Science.gov

Sample records for air traffic scenarios

  1. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  2. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Kupfer, Michael; Mercer, Joey S.; Cabrall, Christopher; Callantine, Todd

    2013-01-01

    Well prepared traffic scenarios contribute greatly to the success of controller-in-the-loop simulations. This paper describes each stage in the design process of realistic scenarios based on real-world traffic, to be used in the Airspace Operations Laboratory for simulations within the Air Traffic Management Technology Demonstration 1 effort. The steps from the initial analysis of real-world traffic, to the editing of individual aircraft records in the scenario file, until the final testing of the scenarios before the simulation conduct, are all described. The iterative nature of the design process and the various efforts necessary to reach the required fidelity, as well as the applied design strategies, challenges, and tools used during this process are also discussed.

  3. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Kupfer, Michael; Mercer, Joey; Cabrall, Chris; Homola, Jeff; Callantine, Todd

    2013-01-01

    Within the Human Factors Division at NASA Ames Research Center the Airspace Operations Laboratory (AOL) is developing advanced automation concepts that help to transform the National Airspace System into NextGen, the Next Generation Air Transportation System. High-fidelity human-in-the-loop (HITL) simulations are used as a means to investigate and develop roles, responsibilities, support tools, and requirements for human operators and automation. This paper describes the traffic scenario design process and strategies as used by AOL researchers. Details are presented on building scenarios for specific simulation objectives using various design strategies. A focus is set on creating scenarios based on recorded real world traffic for terminal-area simulations.

  4. Development of a Prototype Automation Simulation Scenario Generator for Air Traffic Management Software Simulations

    NASA Technical Reports Server (NTRS)

    Khambatta, Cyrus F.

    2007-01-01

    A technique for automated development of scenarios for use in the Multi-Center Traffic Management Advisor (McTMA) software simulations is described. The resulting software is designed and implemented to automate the generation of simulation scenarios with the intent of reducing the time it currently takes using an observational approach. The software program is effective in achieving this goal. The scenarios created for use in the McTMA simulations are based on data taken from data files from the McTMA system, and were manually edited before incorporation into the simulations to ensure accuracy. Despite the software s overall favorable performance, several key software issues are identified. Proposed solutions to these issues are discussed. Future enhancements to the scenario generator software may address the limitations identified in this paper.

  5. Air traffic coverage

    SciTech Connect

    George, L.L.

    1988-09-16

    The Federal Aviation Administration plans to consolidate several hundred air traffic control centers and TRACONs into area control facilities while maintaining air traffic coverage. This paper defines air traffic coverage, a performance measure of the air traffic control system. Air traffic coverage measures performance without controversy regarding delay and collision probabilities and costs. Coverage measures help evaluate alternative facility architectures and help schedule consolidation. Coverage measures also help evaluate protocols for handling one facility's air traffic to another facility in case of facility failure. Coverage measures help evaluate radar, communications and other air traffic control systems and procedures. 4 refs., 2 figs.,

  6. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI.

  7. Regulation of air traffic

    NASA Technical Reports Server (NTRS)

    DEVALUEZ

    1922-01-01

    The ways in which the international and internal French air traffic accords interact with each other is outlined in this report. The principal questions covered by the present legislation are as follows: 1) Conditions of safety which must be fulfilled by aircraft; 2) Licenses for members of the crew; 3) Traffic rules to be observed by French and foreign aircraft.

  8. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  9. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.

  10. Congestion Transition in Air Traffic Networks

    PubMed Central

    Monechi, Bernardo; Servedio, Vito D. P.; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  11. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  12. CATS-based Air Traffic Controller Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    -in-the-loop simulations are unquestionably valuable for this purpose, but pose considerable logistical, fiscal, and experimental control problems. First, data analysis is extremely complicated, owing simply to the large number of participants and data sources in such simulations. In addition, experienced human air traffic controllers working adjacent sectors tend to flexibly adapt to the evolving control problem - potentially shifting to other strategies than those under investigation. In addition, their performance is tightly coupled to the control interface, which in the development phase may support some concepts and supporting strategies better than others. A simple shift in strategy by one controller can change the character of a particular traffic scenario dramatically, which makes experimental comparison of ATC performance under different traffic scenarios difficult. Training a given team of controllers on operations under a new ATM concept for a sufficient period of time could avert such difficulties, but instituting an adequate training program is expensive and logistically difficult.

  13. Broadcast control of air traffic

    NASA Technical Reports Server (NTRS)

    Litchford, G. B.

    1972-01-01

    The development of a system of broadcast control for improved flight safety and air traffic control is discussed. The system provides a balance of equality between improved cockpit guidance and control capability and ground control in order to provide the pilot with a greater degree of participation. The manner in which the system is operated and the equipment required for safe operation are examined.

  14. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.

  15. Dynamic Density: An Air Traffic Management Metric

    NASA Technical Reports Server (NTRS)

    Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.

    1998-01-01

    The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.

  16. Software for Simulating Air Traffic

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Bilimoria, Karl; Grabbe, Shon; Chatterji, Gano; Sheth, Kapil; Mulfinger, Daniel

    2006-01-01

    Future Air Traffic Management Concepts Evaluation Tool (FACET) is a system of software for performing computational simulations for evaluating advanced concepts of advanced air-traffic management. FACET includes a program that generates a graphical user interface plus programs and databases that implement computational models of weather, airspace, airports, navigation aids, aircraft performance, and aircraft trajectories. Examples of concepts studied by use of FACET include aircraft self-separation for free flight; prediction of air-traffic-controller workload; decision support for direct routing; integration of spacecraft-launch operations into the U.S. national airspace system; and traffic- flow-management using rerouting, metering, and ground delays. Aircraft can be modeled as flying along either flight-plan routes or great-circle routes as they climb, cruise, and descend according to their individual performance models. The FACET software is modular and is written in the Java and C programming languages. The architecture of FACET strikes a balance between flexibility and fidelity; as a consequence, FACET can be used to model systemwide airspace operations over the contiguous U.S., involving as many as 10,000 aircraft, all on a single desktop or laptop computer running any of a variety of operating systems. Two notable applications of FACET include: (1) reroute conformance monitoring algorithms that have been implemented in one of the Federal Aviation Administration s nationally deployed, real-time, operational systems; and (2) the licensing and integration of FACET with the commercially available Flight Explorer, which is an Internet- based, real-time flight-tracking system.

  17. Semiautomated Management Of Arriving Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1992-01-01

    System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.

  18. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2012-01-01

    Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.

  19. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  20. Automatic speech recognition in air traffic control

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    Automatic Speech Recognition (ASR) technology and its application to the Air Traffic Control system are described. The advantages of applying ASR to Air Traffic Control, as well as criteria for choosing a suitable ASR system are presented. Results from previous research and directions for future work at the Flight Transportation Laboratory are outlined.

  1. Collegiate Aviation and FAA Air Traffic Control.

    ERIC Educational Resources Information Center

    Ruiz, Jose R.; Ruiz, Lorelei E.

    2003-01-01

    Based on a literature review this article describes the Air Traffic-Collegiate Training Initiative (AT-CTI) program, including objectives, the process by which postsecondary institutes become affiliated, advantages of affiliation, and the recruitment and employment of air traffic control graduates by the Federal Aviation Administration. (Contains…

  2. 78 FR 2711 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  3. 77 FR 56698 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  4. 77 FR 2603 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  5. 76 FR 59481 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  6. 77 FR 27835 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  7. 78 FR 66098 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... that a meeting of the Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for...

  8. 75 FR 22892 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  9. 75 FR 63255 - Air Traffic Procedures Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee Meeting AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  10. 76 FR 27168 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC) will be held to review present air traffic control procedures and practices for standardization, revision, clarification,...

  11. 75 FR 68022 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation... been issued for the Federal Aviation Administration Air Traffic Procedures Advisory Committee (ATPAC... Washington, DC, on October 29, 2010. Elizabeth Ray, Executive Director, Air Traffic Procedures...

  12. Expanding Regional Airport Usage to Accommodate Increased Air Traffic Demand

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2009-01-01

    Small regional airports present an underutilized source of capacity in the national air transportation system. This study sought to determine whether a 50 percent increase in national operations could be achieved by limiting demand growth at large hub airports and instead growing traffic levels at the surrounding regional airports. This demand scenario for future air traffic in the United States was generated and used as input to a 24-hour simulation of the national airspace system. Results of the demand generation process and metrics predicting the simulation results are presented, in addition to the actual simulation results. The demand generation process showed that sufficient runway capacity exists at regional airports to offload a significant portion of traffic from hub airports. Predictive metrics forecast a large reduction of delays at most major airports when demand is shifted. The simulation results then show that offloading hub traffic can significantly reduce nationwide delays.

  13. Irresponsibility clause in air traffic contracts

    NASA Technical Reports Server (NTRS)

    PORQUET

    1922-01-01

    This report examines the question of the responsibility of the carrier in air traffic. The French were concerned about the competitive advantage the English companies enjoyed because of differences in their respective laws.

  14. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  15. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  16. 32 CFR 245.21 - ESCAT air traffic priority list.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false ESCAT air traffic priority list. 245.21 Section... (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic Priority List (EATPL) § 245.21 ESCAT air traffic priority list. (a) Priority One. (1) The President of...

  17. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  18. Breakdowns in Coordination Between Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  19. Tropospheric Volcanism and Air-Traffic

    NASA Astrophysics Data System (ADS)

    Zerefos, C. S.; Kapsomenakis, J.; Amiridis, V.; Solomos, S.; Eleftheratos, K.; Gerasopoulos, E.; Repapis, C.; Eskes, H.; Inness, A.; Cuevas, E.; Hedelt, P.

    2015-12-01

    Volcanic effects and their consequences have been observed in Europe originating either from European (Icelandic, Italy) or from distant large volcanic eruptions (e.g. Kasatochi in the Aleutians and Africa). The interference of the volcanic plumes with air traffic corridors have been noticed and studied thoroughly in the case of 2010 eruptions of Eyafallajökull. There have been similar eruptions that have not interfered with air traffic in the past decade such as the recent Bárðarbunga (September 2014) whose forward trajectories where below 6000m. The present study aims at looking for evidence of columnar SO2 amounts that have followed excursions from Icelandic and volcanic eruptions of importance to Europe in general. Columnar SO2 records from remote sensing spectrophotometers over Europe and from space as well as simulated by models have been compared. The columnar SO2 measurements are also compared with ground based SO2 monitors from the Airbase dataset. Finally the impact of the above mentioned volcanic eruptions in air traffic is assessed. The atmospheric effects when air traffic was shut down seem both inside and outside of major air corridors is studied and compared to both case studies and long-term changes in contrails.

  20. Situational Leadership in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Arvidsson, Marcus; Johansson, Curt R.; Ek, Asa; Akselsson, Roland

    2007-01-01

    In high-risk environments such as air traffic control, leadership on different levels plays a certain role in establishing, promoting, and maintaining a good safety culture. The current study aimed to investigate how leadership styles, leadership style adaptability, and over and under task leadership behavior differed across situations, operative conditions, leadership structures, and working tasks in an air traffic control setting. Study locations were two air traffic control centers in Sweden with different operational conditions and leadership structures, and an administrative air traffic management unit. Leadership was measured with a questionnaire based on Leader Effectiveness and Adaptability Description (LEAD; Blanchard, Zigarmi & Zigarmi, 2003; Hersey & Blanchard, 1988). The results showed that the situation had strong impact on the leadership in which the leadership behavior was more relationship oriented in Success and Group situations than in Hardship and Individual situations. The leadership adaptability was further superior in Success and Individual situations compared with Hardship and Group situations. Operational conditions, leadership structures and working tasks were, on the other hand, not associated with leadership behavior.

  1. Terminal area air traffic control simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.

  2. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  3. Air Traffic Control: Economics of Flight

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2004-01-01

    Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.

  4. Air Traffic Management Research at NASA

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  5. As Traffic Piles Up, So Does Air Pollution

    MedlinePlus

    ... 160914.html As Traffic Piles Up, So Does Air Pollution To minimize exposure, researchers recommend shutting windows and ... Doing so can reduce your exposure to toxic air pollution from a traffic jam by up to 76 ...

  6. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  7. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  8. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  9. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  10. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  11. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  12. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  13. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Air Traffic Service (ATS) routes. 71.11... (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following...

  14. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  15. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  16. 5 CFR 842.207 - Air traffic controllers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Air traffic controllers. 842.207 Section... (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Eligibility § 842.207 Air traffic controllers... misconduct, is entitled to an annuity— (1) After completing 25 years of service as an air traffic...

  17. Air Traffic Control Improvement Using Prioritized CSMA

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    Version 7 simulations of the industry-standard network simulation software "OPNET" are presented of two applications of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) and Automatic Dependent Surveillance-Broadcast mode (ADS-B), over VHF Data Link mode 2 (VDL-2). Communication is modeled for air traffic between just three cities. All aircraft are assumed to have the same equipage. The simulation involves Air Traffic Control (ATC) ground stations and 105 aircraft taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. All communication is modeled as unreliable. Collision-less, prioritized carrier sense multiple access (CSMA) is successfully tested. The statistics presented include latency, queue length, and packet loss. This research may show that a communications system simpler than the currently accepted standard envisioned may not only suffice, but also surpass performance of the standard at a lower cost of deployment.

  18. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation

  19. New Zealand traffic and local air quality.

    PubMed

    Irving, Paul; Moncrieff, Ian

    2004-12-01

    Since 1996 the New Zealand Ministry of Transport (MOT) has been investigating the effects of road transport on local air quality. The outcome has been the government's Vehicle Fleet Emissions Control Strategy (VFECS). This is a programme of measures designed to assist with the improvement in local air quality, and especially in the appropriate management of transport sector emissions. Key to the VFECS has been the development of tools to assess and predict the contribution of vehicle emissions to local air pollution, in a given urban situation. Determining how vehicles behave as an emissions source, and more importantly, how the combined traffic flows contribute to the total emissions within a given airshed location was an important element of the programme. The actual emissions output of a vehicle is more than that determined by a certified emission standard, at the point of manufacture. It is the engine technology's general performance capability, in conjunction with the local driving conditions, that determines its actual emissions output. As vehicles are a mobile emissions source, to understand the effect of vehicle technology, it is necessary to work with the average fleet performance, or "fleet-weighted average emissions rate". This is the unit measure of performance of the general traffic flow that could be passing through a given road corridor or network, as an average, over time. The flow composition can be representative of the national fleet population, but also may feature particular vehicle types in a given locality, thereby have a different emissions 'signature'. A summary of the range of work that has been completed as part of the VFECS programme is provided. The NZ Vehicle Fleet Emissions Model and the derived data set available in the NZ Traffic Emission Rates provide a significant step forward in the consistent analysis of practical, sustainable vehicle emissions policy and air-quality management in New Zealand.

  20. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  1. Cubesat Constellation Design for Air Traffic Monitoring

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  2. Conflict resolution and alert zone estimation in air traffic management

    NASA Astrophysics Data System (ADS)

    Kuo, Vincent Hao-Hung

    The current air traffic control (ATC) system provides separations among all aircraft through pre-defined routes and flight procedures, and active controller participation. In particular, en route separations are achieved by choices of different flight routes, different flight levels, and speed control. During the final descent approach over an extended terminal area, aircraft separations are achieved by speed changes, altitude changes, and path stretching. Recently, a concept of free flight has been proposed for future air traffic management. In the proposed free flight environment, aircraft operators can change flight paths in real time, in order to achieve the best efficiency for the aircraft. Air traffic controllers are only supposed to intervene when situation warrants, to resolve potential conflicts among aircraft. In both cases, there is a region around each aircraft called alert zone. As soon as another aircraft touches the alert zone of own aircraft, either the own aircraft or both aircraft must initiate avoidance maneuvers to resolve a potential conflict. This thesis develops a systematic approach based on nonlinear optimal control theories to estimate alert zones in two aircraft conflict scenarios. Specifically, point-mass aircraft models are used to describe aircraft motions. Separate uses of heading, speed, and altitude control are first examined, and then the synergetic use of two control authorities are studied. Both cooperative maneuvers (in which both aircraft act) and non-cooperative maneuvers (in which the own aircraft acts alone) are considered. Optimal control problems are formulated to minimize the initial relative separation between the two aircraft for all possible initial conditions, subject to the requirement that inter-aircraft separation at any time satisfies the separation requirement. These nonlinear optimal control problems are solved numerically using a collation approach and the NPSOL software line for nonlinear programming. In

  3. 77 FR 67862 - Air Traffic Procedures Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... Federal Aviation Administration Air Traffic Procedures Advisory Committee AGENCY: Federal Aviation Administration (FAA), DOT. SUMMARY: The FAA is issuing this notice to advise the public that the FAA's Air... Administrator. The ATPAC charter is valid for two years and provides a venue to review air traffic...

  4. Comprehensive Software Eases Air Traffic Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    To help air traffic control centers improve the safety and the efficiency of the National Airspace System, Ames Research Center developed the Future Air Traffic Management Concepts Evaluation Tool (FACET) software, which won NASA's 2006 "Software of the Year" competition. In 2005, Ames licensed FACET to Flight Explorer Inc., for integration into its Flight Explorer (version 6.0) software. The primary FACET features incorporated in the Flight Explorer software system alert airspace users to forecasted demand and capacity imbalances. Advance access to this information helps dispatchers anticipate congested sectors (airspace) and delays at airports, and decide if they need to reroute flights. FACET is now a fully integrated feature in the Flight Explorer Professional Edition (version 7.0). Flight Explorer Professional offers end-users other benefits, including ease of operation; automatic alerts to inform users of important events such as weather conditions and potential airport delays; and international, real-time flight coverage over Canada, the United Kingdom, New Zealand, and sections of the Atlantic and Pacific Oceans. Flight Explorer Inc. recently broadened coverage by partnering with Honeywell International Inc.'s Global Data Center, Blue Sky Network, Sky Connect LLC, SITA, ARINC Incorporated, Latitude Technologies Corporation, and Wingspeed Corporation, to track their aircraft anywhere in the world.

  5. Air pollution measurements in traffic tunnels.

    PubMed

    De Fré, R; Bruynseraede, P; Kretzschmar, J G

    1994-10-01

    Air pollution measurements during April 1991 are reported from the Craeybeckx highway tunnel in Antwerp, Belgium. The tunnel was used daily by an average of 45,000 vehicles, of which 60% were gasoline fueled passenger cars, 20% diesel cars, and 20% trucks. Of the gasoline cars, only 3% had three-way catalysts. Tunnel air concentrations of nitrogen oxides, sulphur dioxide, carbon dioxide, carbon monoxide, nonmethane hydrocarbons, volatile organic compounds, polycyclic aromatic hydrocarbons, and lead are presented. The traffic emissions in the tunnel are calculated by the carbon balance method, which uses the increase of the total carbon concentration in the tunnel air as the reference quantity. Division of the concentration of any pollutant by the total carbon concentration gives emission factors per kilogram of carbon. These emission factors can be converted directly to emissions relative to fuel consumption or per kilometer. The fraction of diesel used in the tunnel was derived from sulphur to carbon ratios in tunnel air. A calculation procedure with breakdown of emission factors according to vehicle categories was used to estimate countrywide emissions. The estimated emissions were compared to results from the Flanders Emissions Inventory [Emissie Inventaris Vlaamse Regio (EIVR)] and calculated emissions according to the emission factors proposed by the European Commissions CORINAIR Working Group. For NOx there is excellent agreement. For carbon monoxide and hydrocarbons, the tunnel data produced higher emissions than the CORINAIR model would predict but lower than the official EIVR statistics. The estimated lead emissions from traffic are found to be 22 to 29% of the lead in gasoline.

  6. ATC-lab: an air traffic control simulator for the laboratory.

    PubMed

    Loft, Shayne; Hill, Andrew; Neal, Andrew; Humphreys, Michael; Yeo, Gillian

    2004-05-01

    Air Traffic Control Laboratory Simulator (ATC-lab) is a new low- and medium-fidelity task environment that simulates air traffic control. ATC-lab allows the researcher to study human performance of tasks under tightly controlled experimental conditions in a dynamic, spatial environment. The researcher can create standardized air traffic scenarios by manipulating a wide variety of parameters. These include temporal and spatial variables. There are two main versions of ATC-lab. The mediumfidelity simulator provides a simplified version of en route air traffic control, requiring participants to visually search a screen and both recognize and resolve conflicts so that adequate separation is maintained between all aircraft. The low-fidelity simulator presents pairs of aircraft in isolation, controlling the participant's focus of attention, which provides a more systematic measurement of conflict recognition and resolution performance. Preliminary studies have demonstrated that ATC-lab is a flexible tool for applied cognition research.

  7. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  8. Atlanta Air Route Traffic Control Center's involvement in aviation weather

    NASA Technical Reports Server (NTRS)

    Wood, W. D.

    1979-01-01

    The distribution of weather information throughout the Air Traffic Control System is discussed along with the development of meteorological radar, and the modifications to the Air Route Traffic Control Center radars for locating and determining the severity of storms' cells. The planned improvements in the availability of weather data to the control centers are listed.

  9. Analysis of Controller Communication in En Route Air Traffic Control.

    ERIC Educational Resources Information Center

    Seamster, Thomas L.; And Others

    To contribute to an understanding of the elements of good air traffic controller communication with the objective of providing recommendations to improve controller communication training, two studies analyzed team communication, ground-air communication, and ground-line communication. The simulated and live traffic analyses examined established…

  10. Efficient Conversation: The Talk between Pilots and Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Simmons, James L.

    Two-way radio communications between air traffic controllers using radar on the ground to give airplane pilots instructions are of interest within the developing framework of the sociology of language. The main purpose of air traffic control language is efficient communication to promote flight safety. This study describes the standardized format…

  11. Future impact of traffic emissions on atmospheric ozone and OH based on two scenarios

    NASA Astrophysics Data System (ADS)

    Hodnebrog, Ø.; Berntsen, T. K.; Dessens, O.; Gauss, M.; Grewe, V.; Isaksen, I. S. A.; Koffi, B.; Myhre, G.; Olivié, D.; Prather, M. J.; Stordal, F.; Szopa, S.; Tang, Q.; van Velthoven, P.; Williams, J. E.

    2012-12-01

    The future impact of traffic emissions on atmospheric ozone and OH has been investigated separately for the three sectors AIRcraft, maritime SHIPping and ROAD traffic. To reduce uncertainties we present results from an ensemble of six different atmospheric chemistry models, each simulating the atmospheric chemical composition in a possible high emission scenario (A1B), and with emissions from each transport sector reduced by 5% to estimate sensitivities. Our results are compared with optimistic future emission scenarios (B1 and B1 ACARE), presented in a companion paper, and with the recent past (year 2000). Present-day activity indicates that anthropogenic emissions so far evolve closer to A1B than the B1 scenario. As a response to expected changes in emissions, AIR and SHIP will have increased impacts on atmospheric O3 and OH in the future while the impact of ROAD traffic will decrease substantially as a result of technological improvements. In 2050, maximum aircraft-induced O3 occurs near 80° N in the UTLS region and could reach 9 ppbv in the zonal mean during summer. Emissions from ship traffic have their largest O3 impact in the maritime boundary layer with a maximum of 6 ppbv over the North Atlantic Ocean during summer in 2050. The O3 impact of road traffic emissions in the lower troposphere peaks at 3 ppbv over the Arabian Peninsula, much lower than the impact in 2000. Radiative forcing (RF) calculations show that the net effect of AIR, SHIP and ROAD combined will change from a marginal cooling of -0.44 ± 13 mW m-2 in 2000 to a relatively strong cooling of -32 ± 9.3 (B1) or -32 ± 18 mW m-2 (A1B) in 2050, when taking into account RF due to changes in O3, CH4 and CH4-induced O3. This is caused both by the enhanced negative net RF from SHIP, which will change from -19 ± 5.3 mW m-2 in 2000 to -31 ± 4.8 (B1) or -40 ± 9 mW m-2 (A1B) in 2050, and from reduced O3 warming from ROAD, which is likely to turn from a positive net RF of 12 ± 8.5 mW m-2 in 2000 to a

  12. Future impact of traffic emissions on atmospheric ozone and OH based on two scenarios

    NASA Astrophysics Data System (ADS)

    Hodnebrog, Ø.; Berntsen, T. K.; Dessens, O.; Gauss, M.; Grewe, V.; Isaksen, I. S. A.; Koffi, B.; Myhre, G.; Olivié, D.; Prather, M. J.; Stordal, F.; Szopa, S.; Tang, Q.; van Velthoven, P.; Williams, J. E.

    2012-08-01

    The future impact of traffic emissions on atmospheric ozone and OH has been investigated separately for the three sectors AIRcraft, maritime SHIPping and ROAD traffic. To reduce uncertainties we present results from an ensemble of six different atmospheric chemistry models, each simulating the atmospheric chemical composition in a possible high emission scenario (A1B), and with emissions from each transport sector reduced by 5% to estimate sensitivities. Our results are compared with optimistic future emission scenarios (B1 and B1 ACARE), presented in a companion paper, and with the recent past (year 2000). Present-day activity indicates that anthropogenic emissions so far evolve closer to A1B than the B1 scenario. As a response to expected changes in emissions, AIR and SHIP will have increased impacts on atmospheric O3 and OH in the future while the impact of ROAD traffic will decrease substantially as a result of technological improvements. In 2050, maximum aircraft-induced O3 occurs near 80° N in the UTLS region and could reach 9 ppbv in the zonal mean during summer. Emissions from ship traffic have their largest O3 impact in the maritime boundary layer with a maximum of 6 ppbv over the North Atlantic Ocean during summer in 2050. The O3 impact of road traffic emissions in the lower troposphere peaks at 3 ppbv over the Arabian Peninsula, much lower than the impact in 2000. Radiative Forcing (RF) calculations show that the net effect of AIR, SHIP and ROAD combined will change from a~marginal cooling of -0.38 ± 13 mW m-2 in 2000 to a relatively strong cooling of -32 ± 8.9 (B1) or -31 ± 20 mW m-2 (A1B) in 2050, when taking into account RF due to changes in O3, CH4 and CH4-induced O3. This is caused both by the enhanced negative net RF from SHIP, which will change from -20 ± 5.4 mW m-2 in 2000 to -31 ± 4.8 (B1) or -40 ± 11 mW m-2 (A1B) in 2050, and from reduced O3 warming from ROAD, which is likely to turn from a positive net RF of 13 ± 7.9 mW m-2 in 2000 to

  13. Validation of Variations in Mental Workload as a Function of Scenario Difficulty: Traffic Density and Visibility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fluctuations in mental workload can be expected as a function of traffic density and visibility. The aim of the current investigation was to establish simulation scenarios that differed in attentional processing requirements. Four scenarios were created and tested representing two levels of traffic density (urban versus freeway) and two levels of visibility (clear versus foggy). An array of mental workload assessment measures were used to exam changes in attentional processing requirements in each scenario. The assessment array consisted of physiological (P300 amplitude and latency) and behavioral (RT and accuracy) indices. Preliminary results indicate that workload differs significantly as a function of traffic density in rural versus freeway scenarios. Workload also differs significantly in rural versus freeway scenarios as a function of visibility as observed by a significant interaction between the two variables of interest. Results are discussed in terms of their application for validating the difficulty level of simulation scenarios as a format for examining mental workload.

  14. Defining the drivers for accepting decision making automation in air traffic management.

    PubMed

    Bekier, Marek; Molesworth, Brett R C; Williamson, Ann

    2011-04-01

    Air Traffic Management (ATM) operators are under increasing pressure to improve the efficiency of their operation to cater for forecasted increases in air traffic movements. One solution involves increasing the utilisation of automation within the ATM system. The success of this approach is contingent on Air Traffic Control Operators' (ATCOs) willingness to accept increased levels of automation. The main aim of the present research was to examine the drivers underpinning ATCOs' willingness to accept increased utilisation of automation within their role. Two fictitious scenarios involving the application of two new automated decision-making tools were created. The results of an online survey revealed traditional predictors of automation acceptance such as age, trust and job satisfaction explain between 4 and 7% of the variance. Furthermore, these predictors varied depending on the purpose in which the automation was to be employed. These results are discussed from an applied and theoretical perspective. STATEMENT OF RELEVANCE: Efficiency improvements in ATM are required to cater for forecasted increases in air traffic movements. One solution is to increase the utilisation of automation within Air Traffic Control. The present research examines the drivers underpinning air traffic controllers' willingness to accept increased levels of automation in their role.

  15. Delay Banking for Managing Air Traffic

    NASA Technical Reports Server (NTRS)

    Green, Steve

    2008-01-01

    Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system. Delay banking would be administered by an independent third party who would use delay banking automation to continually monitor flights, allocate delay credits, maintain accounts of delay credits for participating airlines, mediate bidding and the consumption of credits of winning bidders, analyze potential transfers of credits within and between operators, implement accepted transfers, and ensure fair treatment of all participating operators. A flow restriction can manifest itself in the form of a delay in assigned takeoff time, a reduction in assigned airspeed, a change in the position for the aircraft in a queue of all aircraft in a common stream of traffic (e.g., similar route), a change in the planned altitude profile for an aircraft, or change in the planned route for the aircraft. Flow restrictions are typically imposed to mitigate traffic congestion at an airport or in a region of airspace, particularly congestion due to inclement weather, or the unavailability of a runway or region of airspace. A delay credit would be allocated to an operator of a

  16. 75 FR 7305 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) Revised Agenda...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC... RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) revised agenda--rescheduled.../Industry Air Traffic Management Advisory Committee (ATMAC) revised agenda--rescheduled meeting. DATES:...

  17. A Wavelet Analysis Approach for Categorizing Air Traffic Behavior

    NASA Technical Reports Server (NTRS)

    Drew, Michael; Sheth, Kapil

    2015-01-01

    In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.

  18. Human-Centered Technologies and Procedures for Future Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Smith, Philip; Woods, David; McCoy, Elaine; Billings, Charles; Sarter, Nadine; Denning, Rebecca; Dekker, Sidney

    1997-01-01

    The use of various methodologies to predict the impact of future Air Traffic Management (ATM) concepts and technologies is explored. The emphasis has been on the importance of modeling coordination and cooperation among multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, identifying critical problem areas and looking for examples suggestive of general approaches for solving such problems. Using the results of these field studies, we have developed a set of concrete scenarios centered around future designs, and have studied performance in these scenarios with a set of 40 controllers, dispatchers, pilots and traffic managers.

  19. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  20. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  1. Investigating the Effects of Traffic on Air Pollution.

    ERIC Educational Resources Information Center

    Taylor, Sharon

    2001-01-01

    Discusses the benefits of bringing scientists into the classroom to collaborate with children on environmental research projects. Describes one collaborative project that focused on the effects of traffic on air pollution. (DDR)

  2. 24. DETAIL ELEVATION OF SECOND FLOOR AIR TRAFFIC CONTROL CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL ELEVATION OF SECOND FLOOR AIR TRAFFIC CONTROL CEN-TER DOOR. - Newark International Airport, Administration Building, Brewster Road between Route 21 & New Jersey Turnpike Exchange No. 14, Newark, Essex County, NJ

  3. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  4. Air Traffic Sector Configuration Change Frequency

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Drew, Michael

    2010-01-01

    A Mixed Integer Linear Programming method is used for creating sectors in Fort Worth, Cleveland, and Los Angeles centers based on several days of good-weather traffic data. The performance of these sectors is studied when they are subjected to traffic data from different days. Additionally, the advantage of using different sector designs at different times of day with varying traffic loads is examined. Specifically, traffic data from 10 days are used for design, and 47 other days are played back to test if the traffic-counts stay below the design values used in creating the partitions. The primary findings of this study are as follows. Sectors created with traffic from good-weather days can be used on other good-weather days. Sector configurations created with two hours of traffic can be used for 6 to 12 hours without exceeding the peak-count requirement. Compared to using a single configuration for the entire day, most of the sector-hour reduction is achieved by using two sector configurations -one during daytime hours and one during nighttime hours.

  5. Characterization of Visual Scanning Patterns in Air Traffic Control.

    PubMed

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  6. Case Study: Influences of Uncertainties and Traffic Scenario Difficulties in a Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Bienert, Nancy; Mercer, Joey; Homola, Jeffrey; Morey, Susan; Prevot, Thomas

    2014-01-01

    This paper presents a case study of how factors such as wind prediction errors and metering delays can influence controller performance and workload in Human-In-The-Loop simulations. Retired air traffic controllers worked two arrival sectors adjacent to the terminal area. The main tasks were to provide safe air traffic operations and deliver the aircraft to the metering fix within +/- 25 seconds of the scheduled arrival time with the help of provided decision support tools. Analyses explore the potential impact of metering delays and system uncertainties on controller workload and performance. The results suggest that trajectory prediction uncertainties impact safety performance, while metering fix accuracy and workload appear subject to the scenario difficulty.

  7. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy.

