system options, each satisfying a set of different constraints, were considered. The main difference in the technology needed to implement the three systems was determined to be the size of the spacecraft antenna aperture. It was found that essentially equivalent position location accuracy could be achieved with apertures from 50 meters down to less than a meter in diameter, depending on the choice of signal structure and on the desired user update rate.

  3. Automatic Speech Recognition in Air Traffic Control: a Human Factors Perspective

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    The introduction of Automatic Speech Recognition (ASR) technology into the Air Traffic Control (ATC) system has the potential to improve overall safety and efficiency. However, because ASR technology is inherently a part of the man-machine interface between the user and the system, the human factors issues involved must be addressed. Here, some of the human factors problems are identified and related methods of investigation are presented. Research at M.I.T.'s Flight Transportation Laboratory is being conducted from a human factors perspective, focusing on intelligent parser design, presentation of feedback, error correction strategy design, and optimal choice of input modalities.

  4. A Method for Evaluating the Safety Impacts of Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Bonesteel, Charles

    1998-01-01

    This report describes a methodology for analyzing the safety and operational impacts of emerging air traffic technologies. The approach integrates traditional reliability models of the system infrastructure with models that analyze the environment within which the system operates, and models of how the system responds to different scenarios. Products of the analysis include safety measures such as predicted incident rates, predicted accident statistics, and false alarm rates; and operational availability data. The report demonstrates the methodology with an analysis of the operation of the Center-TRACON Automation System at Dallas-Fort Worth International Airport.

  5. Simulation studies of STOL airplane operations in metropolitan downtown and airport air traffic control environments

    NASA Technical Reports Server (NTRS)

    Sawyer, R. H.; Mclaughlin, M. D.

    1974-01-01

    The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations.

  6. Air Traffic and Operational Data on Selected US Airports with Parallel Runways

    NASA Technical Reports Server (NTRS)

    Doyle, Thomas M.; McGee, Frank G.

    1998-01-01

    This report presents information on a number of airports in the country with parallel runways and focuses on those that have at least one pair of parallel runways closer than 4300 ft. Information contained in the report describes the airport's current operational activity as obtained through contact with the facility and from FAA air traffic tower activity data for FY 1997. The primary reason for this document is to provide a single source of information for research to determine airports where Airborne Information for Lateral Spacing (AILS) technology may be applicable.

  7. Operational benefits from the Terminal Configured Vehicle. [aircraft equipment for air traffic improvement

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Schmitz, R. A.

    1978-01-01

    The objective of Terminal Configured Vehicle (TCV) research activity is to provide improvements which lead to increased airport and runway capacity, increasing air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate measures. Some early results of this research activity are discussed, and present and future research needs to meet the broad research objectives are defined. Particular consideration is given to the development of the TCV B-737 aircraft, the integration of the TCV with MLS, and avionics configurations, flight profiles, and manually controlled approaches for TCV. Some particular test demonstrations are discussed.

  8. Development of outdoor exposure model of traffic-related air pollution for epidemiologic research in Japan.

    PubMed

    Kanda, Isao; Ohara, Toshimasa; Nataami, Taro; Nitta, Hiroshi; Tamura, Kenji; Hasegawa, Shuichi; Shima, Masayuki; Nakai, Satoshi; Sakamoto, Kazuhiko; Yokota, Hisashi

    2013-01-01

    We developed an exposure estimation model for an epidemiological study on the effect of traffic-related air pollutants on respiratory diseases. The model estimates annual average outdoor concentration of nitrogen oxides (NOx) and elemental carbon (EC). The model is composed of three nested plume dispersion type submodels treating different spatial scales from a few meters to tens of kilometers. The emissions from road traffic was estimated at high spatial resolution along the paths of roads taking into account the effects of individual building shape and traffic signals to secure accuracy near trunk roads where most of the subjects of the epidemiological study resided. Model performance was confirmed by field measurements at permanent local government stations and purpose-built temporary stations; the latter supplemented roadside monitoring points and provided EC concentrations, which are not measured routinely. We infer that EC emissions were underestimated by using the available database because there were significant contributions to EC concentrations from sources that did not emit much NOx. An adjustment concentration yielded good agreement between model estimates and field measurements. PMID:23715083