  8. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy. PMID:25310941

  9. A sensemaking perspective on framing the mental picture of air traffic controllers.

    PubMed

    Malakis, Stathis; Kontogiannis, Tom

    2013-03-01

    It has long been recognized that controller strategies are based on a 'mental picture' or representation of traffic situations. Earlier studies indicated that controllers tend to maintain a selective representation of traffic flows based on a few salient traffic features that point out to interesting events (e.g., potential conflicts). A field study is presented in this paper that examines salient features or 'knowledge variables' that constitute the building blocks of controller mental pictures. Verbal reports from participants, a field experiment and observations of real-life scenarios provided insights into the cognitive processes that shape and reframe the mental pictures of controllers. Several cognitive processes (i.e., problem detection, elaboration, reframing and replanning) have been explored within a particular framework of sensemaking stemming from the data/frame theory (Klein et al., 2007). Cognitive maps, representing standard and non-standard air traffic flows, emerged as an explanatory framework for making sense of traffic patterns and for reframing mental pictures. The data/frame theory proved to be a useful theoretical tool for investigating complex cognitive phenomena. The findings of the study have implications for the design of training curricula and decision support systems in air traffic control systems.

  10. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  11. The Future of Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    A system for the control of terminal area traffic to improve productivity, referred to as the Center-TRACON Automation System (CTAS), is being developed at NASA's Ames Research Center under a joint program with the FAA. CTAS consists of a set of integrated tools that provide computer-generated advisories for en-route and terminal area controllers. The premise behind the design of CTAS has been that successful planning of traffic requires accurate trajectory prediction. Data bases consisting of representative aircraft performance models, airline preferred operational procedures and a three dimensional wind model support the trajectory prediction. The research effort has been the design of a set of automation tools that make use of this trajectory prediction capability to assist controllers in overall management of traffic. The first tool, the Traffic Management Advisor (TMA), provides the overall flow management between the en route and terminal areas. A second tool, the Final Approach Spacing Tool (FAST) provides terminal area controllers with sequence and runway advisories to allow optimal use of the runways. The TMA and FAST are now being used in daily operations at Dallas/Ft. Worth airport. Additional activities include the development of several other tools. These include: 1) the En Route Descent Advisor that assist the en route controller in issuing conflict free descents and ascents; 2) the extension of FAST to include speed and heading advisories and the Expedite Departure Path (EDP) that assists the terminal controller in management of departures; and 3) the Collaborative Arrival Planner (CAP) that will assist the airlines in operational decision making. The purpose of this presentation is to review the CTAS concept and to present the results of recent field tests. The paper will first discuss the overall concept and then discuss the status of the individual tools.

  12. Surveying air traffic control specialist perception of scheduling regulations

    NASA Astrophysics Data System (ADS)

    Thompson, Darrius E.

    While there have been several studies conducted on air traffic controller fatigue, there is a lack of research on the subject since the scheduling policy changes that took place in 2012. The effectiveness of these changes has yet to be measured. The goal of this study was to investigate air traffic control specialist views towards the number of hours scheduled between shifts, changes in perception since 2012 regulation changes, and external factors that impact fatigue. A total of 54 FAA air traffic control specialist completed an online questionnaire. The results from the survey showed that the majority of respondents felt the 2012 regulation changes were not sufficient to address fatigue issues, and work with some amount sleep deprivation. The factors that appeared to have the most significant effect on fatigue included facility level, age group, availability of recuperative breaks, and children under 18 in the home.

  13. A radome for air traffic control SSR radar systems

    NASA Astrophysics Data System (ADS)

    A new generation of monopulse and discrete interrogation systems has evolved for air traffic control applications that presents significant challenges to total system design and performance. Reliable operation of the antenna system is essential in today's ever increasing air traffic congestion. An important component of the total system is a radome to protect the antenna from the environment and to enable consistent, reliable electromagnetic performance. The various types of radomes that have been employed over the years to protect antennas are discussed and evaluated relative to the air traffic control radar application. The sandwich radome is selected as the best option and a detailed design analysis is presented which considers the vital characteristics of transmissivity, boresight error, and sidelobe perturbations.

  14. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    PubMed

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  15. Future Air Traffic Growth and Schedule Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  16. Future Air Traffic Growth and Schedule Model, Supplement

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  17. Supporting the Future Air Traffic Control Projection Process

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John, Jr.

    2002-01-01

    In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.

  18. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios.

    PubMed

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination.

  19. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios

    PubMed Central

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination. PMID:27338393

  20. The Traffic Adaptive Data Dissemination (TrAD) Protocol for both Urban and Highway Scenarios.

    PubMed

    Tian, Bin; Hou, Kun Mean; Zhou, Haiying

    2016-01-01

    The worldwide economic cost of road crashes and injuries is estimated to be US$518 billion per year and the annual congestion cost in France is estimated to be €5.9 billion. Vehicular Ad hoc Networks (VANETs) are one solution to improve transport features such as traffic safety, traffic jam and infotainment on wheels, where a great number of event-driven messages need to be disseminated in a timely way in a region of interest. In comparison with traditional wireless networks, VANETs have to consider the highly dynamic network topology and lossy links due to node mobility. Inter-Vehicle Communication (IVC) protocols are the keystone of VANETs. According to our survey, most of the proposed IVC protocols focus on either highway or urban scenarios, but not on both. Furthermore, too few protocols, considering both scenarios, can achieve high performance. In this paper, an infrastructure-less Traffic Adaptive data Dissemination (TrAD) protocol which takes into account road traffic and network traffic status for both highway and urban scenarios will be presented. TrAD has double broadcast suppression techniques and is designed to adapt efficiently to the irregular road topology. The performance of the TrAD protocol was evaluated quantitatively by means of realistic simulations taking into account different real road maps, traffic routes and vehicular densities. The obtained simulation results show that TrAD is more efficient in terms of packet delivery ratio, number of transmissions and delay in comparison with the performance of three well-known reference protocols. Moreover, TrAD can also tolerate a reasonable degree of GPS drift and still achieve efficient data dissemination. PMID:27338393

  1. [Urban air pollutant exposure among traffic policemen].

    PubMed

    Priante, E; Schiavon, I; Boschi, G; Gori, G; Bartolucci, G B; Soave, C; Brugnone, F; Clonfero, E

    1996-01-01

    Exposure to dusts and benzene was studied in 65 traffic policemen. Samples of total dusts showed that mean personal exposure was 0.44 (SD = 0.30) mg/m3, with peaks of about 2 mg/m3. Exposure to 1-nitropyrene (1-NP), the main compound occurring in emissions from diesel engines, which was estimated from concentrations in dusts collected with high-flow samplers, was 0.28 (SD = 0.19) ng/m3 (range: 0.06-1.24 ng/m3). The mean concentration of benzene in the breathing zone was 41 (SD = 20) micrograms/m3, although a level of 100 micrograms/m3 was slightly exceeded in one subject. In urine samples collected before and after workshifts, two biological indicators of exposure to benzene were measured, urinary benzene and urinary trans, trans-muconic acid (MA). The mean values of urinary benzene before and after workshift were similar (98, SD = 81 and 83, SD = 55 ng/l; n = 63; Wilcoxon's T-test = not significant), while a moderate increase in the metabolite was observed (MA = 0.08, SD = 0.11; 0.11, SD = 0.09 mg/g creatinine, in pre- and post-shift samples respectively; Wilcoxon's T-test, z = 3.00; p < 0.01). The levels of exposure to dusts and 1-NP deriving from diesel engine emissions were comparable to those of other occupational groups with this type of risk (garage mechanics, workers operating diesel engine machinery, etc.). Traffic police exposure to benzene was similar to that of the whole population of Padova (40 micrograms/m3, mean annual 24-hour value). However, the values of urinary MA, like those reported by other authors for non-smoker controls, increased after the workshift, indicating low occupational exposure to this pollutant. It should be noted that traffic police exposure to benzene is much lower than that of other occupational categories, e.g., fuel pump distributors. PMID:9102558

  2. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  3. Impact of road traffic emissions on tropospheric ozone in Europe for present day and future scenarios

    NASA Astrophysics Data System (ADS)

    Mertens, Mariano; Kerkweg, Astrid; Grewe, Volker; Jöckel, Patrick

    2016-04-01

    Road traffic is an important anthropogenic source of NOx, CO and non-methane hydrocarbons (NMHCs) which act as precursors for the formation of tropospheric ozone. The formation of ozone is highly non-linear. This means that the contribution of the road traffic sector cannot directly be derived from the amount of emitted species, because they are also determined by local emissions of other anthropogenic and natural sources. In addition, long range transport of precursors and ozone can play an important role in determining the local ozone budget. For a complete assessment of the impact of road traffic emissions it is therefore important to resolve both, local emissions and long range transport. This can be achieved by the use of the newly developed MECO(n) model system, which on-line couples the global chemistry-climate-model EMAC with the regional chemistry-climate-model COSMO-CLM/MESSy. Both models use the same chemical speciation. This allows a highly consistent model chain from the global to the local scale. To quantify the contribution of the road traffic emissions to tropospheric ozone we use an accounting system of the relevant reaction pathways of the different species from different sources (called tagging method). This tagging scheme is implemented consistently on all scales, allowing a direct comparison of the contributions. With this model configuration we investigate the impact of road traffic emissions to the tropospheric ozone budget in Europe. For the year 2008 we compare different emission scenarios and investigate the influence of both model and emission resolution. In addition, results of a mitigation scenario for the year 2030 are presented. They indicate that the contribution of the road traffic sector can be reduced by local reductions of emissions during summer. During winter the importance of long range transport increases. This can lead to increased contributions of the road traffic sector (e.g. by increased emissions in the US) even if local

  4. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  5. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  6. Trainer Interventions as Instructional Strategies in Air Traffic Control Training

    ERIC Educational Resources Information Center

    Koskela, Inka; Palukka, Hannele

    2011-01-01

    Purpose: This paper aims to identify methods of guidance and supervision used in air traffic control training. It also aims to show how these methods facilitate trainee participation in core work activities. Design/methodology/approach: The paper applies the tools of conversation analysis and ethnomethodology to explore the ways in which trainers…

  7. Properties of Air Traffic Conflicts for Free and Structured Routing

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2001-01-01

    This paper analyzes the properties of air traffic conflicts in a future free routing system against those in the current structured routing system. Simulation of en route air traffic operations (above 18,000 ft) over the contiguous United States for a 24-hour period, constructed with initial conditions from actual air traffic data, were conducted using the Future ATM Concepts Evaluation Tool (FACET). Free routes were modeled as great circle (direct) routes from origin to destination, and structured routes were derived from actual flight plans along the current system of air routes. The conflict properties analyzed in this study include: (1) Total number of conflicts; (2) Distributions of key conflict parameters; and, (3) Categorization of conflicts into independent conflicts and two types of interacting conflicts. Preliminary results (for Denver Center traffic) indicate that conflict properties in a free routing system are different from those in the current structured routing system. In particular, a free routing system has significantly fewer conflicts, involving a correspondingly smaller number of aircraft, compared to the current structured routing system. Additionally, the conflict parameter distributions indicate that free routing conflicts are less intrusive than structured routing conflicts, and would therefore require small trajectory deviations for resolution.

  8. The Monotonic Lagrangian Grid for Rapid Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay

    2010-01-01

    The Air Traffic Monotonic Lagrangian Grid (ATMLG) is presented as a tool to evaluate new air traffic system concepts. The model, based on an algorithm called the Monotonic Lagrangian Grid (MLG), can quickly sort, track, and update positions of many aircraft, both on the ground (at airports) and in the air. The underlying data structure is based on the MLG, which is used for sorting and ordering positions and other data needed to describe N moving bodies and their interactions. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. Recent upgrades to ATMLG include adding blank place-holders within the MLG data structure, which makes it possible to dynamically change the MLG size and also improves the quality of the MLG grid. Additional upgrades include adding FAA flight plan data, such as way-points and arrival and departure times from the Enhanced Traffic Management System (ETMS), and combining the MLG with the state-of-the-art strategic and tactical conflict detection and resolution algorithms from the NASA-developed Stratway software. In this paper, we present results from our early efforts to couple ATMLG with the Stratway software, and we demonstrate that it can be used to quickly simulate air traffic flow for a very large ETMS dataset.

  9. Second Careers: The Air Traffic Controller Experience and Beyond.

    ERIC Educational Resources Information Center

    Batten, Michael D.

    1978-01-01

    Second careers are examined from an organizational viewpoint, and new directions for education-work policy, suggested by a unique second career program of the Federal Aviation Administration for air traffic controllers, are explored. Focus is on age, organizational and training factors, and community involvement. (Author/JMD)

  10. Air Traffic Controller Training at the FAA Academy

    ERIC Educational Resources Information Center

    Cummings, Roy J.

    1970-01-01

    Describes air traffic controller training by discussing: (1) job description, (2) centralized training, (3) method of training, (4) laboratory arrangement, (5) staffing, (6) curriculum development, (7) staff training, (8) student reaction, and (9) training results and suggested improvements. Training Technology is a quarterly supplement to…

  11. Impact of Cooperative Learning on Naval Air Traffic Controller Training.

    ERIC Educational Resources Information Center

    Holubec, Edythe; And Others

    1993-01-01

    Reports on a study of the impact of cooperative learning techniques, compared with traditional Navy instructional methods, on Navy air traffic controller trainees. Finds that cooperative learning methods improved higher level reasoning skills and resulted in no failures among the trainees. (CFR)

  12. Initial Air Traffic Control Training at Tartu Aviation College.

    ERIC Educational Resources Information Center

    Kulbas, Tanel

    1997-01-01

    Development of an air traffic control (ATC) training course at Tartu Aviation College in Estonia had to start at ground zero, creating new rules and regulations for ATC, writing special study materials, building simulators, and finding enough applicants with sufficient English skills. (SK)

  13. Planes, Politics and Oral Proficiency: Testing International Air Traffic Controllers

    ERIC Educational Resources Information Center

    Moder, Carol Lynn; Halleck, Gene B.

    2009-01-01

    This study investigates the variation in oral proficiency demonstrated by 14 Air Traffic Controllers across two types of testing tasks: work-related radio telephony-based tasks and non-specific English tasks on aviation topics. Their performance was compared statistically in terms of level ratings on the International Civil Aviation Organization…

  14. Impact of local urban design and traffic restrictions on air quality in a medium-sized town.

    PubMed

    Acero, J A; Simon, A; Padro, A; Santa Coloma, O

    2012-01-01

    Traffic is the major air pollution source in most urban areas. Nowadays, most of the strategies carried out to improve urban air quality are focused on reducing traffic emissions. Nevertheless, acting locally on urban design can also reduce levels of air pollutants. In this paper, both strategies are studied in several scenarios for a medium-sized town of the Basque Country (Spain). Two main actions are analysed in order to reduce traffic emissions: (1) minor extension ofa pre-existing low emission zone (LEZ); (2) substitution of 10% of passenger cars that are older than 5 years by hybrid and electric vehicles. Regarding local urban design, three alternatives for the development of one side of a street canyon are considered: (1) a park with trees; (2) an open space without obstacles; (3) a building. Two different urban traffic dispersion models are used to calculate the air quality scenarios: PROKAS (Gaussian&box) to analyse the reduction of traffic emissions in the whole urban area and WinMISKAM (CFD) to evaluate specific urban designs. The results show the effectiveness of the analysed actions. On one hand, the definition of a small LEZ, as well as the introduction in 2015 of vehicles with new technology (hybrid and electric), results in minor impacts on PM10 and NO2 ambient concentrations. On the other hand, local urban design can cause significant variation in spatial distribution ofpollutant concentrations emitted inside street canyons. Consequently, urban planners should consider all these aspects when dealing with urban air pollution control.

  15. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  16. Principled negotiation and distributed optimization for advanced air traffic management

    NASA Astrophysics Data System (ADS)

    Wangermann, John Paul

    Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring

  17. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  18. 77 FR 52107 - Air Traffic Data in the Possession of Government Contractors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... data; (v) investigative reports; and (vi) any other air traffic or flight data in the FAA's possession... Federal Aviation Administration Air Traffic Data in the Possession of Government Contractors AGENCY... Rights (PBR) provides, among other things, that ``air traffic data'' should be made accessible to,...

  19. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  20. 75 FR 1116 - RTCA Government/Industry Air Traffic Management Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Government/Industry Air Traffic... RTCA Government/Industry Air Traffic Management Advisory Committee. DATES: The meeting will be...

  1. 14 CFR 71.13 - Classification of Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Classification of Air Traffic Service (ATS... TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES; AND REPORTING POINTS § 71.13 Classification of Air Traffic Service (ATS) routes. Unless...

  2. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2001-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  3. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Barmore, Bryan E.; Moses, Donald

    2002-01-01

    This paper presents initial findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous operations were compared under conditions of low and high operational complexity. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Operational constraints included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective pilot ratings and comments comparing the tactical and strategic modes are presented.

  4. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  5. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  6. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  7. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  8. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  9. Time-based collision risk modeling for air traffic management

    NASA Astrophysics Data System (ADS)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  10. Air Traffic Control Decision Support Tools for Noise Mitigation

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    2001-01-01

    NASA has initiated a new five year program this year, the Quiet Aircraft Technology (QAT) Program, a program which will investigate airframe and engine system noise reduction. QAT will also address community noise impact. As part of this community noise impact component, NASA will investigate air traffic management (ATM) challenges in reducing noise. In particular, controller advisory automation aids will be developed to aid the air traffic controller in addressing noise concerns as he/she manages traffic in busy terminal areas. NASA has developed controller automation tools to address capacity concerns and the QAT strategy for ATM Low Noise Operations is to build upon this tool set to create added advisories for noise mitigation. The tools developed for capacity will be briefly reviewed, followed by the QAT plans to address ATM noise concerns. A major NASA goal in global civil aviation is to triple the aviation system throughput in all-weather conditions while maintaining safety. A centerpiece of this activity is the Center/TRACON Automation System (CTAS), an evolving suite of air traffic controller decision support tools (DSTs) to enhance capacity of arrivals and departures in both the enroute center and the TRACON. Two of these DSTs, the Traffic Management Advisor (TMA) and the passive Final approach Spacing Tool (pFAST), are in daily use at the Fort Worth Center and the Dallas/Fort Worth (DFW) TRACON, respectively, where capacity gains of 5-13% have been reported in recent NASA evaluations. Under the Federal Aviation Administration's (FAA) Free Flight Phase One Program, TMA and pFAST are each being implemented at six to eight additional sites. In addition, other DSTs are being developed by NASA under the umbrella of CTAS. This means that new software will be built upon CTAS, and the paradigm of real-time simulation evaluation followed by field site development and evaluation will be the pathway for the new tools. Additional information is included in the

  11. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  12. Simulating Human Cognition in the Domain of Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.

  13. Formal Verification of Air Traffic Conflict Prevention Bands Algorithms

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dowek, Gilles

    2010-01-01

    In air traffic management, a pairwise conflict is a predicted loss of separation between two aircraft, referred to as the ownship and the intruder. A conflict prevention bands system computes ranges of maneuvers for the ownship that characterize regions in the airspace that are either conflict-free or 'don't go' zones that the ownship has to avoid. Conflict prevention bands are surprisingly difficult to define and analyze. Errors in the calculation of prevention bands may result in incorrect separation assurance information being displayed to pilots or air traffic controllers. This paper presents provably correct 3-dimensional prevention bands algorithms for ranges of track angle; ground speed, and vertical speed maneuvers. The algorithms have been mechanically verified in the Prototype Verification System (PVS). The verification presented in this paper extends in a non-trivial way that of previously published 2-dimensional algorithms.

  14. Intuitiveness of Symbol Features for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Ngo, Mary Kim; Vu, Kim-Phuong L.; Thorpe, Elaine; Battiste, Vernol; Strybel, Thomas Z.

    2012-01-01

    We present the results of two online surveys asking participants to indicate what type of air traffic information might be conveyed by a number of symbols and symbol features (color, fill, text, and shape). The results of this initial study suggest that the well-developed concepts of ownership, altitude, and trajectory are readily associated with certain symbol features, while the relatively novel concept of equipage was not clearly associated with any specific symbol feature.

  15. The use of speech technology in air traffic control simulators

    NASA Astrophysics Data System (ADS)

    Harrison, J. A.; Hobbs, G. R.; Howes, J. R.; Cope, N.

    The advantages of applying speech technology to air traffic control (ATC) simulators are discussed with emphasis placed on the simulation of the pilot end of the pilot-controller dialog. Speech I/O in an ATC simulator is described as well as technology capability, and research on an electronic blip driver. It is found that the system is easier to use and performs better for less experienced controllers.

  16. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  17. Free flight: air traffic control evolution or revolution

    NASA Astrophysics Data System (ADS)

    Grundmann, Karl

    1996-05-01

    The Federal Aviation Administration (FAA) and industry are moving towards a more flexible, user oriented air traffic control system. The question is: does this point to a natural evolution or revolution in the world of the air traffic controllers? The National Airspace System is by all accounts the safest in the world. How will we sustain this record of performance with increased flexibility and user involvement? How will controllers and pilots react to a new more dynamic paradigm? Is the current state of automation, modeling, and analysis what is needed to make Free Flight a reality? How will the FAA insure that all human factors questions are answered before implementation? How will we quantify the impact of unanswered questions and their influence on safety? These, and many more questions need to be answered to ensure that the benefits promised by Free Flight are realized by all parties. The National Air Traffic Controllers Association supports the new concept. Yet, we are seriously concerned about the actual implementation of Free Flight's various components.

  18. Learning styles: The learning methods of air traffic control students

    NASA Astrophysics Data System (ADS)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  19. CSMA Versus Prioritized CSMA for Air-Traffic-Control Improvement

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    OPNET version 7.0 simulations are presented involving an important application of the Aeronautical Telecommunications Network (ATN), Controller Pilot Data Link Communications (CPDLC) over the Very High Frequency Data Link, Mode 2 (VDL-2). Communication is modeled for essentially all incoming and outgoing nonstop air-traffic for just three United States cities: Cleveland, Cincinnati, and Detroit. There are 32 airports in the simulation, 29 of which are either sources or destinations for the air-traffic of the aforementioned three airports. The simulation involves 111 Air Traffic Control (ATC) ground stations, and 1,235 equally equipped aircraft-taking off, flying realistic free-flight trajectories, and landing in a 24-hr period. Collisionless, Prioritized Carrier Sense Multiple Access (CSMA) is successfully tested and compared with the traditional CSMA typically associated with VDL-2. The performance measures include latency, throughput, and packet loss. As expected, Prioritized CSMA is much quicker and more efficient than traditional CSMA. These simulation results show the potency of Prioritized CSMA for implementing low latency, high throughput, and efficient connectivity.

  20. Road traffic noise, air pollution components and cardiovascular events.

    PubMed

    de Kluizenaar, Yvonne; van Lenthe, Frank J; Visschedijk, Antoon J H; Zandveld, Peter Y J; Miedema, Henk M E; Mackenbach, Johan P

    2013-01-01

    Traffic noise and air pollution have been associated with cardiovascular health effects. Until date, only a limited amount of prospective epidemiological studies is available on long-term effects of road traffic noise and combustion related air pollution. This study investigates the relationship between road traffic noise and air pollution and hospital admissions for ischemic heart disease (IHD: International Classification of Diseases (ICD9) 410-414) or cerebrovascular disease (cerebrovascular event [CVE]: ICD9 430-438). We linked baseline questionnaire data to 13 years of follow-up on hospital admissions and road traffic noise and air pollution exposure, for a large random sample (N = 18,213) of inhabitants of the Eindhoven region, Netherlands. Subjects with cardiovascular event during follow-up on average had higher road traffic noise day, evening, night level (L den) and air pollution exposure at the home. After adjustment for confounders (age, sex, body mass index, smoking, education, exercise, marital status, alcohol use, work situation, financial difficulties), increased exposure did not exert a significant increased risk of hospital admission for IHD or cerebrovascular disease. Relative risks (RRs) for a 5 (th) to 95 (th) percentile interval increase were 1.03 (0.88-1.20) for L den; 1.04 (0.90-1.21) for particulate matter (PM 10 ); 1.05 (0.91-1.20) for elemental carbon (EC); and 1.12 (096-1.32) for nitrogen dioxide (NO 2 ) in the full model. While the risk estimate seemed highest for NO 2 , for a 5 (th) to 95 (th) percentile interval increase, expressed as RRs per 1 μg/m 3 increases, hazard ratios seemed highest for EC (RR 1.04 [0.92-1.18]). In the subgroup of study participants with a history of cardiovascular disease, RR estimates seemed highest for noise exposure (1.19 [0.87-1.64] for L den); in the subgroup of elderly RR seemed highest for air pollution exposure (RR 1.24 [0.93-1.66] for NO 2 ).

  1. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    NASA Technical Reports Server (NTRS)

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  2. ADS-B within a Multi-Aircraft Simulation for Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Palmer, Michael T.; Chung, William W.; Loveness, Ghyrn W.

    2004-01-01

    Automatic Dependent Surveillance Broadcast (ADS-B) is an enabling technology for NASA s Distributed Air-Ground Traffic Management (DAG-TM) concept. DAG-TM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, aircraft exchange state and intent information over ADS-B with other aircraft and ground stations. This information supports various surveillance functions including conflict detection and resolution, scheduling, and conformance monitoring. To conduct more rigorous concept feasibility studies, NASA Langley Research Center s PC-based Air Traffic Operations Simulation models a 1090 MHz ADS-B communication structure, based on industry standards for message content, range, and reception probability. The current ADS-B model reflects a mature operating environment and message interference effects are limited to Mode S transponder replies and ADS-B squitters. This model was recently evaluated in a Joint DAG-TM Air/Ground Coordination Experiment with NASA Ames Research Center. Message probability of reception vs. range was lower at higher traffic levels. The highest message collision probability occurred near the meter fix serving as the confluence for two arrival streams. Even the highest traffic level encountered in the experiment was significantly less than the industry standard "LA Basin 2020" scenario. Future studies will account for Mode A and C message interference (a major effect in several industry studies) and will include Mode A and C aircraft in the simulation, thereby increasing the total traffic level. These changes will support ongoing enhancements to separation assurance functions that focus on accommodating longer ADS-B information update intervals.

  3. Impact on air quality of measures to reduce CO2 emissions from road traffic in Basel, Rotterdam, Xi'an and Suzhou

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Jonkers, S.; Verhagen, H. L. M.; Perez, L.; Trüeb, S.; Okkerse, W.-J.; Liu, J.; Pan, X. C.; Zheng, L.; Wang, H.; Xu, R.; Sabel, C. E.

    2014-12-01

    Two traffic scenarios to reduce CO2 emissions from road traffic in two European cities (Basel and Rotterdam) and two Chinese cities (Xi'an and Suzhou) were evaluated in terms of their impact on air quality. The two scenarios, one modelling a reduction of private vehicle kilometres driven by 10% on urban streets and the other modelling the introduction of 50% electric-powered private vehicle kilometres on urban streets, were both compared to a scenario following “business-as-usual”: 2020-BAU. The annual average concentrations of NO2, PM2.5, PM10 and elemental carbon (EC) were modelled separately in busy street canyons, near urban motorways and in the remainder of the urban area. It was concluded that traffic-related CO2 emissions in 2020-BAU could be expected to remain at the levels of 2010 in Basel and Rotterdam, while in Xi'an and Suzhou to increase 30-50% due to growth in the traffic volume. Traffic-related CO2 emissions may be reduced by up to 5% and 25%, respectively using the first and second scenarios. Air pollution in the Chinese cities is a factor 3 to 5 higher than in the European cities in 2010 and 2020-BAU. The impact of both CO2 reduction scenarios on air quality in 2020-BAU is limited. In Europe, due to implementation of stringent emission standards in all sectors, air quality is expected to improve at both the urban background and near busy road traffic. In China, the regional background is expected to improve for EC, stabilize for PM2.5 and PM10, and decrease for NO2. The urban background follows this regional trend, while near busy road traffic, air pollution will remain elevated due to the considerable growth in traffic volume. A major constraint for modelling air quality in China is access to the input data required and lack of measurements at ground level for validation.

  4. A Method for Evaluating the Safety Impacts of Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Bonesteel, Charles

    1998-01-01

    This report describes a methodology for analyzing the safety and operational impacts of emerging air traffic technologies. The approach integrates traditional reliability models of the system infrastructure with models that analyze the environment within which the system operates, and models of how the system responds to different scenarios. Products of the analysis include safety measures such as predicted incident rates, predicted accident statistics, and false alarm rates; and operational availability data. The report demonstrates the methodology with an analysis of the operation of the Center-TRACON Automation System at Dallas-Fort Worth International Airport.

  5. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  6. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  7. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    PubMed

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. PMID:27590973

  8. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    PubMed

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones.

  9. 75 FR 39091 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC... Traffic Management Advisory Committee (ATMAC). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)....

  10. 75 FR 61552 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC... Traffic Management Advisory Committee (ATMAC) SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC) DATES:...

  11. 75 FR 27618 - RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Federal Aviation Administration RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC... Traffic Management Advisory Committee (ATMAC). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Government/Industry Air Traffic Management Advisory Committee (ATMAC)....

  12. Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon

    2010-01-01

    The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.

  13. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  14. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  15. An augmented reality binocular system (ARBS) for air traffic controllers

    NASA Astrophysics Data System (ADS)

    Fulbrook, Jim E.; Ruffner, John W.; Labbe, Roger

    2008-04-01

    The primary means by which air traffic tower controllers obtain information is through direct out-thewindow viewing, although a considerable amount of time is spent looking at electronic displays and other information sources inside the tower cab. The Air Force Research Laboratory sponsored the development of a prototype Augmented Reality Binocular System (ARBS) that enhances tower controller performance, situation awareness, and safety. The ARBS is composed of a virtual binocular (VB) that displays real-time imagery from high resolution telephoto cameras and sensors mounted on pan/tilt units (PTUs). The selected PTU tracks to the movement of the VB, which has an inertial heading and elevation sensor. Relevant airfield situation text and graphic depictions that identify airfield features are overlaid on the imagery. In addition, the display is capable of labeling and tracking vehicles on which an Automatic Dependent Surveillance - Broadcast (ADS-B) system has been installed. The ARBS provides air traffic controllers and airfield security forces with the capability to orient toward, observe, and conduct continuous airfield operations and surveillance/security missions from any number of viewing aspects in limited visibility conditions. In this paper, we describe the ARBS in detail, discuss the results of a Usability Test of the prototype ARBS, and discuss ideas for follow-on efforts to develop the ARBS to a fieldable level.

  16. Traffic-Related Air Pollution and DNA Damage: A Longitudinal Study in Taiwanese Traffic Conductors

    PubMed Central

    Huang, Han-Bin; Lai, Ching-Huang; Chen, Guan-Wen; Lin, Yong-Yang; Jaakkola, Jouni J. K.; Liou, Saou-Hsing; Wang, Shu-Li

    2012-01-01

    Background There is accumulating epidemiologic evidence that exposure to traffic-related air pollutants, including particulate matter (PM) and polyaromatic hydro carbons (PAHs), plays a role in etiology and prognosis of a large scale of illnesses, although the role of specific causal agents and underlying mechanisms for different health outcomes remains unknown. Objective Our general objective was to assess the relations between personal exposure to traffic exhausts, in particular ambient PM2.5 and PAHs, and the occurrence of DNA strand breaks by applying personal monitoring of PM and biomarkers of exposure (urinary 1-hydroxypyrene-glucuronide, 1-OHPG) and effect (urinary 8-hydroxydeoxyguanosine, 8-OHdG and DNA strand breaks). Methods We recruited 91 traffic conductors and 53 indoor office workers between May 2009 and June 2011 in Taipei City, Taiwan. We used PM2.5 personal samplers to collect breathing-zone particulate PAHs samples. Spot urine and blood samples after work shift of 2 consecutive days were analyzed for 1-OHPG, 8-OHdG and DNA strand breaks, respectively. Statistical methods included linear regression and mixed models. Results Urinary 8-OHdG levels and the occurrence of DNA strand breaks in traffic conductors significantly exceeded those in indoor office workers in mixed models. Particulate PAHs levels showed a positive association with urinary 1-OHPG in the regression model (β = 0.056, p = 0.01). Urinary 1-OHPG levels were significantly associated with urinary 8-OHdG levels in the mixed model (β = 0.101, p = 0.023). Our results provide evidence that exposure to fine particulates causes DNA damage. Further, particulate PAHs could be biologically active constituents of PM2.5 with reference to the induction of oxidative DNA damages. PMID:22629390

  17. A Cognitive-System Model for En Route Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    NASA Ames Research Center has been engaged in the development of advanced air traffic management technologies whose basic form is cognitive aiding systems for air traffic controller and flight deck operations. In the design and evaluation of such systems the dynamic interaction between the airborne aiding system and the ground-based aiding systems forms a critical coupling for control. The human operator is an integral control element in the system and the optimal integration of human decision and performance parameters with those of the automation aiding systems offers a significant challenge to cognitive engineering. This paper presents a study in full mission simulation and the development of a predictive computational model of human performance. We have found that this combination of methodologies provide a powerful design-aiding process. We have extended the computational model Man Machine Integrated Design and Analysis System (N13DAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems), operating aircraft airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require the representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. We have exercised this model in a multi-air traffic sector scenario with potential conflict among aircraft at and across sector boundaries. We have modeled the control situation as a multiple closed loop system. The inner and outer

  18. Time-based air traffic management using expert systems

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.

  19. Air traffic control surveillance accuracy and update rate study

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Morrison, D. D.; Zipper, I.

    1973-01-01

    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.

  20. Time-based air traffic management using expert systems

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.

  1. Indoor air quality assessment in the air traffic control tower of the Athens Airport, Greece.

    PubMed

    Helmis, Costas G; Assimakopoulos, Vasiliki D; Flocas, Helena A; Stathopoulou, Ourania I; Sgouros, George; Hatzaki, Maria

    2009-01-01

    In this study, an assessment of indoor air quality (IAQ) and thermal comfort in the Athens Traffic Control Tower (ATCT) offices of Hellinicon building complex, which is mechanically ventilated, is presented. Measurements of PM(10), PM(2.5), TVOCs and CO(2) concentrations were performed during three experimental cycles, while the Thom Discomfort Index was calculated to describe the employees' feeling of discomfort. The aim of the first cycle was to identify the IAQ status, the second to investigate the effectiveness of certain measures taken, and the third to continuously monitor and control IAQ. During the first two cycles, daily spot measurements of TVOCs and CO(2) were performed at various indoor locations and at the respective outdoor air intake positions, in addition with mean 24-h spot measurements of indoor PM(10) and PM(2.5). Results revealed that pollution levels vary according to the occupancy and the kind of activity. Following that, an automated system (IMAS) was designed and employed to continuously monitor indoor and outdoor CO(2), TVOCs, temperature and relative humidity. The ultimate scope was to control the IAQ and offer acceptable comfort conditions to the employees, whose work is of special nature and extremely demanding. Intervention scenarios were formulated and applied to the system to improve indoor conditions, when and where necessary. Regarding the third cycle, 1-year measurements collected from the system to examine its effectiveness. While it was shown that discomfort may be attributed to co-existence of unsatisfactory thermal comfort conditions and IAQ, usually the sole predominant factor of discomfort feeling is thermal comfort.

  2. Air traffic control by distributed management in a MLS environment

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Hart, S.

    1977-01-01

    The microwave landing system (MLS) is a technically feasible means for increasing runway capacity since it could support curved approaches to a short final. The shorter the final segment of the approach, the wider the variety of speed mixes possible so that theoretically, capacity would ultimately be limited by runway occupance time only. An experiment contrasted air traffic control in a MLS environment under a centralized form of management and under distributed management which was supported by a traffic situation display in each of the 3 piloted simulators. Objective flight data, verbal communication and subjective responses were recorded on 18 trial runs lasting about 20 minutes each. The results were in general agreement with previous distributed management research. In particular, distributed management permitted a smaller spread of intercrossing times and both pilots and controllers perceived distributed management as the more 'ideal' system in this task. It is concluded from this and previous research that distributed management offers a viable alternative to centralized management with definite potential for dealing with dense traffic in a safe, orderly and expeditious manner.

  3. A traffic-depended multi-buffer node architecture and an effective access technique under symmetric and asymmetric IP traffic scenarios for unslotted ring WDM MANs

    NASA Astrophysics Data System (ADS)

    Baziana, Peristera A.

    2016-09-01

    This study aims to put forward an extensive discussion about the increasing demand for available bandwidth to serve the multiple types of traffic in modern wavelength division multiplexing (WDM) metropolitan area networks (MANs). A traffic-depended multi-buffer node architecture in conjunction with an efficient asynchronous transmission WDM access (WDMA) protocol to serve the variable size Internet packets in ring MANs is proposed. The structure of the multi-buffer node architecture is determined by the probability distribution of each packet size category in the MAN traffic, providing storage and dropping events equity among the nodes. The adopted WDMA algorithm satisfies the requirement for high performance efficiency especially under high offered load, by taking care to optimally face the bandwidth fragmentation problem and to maximize the bandwidth exploitation, while it effectively avoids both the packets collisions over the wavelengths and the destination conflicts. Numerical results prove that the proposed network model achieves throughput improvement up to 334% as compared with the relative study of Pranggono and Elmirghani (2011). An analytical framework is developed for the protocol throughput predictions under both symmetric and asymmetric IP traffic scenarios. Also, the proposed protocol performance is thoroughly investigated through simulation results based on Poisson and self-similar traffic model statistics, for both traffic scenarios.

  4. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  5. Trajectory Specification for High-Capacity Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2004-01-01

    In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.

  6. A neurophysiological training evaluation metric for air traffic management.

    PubMed

    Borghini, G; Aricò, P; Ferri, F; Graziani, I; Pozzi, S; Napoletano, L; Imbert, J P; Granger, G; Benhacene, R; Babiloni, F

    2014-01-01

    The aim of this work was to analyze the possibility to apply a neuroelectrical cognitive metrics for the evaluation of the training level of subjects during the learning of a task employed by Air Traffic Controllers (ATCos). In particular, the Electroencephalogram (EEG), the Electrocardiogram (ECG) and the Electrooculogram (EOG) signals were gathered from a group of students during the execution of an Air Traffic Management (ATM) task, proposed at three different levels of difficulty. The neuroelectrical results were compared with the subjective perception of the task difficulty obtained by the NASA-TLX questionnaires. From these analyses, we suggest that the integration of information derived from the power spectral density (PSD) of the EEG signals, the heart rate (HR) and the eye-blink rate (EBR) return important quantitative information about the training level of the subjects. In particular, by focusing the analysis on the direct and inverse correlation of the frontal PSD theta (4-7 (Hz)) and HR, and of the parietal PSD alpha (10-12 (Hz)) and EBR, respectively, with the degree of mental and emotive engagement, it is possible to obtain useful information about the training improvement across the training sessions.

  7. Near-to-eye display concepts for air traffic controllers

    NASA Astrophysics Data System (ADS)

    Ruffner, John W.; Fulbrook, Jim E.; Foglia, Marc

    2004-09-01

    Tower controllers are responsible for maintaining safe separation between airborne aircraft in the airport traffic control area, and separation between aircraft, equipment, and personnel on the airport surface. The objective of this project was to develop and demonstrate an out-the-window, augmented viewing system concept for Air Force air traffic control tower personnel to reduce look-down time within the tower and to optimize visual airfield operations, particularly during limited visibility conditions. We characterized controller tasks where a near-to-eye display greatly aids performance and identified form factor variables that influence user acceptability of hardware configurations. We developed an "out-the-window concept of operation" and analyzed the hardware requirements and feasibility of three near-to-eye viewing systems: two head-mounted monocular displays (HMMD) and a held-to-head binocular display (HHBD). When fully developed, these display prototypes should enhance tower controller situation awareness, and reduce such distractions as having to frequently attend to and respond to head-down (console) display information. There are potential users of this display concept in all branches of the military services, and in the commercial sector. There is also potential utility for surface surveillance operations in support of homeland security, law enforcement personnel, rescue workers, firefighters, and special operations forces in non-aviation applications.

  8. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  9. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  10. Precision Positional Data of General Aviation Air Traffic in Terminal Air Space

    NASA Technical Reports Server (NTRS)

    Melson, W. E., Jr.; Parker, L. C.; Northam, A. M.; Singh, R. P.

    1978-01-01

    Three dimensional radar tracks of general aviation air traffic at three uncontrolled airports are considered. Contained are data which describe the position-time histories, other derived parameters, and reference data for the approximately 1200 tracks. All information was correlated such that the date, time, flight number, and runway number match the pattern type, aircraft type, wind, visibility, and cloud conditions.

  11. Design and Operational Evaluation of the Traffic Management Advisor at the Ft. Worth Air Route Traffic Control Center

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)

    1997-01-01

    NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.

  12. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  13. Impact of local urban design and traffic restrictions on air quality in a medium-sized town.

    PubMed

    Acero, J A; Simon, A; Padro, A; Santa Coloma, O

    2012-01-01

    Traffic is the major air pollution source in most urban areas. Nowadays, most of the strategies carried out to improve urban air quality are focused on reducing traffic emissions. Nevertheless, acting locally on urban design can also reduce levels of air pollutants. In this paper, both strategies are studied in several scenarios for a medium-sized town of the Basque Country (Spain). Two main actions are analysed in order to reduce traffic emissions: (1) minor extension ofa pre-existing low emission zone (LEZ); (2) substitution of 10% of passenger cars that are older than 5 years by hybrid and electric vehicles. Regarding local urban design, three alternatives for the development of one side of a street canyon are considered: (1) a park with trees; (2) an open space without obstacles; (3) a building. Two different urban traffic dispersion models are used to calculate the air quality scenarios: PROKAS (Gaussian&box) to analyse the reduction of traffic emissions in the whole urban area and WinMISKAM (CFD) to evaluate specific urban designs. The results show the effectiveness of the analysed actions. On one hand, the definition of a small LEZ, as well as the introduction in 2015 of vehicles with new technology (hybrid and electric), results in minor impacts on PM10 and NO2 ambient concentrations. On the other hand, local urban design can cause significant variation in spatial distribution ofpollutant concentrations emitted inside street canyons. Consequently, urban planners should consider all these aspects when dealing with urban air pollution control. PMID:23393990

  14. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  15. Influence of Traffic Bottleneck on Two-Route Scenario with Mean Velocity Information Feedback

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Jiang, Rui; Wang, Qiao-Ming; Wang, Bing-Hong

    In this paper, traffic bottleneck is introduced on one of the routes (say route A) in a two-route scenario with mean velocity information feedback. The simulations show that four different system states, i.e. zero state (no dynamic vehicle chooses route A), periodic oscillation state (mean velocity on route A is in periodic oscillations), alternation state (alternation of zero state and oscillation state), and equal velocity state (mean velocities on the two routes are equal), are identified. Complex nonlinear changing behavior of critical vehicle arrival probability λc depending on bottleneck length and location as well as dynamic vehicle ratio is revealed. Our work is expected to be useful for designing Advanced Traveller Information Systems.

  16. Analysis of Factors for Incorporating User Preferences in Air Traffic Management: A system Perspective

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil S.; Gutierrez-Nolasco, Sebastian

    2010-01-01

    This paper presents an analysis of factors that impact user flight schedules during air traffic congestion. In pre-departure flight planning, users file one route per flight, which often leads to increased delays, inefficient airspace utilization, and exclusion of user flight preferences. In this paper, first the idea of filing alternate routes and providing priorities on each of those routes is introduced. Then, the impact of varying planning interval and system imposed departure delay increment is discussed. The metrics of total delay and equity are used for analyzing the impact of these factors on increased traffic and on different users. The results are shown for four cases, with and without the optional routes and priority assignments. Results demonstrate that adding priorities to optional routes further improves system performance compared to filing one route per flight and using first-come first-served scheme. It was also observed that a two-hour planning interval with a five-minute system imposed departure delay increment results in highest delay reduction. The trend holds for a scenario with increased traffic.

  17. Safety in the Air: A Curriculum about Flight and Air Traffic Control Designed for Middle School Students.

    ERIC Educational Resources Information Center

    Colton, Ted

    This six-lesson unit is designed to familiarize sixth, seventh, and eighth grade students with air traffic safety and the individuals who make air traffic safety possible. Each lesson consists of a statement of the concept fostered, a list of objectives, a brief discussion on the focus of the unit, and instructional strategies for lesson topics…

  18. Design Principles and Algorithms for Air Traffic Arrival Scheduling

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Itoh, Eri

    2014-01-01

    This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.

  19. Trajectory Specification for Automation of Terminal Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2016-01-01

    "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.

  20. Economically consistent long-term scenarios for air pollutant emissions

    SciTech Connect

    Smith, Steven J.; West, Jason; Kyle, G. Page

    2011-09-08

    Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant levels as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve agreement between modeled PM2.5 and economic income among world regions through time; agreement for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. The scenario examined here was used as the basis for one of the Representative Concentration Pathway (RCP) scenarios. This analysis methodology could also be used to examine the consistency of other pollutant emission scenarios.

  1. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  2. Designing a Methodology for Future Air Travel Scenarios

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.

    1992-01-01

    The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all

  3. Traffic-related air pollution and brain development

    PubMed Central

    Woodward, Nicholas; Finch, Caleb E.; Morgan, Todd E.

    2016-01-01

    Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory effects from exposure are well documented, cognitive effects are only recently becoming widely recognized. This review discusses effects of TRP on brain and cognition in human and animal studies. The mechanisms underlying these epidemiological associations are studied with rodent models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. Rodent models may identify dietary and other interventions for neuroprotection to TRP. PMID:27099868

  4. Analysis of routine communication in the air traffic control system

    NASA Technical Reports Server (NTRS)

    Clark, Herbert H.; Morrow, Daniel; Rodvoid, Michelle

    1990-01-01

    The present project has three related goals. The first is to describe the organization of routine controller-pilot communication. This includes identifying the basic units of communication and how they are organized into discourse, how controllers and pilots use language to achieve their goals, and what topics they discuss. The second goal is to identify the type and frequency of problems that interrupt routine information transfer and prompt pilots and controllers to focus on the communication itself. The authors analyze the costs of these problems in terms of communication efficiency, and the techniques used to resolve these problems. Third, the authors hope to identify factors associated with communication problems, such as deviations from conventional air traffic control procedures.

  5. Balloon-borne air traffic management (ATM) as a precursor to space-based ATM

    NASA Astrophysics Data System (ADS)

    Brodsky, Yuval; Rieber, Richard; Nordheim, Tom

    2012-01-01

    The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.

  6. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air transport traffic and capacity elements... elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  7. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air transport traffic and capacity elements... elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  8. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air transport traffic and capacity elements... elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  9. Technical Seminar: "Modeling and Optimization in Air Traffic Management"

    NASA Video Gallery

    Traffic Flow Management (TFM) is the efficient organization of traffic flows to meet demand taking into account capacity constraints at airports and in en route airspace. TFM involves thousands of ...

  10. Traffic-related air pollution and respiratory tract efficiency.

    PubMed

    Badyda, A J; Dąbrowiecki, P; Czechowski, P O; Majewski, G; Doboszyńska, A

    2015-01-01

    High concentrations of air pollutants are characteristic of the vicinity of urban busy roads. Numerous studies have shown that these concentrations are significantly higher in comparison with areas located in a certain distance from roads and especially those in rural areas. Inhabitants living in the proximity of roads are, therefore, likely to be more exposed to adverse effects of air pollutants. On the basis of a study realized in 2008-2012 among nearly 5,000 residents of Warsaw and non-urbanized areas, we used generalized linear regression models (GRM) to identify factors that most significantly influence the variability of respiratory function variables. GRMs combine multiple classes of models and estimation methods such as simple, multiple, or factorial regression, ANOVA, ANCOVA, etc. Therefore, they allow receiving results based also on interactions between the independent variables. This paper presents the results of GRM for the forced expiratory volume in 1 s (FEV1) distribution. They indicate that the variation of FEV1 is associated with personal factors such as age, height, weight, BMI, or gender, as well as with factors related to the place of residence: traffic density, duration, and the floor of residence. The results clearly show that living in the proximity of busy roads in the city is linked with a significant decrease in FEV1 values.

  11. A Concept for Robust, High Density Terminal Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Robinson, John E.; Swenson, Harry N.; Denery, Dallas G.

    2010-01-01

    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team.

  12. Air traffic disturbance due to the 2010 Merapi volcano eruption

    NASA Astrophysics Data System (ADS)

    Picquout, A.; Lavigne, F.; Mei, E. T. W.; Grancher, D.; Noer, Cholik; Vidal, C. M.; Hadmoko, D. S.

    2013-07-01

    The 2010 Merapi eruption was exceptional on several levels (intensity of the eruption, destructions, casualties…) and for the first time, created major air traffic disruptions in Yogyakarta, leading to the closure of the airport. Some companies suspended their flights, others adapted to the crisis by transferring their flights to other airports, and some companies even continued to fly despite the risks involved. Four major phases emerged; first, a few days corresponding to the rise of the activity of the eruption, a second corresponding to the start of the eruption and first ash emissions. Then, a third peak marked by the eruption which led to the closure of the Yogyakarta airport for 15 days and finally, a fourth one-month-long phase where airport activity returned to normal. We studied the evolution of disturbances on the field and the correlation between volcanic activity and flight cancelations. Adaptations between airports were observed, Adisucipto Airport (Yogyakarta) transferred several of its flights to the Adi Soemarmo of Surakarta airport and it transferred its flights to Ahmad Yani Airport in Semarang and Juanda in Surabaya. Moreover, the eruption disrupted the pilgrimage to Mecca for thousands of Muslims who had waited and saved for years to be able to go. Nevertheless, the organizers coped with the crisis by changing departure airports for the pilgrimage. This study allowed us to understand the impacts of a major Merapi eruption on air transport, from the onset of ash emissions until the late disturbances.

  13. Auction Mechanism to Allocate Air Traffic Control Slots

    NASA Technical Reports Server (NTRS)

    Raffarin, Marianne

    2003-01-01

    This article deals with an auction mechanism for airspace slots, as a means of solving the European airspace congestion problem. A disequilibrium, between Air Traffic Control (ATC) services supply and ATC services demand are at the origin of almost one fourth of delays in the air transport industry in Europe. In order to tackle this congestion problem, we suggest modifying both pricing and allocation of ATC services, by setting up an auction mechanism. Objects of the auction will be the right for airlines to cross a part of the airspace, and then to benefit from ATC services over a period corresponding to the necessary time for the crossing. Allocation and payment rules have to be defined according to the objectives of this auction. The auctioneer is the public authority in charge of ATC services, whose aim is to obtain an efficient allocation. Therefore, the social value will be maximized. Another objective is to internalize congestion costs. To that end, we apply the principle of Clarke-Groves mechanism auction: each winner has to pay the externalities imposed on other bidders. The complex context of ATC leads to a specific design for this auction.

  14. Control of Future Air Traffic Systems via Complexity Bound Management

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  15. The Effects of Very Light Jet Air Taxi Operations on Commercial Air Traffic

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2006-01-01

    This study investigates the potential effects of Very Light Jet (VLJ) air taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The affordable cost relative to existing business jets and ability to use many of the existing small, minimally equipped, but conveniently located airports is projected to stimulate a large demand for the aircraft. The resulting increase in air traffic operations will mainly be at smaller airports, but this study indicates that VLJs have the potential to increase further the pressure of demand at some medium and large airports, some of which are already operating at or near capacity at peak times. The additional delays to commercial passenger air transportation due to VLJ air taxi operations are obtained from simulation results using the Airspace Concepts Evaluation System (ACES) simulator. The direct increase in operating cost due to additional delays is estimated. VLJs will also cause an increase in traffic density, and this study shows increased potential for conflicts due to VLJ operations.

  16. Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2009-01-01

    This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.

  17. 78 FR 7851 - Seventeenth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), U.S...: Standards for Air Traffic Data Communication Services meeting. SUMMARY: The FAA is issuing this notice to...: Standards for Air Traffic Data Communication Services. DATES: The meeting will be held February 19,...

  18. 75 FR 66828 - Eleventh Meeting: RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data Communication... Committee 214: Working Group 78: Standards for Air Traffic Data Communication Services. DATES: The...

  19. 76 FR 17473 - Twelfth Meeting: RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data Communication... Committee 214: Working Group 78: Standards for Air Traffic Data Communication Services. DATES: The...

  20. 78 FR 47480 - Nineteenth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), U.S...: Standards for Air Traffic Data Communication Services meeting. SUMMARY: The FAA is issuing this notice to...-78: Standards for Air Traffic Data Communication Services. DATES: The meeting will be held August...

  1. Military, Charter, Unreported Domestic Traffic and General Aviation 1976, 1984, 1992, and 2015 Emission Scenarios

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan; VanAlstyne, Richard

    1998-01-01

    The report describes development of databases estimating aircraft engine exhaust emissions for the years 1976 and 1984 from global operations of Military, Charter, historic Soviet and Chinese, Unreported Domestic traffic, and General Aviation (GA). These databases were developed under the National Aeronautics and Space Administration's (NASA) Advanced Subsonic Assessment (AST). McDonnell Douglas Corporation's (MDC), now part of the Boeing Company has previously estimated engine exhaust emissions' databases for the baseline year of 1992 and a 2015 forecast year scenario. Since their original creation, (Ward, 1994 and Metwally, 1995) revised technology algorithms have been developed. Additionally, GA databases have been created and all past NIDC emission inventories have been updated to reflect the new technology algorithms. Revised data (Baughcum, 1996 and Baughcum, 1997) for the scheduled inventories have been used in this report to provide a comparison of the total aviation emission forecasts from various components. Global results of two historic years (1976 and 1984), a baseline year (1992) and a forecast year (2015) are presented. Since engine emissions are directly related to fuel usage, an overview of individual aviation annual global fuel use for each inventory component is also given in this report.

  2. The traffic crisis and a tale of two cities: Traffic and air quality in Bangkok and Mexico City

    SciTech Connect

    Pendakur, V.S.; Badami, M.G.

    1995-12-31

    This paper focuses on congestion management techniques, traffic congestion levels and air quality. By using data from Bangkok and Mexico City, it illustrates the need for drastic changes in transportation policy tools and techniques for congestion management and for improving environmental quality. New approaches to investment and regulatory policy analysis and implementation are suggested. This requires the inclusion of all costs and benefits (economic and ecological) in the policy matrix so that investment and regulatory policies act in unison. Megacities are dominant in social, political and economic terms. 30 to 60% of national GDP is typically produced in these cities. Their human and motor vehicle populations have been doubling every 15-20 and 6-10 years respectively. They also have the most severe traffic congestion and air quality problems. They have the nation`s highest incidence of poverty and absolute poverty. Large portions of their populations endure severely unhealthy housing and sanitation conditions. Following are important characteristics of urban transportation systems in the megacities: the city centres are heavily congested with motorized traffic; traffic crawl rates vary from 2 to 10 km/hr; car and motorcycle ownership are increasing at annual rates of 10-12% and 15-20% respectively; significant air pollution with no relief in sight; TDM strategies are primarily creating new supply of road capacity; fairly high transit trips with substantial transit investments; weak air pollution monitoring and enforcement; and fairly cheap fuel and high costs of vehicles.

  3. Design of a final approach spacing tool for TRACON air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1989-01-01

    This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.

  4. An error-resistant linguistic protocol for air traffic control

    NASA Technical Reports Server (NTRS)

    Cushing, Steven

    1989-01-01

    The research results described here are intended to enhance the effectiveness of the DATALINK interface that is scheduled by the Federal Aviation Administration (FAA) to be deployed during the 1990's to improve the safety of various aspects of aviation. While voice has a natural appeal as the preferred means of communication both among humans themselves and between humans and machines as the form of communication that people find most convenient, the complexity and flexibility of natural language are problematic, because of the confusions and misunderstandings that can arise as a result of ambiguity, unclear reference, intonation peculiarities, implicit inference, and presupposition. The DATALINK interface will avoid many of these problems by replacing voice with vision and speech with written instructions. This report describes results achieved to date on an on-going research effort to refine the protocol of the DATALINK system so as to avoid many of the linguistic problems that still remain in the visual mode. In particular, a working prototype DATALINK simulator system has been developed consisting of an unambiguous, context-free grammar and parser, based on the current air-traffic-control language and incorporated into a visual display involving simulated touch-screen buttons and three levels of menu screens. The system is written in the C programming language and runs on the Macintosh II computer. After reviewing work already done on the project, new tasks for further development are described.

  5. The Monotonic Lagrangian Grid for Fast Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kaplan, Carolyn; Oran, Elaine; Boris, Jay

    2010-01-01

    This paper describes the continued development of a dynamic air-traffic model, ATMLG, intended for rapid evaluation of rules and methods to control and optimize transport systems. The underlying data structure is based on the Monotonic Lagrangian Grid (MLG), which is used for sorting and ordering positions and other data needed to describe N moving bodies, and their interactions. In ATMLG, the MLG is combined with algorithms for collision avoidance and updating aircraft trajectories. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. In this paper, we use ATMLG to examine how the ability to maintain a required separation between aircraft decreases as the number of aircraft in the volume increases. This requires keeping track of the primary and subsequent collision avoidance maneuvers necessary to maintain a five mile separation distance between all aircraft. Simulation results show that the number of collision avoidance moves increases exponentially with the number of aircraft in the volume.

  6. An Architectural Concept for Intrusion Tolerance in Air Traffic Networks

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Miner, Paul S.

    2003-01-01

    The goal of an intrusion tolerant network is to continue to provide predictable and reliable communication in the presence of a limited num ber of compromised network components. The behavior of a compromised network component ranges from a node that no longer responds to a nod e that is under the control of a malicious entity that is actively tr ying to cause other nodes to fail. Most current data communication ne tworks do not include support for tolerating unconstrained misbehavio r of components in the network. However, the fault tolerance communit y has developed protocols that provide both predictable and reliable communication in the presence of the worst possible behavior of a limited number of nodes in the system. One may view a malicious entity in a communication network as a node that has failed and is behaving in an arbitrary manner. NASA/Langley Research Center has developed one such fault-tolerant computing platform called SPIDER (Scalable Proces sor-Independent Design for Electromagnetic Resilience). The protocols and interconnection mechanisms of SPIDER may be adapted to large-sca le, distributed communication networks such as would be required for future Air Traffic Management systems. The predictability and reliabi lity guarantees provided by the SPIDER protocols have been formally v erified. This analysis can be readily adapted to similar network stru ctures.

  7. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  8. Consequences of Social and Institutional Setups for Occurrence Reporting in Air Traffic Organizations

    NASA Astrophysics Data System (ADS)

    Sharpanskykh, Alexei

    Deficient safety occurrence reporting by air traffic controllers is an important issue in many air traffic organizations. To understand the reasons for not reporting, practitioners formulated a number of hypotheses, which are difficult to verify manually. To perform automated, formally-based verification of the hypotheses an agent-based modeling and simulation approach is proposed in this paper. This approach allows modeling both institutional (prescriptive) aspects of the formal organization and social behavior of organizational actors. To our knowledge, agent-based organization modeling has not been attempted in air traffic previously. Using such an approach four hypotheses related to consequences of controller team composition in particular organizational contexts were examined.

  9. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  10. Influence of road traffic, residential heating and meteorological conditions on PM10 concentrations during air pollution critical episodes.

    PubMed

    Gualtieri, Giovanni; Toscano, Piero; Crisci, Alfonso; Di Lonardo, Sara; Tartaglia, Mario; Vagnoli, Carolina; Zaldei, Alessandro; Gioli, Beniamino

    2015-12-01

    The importance of road traffic, residential heating and meteorological conditions as major drivers of urban PM10 concentrations during air pollution critical episodes has been assessed in the city of Florence (Italy) during the winter season. The most significant meteorological variables (wind speed and atmospheric stability) explained 80.5-85.5% of PM10 concentrations variance, while a marginal role was played by major emission sources such as residential heating (12.1%) and road traffic (5.7%). The persistence of low wind speeds and unstable atmospheric conditions was the leading factor controlling PM10 during critical episodes. A specific PM10 critical episode was analysed, following a snowstorm that caused a "natural" scenario of 2-day dramatic road traffic abatement (-43%), and a massive (up to +48%) and persistent (8 consecutive days) increase in residential heating use. Even with such a strong variability in local PM10 emissions, the role of meteorological conditions was prominent, revealing that short-term traffic restrictions are insufficient countermeasures to reduce the health impacts and risks of PM10 critical episodes, while efforts should be made to anticipate those measures by linking them with air quality and weather forecasts.

  11. Influence of road traffic, residential heating and meteorological conditions on PM10 concentrations during air pollution critical episodes.

    PubMed

    Gualtieri, Giovanni; Toscano, Piero; Crisci, Alfonso; Di Lonardo, Sara; Tartaglia, Mario; Vagnoli, Carolina; Zaldei, Alessandro; Gioli, Beniamino

    2015-12-01

    The importance of road traffic, residential heating and meteorological conditions as major drivers of urban PM10 concentrations during air pollution critical episodes has been assessed in the city of Florence (Italy) during the winter season. The most significant meteorological variables (wind speed and atmospheric stability) explained 80.5-85.5% of PM10 concentrations variance, while a marginal role was played by major emission sources such as residential heating (12.1%) and road traffic (5.7%). The persistence of low wind speeds and unstable atmospheric conditions was the leading factor controlling PM10 during critical episodes. A specific PM10 critical episode was analysed, following a snowstorm that caused a "natural" scenario of 2-day dramatic road traffic abatement (-43%), and a massive (up to +48%) and persistent (8 consecutive days) increase in residential heating use. Even with such a strong variability in local PM10 emissions, the role of meteorological conditions was prominent, revealing that short-term traffic restrictions are insufficient countermeasures to reduce the health impacts and risks of PM10 critical episodes, while efforts should be made to anticipate those measures by linking them with air quality and weather forecasts. PMID:26233744

  12. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  13. Potential effects of using biodiesel in road-traffic on air quality over the Porto urban area, Portugal

    NASA Astrophysics Data System (ADS)

    Ribeiro, Isabel; Monteiro, Alexandra; Lopes, Myriam

    2016-01-01

    This work aims to assess the impacts of biodiesel blends use in road-traffic on air quality. In this frame, the air quality numerical modelling system WRF-EURAD was applied over Portugal and the Porto urban area, forced by two emission scenarios (including CO, NOx, PM10, PM2.5, NMVOC, formaldehyde, acetaldehyde, acrolein and benzene): a reference scenario, without biofuels, and a scenario where a B20 fuel (20% biodiesel/80% diesel, v/v) is used by the diesel vehicle fleet. Regarding carbonyl compounds, emission scenarios pointed out that B20 fuel can promote an increase of 20% on formaldehyde, acetaldehyde and acrolein emissions, leading to increments on equivalent ozone production. On the other hand, through the air quality modelling exercise, it was verified that the use of B20 helps in controlling air pollution, improving CO and NO2 concentrations in urban airshed in about 20% and 10%, respectively, taking into account a regional simulation grid. However, according to the urban scale simulation, NO2 levels can increase in about 1%, due to the use of B20, over the Porto urban area. For the remaining studied pollutants, namely PM10 and PM2.5, mean concentrations will be reduced all over the territory, however in a negligible amount of <1%.

  14. Working Toward Policy-Relevant Air Quality Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Holloway, T.

    2010-12-01

    to meet the increasingly intricate demands of both advanced air quality models and more realistic and relevant policy scenarios.

  15. Wind Prediction Accuracy for Air Traffic Management Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Cole, Rod; Green, Steve; Jardin, Matt; Schwartz, Barry; Benjamin, Stan

    2000-01-01

    The performance of Air Traffic Management and flight deck decision support tools depends in large part on the accuracy of the supporting 4D trajectory predictions. This is particularly relevant to conflict prediction and active advisories for the resolution of conflicts and the conformance with of traffic-flow management flow-rate constraints (e.g., arrival metering / required time of arrival). Flight test results have indicated that wind prediction errors may represent the largest source of trajectory prediction error. The tests also discovered relatively large errors (e.g., greater than 20 knots), existing in pockets of space and time critical to ATM DST performance (one or more sectors, greater than 20 minutes), are inadequately represented by the classic RMS aggregate prediction-accuracy studies of the past. To facilitate the identification and reduction of DST-critical wind-prediction errors, NASA has lead a collaborative research and development activity with MIT Lincoln Laboratories and the Forecast Systems Lab of the National Oceanographic and Atmospheric Administration (NOAA). This activity, begun in 1996, has focussed on the development of key metrics for ATM DST performance, assessment of wind-prediction skill for state of the art systems, and development/validation of system enhancements to improve skill. A 13 month study was conducted for the Denver Center airspace in 1997. Two complementary wind-prediction systems were analyzed and compared to the forecast performance of the then standard 60 km Rapid Update Cycle - version 1 (RUC-1). One system, developed by NOAA, was the prototype 40-km RUC-2 that became operational at NCEP in 1999. RUC-2 introduced a faster cycle (1 hr vs. 3 hr) and improved mesoscale physics. The second system, Augmented Winds (AW), is a prototype en route wind application developed by MITLL based on the Integrated Terminal Wind System (ITWS). AW is run at a local facility (Center) level, and updates RUC predictions based on an

  16. Optimal Re-Routes and Ground Delays Using a Route-Based Aggregate Air Traffic Flow Model

    NASA Astrophysics Data System (ADS)

    Soler, Lluis

    The National Airspace System (NAS) is very complex and with a high level of uncertainty. For this reason, developing an automated conflict resolution tool at NAS level is presented as a big challenge. One way to address the problem is by using aggregate models, which can significantly reduce its dimension and complexity. Significant effort has been made to develop an air traffic aggregate model capable to effectively state and solve the problem. In this study, a Route-Based Aggregate Model is developed and tested. It consists in a modification of several existing models and overcomes some issues identified in previous aggregate models. It allows the implementation of Traffic Flow Management conventional controls, such as ground delay and rerouting. These control strategies can be used to avoid congestion conflicts based on sectors and airports capacity as well as regions affected by convective weather. The optimization problem is posed as a Linear Programming routine, which guarantees an optimal solution that minimizes the total accumulated delay required to avoid such capacity conflicts. The solutions can be directly translated into specific instructions at aircraft level, via modification of the times of departure and flight plans. The model is integrated with Future Air Traffic Management Concepts Evaluation Tool (FACET), a state of the art air traffic simulation tool, and uses its files as both input and output. This allows simulating in FACET the solution obtained from the aggregate domain. The approach is validated by applying it in three realistic scenarios at different scales. Results show that, for time horizons larger than 2 hours, the accuracy of the aggregate model is similar to other simulation tools. Also, the modified flight plans, the product of the disaggregated solution, reduce the number of capacity conflicts in the FACET simulation. Future research will study the robustness of these solutions and determine the most appropriate scenarios where to

  17. Dimensions of Air Traffic Control Tower Information Needs: From Information Requests to Display Design

    ERIC Educational Resources Information Center

    Durso, Francis T.; Johnson, Brian R.; Crutchfield, Jerry M.