  9. Nocturnal air, road, and rail traffic noise and daytime cognitive performance and annoyance.

    PubMed

    Elmenhorst, Eva-Maria; Quehl, Julia; Müller, Uwe; Basner, Mathias

    2014-01-01

    Various studies indicate that at the same noise level and during the daytime, annoyance increases in the order of rail, road, and aircraft noise. The present study investigates if the same ranking can be found for annoyance to nocturnal exposure and next day cognitive performance. Annoyance ratings and performance change during combined noise exposure were also tested. In the laboratory 72 participants were exposed to air, road, or rail traffic noise and all combinations. The number of noise events and LAS,eq were kept constant. Each morning noise annoyance questionnaires and performance tasks were administered. Aircraft noise annoyance ranked first followed by railway and road noise. A possible explanation is the longer duration of aircraft noise events used in this study compared to road and railway noise events. In contrast to road and rail traffic, aircraft noise annoyance was higher after nights with combined exposure. Pooled noise exposure data showed small but significant impairments in reaction times (6 ms) compared to nights without noise. The noise sources did not have a differential impact on performance. Combined exposure to multiple traffic noise sources did not induce stronger impairments than a single noise source. This was reflected also in low workload ratings. PMID:24437761

  10. Analysis of Factors for Incorporating User Preferences in Air Traffic Management: A system Perspective

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil S.; Gutierrez-Nolasco, Sebastian

    2010-01-01

    This paper presents an analysis of factors that impact user flight schedules during air traffic congestion. In pre-departure flight planning, users file one route per flight, which often leads to increased delays, inefficient airspace utilization, and exclusion of user flight preferences. In this paper, first the idea of filing alternate routes and providing priorities on each of those routes is introduced. Then, the impact of varying planning interval and system imposed departure delay increment is discussed. The metrics of total delay and equity are used for analyzing the impact of these factors on increased traffic and on different users. The results are shown for four cases, with and without the optional routes and priority assignments. Results demonstrate that adding priorities to optional routes further improves system performance compared to filing one route per flight and using first-come first-served scheme. It was also observed that a two-hour planning interval with a five-minute system imposed departure delay increment results in highest delay reduction. The trend holds for a scenario with increased traffic.

  11. How Travel Demand Affects Detection of Non-Recurrent Traffic Congestion on Urban Road Networks

    NASA Astrophysics Data System (ADS)

    Anbaroglu, B.; Heydecker, B.; Cheng, T.

    2016-06-01

    Occurrence of non-recurrent traffic congestion hinders the economic activity of a city, as travellers could miss appointments or be late for work or important meetings. Similarly, for shippers, unexpected delays may disrupt just-in-time delivery and manufacturing processes, which could lose them payment. Consequently, research on non-recurrent congestion detection on urban road networks has recently gained attention. By analysing large amounts of traffic data collected on a daily basis, traffic operation centres can improve their methods to detect non-recurrent congestion rapidly and then revise their existing plans to mitigate its effects. Space-time clusters of high link journey time estimates correspond to non-recurrent congestion events. Existing research, however, has not considered the effect of travel demand on the effectiveness of non-recurrent congestion detection methods. Therefore, this paper investigates how travel demand affects detection of non-recurrent traffic congestion detection on urban road networks. Travel demand has been classified into three categories as low, normal and high. The experiments are carried out on London's urban road network, and the results demonstrate the necessity to adjust the relative importance of the component evaluation criteria depending on the travel demand level.

  12. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

    PubMed

    Brunekreef, Bert; Beelen, Rob; Hoek, Gerard; Schouten, Leo; Bausch-Goldbohm, Sandra; Fischer, Paul; Armstrong, Ben; Hughes, Edward; Jerrett, Michael; van den Brandt, Piet