    2010-01-01

    In an effort to determine the information needs of tower air traffic controllers, instructors from the Federal Aviation Administration's Academy in Oklahoma City were asked to control traffic in a high-fidelity tower cab simulator. Information requests were made apparent by eliminating access to standard tower information sources. Instead,…

  18. Controller evaluation of initial data link terminal air traffic control services

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The results of the first Federal Aviation Administration (FAA) Technical Center investigation of the initial terminal air traffic control services were evaluated in order to identify service delivery methods which optimize controller acceptance, performance, and workload.

  19. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    NASA Technical Reports Server (NTRS)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  20. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  1. A User Guide for Smoothing Air Traffic Radar Data

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E.; Paielli, Russell A.

    2014-01-01

    Matlab software was written to provide smoothing of radar tracking data to simulate ADS-B (Automatic Dependent Surveillance-Broadcast) data in order to test a tactical conflict probe. The probe, called TSAFE (Tactical Separation-Assured Flight Environment), is designed to handle air-traffic conflicts left undetected or unresolved when loss-of-separation is predicted to occur within approximately two minutes. The data stream that is down-linked from an aircraft equipped with an ADS-B system would include accurate GPS-derived position and velocity information at sample rates of 1 Hz. Nation-wide ADS-B equipage (mandated by 2020) should improve surveillance accuracy and TSAFE performance. Currently, position data are provided by Center radar (nominal 12-sec samples) and Terminal radar (nominal 4.8-sec samples). Aircraft ground speed and ground track are estimated using real-time filtering, causing lags up to 60 sec, compromising performance of a tactical resolution tool. Offline smoothing of radar data reduces wild-point errors, provides a sample rate as high as 1 Hz, and yields more accurate and lag-free estimates of ground speed, ground track, and climb rate. Until full ADS-B implementation is available, smoothed radar data should provide reasonable track estimates for testing TSAFE in an ADS-B-like environment. An example illustrates the smoothing of radar data and shows a comparison of smoothed-radar and ADS-B tracking. This document is intended to serve as a guide for using the smoothing software.

  2. Controller evaluation of initial data link en route air traffic control services: Mini study 3

    NASA Astrophysics Data System (ADS)

    Marek, Hank; Shochet, Ephraim; Darby, Evan; Buck, Frank; Sweeney, David; Cratch, Preston

    1991-06-01

    The results of Mini Study 3 conducted November 5-9, 1990 are presented. This Mini Study was conducted at the Federal Aviation Administration (FAA) Technical Center utilizing the Washington Air Route Traffic Control Center (ARTCC) airspace in the Data Link test bed. Initial Data Link en route services were evaluated in order to identify service delivery methods which optimize the human computer interface. Controllers from the Air Traffic Data Link Validation Team participated in this study.

  3. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic

  4. A Cognitive Game Theoretic Analysis of Conflict Alerts in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erev, Ido; Gopher, Daniel; Remington, Roger

    1999-01-01

    The current research was motivated by the recommendation made by a joint Government/Industry committee to introduce a new traffic control system, referred to as the Free Flight. This system is designed to use recent new technology to facilitate efficient and safe air transportation. We addressed one of the major difficulties that arise in the design of this and similar multi-agent systems: the adaptive (and slippery) nature of human agents. To facilitate a safe and efficient design of this multi-agent system, designers have to rely on assessments of the expected behavior of the different agents under various scenarios. Whereas the behavior of the computerized agents is predictable, the behavior of the human agents (including air traffic controllers and pilots) is not. Experimental and empirical observations suggest that human agents are likely to adjust their behavior to the design of the system. To see the difficulty that the adaptive nature of human agents creates assume that a good approximation of the way operators currently behave is available. Given this information an optimal design can be performed. The problem arises as the human operator will learn to adjust their behavior to the new system. Following this adjustment process the assumptions made by the designer concerning the operators behavior will no longer be accurate and the system might reach a suboptimal state. In extreme situations these potential suboptimal states might involve unnecessary risk. That is, the fact that operators learn in an adaptive fashion does not imply that the system will become safer as they gain experience. At least in the context of Safety dilemmas, experience can lead to a pareto deficient risk taking behavior.

  5. 76 FR 72241 - Fourteenth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), U.S... Traffic Data Communication Services meeting. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic...

  6. Format and basic geometry of a perspective display of air traffic for the cockpit

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael Wallace; Ellis, Stephen R.

    1991-01-01

    The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes allowances for exploration of perspective parameters and their interactions. The display was initially used to study the cases of horizontal maneuver biases found in experiments involving a plan view air traffic display format. Experiments to determine the effect of perspective geometry on spatial judgements have evolved from the display program. Several scaling techniques and other adjustments to the perspective are used to tailor the geometry for effective presentation of 3-D traffic situations.

  7. Development of a Laboratory for Improving Communication between Air Traffic Controllers and Pilots

    NASA Technical Reports Server (NTRS)

    Brammer, Anthony

    2003-01-01

    Runway incursions and other surface incidents are known to be significant threats to aviation safety and efficiency. Though the number of near mid-air collisions in U.S. air space has remained unchanged during the last five years, the number of runway incursions has increased and they are almost all due to human error. The three most common factors contributing to air traffic controller and pilot error in airport operations include two that involve failed auditory communication. This project addressed the problems of auditory communication in air traffic control from an acoustical standpoint, by establishing an acoustics laboratory designed for this purpose and initiating research into selected topics that show promise for improving voice communications between air traffic controllers and pilots.

  8. Containing air pollution and traffic congestion: Transport policy and the environment in Singapore

    NASA Astrophysics Data System (ADS)

    Chin, Anthony T. H.

    Land transportation remains one of the main contributors of noise and air pollution in urban areas. This is in addition to traffic congestion and accidents which result in the loss of productive activity. While there is a close relationship between traffic volumes and levels of noise and air pollution, transport authorities often assume that solving traffic congestion would reduce noise and air pollutant levels. Tight control over automobile ownership and use in Singapore has contributed in improving traffic flows, travel speeds and air quality. The adoption of internationally accepted standards on automobile emissions and gasoline have been effective in reducing air pollution from motor vehicles. Demand management measures have largely focused on controlling the source of traffic congestion, i.e. private automobile ownership and its use especially within the Central Business District during the day. This paper reviews and analyzes the effectiveness of two measures which are instrumental in controlling congestion and automobile ownership, i.e. road pricing and the vehicle quota scheme (VQS). While these measures have been successful in achieving desired objectives, it has also led to the spreading of traffic externalities to other roads in the network, loss in consumer welfare and rent seeking by automobile traders.

  9. Efficient algorithms for optimal arrival scheduling and air traffic flow management

    NASA Astrophysics Data System (ADS)

    Saraf, Aditya

    The research presented in this dissertation is motivated by the need for new, efficient algorithms for the solution of two important problems currently faced by the air-traffic control community: (i) optimal scheduling of aircraft arrivals at congested airports, and (ii) optimal National Airspace System (NAS) wide traffic flow management. In the first part of this dissertation, we present an optimal airport arrival scheduling algorithm, which works within a hierarchical scheduling structure. This structure consists of schedulers at multiple points along the arrival-route. Schedulers are linked through acceptance-rate constraints, which are passed up from downstream metering-points. The innovation in this scheduling algorithm is that these constraints are computed by using an Eulerian model-based optimization scheme. This rate computation removes inefficiencies introduced in the schedule through ad hoc acceptance-rate computations. The scheduling process at every metering-point uses its optimal acceptance-rate as a constraint and computes optimal arrival sequences by using a combinatorial search-algorithm. We test this algorithm in a dynamic air-traffic environment, which can be customized to emulate different arrival scenarios. In the second part of this dissertation, we introduce a novel two-level control system for optimal traffic-flow management. The outer-level control module of this two-level control system generates an Eulerian-model of the NAS by aggregating aircraft into interconnected control-volumes. Using this Eulerian model of the airspace, control strategies like Model Predictive Control are applied to find the optimal inflow and outflow commands for each control-volume so that efficient flows are achieved in the NAS. Each control-volume has its separate inner-level control-module. The inner-level control-module takes in the optimal inflow and outflow commands generated by the outer control-module as reference inputs and uses hybrid aircraft models to

  10. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  11. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  12. Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Kopardekar, Parimal

    2001-01-01

    The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.

  13. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  14. Populations potentially exposed to traffic-related air pollution in seven world cities.

    PubMed

    Su, Jason G; Apte, Joshua S; Lipsitt, Jonah; Garcia-Gonzales, Diane A; Beckerman, Bernardo S; de Nazelle, Audrey; Texcalac-Sangrador, José Luis; Jerrett, Michael

    2015-05-01

    Traffic-related air pollution (TRAP) likely exerts a large burden of disease globally, and in many places, traffic is increasing dramatically. The impact, however, of urban form on the portion of population potentially exposed to TRAP remains poorly understood. In this study, we estimate portions of population potentially exposed to TRAP across seven global cities of various urban forms. Data on population distributions and road networks were collected from the best available sources in each city and from remote sensing analysis. Using spatial mapping techniques, we first overlaid road buffers onto population data to estimate the portions of population potentially exposed for four plausible impact zones. Based on a most likely scenario with impacts from highways up to 300meters and major roadways up to 50meters, we identified that the portions of population potentially exposed for the seven cities ranged from 23 to 96%. High-income North American cities had the lowest potential exposure portions, while those in Europe had the highest. Second, we adjusted exposure zone concentration levels based on a literature suggested multiplier for each city using corresponding background concentrations. Though Beijing and Mexico City did not have the highest portion of population exposure, those in their exposure zones had the highest levels of exposure. For all seven cities, the portion of population potentially exposed was positively correlated with roadway density and, to a lesser extent, with population density. These analyses suggest that urban form may influence the portion of population exposed to TRAP and vehicle emissions and other factors may influence the exposure levels. Greater understanding of urban form and other factors influencing potential exposure to TRAP may help inform interventions that protect public health. PMID:25770919

  15. Populations potentially exposed to traffic-related air pollution in seven world cities.

    PubMed

    Su, Jason G; Apte, Joshua S; Lipsitt, Jonah; Garcia-Gonzales, Diane A; Beckerman, Bernardo S; de Nazelle, Audrey; Texcalac-Sangrador, José Luis; Jerrett, Michael

    2015-05-01

    Traffic-related air pollution (TRAP) likely exerts a large burden of disease globally, and in many places, traffic is increasing dramatically. The impact, however, of urban form on the portion of population potentially exposed to TRAP remains poorly understood. In this study, we estimate portions of population potentially exposed to TRAP across seven global cities of various urban forms. Data on population distributions and road networks were collected from the best available sources in each city and from remote sensing analysis. Using spatial mapping techniques, we first overlaid road buffers onto population data to estimate the portions of population potentially exposed for four plausible impact zones. Based on a most likely scenario with impacts from highways up to 300meters and major roadways up to 50meters, we identified that the portions of population potentially exposed for the seven cities ranged from 23 to 96%. High-income North American cities had the lowest potential exposure portions, while those in Europe had the highest. Second, we adjusted exposure zone concentration levels based on a literature suggested multiplier for each city using corresponding background concentrations. Though Beijing and Mexico City did not have the highest portion of population exposure, those in their exposure zones had the highest levels of exposure. For all seven cities, the portion of population potentially exposed was positively correlated with roadway density and, to a lesser extent, with population density. These analyses suggest that urban form may influence the portion of population exposed to TRAP and vehicle emissions and other factors may influence the exposure levels. Greater understanding of urban form and other factors influencing potential exposure to TRAP may help inform interventions that protect public health.

  16. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    PubMed

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias; Andersen, Zorana J; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2014-08-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association with risk for stroke. In a population-based cohort of 57,053 people aged 50-64 years at enrollment, we identified 1999 incident stroke cases in national registries, followed by validation through medical records. Mean follow-up time was 11.2 years. Present and historical residential addresses from 1987 to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10 µg/m(3) nitrogen dioxide (NO2) and 10 dB road traffic noise at the residential address was associated with ischemic stroke with incidence rate ratios (IRR) of 1.11 (95% CI: 1.03, 1.20) and 1.16 (95% CI: 1.07, 1.24), respectively, in single exposure models. In two-exposure models road traffic noise (IRR: 1.15) and not NO2 (IRR: 1.02) was associated with ischemic stroke. The strongest association was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air pollution affected risk for fatal strokes. There were indications of combined effects.

  17. Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1993-01-01

    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept.

  18. The Impact of Trajectory Prediction Uncertainty on Air Traffic Controller Performance and Acceptability

    NASA Technical Reports Server (NTRS)

    Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.

    2013-01-01

    A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.

  19. The Challenges of Field Testing the Traffic Management Advisor (TMA) in an Operational Air Traffic Control Facility

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Swenson, Harry N.

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.

  20. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  1. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing

    NASA Astrophysics Data System (ADS)

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-01

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  2. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

  3. Aeronautical Satellite Data Link System (SDLS) for high-density air-traffic areas

    NASA Technical Reports Server (NTRS)

    Delrieu, Alain; Loisy, Claude; Clinch, Philip; Benhaim, Philippe

    1995-01-01

    The European Space Agency has recently commissioned a study to investigate the feasibility of a low-cost aeronautical Satellite Data Link System (SDLS) to provide for the needs of Air Traffic Services, i.e. safety related communications over continental areas with high air-traffic density. This study is placed in today's context which sees the first generation of Aeronautical Mobile Satellite System (AMSS) being gradually but restrictively put into service in oceanic airspaces with low air-traffic density. This paper first discusses the case of ATS dedicated versus mixed (ATS and commercial) Comms service provision and identifies the specific ATS comms requirements context. Specific emphasis is put on the ICAO (International Civil Aviation Organization) standardization framework for both the ATN (Aeronautical Telecommunication Network) and the SSR (Secondary Surveillance Radar) Mode S specific services. An architectural system and network design for a future SDLS is then proposed, such as to meet the ATS comms requirements within the realm of existing technologies. To minimize development risk and cost, consideration is given to re-use the ESA-developed Land Mobile Communication Technology, known as MSBN (Mobile Satellite Business Network) featuring distinct subnetworks. It is particularly suited to an ATM (Air Traffic Management) decentralized architecture made of independent ATC (Air Traffic Control) Centers. Finally the study follow-on phase is introduced, which is intended to cover system design and development leading to a demonstration program, as a first step towards proposals for international standardization and acceptance.

  4. The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.

    PubMed

    Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith

    2006-06-15

    Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation. PMID:16778887

  5. The employment of a spoken language computer applied to an air traffic control task.

    NASA Technical Reports Server (NTRS)

    Laveson, J. I.; Silver, C. A.

    1972-01-01

    Assessment of the merits of a limited spoken language (56 words) computer in a simulated air traffic control (ATC) task. An airport zone approximately 60 miles in diameter with a traffic flow simulation ranging from single-engine to commercial jet aircraft provided the workload for the controllers. This research determined that, under the circumstances of the experiments carried out, the use of a spoken-language computer would not improve the controller performance.

  6. Impact of bicycle route type on exposure to traffic-related air pollution.

    PubMed

    MacNaughton, Piers; Melly, Steven; Vallarino, Jose; Adamkiewicz, Gary; Spengler, John D

    2014-08-15

    Cyclists are exposed to traffic-related air pollution (TRAP) during their commutes due to their proximity to vehicular traffic. Two of the main components of TRAP are black carbon (BC) and nitrogen dioxide (NO2), which have both been causally associated with increased mortality. To assess the impact of cyclists' exposure to TRAP, a battery-powered mobile monitoring station was designed to sample air pollutants along five bike routes in Boston, Massachusetts. The bike routes were categorized into three types: bike paths, which are separated from vehicle traffic; bike lanes, which are adjacent to traffic; and designated bike lanes, which are shared traffic lanes for buses and cyclists. Bike lanes were found to have significantly higher concentrations of BC and NO2 than bike paths in both adjusted and unadjusted generalized linear models. Higher concentrations were observed in designated bike lanes than bike paths; however, this association was only significant for NO2. After adjusting for traffic density, background concentration, and proximity to intersections, bike lanes were found to have concentrations of BC and NO2 that were approximately 33% higher than bike paths. Distance from the road, vegetation barriers, and reduced intersection density appear to influence these variations. These findings suggest that cyclists can reduce their exposure to TRAP during their commute by using bike paths preferentially over bike lanes regardless of the potential increase of traffic near these routes.

  7. Traffic source emission and street level air pollution in urban areas of Guangzhou, South China (P.R.C.)

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Chan, L. Y.

    Street level air pollution due to traffic emission is a cause of concern in Guangzhou City. During the winter and summer of 1988, the traffic-related air pollutant concentrations, wind field, traffic volume and vehicle speed were measured extensively in three types of street canyons in Guangzhou City. Various types of motor vehicle emission in idle condition were measured and the composite emission factors of vehicles were derived. The variation of traffic volume and vehicle speed in 223 mainstreets were also investigated. The annual air pollutant concentration levels of traffic source emission were calculated. Using CO as a traffic emission tracer for air pollution on the street, the contributions of traffic emission to street level air pollution were determined by the receptor method. Ground level air pollution in Guangzhou has changed from coal combustion emission type into traffic source emission type. The average contributions of traffic source emission to the concentration of CO and NO x on the street in 1988 are about 87% and 67%. The most significant pollutant of ambient air quality that traffic source emission influences in NO x.

  8. Air Traffic Forecasting at the Port Authority of New York and New Jersey

    NASA Technical Reports Server (NTRS)

    Augustine, J. G.

    1972-01-01

    Procedures for conducting air traffic forecasts with specific application to the Port Authority of New York and New Jersey are discussed. The procedure relates air travel growth to detailed socio-economic and demographic characteristics of the U.S. population rather than to aggregate economic data such as Gross National Product, personal income, and industrial production. Charts are presented to show the relationship between various selected characteristics and the use of air transportation facilities.

  9. Human-Centered Technologies and Procedures for Future Air Traffic Management: A Preliminary Overview of 1996 Studies and Results

    NASA Technical Reports Server (NTRS)

    Smith, Philip; McCoy, Elaine; Denning, Rebecca; Woods, David; Sarter, Nadine; Dekker, Sidney; Billings, Charles

    1996-01-01

    In this project, we have been exploring the use of a general methodology to predict the impact of future Air Traffic Management (ATM) concepts and technologies. In applying this methodology, our emphasis has been on the importance of modeling coordination and cooperation among the multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, trying to identify critical problem areas and looking for exemplars suggestive of general approaches for solving such problems. Based on the results of these field studies, we have developed a set of scenarios centered around potential future system designs, and have conducted studies using these scenarios involving a total 40 controllers, dispatchers, pilots and traffic managers. The purpose of this report is to provide NASA with an early summary of the major recommendations that have resulted from our research under the AATT Program thus far. Recommendations 1-3 deal with general approaches that our findings suggest should be incorporated in future AATT Program activities, while Recommendations 4-11 identify some specific topics and technologies that merit research and development activities. Detailed technical reports containing supporting data, as well as the results of our still ongoing analyses, will be provided at a later date. The remainder of this report is organized as follows. Section 1 briefly describes the general design philosophy supported by our empirical studies. Section 2 presents the research methods we have used for identifying requirements for future system designs and for evaluating alternative design solutions. Section 3 discusses preliminary results from an initial set of investigations that we have conducted using these research methods. Section 4 then provides an

  10. Insights into future air quality: a multipollutant analysis of future scenarios using the MARKAL model

    EPA Science Inventory

    In this presentation, we will provide an update on the development and evaluation of the Air Quality Futures (AQF) scenarios. These scenarios represent widely different assumptions regarding the evolution of the U.S. energy system over the next 40 years. The four AQF scenarios di...

  11. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  12. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  13. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  14. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.

  15. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  16. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  17. Single and Combined Effects of Air, Road, and Rail Traffic Noise on Sleep and Recuperation

    PubMed Central

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria

    2011-01-01

    Study Objective: Traffic noise disturbs sleep and may impair recuperation. There is limited information on single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Design: Repeated measures. Setting: Polysomnographic laboratory study. Participants: 72 healthy subjects, mean ± standard deviation 40 ± 13 years, range 18-71 years, 32 male. Interventions: Exposure to 40, 80, or 120 rail, road, and/or air traffic noise events. Measurement and Results: Subjects were investigated for 11 consecutive nights, which included 8 noise exposure nights and one noise-free control night. Noise effects on sleep structure and continuity were subtle, even in nights with combined exposure, most likely because of habituation and an increase in arousal thresholds both within and across nights. However, cardiac arousals did not habituate across nights. Noise exposure significantly affected subjective assessments of sleep quality and recuperation, whereas objective performance was unaffected, except for a small increase in mean PVT reaction time (+4 ms, adjusted P < 0.05). Road traffic noise led to the strongest changes in sleep structure and continuity, whereas subjective assessments of sleep were worse after nights with air and rail traffic noise exposure. In contrast to daytime annoyance, cortical arousal probabilities and cardiac responses were significantly lower for air than for road and rail traffic noise (all P < 0.0001). These differences were explained by sound pressure level rise time and high frequency (> 3 kHz) noise event components. Conclusions: Road, rail, and air traffic noise differentially affect objective and subjective assessments of sleep. Differences in the degree of noise-induced sleep fragmentation between traffic modes were explained by the specific spectral and temporal composition of noise events, indicating potential targets for active and passive noise control. Field studies are needed to validate our findings in a setting

  18. Association of Traffic-Related Air Pollution with Children’s Neurobehavioral Functions in Quanzhou, China

    PubMed Central

    Wang, Shunqin; Zhang, Jinliang; Zeng, Xiaodong; Zeng, Yimin; Wang, Shengchun; Chen, Shuyun

    2009-01-01

    Background With the increase of motor vehicles, ambient air pollution related to traffic exhaust has become an important environmental issue in China. Because of their fast growth and development, children are more susceptible to ambient air pollution exposure. Many chemicals from traffic exhaust, such as carbon monoxide, nitrogen dioxide, and lead, have been reported to show adverse effects on neurobehavioral functions. Several studies in China have suggested that traffic exhaust might affect neurobehavioral functions of adults who have occupational traffic exhaust exposure. However, few data have been reported on the effects on neurobehavioral function in children. Objectives The objective of this study was to explore the association between traffic-related air pollution exposure and its effects on neurobehavioral function in children. Methods This field study was conducted in Quanzhou, China, where two primary schools were chosen based on traffic density and monitoring data of ambient air pollutants. School A was located in a clear area and school B in a polluted area. We monitored NO2 and particulate matter with aerodynamic diameter ≤ 10 μm as indicators for traffic-related air pollution on the campuses and in classrooms for 2 consecutive days in May 2005. The children from second grade (8–9 years of age) and third grade (9–10 years of age) of the two schools (n = 928) participated in a questionnaire survey and manual-assisted neurobehavioral testing. We selected 282 third-grade children (school A, 136; school B, 146) to participate in computer-assisted neurobehavioral testing. We conducted the fieldwork between May and June 2005. We used data from 861 participants (school A, 431; school B, 430) with manual neurobehavioral testing and from all participants with computerized testing for data analyses. Results Media concentrations of NO2 in school A and school B campus were 7 μg/m3 and 36 μg/m3, respectively (p < 0.05). The ordinal logistic regression

  19. Willingness to pay to avoid health risks from road-traffic-related air pollution and noise across five countries.

    PubMed

    Istamto, Tifanny; Houthuijs, Danny; Lebret, Erik

    2014-11-01

    We conducted a multi-country study to estimate the perceived economic values of traffic-related air pollution and noise health risks within the framework of a large European project. We used contingent valuation as a method to assess the willingness-to-pay (WTP) for both types of pollutants simultaneously. We asked respondents how much they would be willing to pay annually to avoid certain health risks from specific pollutants. Three sets of vignettes with different levels of information were provided prior to the WTP questions. These vignettes described qualitative general health risks, a quantitative single health risk related to a pollutant, and a quantitative scenario of combined health risks related to a pollutant. The mean WTP estimates to avoid road-traffic air pollution effects for the three vignettes were: €130 per person per year (pp/y) for general health risks, €80 pp/y for a half year shorter in life expectancy, and €330 pp/y to a 50% decrease in road-traffic air pollution. Their medians were €40 pp/y, €10 pp/y and €50 pp/y, respectively. The mean WTP estimates to avoid road-traffic noise effects for the three vignettes were: €90 pp/y for general health risks, €100 pp/y for a 13% increase in severe annoyance, and €320 pp/y for a combined-risk scenario related to an increase of a noise level from 50 dB to 65 dB. Their medians were €20 pp/y, €20 pp/y and €50 pp/y, respectively. Risk perceptions and attitudes as well as environmental and pollutant concerns significantly affected WTP estimates. The observed differences in crude WTP estimates between countries changed considerably when perception-related variables were included in the WTP regression models. For this reason, great care should be taken when performing benefit transfer from studies in one country to another.

  20. In-Trail Procedure Air Traffic Control Procedures Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Chartrand, Ryan C.; Hewitt, Katrin P.; Sweeney, Peter B.; Graff, Thomas J.; Jones, Kenneth M.

    2012-01-01

    In August 2007, Airservices Australia (Airservices) and the United States National Aeronautics and Space Administration (NASA) conducted a validation experiment of the air traffic control (ATC) procedures associated with the Automatic Dependant Surveillance-Broadcast (ADS-B) In-Trail Procedure (ITP). ITP is an Airborne Traffic Situation Awareness (ATSA) application designed for near-term use in procedural airspace in which ADS-B data are used to facilitate climb and descent maneuvers. NASA and Airservices conducted the experiment in Airservices simulator in Melbourne, Australia. Twelve current operational air traffic controllers participated in the experiment, which identified aspects of the ITP that could be improved (mainly in the communication and controller approval process). Results showed that controllers viewed the ITP as valid and acceptable. This paper describes the experiment design and results.

  1. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  2. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  3. 75 FR 20423 - Tenth Meeting: RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... Activities Briefing from SC-217/WG-44 (D-TAXI, Airport Data Base) Briefing from SC-186/WG-51 (CPDLC support... Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 214: Working Group 78: Standards for Air Traffic Data...

  4. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects among Children with Asthma in Detroit, Michigan

    EPA Science Inventory

    Vehicular traffic is a major source of ambient air pollution in urban areas, and traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter under 2.5 microns in diameter (PM2.5) and diesel exhaust emissions, have been associated with...

  5. Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity

    NASA Technical Reports Server (NTRS)

    Brinton, Christopher R.

    1996-01-01

    The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.

  6. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  7. The Evaluation of Alternative Exposure Metrics for Traffic-related Air Pollutant Exposure in North Carolina

    EPA Science Inventory

    Transportation plays an important role in the modern society but can cause significant health impacts. To quantify the associated health impacts, an appropriate traffic-related air pollution exposure metric is required. In this study, we evaluate the suitability of four exposure ...

  8. Air Route Traffic Control Center. Controller Over-The-Shoulder Training Review: Instruction Manual.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The instruction manual provides 12 step-by-step instructions for air traffic control supervisors in conducting over-the-shoulder training observations of enroute center controllers. Since the primary purpose of the review is to quickly identify training needs and requirements, the control responsibilities are approached from a deficiency…

  9. Manpower Requirements for Air Traffic Control and Flight Service Specialists in Indiana.

    ERIC Educational Resources Information Center

    Purdue Univ., Lafayette, IN. Office of Manpower Studies.

    As of January 1, 1968 the Federal Aviation Administration (FAA) of the United States Department of Transportation employed 6,963 controllers in airport towers, 7,617 controllers in Air Route Traffic Control Centers, and 4,459 flight service specialists at airport locations. Projected needs are as follows: (1) Controllers in airport towers:…

  10. Draft Cognitive Skills Training Program for En-Route Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Redding, Richard E.

    This document begins with a discussion of the cognitive task analysis (CTA) that was commissioned by the Federal Aviation Administration to identify the cognitive skills-related training needs of en-route air traffic controllers. Concluding the introductory section are a brief list of recommendations regarding the design of a training program…

  11. Cognitive Task Analysis of En Route Air Traffic Control: Model Extension and Validation.

    ERIC Educational Resources Information Center

    Redding, Richard E.; And Others

    Phase II of a project extended data collection and analytic procedures to develop a model of expertise and skill development for en route air traffic control (ATC). New data were collected by recording the Dynamic Simulator (DYSIM) performance of five experts with a work overload problem. Expert controllers were interviewed in depth for mental…

  12. The role of vegetation in mitigating air quality impacts from traffic emissions--journal

    EPA Science Inventory

    On Apri1 27-28, 2019, a multi-disciplinary group of researchers and po1icymakers met to discuss the state-of-the-science regarding the potential of roadside vegetation to mitigate near-road air quality impacts. Concerns over population exposures to traffic-generated pollutants ne...

  13. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  14. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  15. 77 FR 24156 - Proposed Amendment of Air Traffic Service Routes; Southwestern United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Policies and Procedures (44 FR 11034; February 26, 1979); and (3) does not warrant preparation of a... continues to read as follows: Authority: 49 U.S.C. 106(g), 40103, 40113, 40120; E.O. 10854, 24 FR 9565, 3... of Air Traffic Service Routes; Southwestern United States AGENCY: Federal Aviation...

  16. 5 CFR 842.405 - Air traffic controllers, firefighters, law enforcement officers, and nuclear materials couriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., law enforcement officers, and nuclear materials couriers. 842.405 Section 842.405 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Computations § 842.405 Air traffic controllers, firefighters, law...

  17. Air Traffic Communication in a Second Language: Implications of Cognitive Factors for Training and Assessment

    ERIC Educational Resources Information Center

    Farris, Candace; Trofimovich, Pavel; Segalowitz, Norman; Gatbonton, Elizabeth

    2008-01-01

    This study investigated the effects of second language (L2) proficiency and task-induced cognitive workload on participants' speech production and retention of information in an environment designed to simulate the demands faced by pilots receiving instructions from air-traffic controllers. Three groups of 20 participants (one…

  18. Training of U.S. Air Traffic Controllers. (IDA Report No. R-206).

    ERIC Educational Resources Information Center

    Henry, James H.; And Others

    The report reviews the evolution of existing national programs for air traffic controller training, estimates the number of persons requiring developmental and supplementary training, examines present controller selection and training programs, investigates performance measurement methods, considers standardization and quality control, discusses…

  19. Personalised Adaptive Task Selection in Air Traffic Control: Effects on Training Efficiency and Transfer

    ERIC Educational Resources Information Center

    Salden, Ron J. C. M.; Paas, Fred; van Merrienboer, Jeroen J. G.

    2006-01-01

    The differential effects of four task selection methods on training efficiency and transfer in a computer-based training for Air Traffic Control were investigated. Two personalised conditions were compared with two corresponding yoked control conditions. The hypothesis that personalised adaptive task selection leads to more efficient training than…

  20. The Relationship between Job Satisfaction and Psychiatric Health Symptoms for Air Traffic Controllers.

    ERIC Educational Resources Information Center

    Kavanagh, Michael J.; And Others

    1981-01-01

    Collected data from 416 experienced air traffic controllers to examine the hypothesized positive relationship between job satisfaction and psychiatric symptomatology. Job satisfaction was measured with self-report instruments while psychiatric symptomatology was assessed via a standardized diagnostic interview. Results provide strong support for…

  1. Hematological and immunological effects of stress of air traffic controllers in northeastern Brazil

    PubMed Central

    Ribas, Valdenilson Ribeiro; Martins, Hugo André de Lima; Viana, Marcelo Tavares; Fraga, Simone do Nascimento; Carneiro, Severino Marcos de Oliveira; Galvão, Bruno Henrique Andrade; Bezerra, Alice Andrade; de Castro, Célia Maria Machado Barbosa; Sougey, Everton Botelho; de Castro, Raul Manhães

    2011-01-01

    Background Several studies have shown that stress and emotional reactions can affect immune responses in animals and humans. Objective The aim of this study was to evaluate hematological and immunological effects of stress on air traffic controllers. Methods Thirty air traffic controllers and 15 aeronautical information service operators were evaluated. The groups were divided as information service operators with 10 years or more of experience (AIS≥10) and with less than 10 years in the profession (AIS<10) and air traffic controllers with 10 years or more of experience (ATCo≥10) and with less than 10 years in the profession (ATCo<10). Blood samples were drawn at 8:00 a.m. and 2:00 p.m. The paired t-test was used to compare monocyte and nitric oxide concentrations and ANOVA was used for the other parameters. Results The ATCo≥10 group presented a significantly lower phagocytosis rate of monocytes at 2:00 p.m. compared to 8:00 a.m. Moreover, the ATCo≥10 group presented lower hemoglobin, mean corpuscular hemoglobin concentration, platelet and leukocyte levels, and increased cortisol concentrations at 8:00 a.m. compared to the other groups. Additionally, this group had lower phagocytosis rate of monocytes, and hemoglobin, platelet, leukocyte, basophils and nitric oxide levels at 2:00 p.m. compared to the other groups. Conclusion Stress seems to greatly affect immune responses of air traffic controllers with more than ten years of experience. PMID:23049295

  2. TRAFFIC-RELATED AIR POLLUTION AND CHILDREN'S RESPIRATORY HEALTH: BEYOND PROXIMITY TO MAJOR ROADWAYS

    EPA Science Inventory

    Introduction: Previous studies of the respiratory health impact of mobile source air pollutants on

    children have relied heavily on simple exposure metrics such as proximity to roadways and traffic

    density near the home or school. Few studies have conducted area-wide...

  3. Operational evaluation of initial data link air traffic control services, volume 1

    NASA Astrophysics Data System (ADS)

    Talotta, Nicholas J.; Shingledecker, Clark; Reynolds, Michael

    1990-02-01

    The results are detailed of an operational evaluation of initial data link air traffic control (ATC) services. The operational evaluation was conducted at the Federal Aviation Administration (FAA) Technical Center utilizing the data link test bed. Initial data link services were evaluated in order to identify service delivery methods which optimize controller acceptance, performance, and workload.

  4. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  5. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  6. A Theory and Model of Conflict Detection in Air Traffic Control: Incorporating Environmental Constraints

    ERIC Educational Resources Information Center

    Loft, Shayne; Bolland, Scott; Humphreys, Michael S.; Neal, Andrew

    2009-01-01

    A performance theory for conflict detection in air traffic control is presented that specifies how controllers adapt decisions to compensate for environmental constraints. This theory is then used as a framework for a model that can fit controller intervention decisions. The performance theory proposes that controllers apply safety margins to…

  7. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study

    PubMed Central

    2013-01-01

    Background A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as “Bicycle Boulevards.” We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. Methods We recruited 15 healthy adults to cycle on two routes – a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. Results We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. Conclusions These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and

  8. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  9. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  10. Minimizing the Disruptive Effects of Prospective Memory in Simulated Air Traffic Control

    PubMed Central

    Loft, Shayne; Smith, Rebekah E.; Remington, Roger

    2015-01-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or non-adjacent to each of the 20 target aircraft presented over the 40min test phase reduced prospective memory error by 11% compared to a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39min–42min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of non-prospective memory air traffic management (non-target aircraft acceptance response time, conflict detection response time) were reduced by non-adjacent aids compared to no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared to non-adjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multi-task performance in work settings where operators monitor and control demanding perceptual displays. PMID:24059825

  11. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  12. Health effects of metropolitan traffic-related air pollutants on street vendors

    NASA Astrophysics Data System (ADS)

    Kongtip, P.; Thongsuk, W.; Yoosook, W.; Chantanakul, S.

    Traffic-related air pollutants are a commonly important source of air pollution. Research on the effects of multiple traffic-related air pollutants on street vendors is scarce. This study evaluated the health effect of traffic-related air pollutants in street vendors. It was designed as a panel study, covering 61 d of data collection, on the daily concentration of air pollutants and daily percentage of respiratory and other health symptoms reported. An adjusted odds ratio was used to estimate the risk of developing respiratory and other adverse health symptoms for street vendors exposed to multiple air pollutants, fine particulate (PM 2.5), nitrogen dioxide (NO 2), ozone (O 3), carbon monoxide (CO) and total volatile organic chemicals (VOCs), after controlling for confounding factors. In the first model, significant associations were found with the adjusted odds ratios of 1.022 and 1.027 for eye irritation and dizziness for PM 2.5 respectively. The adjusted odds ratio of total VOCs was 1.381 for phlegm, 4.840 for chest tightness and 1.429 for upper respiratory symptoms, and the adjusted odds ratio for CO was 1.748 for a sore throat and 1.880 for a cold and 1.655 for a cough. In the second model, the effect of PM 2.5, total VOCs and CO gave a slightly lower effect with the symptoms. The results clearly show the health effects of traffic-related air pollutants on street vendors, and imply suggestions about how to reduce exposure of street vendors.

  13. Profile negotiation: An air/ground automation integration concept for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Arbuckle, P. Douglas; Green, Steven M.; Denbraven, Wim

    1993-01-01

    NASA Ames Research Center and NASA Langley Research Center conducted a joint simulation study to evaluate a profile negotiation process (PNP) between a time-based air traffic control ATC system and an airplane equipped with a four dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution that satisfies the separation requirements of ATC while remaining as close as possible to the airplane's preferred trajectory. The Transport Systems Research Vehicle cockpit simulator was linked in real-time to the Center/TRACON Automation System (CTAS) for the experiment. Approximately 30 hours of simulation testing were conducted over a three week period. Active airline pilot crews and active Center controller teams participated as test subjects. Results from the experiment indicate the potential for successful incorporation of airplane preferred arrival trajectories in the CTAS automation environment. Controllers were able to consistently and effectively negotiate nominally conflict-free trajectories with pilots flying a 4D-FMS-equipped airplane. The negotiated trajectories were substantially closer to the airplane's preference than would have otherwise been possible without the PNP. Airplane fuel savings relative to baseline CTAS were achieved in the test scenarios. The datalink procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. Additional pilot control and understanding of the proposed airplane-preferred trajectory and a simplified clearance procedure were cited as necessary for operational implementation of the concept. From the controllers' perspective, the main concerns were the ability of the 4D airplane to accurately track the negotiated trajectory and the workload required to support the PNP as implemented in this study.

  14. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  15. Inside the Mechanics of Network Development: How Competition and Strategy Reorganize European Air Traffic

    NASA Technical Reports Server (NTRS)

    Huber, Hans

    2006-01-01

    Air transport forms complex networks that can be measured in order to understand its structural characteristics and functional properties. Recent models for network growth (i.e., preferential attachment, etc.) remain stochastic and do not seek to understand other network-specific mechanisms that may account for their development in a more microscopic way. Air traffic is made up of many constituent airlines that are either privately or publicly owned and that operate their own networks. They follow more or less similar business policies each. The way these airline networks organize among themselves into distinct traffic distributions reveals complex interaction among them, which in turn can be aggregated into larger (macro-) traffic distributions. Our approach allows for a more deterministic methodology that will assess the impact of airline strategies on the distinct distributions for air traffic, particularly inside Europe. One key question this paper is seeking to answer is whether there are distinct patterns of preferential attachment for given classes of airline networks to distinct types of European airports. Conclusions about the advancing degree of concentration in this industry and the airline operators that accelerate this process can be drawn.

  16. Evaluation of the Monotonic Lagrangian Grid and Lat-Long Grid for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay

    2011-01-01

    The Air Traffic Monotonic Lagrangian Grid (ATMLG) is used to simulate a 24 hour period of air traffic flow in the National Airspace System (NAS). During this time period, there are 41,594 flights over the United States, and the flight plan information (departure and arrival airports and times, and waypoints along the way) are obtained from an Federal Aviation Administration (FAA) Enhanced Traffic Management System (ETMS) dataset. Two simulation procedures are tested and compared: one based on the Monotonic Lagrangian Grid (MLG), and the other based on the stationary Latitude-Longitude (Lat- Long) grid. Simulating one full day of air traffic over the United States required the following amounts of CPU time on a single processor of an SGI Altix: 88 s for the MLG method, and 163 s for the Lat-Long grid method. We present a discussion of the amount of CPU time required for each of the simulation processes (updating aircraft trajectories, sorting, conflict detection and resolution, etc.), and show that the main advantage of the MLG method is that it is a general sorting algorithm that can sort on multiple properties. We discuss how many MLG neighbors must be considered in the separation assurance procedure in order to ensure a five-mile separation buffer between aircraft, and we investigate the effect of removing waypoints from aircraft trajectories. When aircraft choose their own trajectory, there are more flights with shorter duration times and fewer CD&R maneuvers, resulting in significant fuel savings.

  17. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    SciTech Connect

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized.

  18. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mei Y.; Eshow, Michelle M.

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  19. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  20. A Mathematical Analysis of Air Traffic Priority Rules

    NASA Technical Reports Server (NTRS)

    Nakawicz, Anthony J.; Munoz, Cesar A.; Maddalon, Jeffrey M.

    2012-01-01

    This paper analyzes priority rules, such as those in Part 91.113 of the Federal Aviation Regulations. Such rules determine which of two aircraft should maneuver in a given conflict scenario. While the rules in 91.113 are well accepted, other concepts of operation for NextGen, such as self separation, may allow for different priority rules. A mathematical framework is presented that can be used to analyze a general set of priority rules and enables proofs of important properties. Specific properties considered in this paper include safety, effectiveness, and stability. A set of rules is said to be safe if it ensures that it is never the case that both aircraft have priority. They are effective if exactly one aircraft has priority in every situation. Finally, a set of rules is called stable if it produces compatible results even under small changes to input data.

  1. Traffic-related air pollution is related to interrupter resistance in 4-year-old children.

    PubMed

    Eenhuizen, Esther; Gehring, Ulrike; Wijga, Alet H; Smit, Henriette A; Fischer, Paul H; Brauer, Michael; Koppelman, Gerard H; Kerkhof, Marjan; de Jongste, Johan C; Brunekreef, Bert; Hoek, Gerard

    2013-06-01

    Outdoor air pollution has been associated with decrements in lung function and growth of lung function in school-age children. Lung function effects have not been examined in preschoolers, with the exception of one study on minute ventilation in newborns. Our goal was to assess the relationship between long- and short-term exposure to traffic-related air pollution and interrupter resistance in 4-year-old children. Lung function was measured using the interrupter resistance method in children participating in a Dutch birth cohort study. Long-term average air pollution concentrations of fine particulate matter, nitrogen dioxide and soot at the residential address at birth were assessed using land-use regression models. Daily average air pollution concentrations on the day of clinical examination were obtained from the Dutch National Air Quality Monitoring Network. Significant associations were found between long-term average air pollution concentrations and interrupter resistance. Interrupter resistance increased by 0.04 kPa·s·L(-1) (95% CI 0.01-0.07) per interquartile range increase (3.3 μg·m(-3)) in fine particle concentration. Short-term exposure was not associated with interrupter resistance. Long-term exposure to traffic-related air pollution was associated with increased interrupter resistance in 4-year-old children, supporting previous birth cohort studies reporting effects of air pollution on subjectively reported respiratory symptoms in preschool children.

  2. Insights into future air quality: Analysis of future emissions scenarios using the MARKAL model

    EPA Science Inventory

    This presentation will provide an update on the development and evaluation of four Air Quality Futures (AQF) scenarios. These scenarios represent widely different assumptions regarding the evolution of the U.S. energy system over the next 40 years. The primary differences between...

  3. Traffic-related air pollution and lung cancer: A meta-analysis

    PubMed Central

    Chen, Gongbo; Wan, Xia; Yang, Gonghuan; Zou, Xiaonong

    2015-01-01

    Background We conducted a meta-analysis to evaluate the association between traffic-related air pollution and lung cancer in order to provide evidence for control of traffic-related air pollution. Methods Several databases were searched for relevant studies up to December 2013. The quality of articles obtained was evaluated by the Strengthening the Reporting of Observational Studies in Epidemiology checklist. Statistical analysis, including pooling effective sizes and confidential intervals, was performed. Results A total of 1106 records were obtained through the database and 36 studies were included in our analysis. Among the studies included, 14 evaluated the association between ambient exposure to traffic-related air pollution and lung cancer and 22 studies involved occupational exposure to air pollution among professional drivers. Twenty-two studies were marked A level regarding quality, 13 were B level, and one was C level. Exposure to nitrogen dioxide (meta-odds ratio [OR]: 1.06, 95% confidence interval [CI]: 0.99–1.13), nitrogen oxide (meta-OR: 1.04, 95% CI: 1.01–1.07), sulfur dioxide (meta-OR: 1.03, 95% CI: 1.02–1.05), and fine particulate matter (meta-OR: 1.11, 95% CI: 1.00–1.22) were positively associated with a risk of lung cancer. Occupational exposure to air pollution among professional drivers significantly increased the incidence (meta-OR: 1.27, 95% CI: 1.19–1.36) and mortality of lung cancer (meta-OR: 1.14, 95% CI: 1.04–1.26). Conclusion Exposure to traffic-related air pollution significantly increased the risk of lung cancer. PMID:26273377

  4. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-04-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.

  5. Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses

    PubMed Central

    Batterman, Stuart; Cook, Richard; Justin, Thomas

    2015-01-01

    Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042

  6. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  7. Spatial Resolution Requirements for Traffic-Related Air Pollutant Exposure Evaluations.

    PubMed

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km(2)) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9,700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 hr, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  8. Traffic-related air pollution and risk for leukaemia of an adult population.

    PubMed

    Raaschou-Nielsen, Ole; Ketzel, Matthias; Harbo Poulsen, Aslak; Sørensen, Mette

    2016-03-01

    Air pollution causes lung cancer, but associations with other cancers have not been established. We investigated whether long-term exposure to traffic-related air pollution is associated with the risk of the general population for leukaemia. We identified 1,967 people in whom leukaemia was diagnosed in 1992-2010 from a nation-wide cancer registry and selected 3,381 control people at random, matched on sex and year of birth, from the entire Danish population. Residential addresses since 1971 were traced in a population registry, and outdoor concentrations of NOx and NO2 , as indicators of traffic-related air pollution, were calculated at each address in a dispersion model. We used conditional logistic regression to estimate the risk for leukaemia after adjustment for income, educational level, cohabitation status and co-morbidity. In linear analyses, we found odds ratios for acute myeloid leukaemia of 1.20 (95% confidence interval: 1.04-1.38) per 20 µg/m(3) increase in NOx and 1.31 (1.02-1.68) per 10 µg/m(3) increase in NO2 , calculated as time-weighted average exposure at all addresses since 1971. We found no association with chronic myeloid or lymphocytic leukaemia. This study indicates an association between long-term exposure to traffic-related air pollution and acute myeloid leukaemia in the general population, but not for other subtypes of leukaemia.

  9. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk.

    PubMed

    Pratt, Gregory C; Vadali, Monika L; Kvale, Dorian L; Ellickson, Kristie M

    2015-05-19

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities.

  10. Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk

    PubMed Central

    Pratt, Gregory C.; Vadali, Monika L.; Kvale, Dorian L.; Ellickson, Kristie M.

    2015-01-01

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities. PMID:25996888

  11. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm

    PubMed Central

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m3 in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83–1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m3 corresponded to a hazard ratio of 1.14 (95% CI 0.68–1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution. PMID:25827311

  12. Temporal distribution of air quality related to meteorology and road traffic in Madrid.

    PubMed

    Perez-Martinez, Pedro J; Miranda, Regina M

    2015-04-01

    The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

  13. Temporal distribution of air quality related to meteorology and road traffic in Madrid.

    PubMed

    Perez-Martinez, Pedro J; Miranda, Regina M

    2015-04-01

    The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found. PMID:25827898

  14. A method to estimate spatiotemporal air quality in an urban traffic corridor.

    PubMed

    Singh, Nongthombam Premananda; Gokhale, Sharad

    2015-12-15

    Air quality exposure assessment using personal exposure sampling or direct measurement of spatiotemporal air pollutant concentrations has difficulty and limitations. Most statistical methods used for estimating spatiotemporal air quality do not account for the source characteristics (e.g. emissions). In this study, a prediction method, based on the lognormal probability distribution of hourly-average-spatial concentrations of carbon monoxide (CO) obtained by a CALINE4 model, has been developed and validated in an urban traffic corridor. The data on CO concentrations were collected at three locations and traffic and meteorology within the urban traffic corridor.(1) The method has been developed with the data of one location and validated at other two locations. The method estimated the CO concentrations reasonably well (correlation coefficient, r≥0.96). Later, the method has been applied to estimate the probability of occurrence [P(C≥Cstd] of the spatial CO concentrations in the corridor. The results have been promising and, therefore, may be useful to quantifying spatiotemporal air quality within an urban area. PMID:26318683

  15. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  16. A method to estimate spatiotemporal air quality in an urban traffic corridor.

    PubMed

    Singh, Nongthombam Premananda; Gokhale, Sharad

    2015-12-15

    Air quality exposure assessment using personal exposure sampling or direct measurement of spatiotemporal air pollutant concentrations has difficulty and limitations. Most statistical methods used for estimating spatiotemporal air quality do not account for the source characteristics (e.g. emissions). In this study, a prediction method, based on the lognormal probability distribution of hourly-average-spatial concentrations of carbon monoxide (CO) obtained by a CALINE4 model, has been developed and validated in an urban traffic corridor. The data on CO concentrations were collected at three locations and traffic and meteorology within the urban traffic corridor.(1) The method has been developed with the data of one location and validated at other two locations. The method estimated the CO concentrations reasonably well (correlation coefficient, r≥0.96). Later, the method has been applied to estimate the probability of occurrence [P(C≥Cstd] of the spatial CO concentrations in the corridor. The results have been promising and, therefore, may be useful to quantifying spatiotemporal air quality within an urban area.

  17. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm.

    PubMed

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m(3) in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83-1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m(3) corresponded to a hazard ratio of 1.14 (95% CI 0.68-1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution.

  18. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion.

  19. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. PMID:26412198

  20. Traffic air pollution and mortality from cardiovascular disease and all causes: a Danish cohort study

    PubMed Central

    2012-01-01

    Background Traffic air pollution has been linked to cardiovascular mortality, which might be due to co-exposure to road traffic noise. Further, personal and lifestyle characteristics might modify any association. Methods We followed up 52 061 participants in a Danish cohort for mortality in the nationwide Register of Causes of Death, from enrollment in 1993–1997 through 2009, and traced their residential addresses from 1971 onwards in the Central Population Registry. We used dispersion-modelled concentration of nitrogen dioxide (NO2) since 1971 as indicator of traffic air pollution and used Cox regression models to estimate mortality rate ratios (MRRs) with adjustment for potential confounders. Results Mean levels of NO2 at the residence since 1971 were significantly associated with mortality from cardiovascular disease (MRR, 1.26; 95% confidence interval [CI], 1.06–1.51, per doubling of NO2 concentration) and all causes (MRR, 1.13; 95% CI, 1.04–1.23, per doubling of NO2 concentration) after adjustment for potential confounders. For participants who ate < 200 g of fruit and vegetables per day, the MRR was 1.45 (95% CI, 1.13–1.87) for mortality from cardiovascular disease and 1.25 (95% CI, 1.11–1.42) for mortality from all causes. Conclusions Traffic air pollution is associated with mortality from cardiovascular diseases and all causes, after adjustment for traffic noise. The association was strongest for people with a low fruit and vegetable intake. PMID:22950554

  1. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  2. Complexity analysis of the Next Gen Air Traffic Management System: trajectory based operations.

    PubMed

    Lyons, Rhonda

    2012-01-01

    According to Federal Aviation Administration traffic predictions currently our Air Traffic Management (ATM) system is operating at 150 percent capacity; forecasting that within the next two decades, the traffic with increase to a staggering 250 percent [17]. This will require a major redesign of our system. Today's ATM system is complex. It is designed to safely, economically, and efficiently provide air traffic services through the cost-effective provision of facilities and seamless services in collaboration with multiple agents however, contrary the vision, the system is loosely integrated and is suffering tremendously from antiquated equipment and saturated airways. The new Next Generation (Next Gen) ATM system is designed to transform the current system into an agile, robust and responsive set of operations that are designed to safely manage the growing needs of the projected increasingly complex, diverse set of air transportation system users and massive projected worldwide traffic rates. This new revolutionary technology-centric system is dynamically complex and is much more sophisticated than it's soon to be predecessor. ATM system failures could yield large scale catastrophic consequences as it is a safety critical system. This work will attempt to describe complexity and the complex nature of the NextGen ATM system and Trajectory Based Operational. Complex human factors interactions within Next Gen will be analyzed using a proposed dual experimental approach designed to identify hazards, gaps and elicit emergent hazards that would not be visible if conducted in isolation. Suggestions will be made along with a proposal for future human factors research in the TBO safety critical Next Gen environment.

  3. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  4. Impact of road traffic emissions on ambient air quality in an industrialized area.

    PubMed

    Garcia, Sílvia M; Domingues, Gonçalo; Gomes, Carla; Silva, Alexandra V; Almeida, S Marta

    2013-01-01

    Several epidemiological studies showed a correlation between airborne particulate matter(PM) and the incidence of several diseases in exposed populations. Consequently, the European Commission reinforced the need and obligation of member-states to monitor exposure levels of PM and adopt measures to reduce this exposure. However, in order to plan appropriate actions, it is necessary to understand the main sources of air pollution and their relative contributions to the formation of the ambient aerosol. The aim of this study was to develop a methodology to assess the contribution of vehicles to the atmospheric aerosol,which may constitute a useful tool to assess the effectiveness of planned mitigation actions.This methodology is based on three main steps: (1) estimation of traffic emissions provided from the vehicles exhaust and resuspension; (2) use of the dispersion model TAPM (“The Air Pollution Model”) to estimate the contribution of traffic for the atmospheric aerosol; and(3) use of geographic information system (GIS) tools to map the PM10 concentrations provided from traffic in the surroundings of a target area. The methodology was applied to an industrial area, and results showed that the highest contribution of traffic for the PM10 concentrations resulted from dust resuspension and that heavy vehicles were the type that most contributed to the PM10 concentration.

  5. Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    PubMed

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC.

  6. Short-term exposure to traffic-related air pollution and daily mortality in London, UK

    PubMed Central

    Atkinson, Richard W; Analitis, Antonis; Samoli, Evangelia; Fuller, Gary W; Green, David C; Mudway, Ian S; Anderson, Hugh R; Kelly, Frank J

    2016-01-01

    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m3, respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC. PMID:26464095

  7. Scheduling logic for Miles-In-Trail traffic management

    NASA Technical Reports Server (NTRS)

    Synnestvedt, Robert G.; Swenson, Harry; Erzberger, Heinz

    1995-01-01

    This paper presents an algorithm which can be used for scheduling arrival air traffic in an Air Route Traffic Control Center (ARTCC or Center) entering a Terminal Radar Approach Control (TRACON) Facility . The algorithm aids a Traffic Management Coordinator (TMC) in deciding how to restrict traffic while the traffic expected to arrive in the TRACON exceeds the TRACON capacity. The restrictions employed fall under the category of Miles-in-Trail, one of two principal traffic separation techniques used in scheduling arrival traffic . The algorithm calculates aircraft separations for each stream of aircraft destined to the TRACON. The calculations depend upon TRACON characteristics, TMC preferences, and other parameters adapted to the specific needs of scheduling traffic in a Center. Some preliminary results of traffic simulations scheduled by this algorithm are presented, and conclusions are drawn as to the effectiveness of using this algorithm in different traffic scenarios.

  8. Towards a Functionally-Formed Air Traffic System-of-Systems

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.; Consiglio, Maria C.

    2005-01-01

    Incremental improvements to the national aviation infrastructure have not resulted in sufficient increases in capacity and flexibility to meet emerging demand. Unfortunately, revolutionary changes capable of substantial and rapid increases in capacity have proven elusive. Moreover, significant changes have been difficult to implement, and the operational consequences of such change, difficult to predict due to the system s complexity. Some research suggests redistributing air traffic control functions through the system, but this work has largely been dismissed out of hand, accused of being impractical. However, the case for functionally-based reorganization of form can be made from a theoretical, systems perspective. This paper investigates Air Traffic Management functions and their intrinsic biases towards centralized/distributed operations, grounded in systems engineering and information technology theories. Application of these concepts to a small airport operations design is discussed. From this groundwork, a robust, scalable system transformation plan may be made in light of uncertain demand.

  9. Quality of Life, Sleep, and Health of Air Traffic Controllers With Rapid Counterclockwise Shift Rotation.

    PubMed

    Sonati, Jaqueline Girnos; De Martino, Milva Maria Figueiredo; Vilarta, Roberto; da Silva Maciel, Érika; Sonati, Renato José Ferreira; Paduan, Paulo Cézar

    2016-08-01

    Rotating shiftwork is common for air traffic controllers and usually causes sleep deprivation, biological adaptations, and life changes for these workers. This study assessed quality of life, the sleep, and the health of 30 air traffic controllers employed at an international airport in Brazil. The objective was to identify health and quality of life concerns of these professionals. The results identified physical inactivity, overweight, excess body fat, low scores for physical and social relationships, and sleep deprivation for workers in all four workshifts. In conclusion, these workers are at risk for chronic non-transmittable diseases and compromised work performance, suggesting the need for more rest time before working nightshifts and work environments that stimulate physical activity and healthy diets. PMID:27147608

  10. Quality of Life, Sleep, and Health of Air Traffic Controllers With Rapid Counterclockwise Shift Rotation.

    PubMed

    Sonati, Jaqueline Girnos; De Martino, Milva Maria Figueiredo; Vilarta, Roberto; da Silva Maciel, Érika; Sonati, Renato José Ferreira; Paduan, Paulo Cézar

    2016-08-01

    Rotating shiftwork is common for air traffic controllers and usually causes sleep deprivation, biological adaptations, and life changes for these workers. This study assessed quality of life, the sleep, and the health of 30 air traffic controllers employed at an international airport in Brazil. The objective was to identify health and quality of life concerns of these professionals. The results identified physical inactivity, overweight, excess body fat, low scores for physical and social relationships, and sleep deprivation for workers in all four workshifts. In conclusion, these workers are at risk for chronic non-transmittable diseases and compromised work performance, suggesting the need for more rest time before working nightshifts and work environments that stimulate physical activity and healthy diets.

  11. A Mathematical Model and Algorithm for Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.

    2016-01-01

    A central challenge in managing today's commercial en route air traffic is the task of routing the aircraft in the presence of adverse weather. Such weather can make regions of the airspace unusable, so all affected flights must be re-routed. Today this task is carried out by conference and negotiation between human air traffic controllers (ATC) responsible for the involved sectors of the airspace. One can argue that, in so doing, ATC try to solve an optimization problem without giving it a precise quantitative formulation. Such a formulation gives the mathematical machinery for constructing and verifying algorithms that are aimed at solving the problem. This paper contributes one such formulation and a corresponding algorithm. The algorithm addresses weather uncertainty and has closed form, which allows transparent analysis of correctness, realism, and computational costs.

  12. Aeronautical Communications Research and Development Needs for Future Air Traffic Management Applications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2002-01-01

    Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.

  13. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    PubMed

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions.

  14. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution

    PubMed Central

    Laumbach, Robert J.; Kipen, Howard M.

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases including asthma, chronic obstructive pulmonary disease, pneumonia and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time due to varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory disease. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  15. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  16. Respiratory hospitalizations of children and residential exposure to traffic air pollution in Jerusalem.

    PubMed

    Nirel, Ronit; Schiff, Michal; Paltiel, Ora

    2015-01-01

    Although exposure to traffic-related air pollution has been reported to be associated with respiratory morbidity in children, this association has not been examined in Israel. Jerusalem is ranked among the leading Israeli cities in transport-related air pollution. This case-control study examined whether pediatric hospitalization for respiratory diseases in Jerusalem is related to residential exposure to traffic-related air pollution. Cases (n=4844) were Jerusalem residents aged 0-14 years hospitalized for respiratory illnesses between 2000 and 2006. These were compared to children admitted electively (n=2161) or urgently (n=3085) for non-respiratory conditions. Individual measures of exposure included distance from residence to nearest main road, the total length of main roads, traffic volume, and bus load within buffers of 50, 150, and 300m around each address. Cases were more likely to have any diesel buses passing within 50m of their home (adjusted odds ratios=1.16 and 1.10, 95% confidence intervals 1.04-1.30 and 1.01-1.20 for elective and emergency controls, respectively). Our findings indicated that older girls (5-14) and younger boys (0-4) had increased risks of respiratory hospitalization, albeit with generally widened confidence intervals due to small sample sizes. Our results add to the limited body of evidence regarding associations between diesel exhaust particles and respiratory morbidity. The findings also point to possible differential associations between traffic-related air pollution and pediatric hospitalization among boys and girls in different age groups.

  17. Automation for "Direct-to" Clearances in Air-Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McNally, David

    2006-01-01

    A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.

  18. Using Historical Data to Automatically Identify Air-Traffic Control Behavior

    NASA Technical Reports Server (NTRS)

    Lauderdale, Todd A.; Wu, Yuefeng; Tretto, Celeste

    2014-01-01

    This project seeks to develop statistical-based machine learning models to characterize the types of errors present when using current systems to predict future aircraft states. These models will be data-driven - based on large quantities of historical data. Once these models are developed, they will be used to infer situations in the historical data where an air-traffic controller intervened on an aircraft's route, even when there is no direct recording of this action.

  19. How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Hagen, George; Maddalon, Jeffrey M.; Munoz, Cesar A.; Narkawicz, Anthony; Dowek, Gilles

    2010-01-01

    In this paper we describe a process of algorithmic discovery that was driven by our goal of achieving complete, mechanically verified algorithms that compute conflict prevention bands for use in en route air traffic management. The algorithms were originally defined in the PVS specification language and subsequently have been implemented in Java and C++. We do not present the proofs in this paper: instead, we describe the process of discovery and the key ideas that enabled the final formal proof of correctness

  20. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  1. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report

    NASA Astrophysics Data System (ADS)

    Tomaro, D. J.

    1982-02-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  2. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  3. Analysis of Air Traffic Track Data with the AutoBayes Synthesis System

    NASA Technical Reports Server (NTRS)

    Schumann, Johann Martin Philip; Cate, Karen; Lee, Alan G.

    2010-01-01

    The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controllers. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties. We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and the detection of continuous descent approaches can be accomplished with compact task-specific AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.

  4. Traffic Impacts on PM(2.5) Air Quality in Nairobi, Kenya.

    PubMed

    Kinney, Patrick L; Gichuru, Michael Gatari; Volavka-Close, Nicole; Ngo, Nicole; Ndiba, Peter K; Law, Anna; Gachanja, Anthony; Gaita, Samuel Mwaniki; Chillrud, Steven N; Sclar, Elliott

    2011-06-01

    Motor vehicle traffic is an important source of particulate pollution in cities of the developing world, where rapid growth, coupled with a lack of effective transport and land use planning, may result in harmful levels of fine particles (PM(2.5)) in the air. However, a lack of air monitoring data hinders health impact assessments and the development of transportation and land use policies that could reduce health burdens due to outdoor air pollution. To address this important need, a study of traffic-related PM(2.5) was carried out in the city of Nairobi, Kenya, a model city for sub-Saharan Africa, in July 2009. Sampling was carried out using portable filter-based air samplers carried in backpacks by technicians on weekdays over two weeks at several sites in and around Nairobi ranging from high-traffic roadways to rural background. Mean daytime concentrations of PM(2.5) ranged from 10.7 at the rural background site to 98.1 μg/m(3) on a sidewalk in the central business district. Horizontal dispersion measurements demonstrated a decrease in PM(2.5) concentration from 128.7 to 18.7 μg/m(3) over 100 meters downwind of a major intersection in Nairobi. A vertical dispersion experiment revealed a decrease from 119.5 μg/m(3) at street level to 42.8 μg/m(3) on a third-floor rooftop in the central business district. Though not directly comparable to air quality guidelines, which are based on 24-hour or annual averages, the urban concentrations we observed raise concern with regard to public health and related policy. Taken together with survey data on commuting patterns within Nairobi, these results suggest that many Nairobi residents are exposed on a regular basis to elevated concentrations of fine particle air pollution, with potentially serious long-term implications for health.

  5. Traffic Impacts on PM2.5 Air Quality in Nairobi, Kenya

    PubMed Central

    Kinney, Patrick L.; Gichuru, Michael Gatari; Volavka-Close, Nicole; Ngo, Nicole; Ndiba, Peter K.; Law, Anna; Gachanja, Anthony; Gaita, Samuel Mwaniki; Chillrud, Steven N.; Sclar, Elliott

    2011-01-01

    Motor vehicle traffic is an important source of particulate pollution in cities of the developing world, where rapid growth, coupled with a lack of effective transport and land use planning, may result in harmful levels of fine particles (PM2.5) in the air. However, a lack of air monitoring data hinders health impact assessments and the development of transportation and land use policies that could reduce health burdens due to outdoor air pollution. To address this important need, a study of traffic-related PM2.5 was carried out in the city of Nairobi, Kenya, a model city for sub-Saharan Africa, in July 2009. Sampling was carried out using portable filter-based air samplers carried in backpacks by technicians on weekdays over two weeks at several sites in and around Nairobi ranging from high-traffic roadways to rural background. Mean daytime concentrations of PM2.5 ranged from 10.7 at the rural background site to 98.1 μg/m3 on a sidewalk in the central business district. Horizontal dispersion measurements demonstrated a decrease in PM2.5 concentration from 128.7 to 18.7 μg/m3 over 100 meters downwind of a major intersection in Nairobi. A vertical dispersion experiment revealed a decrease from 119.5 μg/m3 at street level to 42.8 μg/m3 on a third-floor rooftop in the central business district. Though not directly comparable to air quality guidelines, which are based on 24-hour or annual averages, the urban concentrations we observed raise concern with regard to public health and related policy. Taken together with survey data on commuting patterns within Nairobi, these results suggest that many Nairobi residents are exposed on a regular basis to elevated concentrations of fine particle air pollution, with potentially serious long-term implications for health. PMID:21779151

  6. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Law Enforcement Officers, Firefighters, and Air Traffic Controllers... to OPM immediately for deposit to the Civil Service Retirement and Disability Fund. (5) Once...

  7. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Law Enforcement Officers, Firefighters, and Air Traffic Controllers... to OPM immediately for deposit to the Civil Service Retirement and Disability Fund. (5) Once...