    2009-03-01

    black smoke (a simple marker for soot) and nitrogen dioxide (NO2) as indicators of traffic-related air pollution, as well as nitric oxide (NO), sulfur dioxide (SO2), and particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5), as estimated from measurements of particulate matter with aerodynamic diameter < or = 10 microm (PM10). Overall long-term exposure concentrations were considered to be a function of air pollution contributions at regional, urban, and local scales. We used interpolation from data obtained routinely at regional stations of the National Air Quality Monitoring Network (NAQMN) to estimate the regional component of exposure at the home address. Average pollutant concentrations were estimated from NAQMN measurements for the period 1976 through 1996. Land-use regression methods were used to estimate the urban exposure component. For the local exposure component, geographic information systems (GISs) were used to generate indicators of traffic exposure that included traffic intensity on and distance to nearby roads. A major effort was made to collect traffic intensity data from individual municipalities. The exposure variables were refined considerably from those used in the pilot study, but we also analyzed the data for the full cohort in the current study using the exposure indicators of the pilot study. We analyzed the data in models with the estimated overall pollutant concentration as a single variable and with the background concentration (the sum of regional and urban components) and the local exposure estimate from traffic indicators as separate variables. In the full-cohort analyses adjusted for the limited set of confounders, estimated overall exposure concentrations of black smoke, NO2, NO, and PM2.5 were associated with mortality. For a 10-microg/m3 increase in the black smoke concentration, the relative risk (RR) (95% confidence interval [CI]) was 1.05 (1.00-1.11) for natural-cause (nonaccidental) mortality, 1.04 (0.95-1.13) for

  13. Traffic-related air pollution modeling during the 2008 Beijing Olympic Games: the effects of an odd-even day traffic restriction scheme.

    PubMed

    Cai, Hao; Xie, Shaodong

    2011-04-15

    An integrated urban air quality modeling system was applied to assess the effects of a short-term odd-even day traffic restriction scheme (TRS) on traffic-related air pollution in the urban area of Beijing (UAB) before, during and after the 2008 Olympic Games. Using traffic flow data retrieved from an on-line traffic monitoring system, concentration levels of CO, PM(10), NO(2) and O(3) on the 2nd, 3rd, 4th Ring Roads (RR) and Linkage Roads (LRs), the main roads distributed around the UAB, were predicted for the pre- (10th-19th, July), during- (20th July-20th September) and post-TRS (21st-30th, September) periods. A widely used statistical framework for model evaluation was adopted, the dependences of model performance on time-of-the-day and on wind direction were investigated, and the model predictions turned out reasonably satisfactory. Results showed that daily average concentrations on the 2nd, 3rd, 4th RR and LRs decreased significantly during the TRS period, by about 35.8, 38.5, 34.9 and 35.6% for CO, about 38.7, 31.8, 44.0 and 34.7% for PM(10), about 30.3, 31.9, 32.3 and 33.9% for NO(2), and about 36.7, 33.0, 33.4 and 34.7% for O(3), respectively, compared with the pre-TRS period. Hourly average concentrations were also reduced significantly, particularly for the morning and evening peaks for CO and PM(10), for the evening peak for NO(2), and for the afternoon peak for O(3). Consequently, both the daily and hourly concentration level of CO, PM(10), NO(2) and O(3) conformed to the China National Ambient Air Quality Standards Grade II during the Games. In addition, notable reduction of concentration levels was achieved in different regions of Beijing, with the traffic-related air pollution in the downwind northern and western areas relieved most significantly. The TRS policy was therefore effective in alleviating traffic-related air pollution and improving short-term air quality in Beijing during the Games. PMID:21353290

  14. The spatial relationship between traffic-generated air pollution and noise in 2 US cities☆

    PubMed Central

    Allen, Ryan W.; Davies, Hugh; Cohen, Martin A.; Mallach, Gary; Kaufman, Joel D.; Adar, Sara D.

    2011-01-01

    Traffic-generated air pollution and noise have both been linked to cardiovascular morbidity. Since traffic is a shared source, there is potential for correlated exposures that may lead to confounding in epidemiologic studies. As part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air), 2-week NO and NO2 concentrations were measured at up to 105 locations, selected primarily to characterize gradients near major roads, in each of 9 US communities. We measured 5-min A-weighted equivalent continuous sound pressure levels (Leq) and ultrafine particle (UFP) counts at a subset of these NO/NO2 monitoring locations in Chicago, IL (N = 69 in December 2006; N = 36 in April 2007) and Riverside County, CA (N = 46 in April 2007). Leq and UFP were measured during non-“rush hour” periods (10:00–16:00) to maximize comparability between measurements. We evaluated roadway proximity exposure surrogates in relation to the measured levels, estimated noise–air pollution correlation coefficients, and evaluated the impact of regional-scale pollution gradients, wind direction, and roadway proximity on the correlations. Five-minute Leq measurements in December 2006 and April 2007 were highly correlated (r = 0.84), and measurements made at different times of day were similar (coefficients of variation: 0.5–13%), indicating that 5-min measurements are representative of long-term Leq. Binary and continuous roadway proximity metrics characterized Leq as well or better than NO or NO2. We found strong regional-scale gradients in NO and NO2, particularly in Chicago, but only weak regional-scale gradients in Leq and UFP. Leq was most consistently correlated with NO, but the correlations were moderate (0.20–0.60). After removing the influence of regional-scale gradients the correlations generally increased (Leq–NO: r = 0.49–0.62), and correlations downwind of major roads (Leq–NO: r = 0.53–0.74) were consistently higher than those upwind (0.35–0.65). There