  8. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    PubMed

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  9. Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Smith, Jeremy C.; Ballin, Mark G.

    2008-01-01

    The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in

  10. Application of the user-centred design process according ISO 9241-210 in air traffic control.

    PubMed

    König, Christina; Hofmann, Thomas; Bruder, Ralph

    2012-01-01

    Designing a usable human machine interface for air traffic control is challenging and should follow approved methods. The ISO 9241-210 standard promises high usability of products by integrating future users and following an iterative process. This contribution describes the proceeding and first results of the analysis and application of ISO 9241-210 to develop a planning tool for air traffic controllers. PMID:22316717

  11. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  12. Climate, traffic-related air pollutants, and asthma prevalence in middle-school children in taiwan.

    PubMed Central

    Guo, Y L; Lin, Y C; Sung, F C; Huang, S L; Ko, Y C; Lai, J S; Su, H J; Shaw, C K; Lin, R S; Dockery, D W

    1999-01-01

    This study compared the prevalence of asthma with climate and air pollutant data to determine the relationship between asthma prevalence and these factors. We conducted a nationwide survey of respiratory illness and symptoms in middle-school students in Taiwan. Lifetime prevalences of physician-diagnosed asthma and of typical symptoms of asthma were compared to air monitoring station data for temperature, relative humidity, sulfur dioxide, nitrogen oxides, ozone, carbon monoxide, and particulate matter with aerodynamic diameter [less than/equal to] 10 microm (PM(10)). A total of 331,686 nonsmoking children attended schools located within 2 km of 55 stations. Asthma prevalence rates adjusted for age, history of atopic eczema, and parental education were associated with nonsummer (June-August) temperature, winter (January-March) humidity, and traffic-related air pollution, especially carbon monoxide and nitrogen oxides, for both girls and boys. Nonsummer temperature, winter humidity, and traffic-related air pollution, especially carbon monoxide and nitrogen oxides, were positively associated with the prevalence of asthma in middle-school students in Taiwan. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10585904

  13. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people.

  14. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people. PMID:26323778

  15. UAS Air Traffic Controller Acceptability Study-2: Effects of Communications Delays and Winds in Simulation

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2016-01-01

    This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.

  16. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  17. Flight tests with a data link used for air traffic control information exchange

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.; Scanlon, Charles H.

    1991-01-01

    Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.

  18. Forecast of the general aviation air traffic control environment for the 1980's

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.

    1976-01-01

    The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.

  19. Information Requirements for Supervisory Air Traffic Controllers in Support of a Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.

    2008-01-01

    Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the

  20. Long-Term Urban Particulate Air Pollution, Traffic Noise, and Arterial Blood Pressure

    PubMed Central

    Moebus, Susanne; Hertel, Sabine; Viehmann, Anja; Nonnemacher, Michael; Dragano, Nico; Möhlenkamp, Stefan; Jakobs, Hermann; Kessler, Christoph; Erbel, Raimund; Hoffmann, Barbara

    2011-01-01

    Background: Recent studies have shown an association of short-term exposure to fine particulate matter (PM) with transient increases in blood pressure (BP), but it is unclear whether long-term exposure has an effect on arterial BP and hypertension. Objectives: We investigated the cross-sectional association of residential long-term PM exposure with arterial BP and hypertension, taking short-term variations of PM and long-term road traffic noise exposure into account. Methods: We used baseline data (2000–2003) on 4,291 participants, 45–75 years of age, from the Heinz Nixdorf Recall Study, a population-based prospective cohort in Germany. Urban background exposure to PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10) was assessed with a dispersion and chemistry transport model. We used generalized additive models, adjusting for short-term PM, meteorology, traffic proximity, and individual risk factors. Results: An interquartile increase in PM2.5 (2.4 μg/m3) was associated with estimated increases in mean systolic and diastolic BP of 1.4 mmHg [95% confidence interval (CI): 0.5, 2.3] and 0.9 mmHg (95% CI: 0.4, 1.4), respectively. The observed relationship was independent of long-term exposure to road traffic noise and robust to the inclusion of many potential confounders. Residential proximity to high traffic and traffic noise exposure showed a tendency toward higher BP and an elevated prevalence of hypertension. Conclusions: We found an association of long-term exposure to PM with increased arterial BP in a population-based sample. This finding supports our hypothesis that long-term PM exposure may promote atherosclerosis, with air-pollution–induced increases in BP being one possible biological pathway. PMID:21827977

  1. Nitric Oxide and Superoxide Mediate Diesel Particle Effects in Cytokine-Treated Mice and Murine Lung Epithelial Cells ─ Implications for Susceptibility to Traffic-Related Air Pollution

    EPA Science Inventory

    Abstract Background: Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in in...

  2. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    PubMed

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations.

  3. Human-System Safety Methods for Development of Advanced Air Traffic Management Systems

    SciTech Connect

    Nelson, W.R.

    1999-05-24

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems.

  4. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  5. The association between greenness and traffic-related air pollution at schools.

    PubMed

    Dadvand, Payam; Rivas, Ioar; Basagaña, Xavier; Alvarez-Pedrerol, Mar; Su, Jason; De Castro Pascual, Montserrat; Amato, Fulvio; Jerret, Michael; Querol, Xavier; Sunyer, Jordi; Nieuwenhuijsen, Mark J

    2015-08-01

    Greenness has been reported to improve mental and physical health. Reduction in exposure to air pollution has been suggested to underlie the health benefits of greenness; however, the available evidence on the mitigating effect of greenness on air pollution remains limited and inconsistent. We investigated the association between greenness within and surrounding school boundaries and monitored indoor and outdoor levels of traffic-related air pollutants (TRAPs) including NO2, ultrafine particles, black carbon, and traffic-related PM2.5 at 39 schools across Barcelona, Spain, in 2012. TRAP levels at schools were measured twice during two one-week campaigns separated by 6months. Greenness within and surrounding school boundaries was measured as the average of satellite-derived normalized difference vegetation index (NDVI) within boundaries of school and a 50m buffer around the school, respectively. Mixed effects models were used to quantify the associations between school greenness and TRAP levels, adjusted for relevant covariates. Higher greenness within and surrounding school boundaries was consistently associated with lower indoor and outdoor TRAP levels. Reduction in indoor TRAP levels was partly mediated by the reduction in outdoor TRAP levels. We also observed some suggestions for stronger associations between school surrounding greenness and outdoor TRAP levels for schools with higher number of trees around them. Our observed reduction of TRAP levels at schools associated with school greenness can be of public importance, considering the burden of health effects of exposure to TRAPs in schoolchildren.

  6. Synergistic Effects of Traffic-Related Air Pollution and Exposure to Violence on Urban Asthma Etiology

    PubMed Central

    Clougherty, Jane E.; Levy, Jonathan I.; Kubzansky, Laura D.; Ryan, P. Barry; Suglia, Shakira Franco; Canner, Marina Jacobson; Wright, Rosalind J.

    2007-01-01

    Background Disproportionate life stress and consequent physiologic alteration (i.e., immune dysregulation) has been proposed as a major pathway linking socioeconomic position, environmental exposures, and health disparities. Asthma, for example, disproportionately affects lower-income urban communities, where air pollution and social stressors may be elevated. Objectives We aimed to examine the role of exposure to violence (ETV), as a chronic stressor, in altering susceptibility to traffic-related air pollution in asthma etiology. Methods We developed geographic information systems (GIS)–based models to retrospectively estimate residential exposures to traffic-related pollution for 413 children in a community-based pregnancy cohort, recruited in East Boston, Massachusetts, between 1987 and 1993, using monthly nitrogen dioxide measurements for 13 sites over 18 years. We merged pollution estimates with questionnaire data on lifetime ETV and examined the effects of both on childhood asthma etiology. Results Correcting for potential confounders, we found an elevated risk of asthma with a 1-SD (4.3 ppb) increase in NO2 exposure solely among children with above-median ETV [odds ratio (OR) = 1.63; 95% confidence interval (CI), 1.14–2.33)]. Among children always living in the same community, with lesser exposure measurement error, this association was magnified (OR = 2.40; 95% CI, 1.48–3.88). Of multiple exposure periods, year-of-diagnosis NO2 was most predictive of asthma outcomes. Conclusions We found an association between traffic-related air pollution and asthma solely among urban children exposed to violence. Future studies should consider socially patterned susceptibility, common spatial distributions of social and physical environmental factors, and potential synergies among these. Prospective assessment of physical and social exposures may help determine causal pathways and critical exposure periods. PMID:17687439

  7. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    NASA Astrophysics Data System (ADS)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV

  8. Relationship between heart rate and sinus arrhythmia in air traffic controllers at work.

    PubMed

    Lille, F; Burnod, Y; Borodulin, L

    1981-01-01

    Sinus arrhythmia and mean heart rate were calculated from continuous electrocardiogram recordings of ten air traffic controllers. The telemetric recordings were carried out during 1 day of work and the following day's night shift. The individual variations of sinus arrhythmia were very large. The different situations (rest, relaxed work, intense work, eating, movements within the control room) had no specific effect on sinus arrhythmia. For each subject and for each group it was the value of the mean heart rate and its temporal variations that had the greatest influence on variations of sinus arrhythmia.

  9. System and technology considerations for space-based air traffic surveillance

    NASA Technical Reports Server (NTRS)

    Vaisnys, A.

    1986-01-01

    This paper describes the system trade-offs examined in a recent study of space-based air traffic surveillance. Three system options, each satisfying a set of different constraints, were considered. The main difference in the technology needed to implement the three systems was determined to be the size of the spacecraft antenna aperture. It was found that essentially equivalent position location accuracy could be achieved with apertures from 50 meters down to less than a meter in diameter, depending on the choice of signal structure and on the desired user update rate.

  10. Real-time operational planning for the U.S. air traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, John M.; Zenios, Stavros A.

    1987-01-01

    This paper describes an integrated planning model for the U.S. air traffic system. The approach incorporates the dual objectives of monitoring collision risk while minimizing transportation costs. Specialized solution algorithms exploit the underlying structure of the model - especially for large-scale examples. The proposed formulation is tested with real-world data for the Indianapolis control sector. Additional experiments with a CRAY X-MP/24 supercomputer show that a full-scale model can be solved under real time conditions. Despite these advances, additional work is required in developing a practical system. Suggestions are made for combining advances in computer graphics and mathematical modeling.

  11. Automatic Speech Recognition in Air Traffic Control: a Human Factors Perspective

    NASA Technical Reports Server (NTRS)

    Karlsson, Joakim

    1990-01-01

    The introduction of Automatic Speech Recognition (ASR) technology into the Air Traffic Control (ATC) system has the potential to improve overall safety and efficiency. However, because ASR technology is inherently a part of the man-machine interface between the user and the system, the human factors issues involved must be addressed. Here, some of the human factors problems are identified and related methods of investigation are presented. Research at M.I.T.'s Flight Transportation Laboratory is being conducted from a human factors perspective, focusing on intelligent parser design, presentation of feedback, error correction strategy design, and optimal choice of input modalities.

  12. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. PMID:19864331

  13. Air Traffic and Operational Data on Selected US Airports with Parallel Runways

    NASA Technical Reports Server (NTRS)

    Doyle, Thomas M.; McGee, Frank G.

    1998-01-01

    This report presents information on a number of airports in the country with parallel runways and focuses on those that have at least one pair of parallel runways closer than 4300 ft. Information contained in the report describes the airport's current operational activity as obtained through contact with the facility and from FAA air traffic tower activity data for FY 1997. The primary reason for this document is to provide a single source of information for research to determine airports where Airborne Information for Lateral Spacing (AILS) technology may be applicable.

  14. Operational benefits from the Terminal Configured Vehicle. [aircraft equipment for air traffic improvement

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Schmitz, R. A.

    1978-01-01

    The objective of Terminal Configured Vehicle (TCV) research activity is to provide improvements which lead to increased airport and runway capacity, increasing air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate measures. Some early results of this research activity are discussed, and present and future research needs to meet the broad research objectives are defined. Particular consideration is given to the development of the TCV B-737 aircraft, the integration of the TCV with MLS, and avionics configurations, flight profiles, and manually controlled approaches for TCV. Some particular test demonstrations are discussed.

  15. Design and evaluation of an advanced air-ground data-link system for air traffic control

    NASA Technical Reports Server (NTRS)

    Denbraven, Wim

    1992-01-01

    The design and evaluation of the ground-based portion of an air-ground data-link system for air traffic control (ATC) are described. The system was developed to support the 4D Aircraft/ATC Integration Study, a joint simulation experiment conducted at NASA's Ames and Langley Research Centers. The experiment focused on airborne and ground-based procedures for handling aircraft equipped with a 4D-Flight Management System (FMS) and the system requirements needed to ensure conflict-free traffic flow. The Center/TRACON Automation System (CTAS) at Ames was used for the ATC part of the experiment, and the 4D-FMS-equipped aircraft was simulated by the Transport Systems Research Vehicle (TSRV) simulator at Langley. The data-link system supported not only conventional ATC communications, but also the communications needed to accommodate the 4D-FMS capabilities of advanced aircraft. Of great significance was the synergism gained from integrating the data link with CTAS. Information transmitted via the data link was used to improve the monitoring and analysis capability of CTAS without increasing controller input workload. Conversely, CTAS was used to anticipate and create prototype messages, thus reducing the workload associated with the manual creation of data-link messages.

  16. Traffic-related air pollution modeling during the 2008 Beijing Olympic Games: the effects of an odd-even day traffic restriction scheme.

    PubMed

    Cai, Hao; Xie, Shaodong

    2011-04-15

    An integrated urban air quality modeling system was applied to assess the effects of a short-term odd-even day traffic restriction scheme (TRS) on traffic-related air pollution in the urban area of Beijing (UAB) before, during and after the 2008 Olympic Games. Using traffic flow data retrieved from an on-line traffic monitoring system, concentration levels of CO, PM(10), NO(2) and O(3) on the 2nd, 3rd, 4th Ring Roads (RR) and Linkage Roads (LRs), the main roads distributed around the UAB, were predicted for the pre- (10th-19th, July), during- (20th July-20th September) and post-TRS (21st-30th, September) periods. A widely used statistical framework for model evaluation was adopted, the dependences of model performance on time-of-the-day and on wind direction were investigated, and the model predictions turned out reasonably satisfactory. Results showed that daily average concentrations on the 2nd, 3rd, 4th RR and LRs decreased significantly during the TRS period, by about 35.8, 38.5, 34.9 and 35.6% for CO, about 38.7, 31.8, 44.0 and 34.7% for PM(10), about 30.3, 31.9, 32.3 and 33.9% for NO(2), and about 36.7, 33.0, 33.4 and 34.7% for O(3), respectively, compared with the pre-TRS period. Hourly average concentrations were also reduced significantly, particularly for the morning and evening peaks for CO and PM(10), for the evening peak for NO(2), and for the afternoon peak for O(3). Consequently, both the daily and hourly concentration level of CO, PM(10), NO(2) and O(3) conformed to the China National Ambient Air Quality Standards Grade II during the Games. In addition, notable reduction of concentration levels was achieved in different regions of Beijing, with the traffic-related air pollution in the downwind northern and western areas relieved most significantly. The TRS policy was therefore effective in alleviating traffic-related air pollution and improving short-term air quality in Beijing during the Games.

  17. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  18. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  19. 5 CFR 842.811 - Deposits for second-level supervisory air traffic controller service performed before February 10...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Deposits for second-level supervisory air traffic controller service performed before February 10, 2004. 842.811 Section 842.811 Administrative... Regulations Pertaining to Noncodified Statutes § 842.811 Deposits for second-level supervisory air...

  20. Meta-Analysis on Near-Road Air Pollutants Concentrations for Developing Traffic Indicators for Exposure Assessment

    EPA Science Inventory

    Near-road air pollution has been associated with various health risks in human populations living near roadways. To better understand relationship between vehicle emissions and spatial profiles of traffic-related air pollutants we performed a comprehensive and systematic literat...

  1. Modeling exposures to traffic-related air pollutants for the NEXUS respiratory health study of asthmatic children in Detroit, MI

    EPA Science Inventory

    The Near-Road EXposures and Effects of Urban Air Pollutants Study (NEXUS) was designed to investigate associations between exposure to traffic-related air pollution and the respiratory health of asthmatic children living near major roadways in Detroit, MI. A combination of modeli...

  2. Aggregated GPS tracking of vehicles and its use as a proxy of traffic-related air pollution emissions

    NASA Astrophysics Data System (ADS)

    Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.

    2016-10-01

    Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.

  3. Maternal exposure to traffic-related air pollution and birth defects in Massachusetts.

    PubMed

    Girguis, Mariam S; Strickland, Matthew J; Hu, Xuefei; Liu, Yang; Bartell, Scott M; Vieira, Verónica M

    2016-04-01

    Exposures to particulate matter with diameter of 2.5µm or less (PM2.5) may influence risk of birth defects. We estimated associations between maternal exposure to prenatal traffic-related air pollution and risk of cardiac, orofacial, and neural tube defects among Massachusetts births conceived 2001 through 2008. Our analyses included 2729 cardiac, 255 neural tube, and 729 orofacial defects. We used satellite remote sensing, meteorological and land use data to assess PM2.5 and traffic-related exposures (distance to roads and traffic density) at geocoded birth addresses. We calculated adjusted odds ratios (OR) and confidence intervals (CI) using logistic regression models. Generalized additive models were used to assess spatial patterns of birth defect risk. There were positive but non-significant associations for a 10µg/m(3) increase in PM2.5 and perimembranous ventricular septal defects (OR=1.34, 95% CI: 0.98, 1.83), patent foramen ovale (OR=1.19, 95% CI: 0.92, 1.54) and patent ductus arteriosus (OR=1.20, 95% CI: 0.95, 1.62). There was a non-significant inverse association between PM2.5 and cleft lip with or without palate (OR=0.76, 95% CI: 0.50, 1.10), cleft palate only (OR=0.89, 95% CI: 0.54, 1.46) and neural tube defects (OR=0.77, 95% CI: 0.46, 1.05). Results for traffic related exposure were similar. Only ostium secundum atrial septal defects displayed significant spatial variation after accounting for known risk factors. PMID:26705853

  4. Maternal exposure to traffic-related air pollution and birth defects in Massachusetts.

    PubMed

    Girguis, Mariam S; Strickland, Matthew J; Hu, Xuefei; Liu, Yang; Bartell, Scott M; Vieira, Verónica M

    2016-04-01

    Exposures to particulate matter with diameter of 2.5µm or less (PM2.5) may influence risk of birth defects. We estimated associations between maternal exposure to prenatal traffic-related air pollution and risk of cardiac, orofacial, and neural tube defects among Massachusetts births conceived 2001 through 2008. Our analyses included 2729 cardiac, 255 neural tube, and 729 orofacial defects. We used satellite remote sensing, meteorological and land use data to assess PM2.5 and traffic-related exposures (distance to roads and traffic density) at geocoded birth addresses. We calculated adjusted odds ratios (OR) and confidence intervals (CI) using logistic regression models. Generalized additive models were used to assess spatial patterns of birth defect risk. There were positive but non-significant associations for a 10µg/m(3) increase in PM2.5 and perimembranous ventricular septal defects (OR=1.34, 95% CI: 0.98, 1.83), patent foramen ovale (OR=1.19, 95% CI: 0.92, 1.54) and patent ductus arteriosus (OR=1.20, 95% CI: 0.95, 1.62). There was a non-significant inverse association between PM2.5 and cleft lip with or without palate (OR=0.76, 95% CI: 0.50, 1.10), cleft palate only (OR=0.89, 95% CI: 0.54, 1.46) and neural tube defects (OR=0.77, 95% CI: 0.46, 1.05). Results for traffic related exposure were similar. Only ostium secundum atrial septal defects displayed significant spatial variation after accounting for known risk factors.

  5. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Grewe, Volker; Jöckel, Patrick; Linke, Florian; Schaefer, Martin; Sasaki, Daisuke

    2016-09-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate-sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO2 but also non-CO2 emissions must be considered. CO2 is a long-lived gas, while non-CO2 emissions are short-lived and are inhomogeneously distributed. This study introduces AirTraf (version 1.0) that performs global air traffic simulations, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol's Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a genetic algorithm (GA) with respect to a selected routing option. In the model development phase, benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to -0.004 %, compared to those calculated by the Movable Type script. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of

  6. Preterm birth: the interaction of traffic-related air pollution with economic hardship in Los Angeles neighborhoods.

    PubMed

    Ponce, Ninez A; Hoggatt, Katherine J; Wilhelm, Michelle; Ritz, Beate

    2005-07-15

    Preterm birth may be affected by the interaction of residential air pollution with neighborhood economic hardship. The authors examined variations in traffic-related pollution exposure--measured by distance-weighted traffic density--using a framework reflecting the social and physical environments. An adverse social environment was conceptualized as low socioeconomic status (SES) neighborhoods--census tracts with concentrated poverty, unemployment, and dependence on public assistance. An adverse physical environment was depicted by the winter season, when thermal inversions trap motor vehicle pollutants, thereby increasing traffic-related air pollution. Los Angeles County, California, birth records from 1994 to 1996 were linked to traffic counts, census data, and ambient air pollution measures. The authors fit multivariate logistic models of preterm birth, stratified by neighborhood SES and third pregnancy trimester season. Traffic-related air pollution exposure disproportionately affected low SES neighborhoods in the winter. Further, in these poorer neighborhoods, the winter season evidenced increased susceptibility among women with known risk factors. Health insurance was most beneficial to women residing in neighborhoods exposed to economic hardship and an adverse physical environment. Reducing preterm births warrants a concerted effort of social, economic, and environmental policies, focused on not only individual risk factors but also the reduction of localized air pollution, expansion of health-care coverage, and improvement of neighborhood resources.

  7. Elemental carbon as an indicator for evaluating the impact of traffic measures on air quality and health

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Jonkers, S.; Zandveld, P.; Voogt, M.; Elshout van den, S.

    2012-12-01

    From 2005 to 2009 there was a 40% decrease in the number of days on which the European daily limit value of PM10 was exceeded at traffic locations in European cities. Yet, in many of these cities, air quality is still not in compliance with the European Air Quality Directive and additional traffic measures are planned. Our study shows that elemental carbon (EC) is a more appropriate indicator than PM2.5 and PM10 for evaluating the impact of traffic measures on air quality and health. The modelled improvement in EC concentration was translated in life years gained as a result of a traffic measure. This was investigated for a speed management zone on a motorway in the city of Rotterdam. Eighty-five per cent of those living within 400 m of the motorway gained 0-1 months of life expectancy and another 15% gained 1-3 months, depending on their distance from the motorway. In addition, EC was used to evaluate a low emission zone in Amsterdam, specifically for those living along inner-urban roads with intense traffic levels. The zone only restricts heavy duty vehicles with Euro emission class 0 to 2, Euro 3 older than eight years or more recent Euro 3 without diesel particulate filter. The results indicate a population-weighted, average gain of 0.2 months in life expectancy as compared with a maximum potential gain of 2.9 months. It is concluded that on motorways speed management is an effective measure, while a low emission zone as implemented in our case study, is less effective to reduce health effects of road traffic emissions. For inner-urban roads reduction of traffic volume seems the most effective traffic measure for improving air quality and health.

  8. CTAS and NASA Air Traffic Management Fact Sheets for En Route Descent Advisor and Surface Management System

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2004-01-01

    The Surface Management System (SMS) is a decision support tool that will help controllers, traffic managers, and NAS users manage the movements of aircraft on the surface of busy airports, improving capacity, efficiency, and flexibility. The Advanced Air Transportation Technologies (AATT) Project at NASA is developing SMS in cooperation with the FAA's Free Flight Phase 2 (FFP2) pro5ram. SMS consists of three parts: a traffic management tool, a controller tool, and a National Airspace System (NAS) information tool.

  9. Scripted drives: A robust protocol for generating exposures to traffic-related air pollution

    NASA Astrophysics Data System (ADS)

    Patton, Allison P.; Laumbach, Robert; Ohman-Strickland, Pamela; Black, Kathy; Alimokhtari, Shahnaz; Lioy, Paul J.; Kipen, Howard M.

    2016-10-01

    Commuting in automobiles can contribute substantially to total traffic-related air pollution (TRAP) exposure, yet measuring commuting exposures for studies of health outcomes remains challenging. To estimate real-world TRAP exposures, we developed and evaluated the robustness of a scripted drive protocol on the NJ Turnpike and local roads between April 2007 and October 2014. Study participants were driven in a car with closed windows and open vents during morning rush hours on 190 days. Real-time measurements of PM2.5, PNC, CO, and BC, and integrated samples of NO2, were made in the car cabin. Exposure measures included in-vehicle concentrations on the NJ Turnpike and local roads and the differences and ratios of these concentrations. Median in-cabin concentrations were 11 μg/m3 PM2.5, 40 000 particles/cm3, 0.3 ppm CO, 4 μg/m3 BC, and 20.6 ppb NO2. In-cabin concentrations on the NJ Turnpike were higher than in-cabin concentrations on local roads by a factor of 1.4 for PM2.5, 3.5 for PNC, 1.0 for CO, and 4 for BC. Median concentrations of NO2 for full rides were 2.4 times higher than ambient concentrations. Results were generally robust relative to season, traffic congestion, ventilation setting, and study year, except for PNC and PM2.5, which had secular and seasonal trends. Ratios of concentrations were more stable than differences or absolute concentrations. Scripted drives can be used to generate reasonably consistent in-cabin increments of exposure to traffic-related air pollution.

  10. Impact of traffic-related air pollution on the expression of Platanus orientalis pollen allergens

    NASA Astrophysics Data System (ADS)

    Sedghy, Farnaz; Sankian, Mojtaba; Moghadam, Maliheh; Ghasemi, Ziba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2016-06-01

    Air pollutants and their interaction with environmental allergens have been considered as an important reason for the recent increase in the prevalence of allergic diseases. The aim of this study was to investigate the traffic pollution effect, as a stressor, on Platanus orientalis pollen allergens messenger RNA (mRNA) and protein expression. P. orientalis pollen grains were collected along main streets of heavy traffic and from unpolluted sites in Mashhad city, in northeast Iran. The pollen samples were examined by scanning electron microscopy. To assess the abundance of pollen allergens (Pla or 1, Pla or 2, and Pla or 3) from polluted and unpolluted sites, immunoblotting was performed. Moreover, the sequences encoding P. orientalis allergens were amplified using real-time PCR. Scanning electron microscopy showed a number of particles of 150-550 nm on the surface of pollen from polluted sites. Also, protein and gene expression levels of Pla or 1 and Pla or 3 were considerably greater in pollen samples from highly polluted areas than in pollen from unpolluted areas (p < 0.05). In contrast, no statically significant difference in Pla or 2 protein and mRNA expression level was found between samples from the two areas. We found greater expression of allergens involved in plant defense mechanisms (Pla or 1 and Pla or 3) in polluted sites than in unpolluted ones. The high expression of these proteins can lead to an increase in the prevalence of allergic diseases. These findings suggest the necessity of supporting public policies aimed at controlling traffic pollution to improve air quality and prevent the subsequent clinical outcomes and new cases of asthma.

  11. Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy

    PubMed Central

    Su, Jason G.; Jerrett, Michael; Beckerman, Bernardo; Wilhelm, Michelle; Ghosh, Jo Kay; Ritz, Beate

    2013-01-01

    Land use regression (LUR) has emerged as an effective means of estimating exposure to air pollution in epidemiological studies. We created the first LUR models of nitric oxide (NO), nitrogen dioxide (NO2) and nitrogen oxides (NOx) for the complex megalopolis of Los Angeles (LA), California. Two-hundred and one sampling sites (the largest sampling design to date for LUR estimation) for two seasons were selected using a location-allocation algorithm that maximized the potential variability in measured pollutant concentrations and represented populations in the health study. Traffic volumes, truck routes and road networks, land use data, satellite-derived vegetation greenness and soil brightness, and truck route slope gradients were used for predicting NOx concentrations. A novel model selection strategy known as “ADDRESS” (A Distance Decay REgression Selection Strategy) was used to select optimized buffer distances for potential predictor variables and maximize model performance. Final regression models explained 81%, 86% and 85% of the variance in measured NO, NO2 and NOx concentrations, respectively. Cross-validation analyses suggested a prediction accuracy of 87–91%. Remote sensing-derived variables were significantly correlated with NOx concentrations, suggesting these data are useful surrogates for modeling traffic-related pollution when certain land use data are unavailable. Our study also demonstrated that reactive pollutants such as NO and NO2 could have high spatial extents of influence (e.g., > 5000 m from expressway) and high background concentrations in certain geographic areas. This paper represents the first attempt to model traffic-related air pollutants at a fine scale within such a complex and large urban region. PMID:19540476

  12. Effects of modeling errors on trajectory predictions in air traffic control automation

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda

    1996-01-01

    Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.

  13. Simulation of the introduction of new technologies in air traffic management

    NASA Astrophysics Data System (ADS)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2015-07-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernisation of large infrastructure problems. This is especially true in the modernisation of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behaviour due to complex human/machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviours. However, such models are difficult to produce, especially to show unexpected emergent behaviour coming from many human operators interacting simultaneously within a complex system. Instead, we introduce an alternate approach. Instead of engineering complex human models, we directly model the emergent behaviour with relatively simple goal-directed agents. In this model, each autonomous agent in a system pursues individual goals, and the high-level behaviour of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method is capable of reflecting the integration of new technologies in a historical case, and apply the same methodology for a possible future technology. Finally, we show how these high-level simulated behaviours compare to actual deployed air traffic control mechanisms in use today.

  14. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  15. High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Harbin, Paul

    2015-01-01

    Vehicle traffic is one of the most significant emission sources of air pollutants in urban areas. While the influence of mobile source emissions is felt throughout an urban area, concentrations from mobile emissions can be highest near major roadways. At present, information regarding the spatial and temporal patterns and the share of pollution attributable to traffic-related air pollutants is limited, in part due to concentrations that fall sharply with distance from roadways, as well as the few monitoring sites available in cities. This study uses a newly developed dispersion model (RLINE) and a spatially and temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations across Detroit (MI, USA) at very high spatial resolution. Results for annual averages and high pollution days show contrasting patterns, the need for spatially resolved analyses, and the limitations of surrogate metrics like proximity or distance to roads. Data requirements, computational and modeling issues are discussed. High resolution pollutant data enable the identification of pollutant “hotspots”, “project-level” analyses of transportation options, development of exposure measures for epidemiology studies, delineation of vulnerable and susceptible populations, policy analyses examining risks and benefits of mitigation options, and the development of sustainability indicators integrating environmental, social, economic and health information. PMID:25837345

  16. From crisis to development--analysis of air traffic control work processes.

    PubMed

    Teperi, Anna-Maria; Leppänen, Anneli

    2011-03-01

    In this study an intervention to improve work processes in air traffic control (ATC) is evaluated. The background was the Finnish air traffic controllers' strike of 1999. The old ways of thinking and acting did not support development of ATC prompting a need for a new kind of working culture in the organisation. Several actions were started. In one of these, ATC work processes were modelled by personnel and development plans concerning work were delivered to top management. Different actors (management, trade union, stakeholders) were interviewed before (n=16) and after the project (n=7). The intervention supported systematic co-operation between different actors in the organisation. However, a follow-up revealed that only a few participants had adopted the idea of continuous work development. Mastery of human factors is crucial in a high reliability work environment such as ATC. But how is the analytical and co-operative aspect kept alive in an organisation that is run by strict international regulation and has a strong technical competence, but is not that strong in collaborative and human aspects? PMID:20883978

  17. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren.

    PubMed

    Cakmak, Sabit; Hebbern, Christopher; Cakmak, Jasmine D; Vanos, Jennifer

    2016-07-15

    The volume and type of traffic and exposure to air pollution have been found to be associated with respiratory health, but few studies have considered the interaction with socioeconomic status at the household level. We investigated the relationships of respiratory health related to traffic type, traffic volume, and air pollution, stratifying by socioeconomic status, based on household income and education, in 3591 schoolchildren in Windsor, Canada. Interquartile range changes in traffic exposure and pollutant levels were linked to respiratory symptoms and objective measures of lung function using generalised linear models for three levels of income and education. In 95% of the relationships among all cases, the odds ratios for reported respiratory symptoms (a decrease in measured lung function), based on an interquartile range change in traffic exposure or pollutant, were greater in the lower income/education groups than the higher, although the odds ratios were in most cases not significant. However, in up to 62% of the cases, the differences between high and low socioeconomic groups were statistically significant, thus indicating socioeconomic status (SES) as a significant effect modifier. Our findings indicate that children from lower socioeconomic households have a higher risk of specific respiratory health problems (chest congestion, wheezing) due to traffic volume and air pollution exposure.

  18. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren.

    PubMed

    Cakmak, Sabit; Hebbern, Christopher; Cakmak, Jasmine D; Vanos, Jennifer

    2016-07-15

    The volume and type of traffic and exposure to air pollution have been found to be associated with respiratory health, but few studies have considered the interaction with socioeconomic status at the household level. We investigated the relationships of respiratory health related to traffic type, traffic volume, and air pollution, stratifying by socioeconomic status, based on household income and education, in 3591 schoolchildren in Windsor, Canada. Interquartile range changes in traffic exposure and pollutant levels were linked to respiratory symptoms and objective measures of lung function using generalised linear models for three levels of income and education. In 95% of the relationships among all cases, the odds ratios for reported respiratory symptoms (a decrease in measured lung function), based on an interquartile range change in traffic exposure or pollutant, were greater in the lower income/education groups than the higher, although the odds ratios were in most cases not significant. However, in up to 62% of the cases, the differences between high and low socioeconomic groups were statistically significant, thus indicating socioeconomic status (SES) as a significant effect modifier. Our findings indicate that children from lower socioeconomic households have a higher risk of specific respiratory health problems (chest congestion, wheezing) due to traffic volume and air pollution exposure. PMID:27064731

  19. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. PMID:26829764

  20. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways.

  1. Large gain in air quality compared to an alternative anthropogenic emissions scenario

    NASA Astrophysics Data System (ADS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-08-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistry-transport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the year-to-year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  2. Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario

    NASA Technical Reports Server (NTRS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-01-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  3. Disability-adjusted life years in the assessment of health effects of traffic-related air pollution.

    PubMed

    Adamkiewicz, Ł; Badyda, A J; Gayer, A; Mucha, D

    2015-01-01

    Traffic-related air pollutants have an impact on human health and have been recognized as one of the main stressors that cause mortality and morbidity in urban areas. Research confirms that citizens living in the vicinity of main roads are strongly exposed to high concentrations of numerous air pollutants. In the present study the measurements of traffic-related parameters such as density, velocity, and structure were performed for cross-sections of selected street canyons in Warsaw, the capital city of Poland. In addition, the results of the general traffic measurements were used to describe the number of cars crossing the border of the city. Vehicle emissions of PM10 were calculated for the whole city area and changes of the PM10 concentration were modeled to present the exposure to this pollutant that could be attributable to traffic. The principles of the environmental burden of disease (EBD) were used. The assessment of the impact of traffic-related air pollutants on human health was made. The results, presented in disability-adjusted life years (DALY), were based on the outcomes of the study conducted in 2008-2012 in Warsaw, one the most congested agglomerations in Europe, and included the health damage effect of the exposure to high concentrations of air pollutants. DALY calculations were performed in accordance to the methodologies used in renowned international scientific research on EBD.

  4. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Burke, Janet; Isakov, Vlad; Lewis, Toby; Mukherjee, Bhramar; Robins, Thomas

    2014-01-01

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studies would all benefit from an improved understanding of the key information and metrics needed to assess exposures, as well as the strengths and limitations of alternate exposure metrics. This study develops and evaluates several metrics for characterizing exposure to traffic-related air pollutants for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit (MI, USA). Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models. Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass correlation, concordance and discordance rates, and overall strengths and limitations. While showing some agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and distance from major roads) do not reflect the range and overlap of exposures seen in the other metrics. Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT) per day within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments that separated concentrations due to traffic emissions and other sources. While several of the exposure metrics showed broad agreement, including traffic density, emissions density and modeled concentrations, these alternatives still produced exposure classifications that differed for a substantial fraction of study participants, e.g., from 20% to 50% of

  5. A comparison of exposure metrics for traffic-related air pollutants: application to epidemiology studies in Detroit, Michigan.

    PubMed

    Batterman, Stuart; Burke, Janet; Isakov, Vlad; Lewis, Toby; Mukherjee, Bhramar; Robins, Thomas

    2014-09-15

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studies would all benefit from an improved understanding of the key information and metrics needed to assess exposures, as well as the strengths and limitations of alternate exposure metrics. This study develops and evaluates several metrics for characterizing exposure to traffic-related air pollutants for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit (MI, USA). Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models. Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass correlation, concordance and discordance rates, and overall strengths and limitations. While showing some agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and distance from major roads) do not reflect the range and overlap of exposures seen in the other metrics. Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT) per day within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments that separated concentrations due to traffic emissions and other sources. While several of the exposure metrics showed broad agreement, including traffic density, emissions density and modeled concentrations, these alternatives still produced exposure classifications that differed for a substantial fraction of study participants, e.g., from 20% to 50% of

  6. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    NASA Astrophysics Data System (ADS)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA), due to rapid urbanization, growing vehicle fleets, changing life styles, limited road infrastructure and land use planning, and high per-vehicle emissions. However, the absence of ambient monitoring data, and particularly urban roadside concentrations of particulate matter in SSA cities, severely limits our ability to assess the real extent of air quality problems. Emitted fine particles by on-road vehicles may be particularly important in SSA cities because large concentrations of poorly maintained vehicles operate in close proximity to commercial and other activities of low-income urban residents. This scenario provokes major air quality concerns and its investigation should be of priority interest to policy makers, city planners and managers, and the affected population. As part of collaboration between Columbia University and the University of Nairobi, a PM2.5 air monitoring study was carried out over two weeks in July 2009. The objectives of the study were 1) to assess average daytime PM2.5 concentrations on a range of Nairobi streets that represent important hot-spots in terms of the joint distribution of traffic, commercial, and resident pedestrian activities, 2) to relate those concentrations to motor vehicle counts, 3) to compare urban street concentrations to urban and rural background levels, and 4) to assess vertical and horizontal dispersion of PM2.5 near roadways. Portable, battery-operated PM2.5 samplers were carried by field teams at each of the five sites (three urban, one commuter highway, and one rural site), each of which operated from 7 AM to 7 PM during 10 weekdays in July 2009. Urban background monitoring took place on a rooftop at the University of Nairobi. Preliminary findings suggest highly elevated PM2.5 concentrations at the urban sites where the greatest pedestrian traffic was observed. These findings underscore the need for air

  7. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NASA Astrophysics Data System (ADS)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  8. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  9. Information Requirements for Supervisory Air Traffic Controllers in Support of a Mid-Term Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.; Johnson, Edward J.; Domino, David A.

    2008-01-01

    A concept focusing on wind dependent departure operations has been developed the current version of this concept is called the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage the fact that cross winds of sufficient velocity blow wakes generated by "heavy" and B757 category aircraft on the downwind runway away from the upwind runway. Supervisory Air Traffic Controllers would be responsible for authorization of the Procedure. An investigation of the information requirements necessary to for Supervisors to approve monitor and terminate the Procedure was conducted. Results clearly indicated that the requisite information is currently available in air traffic control towers and that additional information was not required.

  10. Evaluation of pressure response in the Los Alamos controlled air incinerator during three incident scenarios

    SciTech Connect

    Vavruska, J.S.; Elsberry, K.; Thompson, T.K.; Pendergrass, J.A.

    1996-05-01

    The Los Alamos Controlled Air Incinerator (CAI) is a system designed to accept radioactive mixed waste containing alpha-emitting radionuclides. A mathematical model was developed to predict the pressure response throughout the offgas treatment system of the CAI during three hypothetical incident scenarios. The scenarios examined included: (1) loss of burner flame and failure of the flame safeguard system with subsequent reignition of fuel gas in the primary chamber, (2) pyrolytic gas buildup from a waste package due to loss of induced draft and subsequent restoration of induced draft, and (3) accidental charging of propellant spray cans in a solid waste package to the primary chamber during a normal feed cycle. For each of the three scenarios, the finite element computer model was able to determine the transient pressure surge and decay response throughout the system. Of particular interest were the maximum absolute pressures attainable at critical points in the system as well as maximum differential pressures across the high efficiency particulate air (HEPA) filters. Modeling results indicated that all three of the scenarios resulted in maximum HEPA filter differential pressures well below the maximum allowable levels.

  11. PF coil voltage optimization for start-up scenarios in air core tokamaks

    SciTech Connect

    Albanese, R.; Martone, R.; Ambrosino, G.; Pironti, A.

    1994-09-01

    The basic features of a procedure for the optimization of the plasma scenario in an air core tokamak are presented. The method takes into account the eddy currents in the passive conducting structures. The problem is reduced to the synthesis of time-varying magnetic field. The solution of this inverse electromagnetic problem is carried out by means of an optimization procedure based on the receding horizon approach. The paper includes an example of application to the ITER tokamak.

  12. Air Traffic Management Technology Demostration Phase 1 (ATD) Interval Management for Near-Term Operations Validation of Acceptability (IM-NOVA) Experiment

    NASA Technical Reports Server (NTRS)

    Kibler, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Airspace Systems Program's Air Traffic Management Technology Demonstration-1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using Next Generation Air Transportation System (NextGen) surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IMNOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations were acceptable to and feasible for use by flight crews in a voice communications environment when used with a minimum set of Flight Deck-based Interval Management (FIM) equipment and a prototype crew interface. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft Automatic Dependent Surveillance-Broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated into LaRC's Air Traffic Operations Laboratory (ATOL). Data were collected from 10 crews of current 757/767 pilots asked to fly a high-fidelity, fixed-based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes (ASTAR) algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into the DFW International Airport, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final

  13. Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies.

    PubMed

    Fecht, Daniela; Hansell, Anna L; Morley, David; Dajnak, David; Vienneau, Danielle; Beevers, Sean; Toledano, Mireille B; Kelly, Frank J; Anderson, H Ross; Gulliver, John

    2016-03-01

    Road traffic gives rise to noise and air pollution exposures, both of which are associated with adverse health effects especially for cardiovascular disease, but mechanisms may differ. Understanding the variability in correlations between these pollutants is essential to understand better their separate and joint effects on human health. We explored associations between modelled noise and air pollutants using different spatial units and area characteristics in London in 2003-2010. We modelled annual average exposures to road traffic noise (LAeq,24h, Lden, LAeq,16h, Lnight) for ~190,000 postcode centroids in London using the UK Calculation of Road Traffic Noise (CRTN) method. We used a dispersion model (KCLurban) to model nitrogen dioxide, nitrogen oxide, ozone, total and the traffic-only component of particulate matter ≤2.5μm and ≤10μm. We analysed noise and air pollution correlations at the postcode level (~50 people), postcodes stratified by London Boroughs (~240,000 people), neighbourhoods (Lower layer Super Output Areas) (~1600 people), 1km grid squares, air pollution tertiles, 50m, 100m and 200m in distance from major roads and by deprivation tertiles. Across all London postcodes, we observed overall moderate correlations between modelled noise and air pollution that were stable over time (Spearman's rho range: |0.34-0.55|). Correlations, however, varied considerably depending on the spatial unit: largest ranges were seen in neighbourhoods and 1km grid squares (both Spearman's rho range: |0.01-0.87|) and was less for Boroughs (Spearman's rho range: |0.21-0.78|). There was little difference in correlations between exposure tertiles, distance from road or deprivation tertiles. Associations between noise and air pollution at the relevant geographical unit of analysis need to be carefully considered in any epidemiological analysis, in particular in complex urban areas. Low correlations near roads, however, suggest that independent effects of road noise and

  14. Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies.

    PubMed

    Fecht, Daniela; Hansell, Anna L; Morley, David; Dajnak, David; Vienneau, Danielle; Beevers, Sean; Toledano, Mireille B; Kelly, Frank J; Anderson, H Ross; Gulliver, John

    2016-03-01

    Road traffic gives rise to noise and air pollution exposures, both of which are associated with adverse health effects especially for cardiovascular disease, but mechanisms may differ. Understanding the variability in correlations between these pollutants is essential to understand better their separate and joint effects on human health. We explored associations between modelled noise and air pollutants using different spatial units and area characteristics in London in 2003-2010. We modelled annual average exposures to road traffic noise (LAeq,24h, Lden, LAeq,16h, Lnight) for ~190,000 postcode centroids in London using the UK Calculation of Road Traffic Noise (CRTN) method. We used a dispersion model (KCLurban) to model nitrogen dioxide, nitrogen oxide, ozone, total and the traffic-only component of particulate matter ≤2.5μm and ≤10μm. We analysed noise and air pollution correlations at the postcode level (~50 people), postcodes stratified by London Boroughs (~240,000 people), neighbourhoods (Lower layer Super Output Areas) (~1600 people), 1km grid squares, air pollution tertiles, 50m, 100m and 200m in distance from major roads and by deprivation tertiles. Across all London postcodes, we observed overall moderate correlations between modelled noise and air pollution that were stable over time (Spearman's rho range: |0.34-0.55|). Correlations, however, varied considerably depending on the spatial unit: largest ranges were seen in neighbourhoods and 1km grid squares (both Spearman's rho range: |0.01-0.87|) and was less for Boroughs (Spearman's rho range: |0.21-0.78|). There was little difference in correlations between exposure tertiles, distance from road or deprivation tertiles. Associations between noise and air pollution at the relevant geographical unit of analysis need to be carefully considered in any epidemiological analysis, in particular in complex urban areas. Low correlations near roads, however, suggest that independent effects of road noise and

  15. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  16. Air Traffic Controller Performance and Acceptability of Multiple UAS in a Simulated NAS Environment

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas; Chiappe, Dan; Morales, Greg; Battiste, Vernol; Shively, Robert Jay

    2014-01-01

    Previously, we showed that air traffic controllers (ATCos) rated UAS pilot verbal response latencies as acceptable when a 1.5 s delay was added to the UAS pilot responses, but a 5 s delay was rated as mostly unacceptable. In the present study we determined whether a 1.5 s added delay in the UAS pilots' verbal communications would affect ATCos interactions with UAS and other conventional aircraft when the number and speed of the UAS were manipulated. Eight radar-certified ATCos participated in this simulation. The ATCos managed a medium altitude sector containing arrival aircraft, en route aircraft, and one to four UAS. The UAS were conducting a surveillance mission and flew at either a "slow" or "fast" speed. We measured both UAS and conventional pilots' verbal communication latencies, and obtained ATCos' acceptability ratings for these latencies. Although the UAS pilot response latencies were longer than those of conventional pilots, the ATCos rated UAS pilot verbal communication latencies to be as acceptable as those of conventional pilots. Because the overall traffic load within the sector was held constant, ATCos only performed slightly worse when multiple UAS were in their sector compared to when only one UAS was in the sector. Implications of these findings for UAS integration in the NAS are discussed.

  17. Air Traffic Controllers' Control Strategies in the Terminal Area Under Off-Nominal Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Mercer, Joey; Callantine, Todd; Kupfer, Michael; Cabrall, Christopher

    2012-01-01

    A human-in-the-loop simulation investigated the robustness of a schedule-based terminal-area air traffic management concept, and its supporting controller tools, to off-nominal events - events that led to situations in which runway arrival schedules required adjustments and controllers could no longer use speed control alone to impose the necessary delays. The main research question was exploratory: to assess whether controllers could safely resolve and control the traffic during off-nominal events. A focus was the role of the supervisor - how he managed the schedules, how he assisted the controllers, what strategies he used, and which combinations of tools he used. Observations and questionnaire responses revealed supervisor strategies for resolving events followed a similar pattern: a standard approach specific to each type of event often resolved to a smooth conclusion. However, due to the range of factors influencing the event (e.g., environmental conditions, aircraft density on the schedule, etc.), sometimes the plan required revision and actions had a wide-ranging effect.

  18. Simulation studies of time-control procedures for the advanced air traffic control system

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Alcabin, M.; Erzberger, H.; Obrien, P. J.

    1985-01-01

    The problem of mixing aircraft equipped with time-controlled guidance systems and unequipped aircraft in the terminal area has been investigated via a real-time air traffic control simulation. These four-dimensional (4D) guidance systems can predict and control the touchdown time of an aircraft to an accuracy of a few seconds throughout the descent. The objectives of this investigation were to (1) develop scheduling algorithms and operational procedures for various traffic mixes that ranged from 25% to 75% 4D-equipped aircraft; (2) examine the effect of time errors at 120 n. mi. from touchdown on touchdown time scheduling of the various mix conditions; and (3) develop efficient algorithms and procedures to null the initial time errors prior to reaching the final control sector, 30 n. mi. from touchdown. Results indicate substantial reduction in controller workload and an increase in orderliness when more than 25% of the aircraft are equipped with 4D guidance systems; initial random errors of up to + or - 2 min can be handled via a single speed advisory issued in the arrival control sector, thus avoiding disruption of the time schedule.

  19. Impacts of traffic-induced lead emissions on air, soil and blood lead levels in Beirut.

    PubMed

    Hashisho, Z; El-Fadel, M

    2004-01-01

    Lead is a purely toxic heavy metal which induces a wide variety of adverse physiologic effects. Nevertheless, it has been mined and used for more than 8,000 years. Among the different contemporary sources of lead pollution, traffic-induced emissions from the combustion of leaded gasoline is of particular concern, as it can constitute more than 90 percent of total lead emissions into the atmosphere in congested urban areas where no phase-out activities have been adopted. Gasoline lead content and traffic volume are strongly correlated with concentrations of lead in various environmental media. In the absence of policies to reduce the use of lead in gasoline or to favor the use of unleaded gasoline, leaded gasoline remains the predominant grade in many countries. This paper assesses the status of lead pollution from the combustion of leaded gasoline in Beirut based on field measurements of lead in air and roadside dust of urban and rural/suburban areas and recent data on soil and blood lead levels. Average atmospheric lead concentrations was about 1.86 microg m(-3) at urban locations and 0.147 microg m(-3) at suburban locations. The analysis of roadside dust revealed an average lead level of 353 microg g(-1) along urban streets and 125 microg g(-1) along rural/suburban roads. Blood lead levels were also relatively high in comparison to countries where leaded gasoline has been phased-out.

  20. The Relation between Self-Reported Worry and Annoyance from Air and Road Traffic

    PubMed Central

    van den Berg, Frits; Verhagen, Claudia; Uitenbroek, Daan

    2015-01-01

    Negative perceptions such as fear or worry are known to be an important determinant of annoyance. Annoyance caused by noise and odour has been analysed in relation to worry about safety or health due to environmental hazards, using responses to a health survey. In the survey area high environmental impacts come from air and road traffic. The survey results show a correlation between worry due to the airport or passing aircraft and noise and odour annoyance from aircraft (correlation coefficient (c.c.) close to 0.6). For the relation between worry about a busy street and annoyance from road traffic the correlation is lower (c.c. 0.4–0.5). Worries about different situations, such as living below sea level, close to an airport, busy street or chemical industry, are highly correlated (c.c. 0.5–0.9), also for situations that are not obviously related. Personal factors can also lead to more worry: being female, above 35 years of age, having a high risk for anxiety/depression and being in bad health increase the odds for being worried. The results thus suggest that worry about safety or health is correlated to both personal and environmental factors. PMID:25723645

  1. Scenarios over the past 3 decades: air quality impact of European legislation

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Janssens-Maenhout, G. G. A.; Guizzardi, D.; Schaaf, E.; Muntean, M.; Dentener, F. J.; Sindelarova, K.; Granier, C.

    2014-12-01

    The impacts of air pollution span from local to global, affecting human health, climate, visibility and ecosystems. Several actions at national, regional and global scale have been adopted to reduce pollutant emission levels. In our work we make use of the EDGAR_ v4.3 emission database to compare today's pollutant levels with ex-post scenarios developed to assess the impact and effectiveness of legislation over the last 3 decades on air quality and climate. Differently from most of literature works addressing future air quality, here we focus on historical global anthropogenic emissions (years 1970-2010) of several gaseous and particulate air pollutants (SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC) and past emission scenarios to demonstrate the role that policy has played in improving air quality. Three scenarios have been developed and compared to today's situation (year 2010), assuming the lack of abatement measures, the complete stagnation of technology (no reduction measures applied and constant emission factors from 1970), and a constant fuel mixture (with a more prominent role for coal in the 1970s). Special focus is dedicated to the power generation sector, manufacturing industry and road transport activities since these were mostly influenced by official regulations in the EU. Global SO2 emissions from transport dropped down by 8.5 times due to the deployment of low S content fuels; NOx and CO emissions are indeed a function of combustion efficiency and therefore decreased with the introduction of new technologies, while NH3 emitted by road transport increased in Europe by 18% due to the introduction of catalyzers. Finally, particulate matter emissions are mainly abated by the installation of End-of-Pipe measures (e.g. filters) especially in the energy and transport sectors.

  2. Relationship between Air Traffic Selection and Training (AT-SAT)) Battery Test Scores and Composite Scores in the Initial en Route Air Traffic Control Qualification Training Course at the Federal Aviation Administration (FAA) Academy

    ERIC Educational Resources Information Center

    Kelley, Ronald Scott

    2012-01-01

    Scope and Method of Study: This study focused on the development and use of the AT-SAT test battery and the Initial En Route Qualification training course for the selection, training, and evaluation of air traffic controller candidates. The Pearson product moment correlation coefficient was used to measure the linear relationship between the…

  3. The influence of air traffic control message length and timing on pilot communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Rodvold, Michelle

    1993-01-01

    The present paper outlines an approach to air traffic control (ATC) communication that is based on theories of dialogue organization and describes several steps or phases in routine controller-pilot communication. The introduction also describes several kinds of communication problems that often disrupt these steps, as well as how these problems may be caused by factors related to ATC messages, the communication medium (radio vs. data link) and task workload. Next, a part-task simulation study is described. This study focused on how problems in radio communication are related to message factors. More specifically, we examined if pilots are more likely to misunderstanding longer ATC messages. A more general goal of the study is to show that communication analysis can help trace where problem occur and why.

  4. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    1990-01-01

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  5. Occupational and public field exposure from communication, navigation, and radar systems used for air traffic control.

    PubMed

    Joseph, Wout; Goeminne, Francis; Vermeeren, Günter; Verloock, Leen; Martens, Luc

    2012-12-01

    Electromagnetic exposure (occupational and general public) to 14 types of air traffic control (ATC) systems is assessed. Measurement methods are proposed for in situ exposure assessment of these ATC systems. In total, 50 sites are investigated at 1,073 locations in the frequency range of 255 kHz to 24 GHz. For all installations, typical and maximal exposure values for workers and the general public are provided. Two of the 14 types of systems, Non-Directional Beacons (NDB) (up to 881.6 V m) and Doppler Very High Frequency (VHF) Omni-directional Range (DVOR) (up to 92.3 V m), exhibited levels requiring recommended minimum distances such that the ICNIRP reference levels are not exceeded. Cumulative exposure of all present radiofrequency (RF) sources is investigated, and it is concluded that the ATC source dominates the total exposure in its neighborhood. PMID:23111522

  6. Impact of Operating Context on the Use of Structure in Air Traffic Controller Cognitive Processes

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Histon, Jonathan M.; Ragnarsdottir, Margret Dora; Major, Laura M.; Hansman, R. John

    2004-01-01

    This paper investigates the influence of structure on air traffic controllers cognitive processes in the TRACON, En Route, and Oceanic environments. Radar data and voice command analyses were conducted to support hypotheses generated through observations and interviews conducted at the various facilities. Three general types of structure-based abstractions (standard flows, groupings, and critical points) have been identified as being used in each context, though the details of their application varied in accordance with the constraints of the particular operational environment. Projection emerged as a key cognitive process aided by the structure-based abstractions, and there appears to be a significant difference between how time-based versus spatial-based projection is performed by controllers. It is recommended that consideration be given to the value provided by the structure-based abstractions to the controller as well as to maintain consistency between the type (time or spatial) of information support provided to the controller.

  7. Use of Structure as a Basis for Abstraction in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2004-01-01

    The safety and efficiency of the air traffic control domain is highly dependent on the capabilities and limitations of its human controllers. Past research has indicated that structure provided by the airspace and procedures could aid in simplifying the controllers cognitive tasks. In this paper, observations, interviews, voice command data analyses, and radar analyses were conducted at the Boston Terminal Route Control (TRACON) facility to determine if there was evidence of controllers using structure to simplify their cognitive processes. The data suggest that controllers do use structure-based abstractions to simplify their cognitive processes, particularly the projection task. How structure simplifies the projection task and the implications of understanding the benefits structure provides to the projection task was discussed.

  8. Occupational and public field exposure from communication, navigation, and radar systems used for air traffic control.

    PubMed

    Joseph, Wout; Goeminne, Francis; Vermeeren, Günter; Verloock, Leen; Martens, Luc

    2012-12-01

    Electromagnetic exposure (occupational and general public) to 14 types of air traffic control (ATC) systems is assessed. Measurement methods are proposed for in situ exposure assessment of these ATC systems. In total, 50 sites are investigated at 1,073 locations in the frequency range of 255 kHz to 24 GHz. For all installations, typical and maximal exposure values for workers and the general public are provided. Two of the 14 types of systems, Non-Directional Beacons (NDB) (up to 881.6 V m) and Doppler Very High Frequency (VHF) Omni-directional Range (DVOR) (up to 92.3 V m), exhibited levels requiring recommended minimum distances such that the ICNIRP reference levels are not exceeded. Cumulative exposure of all present radiofrequency (RF) sources is investigated, and it is concluded that the ATC source dominates the total exposure in its neighborhood.

  9. Traffic-related air pollution and circulating levels of total and allergen-specific IgE among children in Detroit, Michigan

    EPA Science Inventory

    Introduction: There is a growing body of literature suggesting a relationship between traffic-related air pollution and allergic health outcomes. Animal studies have demonstrated that air pollution, particularly diesel exhaust particles, may stimulate or enhance atopic responses...

  10. Simple Models for Airport Delays During Transition to a Trajectory-Based Air Traffic System

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.

  11. Lung Cancer Incidence and Long-Term Exposure to Air Pollution from Traffic

    PubMed Central

    Raaschou-Nielsen, Ole; Andersen, Zorana Jovanovic; Hvidberg, Martin; Jensen, Steen Solvang; Ketzel, Matthias; Sørensen, Mette; Loft, Steffen; Overvad, Kim; Tjønneland, Anne

    2011-01-01

    Background Previous studies have shown associations between air pollution and risk for lung cancer. Objective We investigated whether traffic and the concentration of nitrogen oxides (NOx) at the residence are associated with risk for lung cancer. Methods We identified 592 lung cancer cases in the Danish Cancer Registry among 52,970 members of the Diet, Cancer and Health cohort and traced residential addresses from 1 January 1971 in the Central Population Registry. We calculated the NOx concentration at each address by dispersion models and calculated the time-weighted average concentration for all addresses for each person. We used Cox models to estimate incidence rate ratios (IRRs) after adjustment for smoking (status, duration, and intensity), environmental tobacco smoke, length of school attendance, occupation, and dietary intake of fruit. Results For the highest compared with the lowest quartile of NOx concentration at the residence, we found an IRR for lung cancer of 1.30 [95% confidence interval (CI), 1.05–1.61], and the IRR for lung cancer in association with living within 50 m of a major road (> 10,000 vehicles/day) was 1.21 (95% CI, 0.95–1.55). The results showed tendencies of stronger associations among nonsmokers, among those with a relatively low fruit intake, and among those with a longer school attendance; only length of school attendance modified the effect significantly. Conclusions This study supports that risk for lung cancer is associated with different markers of air pollution from traffic near the residence. PMID:21227886

  12. Study of the impact of cruise and passenger ships on a Mediterranean port city air quality - Study of future emission mitigation scenarios

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Kontos, Serafim; Giannaros, Christos; Melas, Dimitrios

    2015-04-01

    An increase of the passenger ships traffic is expected in the Mediterranean Sea as targeted by the EU Blue Growth initiative. This increase is expected to impact the Mediterranean port-cities air quality considering not only the conventional atmospheric pollutants but also the toxic ones that are emitted by the ships (e.g. Nickel). The aim of this study is the estimation of the present and future time pollutant emissions from cruise and passenger maritime transport in the port area of Thessaloniki (Greece) as well as the impact of those emissions on the city air quality. Cruise and passenger ship emissions have been estimated for the year 2013 over a 100m spatial resolution grid which covers the greater port area of Thessaloniki. Emissions have been estimated for the following macro-pollutants; NOx, SO2, NMVOC, CO, CO2 and particulate matter (PM). In addition, the most important micro-pollutants studied in this work are As, Cd, Pb, Ni and Benzo(a)pyrene for which air quality limits have been set by the EU. Emissions have been estimated for three operation modes; cruising, maneuvering and hotelling. For the calculation of the present time maritime emissions, the activity data used were provided by the Thessaloniki Port Authority S.A. Moreover, future pollutant emissions are estimated using the future activity data provided by the Port Authority and the IMO legislation for shipping in the future. In addition, two mitigation emission scenarios are examined; the use of Liquefied Natural Gas (LNG) as a fuel used by ships and the implementation of cold ironing which is the electrification of ships during hotelling mode leading to the elimination of the corresponding emissions. The impact of the present and future passenger ship emissions on the air quality of Thessaloniki is examined with the use of the model CALPUFF applied over the 100m spatial resolution grid using the meteorology of WRF. Simulations of the modeling system are performed for four different emission

  13. 78 FR 76888 - Twentieth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... INFORMATION: Pursuant to section 10(a) (2) of the Federal Advisory Committee Act (Pub. L. 92-463, 5 U.S.C... Federal Aviation Administration Twentieth Meeting: RTCA Special Committee 214/EUROCAE WG-78: Standards for Air Traffic Data Communication Services AGENCY: Federal Aviation Administration (FAA), U.S....

  14. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 3.0

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Johnson, William C.; Scardina, John; Shay, Richard F.

    2016-01-01

    This document describes the goals, benefits, technologies, and procedures of the Concept of Operations (ConOps) for the Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1), and provides an update to the previous versions of the document [ref 1 and ref 2].

  15. Mental Effort and Performance as Determinants for the Dynamic Selection of Learning Tasks in Air Traffic Control Training

    ERIC Educational Resources Information Center

    Salden, Ron J.C.M.; Paas, Fred; Broers, Nick J.; van Merrienboer, Jeroen J. G.

    2004-01-01

    The differential effects of four task selection methods on training efficiency and transfer in computer-based training for Air Traffic Control were investigated. A non-dynamic condition, in which the learning tasks were presented to the participants in a fixed, predetermined sequence, was compared to three dynamic conditions, in which learning…

  16. 77 FR 18297 - Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation Environmental Design Tool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Federal Aviation Administration Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation... Aviation Environmental Design Tool version 2a (AEDT 2a) to analyze noise, fuel burn, and emissions for FAA... assess noise, fuel burn, and emissions impacts of such actions under the National Environmental...

  17. What strategy is needed for attaining the EU air quality regulations under future climate change scenarios? A sensitivity analysis over Europe

    NASA Astrophysics Data System (ADS)

    Jiménez-Guerrero, P.; Baró, R.; Gómez-Navarro, J. J.; Lorente-Plazas, R.; García-Valero, J. A.; Hernández, Z.; Montávez, J. P.

    2012-04-01

    A wide number of studies show that several areas over Europe exceed some of the air quality thresholds established in the legislation. These exceedances will become more frequent under future climate change scenarios, since the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone will influence the future concentrations of atmospheric pollutants through modifications of gas-phase chemistry, transport, removal, and natural emissions. In this sense, chemistry transport models (CTMs) play a key role in assessing and understanding the emissions abatement plans through the use of sensitivity analysis strategies. These sensitivity analyses characterize the change in model output due to variations in model input parameters. Since the management strategies of air pollutant emission is one of the predominant factors for controlling urban air quality, this work assesses the impact of various emission reduction scenarios in air pollution levels over Europe under two climate change scenarios. The methodology includes the use of a climate version of the meteorological model MM5 coupled with the CHIMERE chemistry transport model. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as two future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have an horizontal resolution of 25 km and 23 vertical layers up to 100 hPa, and are driven by the global climate model ECHO-G . In order to represent the sensitivity of the chemistry and transport of aerosols, tropospheric ozone and other photochemical species, several hypothetical scenarios of emission control have been implemented to quantify the influence of diverse emission sources in the area, such as on-road traffic, port and industrial emissions, among others. The modeling strategy lies on a sensitivity analysis to determine the emission reduction and strategy needed in the target area in

  18. Predicting personal exposure of pregnant women to traffic-related air pollutants.

    PubMed

    Nethery, Elizabeth; Teschke, Kay; Brauer, Michael

    2008-05-20

    As epidemiological studies report associations between ambient air pollution and adverse birth outcomes, it is important to understand determinants of exposures among pregnant women. We measured (48-h, personal exposure) and modeled (using outdoor ambient monitors and a traffic-based land-use regression model) NO, NO(2), fine particle mass and absorbance in 62 non-smoking pregnant women in Vancouver, Canada on 1-3 occasions during pregnancy (total N=127). We developed predictive models for personal measurements using modeled ambient concentrations and individual determinants of exposure. Geometric mean exposures of personal samples were relatively low (GM (GSD) NO=37 ppb (2.0); NO(2)=17 ppb (1.6); 'soot', as filter absorbance=0.8 10(-5) m(-1) (1.5); PM(2.2)=10 microg m(-3) (1.6)). Having a gas stove (vs. electric stove) in the home was associated with exposure increases of 89% (NO), 44% (NO(2)), 20% (absorbance) and 35% (fine PM). Interpolated concentrations from outdoor fixed-site monitors were associated with all personal exposures except NO(2). Land-use regression model estimates of outdoor air pollution were associated with personal NO and NO(2) only. The effects of outdoor air pollution on personal samples were consistent, with and without adjustment for other individual determinants (e.g. gas stove). These findings improve our understanding of sources of exposure to air pollutants among pregnant women and support the use of outdoor concentration estimates as proxies for exposure in epidemiologic studies.

  19. Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?