  15. Design and evaluation of an advanced air-ground data-link system for air traffic control

    NASA Technical Reports Server (NTRS)

    Denbraven, Wim

    1992-01-01

    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.

  16. Modeling exposures to traffic-related air pollutants for the NEXUS respiratory health study of asthmatic children in Detroit, MI

    EPA Science Inventory

    The Near-Road EXposures and Effects of Urban Air Pollutants Study (NEXUS) was designed to investigate associations between exposure to traffic-related air pollution and the respiratory health of asthmatic children living near major roadways in Detroit, MI. A combination of modeli...

  17. Meta-Analysis on Near-Road Air Pollutants Concentrations for Developing Traffic Indicators for Exposure Assessment

    EPA Science Inventory

    Near-road air pollution has been associated with various health risks in human populations living near roadways. To better understand relationship between vehicle emissions and spatial profiles of traffic-related air pollutants we performed a comprehensive and systematic literat...

  18. 77 FR 18297 - Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation Environmental Design Tool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Federal Aviation Administration Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation... methodology for performing air quality analysis modeling for aviation sources.'' Section 2.4d states that... using the most recent EDMS model available at the start of the environmental analysis process.'' ]...

  19. Traffic routing for multicomputer networks with virtual cut-through capability

    NASA Technical Reports Server (NTRS)

    Kandlur, Dilip D.; Shin, Kang G.

    1992-01-01

    Consideration is given to the problem of selecting routes for interprocess communication in a network with virtual cut-through capability, while balancing the network load and minimizing the number of times that a message gets buffered. An approach is proposed that formulates the route selection problem as a minimization problem with a link cost function that depends upon the traffic through the link. The form of this cost function is derived using the probability of establishing a virtual cut-through route. The route selection problem is shown to be NP-hard, and an algorithm is developed to incrementally reduce the cost by rerouting the traffic. The performance of this algorithm is exemplified by two network topologies: the hypercube and the C-wrapped hexagonal mesh.

  20. Maternal exposure to traffic-related air pollution and birth defects in Massachusetts.

    PubMed

    Girguis, Mariam S; Strickland, Matthew J; Hu, Xuefei; Liu, Yang; Bartell, Scott M; Vieira, Verónica M

    2016-04-01

    Exposures to particulate matter with diameter of 2.5µm or less (PM2.5) may influence risk of birth defects. We estimated associations between maternal exposure to prenatal traffic-related air pollution and risk of cardiac, orofacial, and neural tube defects among Massachusetts births conceived 2001 through 2008. Our analyses included 2729 cardiac, 255 neural tube, and 729 orofacial defects. We used satellite remote sensing, meteorological and land use data to assess PM2.5 and traffic-related exposures (distance to roads and traffic density) at geocoded birth addresses. We calculated adjusted odds ratios (OR) and confidence intervals (CI) using logistic regression models. Generalized additive models were used to assess spatial patterns of birth defect risk. There were positive but non-significant associations for a 10µg/m(3) increase in PM2.5 and perimembranous ventricular septal defects (OR=1.34, 95% CI: 0.98, 1.83), patent foramen ovale (OR=1.19, 95% CI: 0.92, 1.54) and patent ductus arteriosus (OR=1.20, 95% CI: 0.95, 1.62). There was a non-significant inverse association between PM2.5 and cleft lip with or without palate (OR=0.76, 95% CI: 0.50, 1.10), cleft palate only (OR=0.89, 95% CI: 0.54, 1.46) and neural tube defects (OR=0.77, 95% CI: 0.46, 1.05). Results for traffic related exposure were similar. Only ostium secundum atrial septal defects displayed significant spatial variation after accounting for known risk factors. PMID:26705853