    PubMed

    MacNeill, M; Dobbin, N; St-Jean, M; Wallace, L; Marro, L; Shin, T; You, H; Kulka, R; Allen, R W; Wheeler, A J

    2016-10-01

    Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic-related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa-Carleton District School Board, tested the effect of this action by collecting traffic-related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P < 0.05) reductions in concentrations of most of the pollutants measured at the two late-start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor-outdoor temperature difference. The intervention at the early-start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost-effective mechanism of reducing traffic-related pollutants in late-start schools located near major roads.

  20. Pilot and Controller Evaluations of Separation Function Allocation in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Wing, David; Prevot, Thomas; Morey, Susan; Lewis, Timothy; Martin, Lynne; Johnson, Sally; Cabrall, Christopher; Como, Sean; Homola, Jeffrey; Sheth-Chandra, Manasi; Mercer, Joey

    2013-01-01

    Two human-in-the-loop simulation experiments were conducted in coordinated fashion to investigate the allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). Ground-based separation was provided by air traffic controllers without automation tools, with tools, or by ground-based automation with controllers in a managing role. Airborne self-separation was provided by airline pilots using self-separation automation enabled by airborne surveillance technology. The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations, assuming the starting point of current-day operations and modeling an emergence of NextGen technologies and procedures. In the controller-focused experiment, the impact of mixed operations on controller performance was assessed at four stages of NextGen implementation. In the pilot-focused experiment, the limits to which pilots with automation tools could take full responsibility for separation from ground-controlled aircraft were tested. Results indicate that the presence of self-separating aircraft had little impact on the controllers' ability to provide separation services for ground-controlled aircraft. Overall performance was best in the most automated environment in which all aircraft were data communications equipped, ground-based separation was highly automated, and self-separating aircraft had access to trajectory intent information for all aircraft. In this environment, safe, efficient, and highly acceptable operations could be achieved for twice today's peak airspace throughput. In less automated environments, reduced trajectory intent exchange and manual air traffic control limited the safely achievable airspace throughput and

  1. Air Traffic Control Response to Delays: A System Study of Newark International Airport

    NASA Technical Reports Server (NTRS)

    Evans, Antony D.; Clarke, John-Paul

    2002-01-01

    Airport delays are a significant problem in the United States air transportation system. Between 1999 and 2000 the number of flights delayed increased by 20 percent despite only a 0.4% increase in total operations. Newark International Airport (EWR), one of New York City's primary airports, is one of the airports in the United States most impacted by delays. Newark had the highest percentage of operations delayed in 1999, and was second only to LaGuardia Airport in 2000. Nearly 85% of delays at Newark are caused by adverse weather impacting an airport that may be characterized as having limited capacity and a very full schedule. Although Newark is heavily impacted by weather, delays have not increased significantly since 1998. This indicates that the airlines, air traffic control (ATC), and the Port Authority of New York and New Jersey have successfully adapted. On June 29, 2000, a research team from MIT visited Newark airport to assess the effectiveness of any adaptations made, and to collect data on airline and ATC departure operations, and of the national and local weather affecting the airport. Airline and ATC personnel were also interviewed. Results of this study indicate that airspace capacity limitations downstream of the airport are a primary flow constraint at the airport, and that these constraints are the source of most surface delays. A number of tactical ATC responses to delays were examined, including the application of restrictions, re-routing with the help of the National Playbook, and the use of decision-aiding tools such as the Dynamic Spacing Program (DSP) and the Integrated Terminal Weather System (ITWS). Improved interfacility communications and further utilization of runway 11-29 were identified as other tactical responses to delays, whilst the formation of the Air Traffic Control System Command Center and the New York Airspace redesign were identified as thekey strategic ATC responses to delays. Particularly the New York airspace redesign has

  2. Developing Community-Level Policy and Practice to Reduce Traffic-Related Air Pollution Exposure

    PubMed Central

    Brugge, Doug; Patton, Allison P.; Bob, Alex; Reisner, Ellin; Lowe, Lydia; Bright, Oliver-John M.; Durant, John L.; Newman, Jim; Zamore, Wig

    2016-01-01

    The literature consistently shows associations of adverse cardiovascular and pulmonary outcomes with residential proximity to highways and major roadways. Air monitoring shows that traffic-related pollutants (TRAP) are elevated within 200–400 m of these roads. Community-level tactics for reducing exposure include the following: 1) HEPA filtration; 2) Appropriate air-intake locations; 3) Sound proofing, insulation and other features; 4) Land-use buffers; 5) Vegetation or wall barriers; 6) Street-side trees, hedges and vegetation; 7) Decking over highways; 8) Urban design including placement of buildings; 9) Garden and park locations; and 10) Active travel locations, including bicycling and walking paths. A multidisciplinary design charrette was held to test the feasibility of incorporating these tactics into near-highway housing and school developments that were in the planning stages. The resulting designs successfully utilized many of the protective tactics and also led to engagement with the designers and developers of the sites. There is a need to increase awareness of TRAP in terms of building design and urban planning. PMID:27413416

  3. Multistep-Ahead Air Passengers Traffic Prediction with Hybrid ARIMA-SVMs Models

    PubMed Central

    Ming, Wei; Xiong, Tao

    2014-01-01

    The hybrid ARIMA-SVMs prediction models have been established recently, which take advantage of the unique strength of ARIMA and SVMs models in linear and nonlinear modeling, respectively. Built upon this hybrid ARIMA-SVMs models alike, this study goes further to extend them into the case of multistep-ahead prediction for air passengers traffic with the two most commonly used multistep-ahead prediction strategies, that is, iterated strategy and direct strategy. Additionally, the effectiveness of data preprocessing approaches, such as deseasonalization and detrending, is investigated and proofed along with the two strategies. Real data sets including four selected airlines' monthly series were collected to justify the effectiveness of the proposed approach. Empirical results demonstrate that the direct strategy performs better than iterative one in long term prediction case while iterative one performs better in the case of short term prediction. Furthermore, both deseasonalization and detrending can significantly improve the prediction accuracy for both strategies, indicating the necessity of data preprocessing. As such, this study contributes as a full reference to the planners from air transportation industries on how to tackle multistep-ahead prediction tasks in the implementation of either prediction strategy. PMID:24723814

  4. Traffic-related air pollution: Exposure and health effects in Copenhagen street cleaners and cemetery workers

    SciTech Connect

    Raaschou-Nielsen, O.; Nielsen, M.L.; Gehl, J.

    1995-05-01

    This questionaire-based study found a significantly higher prevalence of chronic bronchitis, asthma, and several other symptoms in 116 Copenhagen street cleaners who were exposed to traffic-related air pollution at levels that were slightly lower than the 1987 World Health Organization-recommended threshold values, compared with 115 Copenhagen cemetery workers exposed to lower pollution levels. Logistic regression analysis, controlling for age and smoking, was conducted, and odds ratios and 95% confidence intervals were calculated to be 2.5 for chronic bronchitis (95% confidence interval = 1.2-5.1), 2.3 for asthma (95% confidence interval = 1.0-5.1), and 1.8-7.9 for other symptoms (95% confidence interval = 1.0-28.2). Except for exposure to air pollution, the two groups were comparable, i.e., they had similar terms of employment and working conditions. the exposure ranges during an 8-h work day, averaged from readings taken at five monitored street positions, were: 41-257 ppb nitric oxide (1-h max: 865 ppb); 23-43 ppb nitrogen dioxide (1-h max: 208 ppb); 1.0-4.3 ppm carbon monoxide (8-h max: 7.1 ppm); 14-28 ppb sulfur dioxide (1-h max; 112 ppb); and 10-38 ppb ozone (1-h max: 72 ppb). 33 refs., 7 tabs.

  5. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally

  6. Factors Influencing the Decisions and Actions of Pilots and Air Traffic Controllers in Three Plausible NextGen Environments

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter

    2011-01-01

    In the current air traffic management (ATM) system, pilots and air traffic controllers have well-established roles and responsibilities: pilots fly aircraft and are concerned with energy management, fuel efficiency, and passenger comfort; controllers separate aircraft and are concerned with safety and management of traffic flows. Despite having different goals and obligations, both groups must be able to effectively communicate and interact with each other for the ATM system to work. This interaction will become even more challenging as traffic volume increases dramatically in the near future. To accommodate this increase, by 2025 the national air transportation system in the U.S. will go through a transformation that will modernize the ATM system and make it safer, more effective, and more efficient. This new system, NextGen, will change how pilots and controllers perform their tasks by incorporating advanced technologies and employing new procedures. It will also distribute responsibility between pilots, controllers and automation over such tasks as maintaining aircraft separation. The present chapter describes three plausible concepts of operations that allocate different ATM responsibilities to these groups. We describe how each concept changes the role of each operator and the types of decisions and actions performed by them.

  7. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  8. Traffic Air Pollution and Other Risk Factors for Respiratory Illness in Schoolchildren in the Niger-Delta Region of Nigeria

    PubMed Central

    Mustapha, B. Adetoun; Blangiardo, Marta; Briggs, David J.

    2011-01-01

    Background: Association of childhood respiratory illness with traffic air pollution has been investigated largely in developed but not in developing countries, where pollution levels are often very high. Objectives: In this study we investigated associations between respiratory health and outdoor and indoor air pollution in schoolchildren 7–14 years of age in low socioeconomic status areas in the Niger Delta. Methods: A cross-sectional survey was carried out among 1,397 schoolchildren. Exposure to home outdoor and indoor air pollution was assessed by self-report questionnaire. School air pollution exposures were assessed using traffic counts, distance of schools to major streets, and particulate matter and carbon monoxide measurements, combined using principal components analysis. Hierarchical logistic regression was used to examine associations with reported respiratory health, adjusting for potential confounders. Results: Traffic disturbance at home (i.e., traffic noise and/or fumes evident inside the home vs. none) was associated with wheeze [odds ratio (OR) = 2.16; 95% confidence interval (CI), 1.28–3.64], night cough (OR = 1.37; 95% CI, 1.03–1.82), phlegm (OR = 1.49; 95% CI, 1.09–2.04), and nose symptoms (OR = 1.40; 95% CI, 1.03–1.90), whereas school exposure to a component variable indicating exposure to fine particles was associated with increased phlegm (OR = 1.38; 95% CI, 1.09–1.75). Nonsignificant positive associations were found between cooking with wood/coal (OR = 2.99; 95% CI, 0.88–10.18) or kerosene (OR = 2.83; 95% CI, 0.85–9.44) and phlegm compared with cooking with gas. Conclusion: Traffic pollution is associated with respiratory symptoms in schoolchildren in a deprived area of western Africa. Associations may have been underestimated because of nondifferential misclassification resulting from limitations in exposure measurement. PMID:21719372

  9. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada.

    PubMed

    Hatzopoulou, Marianne; Weichenthal, Scott; Dugum, Hussam; Pickett, Graeme; Miranda-Moreno, Luis; Kulka, Ryan; Andersen, Ross; Goldberg, Mark

    2013-01-01

    Cyclists may experience increased exposure to traffic-related air pollution owing to increased minute ventilation and close proximity to vehicle emissions. The aims of this study were to characterize personal exposures to air pollution among urban cyclists and to identify potential determinants of exposure including the type of cycling lane (separated vs on-road), traffic counts, and meteorological factors. In total, personal air pollution exposure data were collected over 64 cycling routes during morning and evening commutes in Montreal, Canada, over 32 days during the summer of 2011. Measured pollutants included ultrafine particles (UFPs), fine particles (PM(2.5)), black carbon (BC), and carbon monoxide (CO). Counts of diesel vehicles were important predictors of personal exposures to BC, with each 10 vehicle/h increase associated with a 15.0% (95% confidence interval (CI): 5.7%, 24.0%) increase in exposure. Use of separated cycling lanes had less impact on personal exposures with a 12% (95% CI: -43%, 14%) decrease observed for BC and smaller decreases observed for UFPs (mean: -1.3%, 95% CI: -20%, 17%) and CO (mean: -5.6%, 95% CI: -17%, 4%) after adjusting for meteorological factors and traffic counts. On average, PM(2.5) exposure increased 7.8% (95% CI: -17%, 35%) with separate cycling lane use, but this estimate was imprecise and not statistically significant. In general, our findings suggest that diesel vehicle traffic is an important contributor to personal BC exposures and that separate cycling lanes may have a modest impact on personal exposure to some air pollutants. Further evaluation is required, however, as the impact of separate cycling lanes and/or traffic counts on personal exposures may vary between regions.

  10. PAHs pollution from traffic sources in air of Hangzhou, China: trend and influencing factors.

    PubMed

    Zhu, Li-Zhong; Wang, Jing

    2005-01-01

    PAHs pollution in air of arterial roads was investigated from October 1998 to October 2001 in Hangzhou, China. The results showed that sigma10 PAHs was 13-36 microg/m3, among which, BaP, a strong carcinogenic kind ranged from 0.034 microg/m3 to 0.12 microg/m3. PAHs pollutions in four seasons were winter > autumn > spring-summer. The annual averages of sigmaPAHs concentration were 25 microg/m3 for 1999, 28 microg/m3 for 2000, and 29 microg/m3 for 2001, respectively. Leaded gasoline was banned in December 1998 in Hangzhou, thus comparative measurements with PAHs in leaded and lead-free gasoline powered motor exhausts made it certain that the use of lead-free gasoline leaded to a heavier PAHs pollution in roadside air from December, 1998, in China, and sigmaPAHs in air samples after the lead-banning were more than twice of that in samples before the action. For the large contribution of vehicle discharge to air pollution in roadside, further research was performed to suggest the factors influencing PAHs distribution in vehicle exhaust in order to control air pollution effectively. Compared to gasoline engines, emissions from diesel engines were less toxic, although they might produce more PAHs. Of the same vehicular and oil type, automobiles of longer mileages produced more toxic PAHs. PAHs distributions in the vehicular exhausts were related to the oil type. Large difference was found in the abundance of 3-, 5- and 6-ring PAHs between exhausts from gasoline and diesel oil engines. Diesel oil engines produced relative lighter PAHs such as NAPH, ACEN, FLUOR, while gasoline engines emitted heavier kinds such as BkF, IN and BP. The automobile produced more PAHs with the increase of mileage especially FLUR, PY, BaP, BP. Some significant ratios for traffic source in Hangzhou such as PHEN/AN, FLUR/PY, IN/BP were 0.50-4.3, 0.58-7.4, 0.51-1.5, respectively. A source fingerprint for vehicle exhausts of a mixture of vehicle and oil types in the city district for light

  11. Megacity impacts on global air quality under present and future scenarios

    NASA Astrophysics Data System (ADS)

    Butler, T.; Denier Van Der Gon, H.; Stock, Z.; Russo, M.; Lawrence, M. G.

    2011-12-01

    Over half of the population of the world now lives in cities, with the global rate of urbanisation expected to continue well into the 21st century. A significant fraction of this urban population lives in so- called "Megacities", which are commonly defined as urban areas containing more than 10 million people, although there is no formally accepted definition. These shifts in the distribution of population and economic activity are expected to lead to changes in the emissions of atmospheric pollutants, which in turn could be expected to lead to changes in air quality within Megacities, in the regions surrounding Megacities, and perhaps also at the global scale. A global model of atmospheric chemistry and transport is an essential part of any integrated assessment of the effects of megacities at these scales. Global models require global emission inventories as input, along with appropriate emission scenarios. Unfortunately there are very few global emission scenarios available which are explicitly designed to explore differences in projected rates of urbanisation. In this work we examine the Representative Concentration Pathway (RCP) emissions projections which are freely available as part of CMIP5 (Coupled Model Intercomparison Project for the IPCC AR5 report). We compare the future projections of Megacity emissions from four different RCP datasets and describe strategies of adapting these RCP projections for the study of Megacity impacts on air quality. Results of global chemical transport model studies examining these projections will also be presented.

  12. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meng, Jing

    2016-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012-2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of-pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  13. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

    PubMed Central

    Clougherty, Jane E; Wright, Rosalind J; Baxter, Lisa K; Levy, Jonathan I

    2008-01-01

    Background There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction), and with higher concentrations during summer (R2 = 0.56). Conclusion Each pollutant examined displayed somewhat different spatial patterns within urban neighborhoods

  14. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    PubMed

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.

  15. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    PubMed

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility. PMID:27652177

  16. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  17. Air pollution impacts of speed limitation measures in large cities: The need for improving traffic data in a metropolitan area

    NASA Astrophysics Data System (ADS)

    Baldasano, José M.; Gonçalves, María; Soret, Albert; Jiménez-Guerrero, Pedro

    2010-08-01

    Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h -1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h -1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5-7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).

  18. Investigating the role of transportation models in epidemiologic studies of traffic related air pollution and health effects.

    PubMed

    Shekarrizfard, Maryam; Valois, Marie-France; Goldberg, Mark S; Crouse, Dan; Ross, Nancy; Parent, Marie-Elise; Yasmin, Shamsunnahar; Hatzopoulou, Marianne

    2015-07-01

    In two earlier case-control studies conducted in Montreal, nitrogen dioxide (NO2), a marker for traffic-related air pollution was found to be associated with the incidence of postmenopausal breast cancer and prostate cancer. These studies relied on a land use regression model (LUR) for NO2 that is commonly used in epidemiologic studies for deriving estimates of traffic-related air pollution. Here, we investigate the use of a transportation model developed during the summer season to generate a measure of traffic emissions as an alternative to the LUR model. Our traffic model provides estimates of emissions of nitrogen oxides (NOx) at the level of individual roads, as does the LUR model. Our main objective was to compare the distribution of the spatial estimates of NOx computed from our transportation model to the distribution obtained from the LUR model. A secondary objective was to compare estimates of risk using these two exposure estimates. We observed that the correlation (spearman) between our two measures of exposure (NO2 and NOx) ranged from less than 0.3 to more than 0.9 across Montreal neighborhoods. The most important factor affecting the "agreement" between the two measures in a specific area was found to be the length of roads. Areas affected by a high level of traffic-related air pollution had a far better agreement between the two exposure measures. A comparison of odds ratios (ORs) obtained from NO2 and NOx used in two case-control studies of breast and prostate cancer, showed that the differences between the ORs associated with NO2 exposure vs NOx exposure differed by 5.2-8.8%.

  19. Large-scale air traffic surveillance using an IMM estimator with assignment

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Kirubarajan, Thiagalingam; Li, Yicong; Bar-Shalom, Yaakov

    1997-10-01

    In this paper we present the development and implementation of a multisensor-multitarget tracking algorithm for large scale air traffic surveillance based on the IMM state estimator combined with a 2-dimensional assignment for data association. The algorithm can be used to track a large umber of targets from measurements obtained with a large number of radars. The use of the algorithm is illustrated on measurements obtained from 5 FAA radars, which are asynchronous, heterogeneous and geographically distributed over a large area. Both secondary radar data (beacon returns from cooperative targets) as well as primary radar data (skin returns from non-cooperative targets) are used. The target IDs from the beacon returns are not used in the data association. The surveillance region includes about 800 targets that exhibit different types of motion. The performance of the IMM estimator is compared with that of the Kalman filter. A number of performance measures that can be used on real data without knowledge of the ground truth are presented for this purpose. It is shown that the IMM estimator performs better than the Kalman filter. The advantage of fusing multisensor data is quantified. It is also shown that the computational requirements in the multisensor case are lower than in single sensor case.

  20. The European air traffic management response to volcanic ash crises: towards institutionalised aviation crisis management.

    PubMed

    Dopagne, Jacques

    2011-06-01

    A cloud of ash drifting from the erupting Eyjafjallajökull volcano in Iceland in April and May 2010 covered Europe and created an unprecedented situation. It resulted in an almost complete lockdown of European airspace in the period from 15th to 21st April, 2010: more than 100,000 flights were cancelled, 10 million people were affected and over US$1.8bn was lost by airlines globally. This paper presents the air traffic management (ATM) view of the situation. Through an analysis of the evolution of the events in the affected region, the paper will provide more details on ATM planning, reaction and follow-up actions. Furthermore, the influence of this event on the identification of further improvements needed to advance volcanic procedures internationally will be discussed. Actions undertaken since the end of the event - the establishment of the European Aviation Crisis Coordination Cell, running of the International Civil Aviation Organization VOLCEX 11/01 volcanic ash exercise and European response to the Grimsvötn eruption in May 2011 - will be discussed at the end of the paper. PMID:21835749

  1. Impact of Conflict Avoidance Responsibility Allocation on Pilot Workload in a Distributed Air Traffic Management System

    NASA Technical Reports Server (NTRS)

    Ligda, Sarah V.; Dao, Arik-Quang V.; Vu, Kim-Phuong; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter W.

    2010-01-01

    Pilot workload was examined during simulated flights requiring flight deck-based merging and spacing while avoiding weather. Pilots used flight deck tools to avoid convective weather and space behind a lead aircraft during an arrival into Louisville International airport. Three conflict avoidance management concepts were studied: pilot, controller or automation primarily responsible. A modified Air Traffic Workload Input Technique (ATWIT) metric showed highest workload during the approach phase of flight and lowest during the en-route phase of flight (before deviating for weather). In general, the modified ATWIT was shown to be a valid and reliable workload measure, providing more detailed information than post-run subjective workload metrics. The trend across multiple workload metrics revealed lowest workload when pilots had both conflict alerting and responsibility of the three concepts, while all objective and subjective measures showed highest workload when pilots had no conflict alerting or responsibility. This suggests that pilot workload was not tied primarily to responsibility for resolving conflicts, but to gaining and/or maintaining situation awareness when conflict alerting is unavailable.

  2. North Atlantic air traffic within the lower stratosphere: Cruising times and corresponding emissions

    SciTech Connect

    Hoinka, K.P.; Reinhardt, M.E.; Metz, W. |

    1993-12-01

    This study estimates cruising times and related pollutant emissions (NO(x), CO, HC) and H2O of today`s aircraft fleet within the troposphere and stratosphere performed for the North Atlantic region in between 45 deg N, 65 deg N, 10 deg W, and 50 deg W for the years 1989, 1990, and 1991. The tropopause surface distribution is determined through analysis of assimilated data. Both conventional lapse rate and potential vorticity criteria are employed to determine the location of the tropopause surface. These data combined with air traffic statistics are used to evaluate cruising times within the troposphere and stratosphere separately. The study shows an average of about 44% of the cruising time of the aircraft above the North Atlantic flown within the stratosphere. Based on emission indices of aircraft engines, the emission rates of NO(x) (in mass units of NO2) into the stratosphere and troposphere in the given region result in 0.26 and 0.33 x 10(exp -12) kg/sq m/s, respectively.

  3. Prospective memory in an air traffic control simulation: external aids that signal when to act.

    PubMed

    Loft, Shayne; Smith, Rebekah E; Bhaskara, Adella

    2011-03-01

    At work and in our personal life we often need to remember to perform intended actions at some point in the future, referred to as Prospective Memory. Individuals sometimes forget to perform intentions in safety-critical work contexts. Holding intentions can also interfere with ongoing tasks. We applied theories and methods from the experimental literature to test the effectiveness of external aids in reducing prospective memory error and costs to ongoing tasks in an air traffic control simulation. Participants were trained to accept and hand-off aircraft and to detect aircraft conflicts. For the prospective memory task, participants were required to substitute alternative actions for routine actions when accepting target aircraft. Across two experiments, external display aids were provided that presented the details of target aircraft and associated intended actions. We predicted that aids would only be effective if they provided information that was diagnostic of target occurrence, and in this study, we examined the utility of aids that directly cued participants when to allocate attention to the prospective memory task. When aids were set to flash when the prospective memory target aircraft needed to be accepted, prospective memory error and costs to ongoing tasks of aircraft acceptance and conflict detection were reduced. In contrast, aids that did not alert participants specifically when the target aircraft were present provided no advantage compared to when no aids were used. These findings have practical implications for the potential relative utility of automated external aids for occupations where individuals monitor multi-item dynamic displays. PMID:21443381

  4. Workload-Matched Adaptive Automation Support of Air Traffic Controller Information Processing Stages

    NASA Technical Reports Server (NTRS)

    Kaber, David B.; Prinzel, Lawrence J., III; Wright, Melanie C.; Clamann, Michael P.

    2002-01-01

    Adaptive automation (AA) has been explored as a solution to the problems associated with human-automation interaction in supervisory control environments. However, research has focused on the performance effects of dynamic control allocations of early stage sensory and information acquisition functions. The present research compares the effects of AA to the entire range of information processing stages of human operators, such as air traffic controllers. The results provide evidence that the effectiveness of AA is dependent on the stage of task performance (human-machine system information processing) that is flexibly automated. The results suggest that humans are better able to adapt to AA when applied to lower-level sensory and psychomotor functions, such as information acquisition and action implementation, as compared to AA applied to cognitive (analysis and decision-making) tasks. The results also provide support for the use of AA, as compared to completely manual control. These results are discussed in terms of implications for AA design for aviation.

  5. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  6. Communications System Architecture Development for Air Traffic Management and Aviation Weather Information Dissemination

    NASA Technical Reports Server (NTRS)

    Gallagher, Seana; Olson, Matt; Blythe, Doug; Heletz, Jacob; Hamilton, Griff; Kolb, Bill; Homans, Al; Zemrowski, Ken; Decker, Steve; Tegge, Cindy

    2000-01-01

    This document is the NASA AATT Task Order 24 Final Report. NASA Research Task Order 24 calls for the development of eleven distinct task reports. Each task was a necessary exercise in the development of comprehensive communications systems architecture (CSA) for air traffic management and aviation weather information dissemination for 2015, the definition of the interim architecture for 2007, and the transition plan to achieve the desired End State. The eleven tasks are summarized along with the associated Task Order reference. The output of each task was an individual task report. The task reports that make up the main body of this document include Task 5, Task 6, Task 7, Task 8, Task 10, and Task 11. The other tasks provide the supporting detail used in the development of the architecture. These reports are included in the appendices. The detailed user needs, functional communications requirements and engineering requirements associated with Tasks 1, 2, and 3 have been put into a relational database and are provided electronically.

  7. Do Variants in GSTs Modify the Association between Traffic Air Pollution and Asthma in Adolescence?

    PubMed

    Bowatte, Gayan; Lodge, Caroline J; Lowe, Adrian J; Erbas, Bircan; Dennekamp, Martine; Marks, Guy B; Perret, Jennifer; Hui, Jennie; Wjst, Matthias; Gurrin, Lyle C; Allen, Katrina J; Abramson, Michael J; Matheson, Melanie C; Dharmage, Shyamali C

    2016-01-01

    Polymorphisms in genes involved in the oxidative stress response may partially explain the documented heterogeneous associations between traffic-related air pollution (TRAP) exposure and asthma and allergies in children. We investigated whether the GSTT1, GSTM1 and GSTP1 gene polymorphisms modified the associations between TRAP exposure during the first year of life and asthma, wheeze and hay fever in adolescence. We used a birth cohort of 620 high risk infants from the Melbourne Atopy Cohort Study. TRAP exposure during the first year of life was defined as the cumulative length of major roads within 150 m of each participant's residence during the first year of life. Wheeze, asthma and hay fever were measured at ages 12 (n = 370) and 18 (n = 434) years. The associations and interactions with glutathione S-transferases (GST s) were investigated using regression models. Overall, there was no relationship between TRAP exposure during the first year of life and current asthma, wheeze and hay fever at ages 12 or 18 years. However, in GSTT1 null carriers, every 100 m increase in cumulative lengths of major road exposure during the first year of life was associated with a 2.31-fold increased risk of wheeze and a 2.15-fold increased risk of asthma at 12 years. TRAP is associated with some respiratory outcomes in carriers of genetic polymorphisms in oxidative stress metabolism genes. PMID:27043549

  8. Traffic-related air pollution and sleep in the Boston Area Community Health Survey.

    PubMed

    Fang, Shona C; Schwartz, Joel; Yang, May; Yaggi, H Klar; Bliwise, Donald L; Araujo, Andre B

    2015-01-01

    Little is known about environmental determinants of sleep. We investigated the association between black carbon (BC), a marker of traffic-related air pollution, and sleep measures among participants of the Boston Area Community Health Survey. We also sought to assess the impact of sociodemographic factors, health conditions, and season on associations. Residential 24-h BC was estimated from a validated land-use regression model for 3821 participants and averaged over 1-6 months and 1 year. Sleep measures included questionnaire-assessed sleep duration, sleep latency, and sleep apnea. Linear and logistic regression models controlling for confounders estimated the association between sleep measures and BC. Effect modification was tested with interaction terms. Main effects were not observed between BC and sleep measures. However, in stratified models, males experienced 0.23 h less sleep (95% CI: -0.42, -0.03) and those with low SES 0.25 h less sleep (95% CI: -0.48, -0.01) per IQR increase in annual BC (0.21 μg/m(3)). In blacks, sleep duration increased with annual BC (β=0.34 per IQR; 95% CI: 0.12, 0.57). Similar findings were observed for short sleep (≤5 h). BC was not associated with sleep apnea or sleep latency, however, long-term exposure may be associated with shorter sleep duration, particularly in men and those with low SES, and longer sleep duration in blacks.

  9. Do Variants in GSTs Modify the Association between Traffic Air Pollution and Asthma in Adolescence?

    PubMed Central

    Bowatte, Gayan; Lodge, Caroline J.; Lowe, Adrian J.; Erbas, Bircan; Dennekamp, Martine; Marks, Guy B.; Perret, Jennifer; Hui, Jennie; Wjst, Matthias; Gurrin, Lyle C.; Allen, Katrina J.; Abramson, Michael J.; Matheson, Melanie C.; Dharmage, Shyamali C.

    2016-01-01

    Polymorphisms in genes involved in the oxidative stress response may partially explain the documented heterogeneous associations between traffic-related air pollution (TRAP) exposure and asthma and allergies in children. We investigated whether the GSTT1, GSTM1 and GSTP1 gene polymorphisms modified the associations between TRAP exposure during the first year of life and asthma, wheeze and hay fever in adolescence. We used a birth cohort of 620 high risk infants from the Melbourne Atopy Cohort Study. TRAP exposure during the first year of life was defined as the cumulative length of major roads within 150 m of each participant’s residence during the first year of life. Wheeze, asthma and hay fever were measured at ages 12 (n = 370) and 18 (n = 434) years. The associations and interactions with glutathione S-transferases (GST s) were investigated using regression models. Overall, there was no relationship between TRAP exposure during the first year of life and current asthma, wheeze and hay fever at ages 12 or 18 years. However, in GSTT1 null carriers, every 100 m increase in cumulative lengths of major road exposure during the first year of life was associated with a 2.31-fold increased risk of wheeze and a 2.15-fold increased risk of asthma at 12 years. TRAP is associated with some respiratory outcomes in carriers of genetic polymorphisms in oxidative stress metabolism genes. PMID:27043549

  10. The European air traffic management response to volcanic ash crises: towards institutionalised aviation crisis management.

    PubMed

    Dopagne, Jacques

    2011-06-01

    A cloud of ash drifting from the erupting Eyjafjallajökull volcano in Iceland in April and May 2010 covered Europe and created an unprecedented situation. It resulted in an almost complete lockdown of European airspace in the period from 15th to 21st April, 2010: more than 100,000 flights were cancelled, 10 million people were affected and over US$1.8bn was lost by airlines globally. This paper presents the air traffic management (ATM) view of the situation. Through an analysis of the evolution of the events in the affected region, the paper will provide more details on ATM planning, reaction and follow-up actions. Furthermore, the influence of this event on the identification of further improvements needed to advance volcanic procedures internationally will be discussed. Actions undertaken since the end of the event - the establishment of the European Aviation Crisis Coordination Cell, running of the International Civil Aviation Organization VOLCEX 11/01 volcanic ash exercise and European response to the Grimsvötn eruption in May 2011 - will be discussed at the end of the paper.

  11. Requirements analysis for an air traffic control tower surface surveillance enhanced vision system

    NASA Astrophysics Data System (ADS)

    Ruffner, John W.; Deaver, Dawne M.; Henry, Daniel J.

    2003-09-01

    Tower controllers are responsible for maintaining separation between aircraft and expediting the flow of traffic in the air. On the airport surface, they also are responsible for maintaining safe separation between aircraft, ground equipment, and personnel. They do this by sequencing departing and arriving aircraft, and controlling the location and movement of aircraft, vehicles, equipment, and personnel on the airport surface. The local controller and ground controller are responsible for determining aircraft location and intent, and for ensuring that aircraft, vehicles, and other surface objects maintain a safe separation distance. During nighttime or poor visibility conditions, controllers' situation awareness is significantly degraded, resulting in lower safety margins and increased errors. Safety and throughput can be increased by using an Enhanced Vision System, based upon state-of-the-art infrared sensor technology, to restore critical visual cues. We discuss the results of an analysis of tower controller critical visual tasks and information requirements. The analysis identified: representative classes of ground obstacles/targets (e.g., aircraft, vehicles, wildlife); sample airport layouts and tower-to-runway distances; and obstacle subtended visual angles. We performed NVTherm modeling of candidate sensors and field data collections. This resulted in the identification of design factors for an airport surface surveillance Enhanced Vision System.

  12. [Development of New Mathematical Methodology in Air Traffic Control for the Analysis of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Hermann, Robert

    1997-01-01

    The aim of this research is to develop new mathematical methodology for the analysis of hybrid systems of the type involved in Air Traffic Control (ATC) problems. Two directions of investigation were initiated. The first used the methodology of nonlinear generalized functions, whose mathematical foundations were initiated by Colombeau and developed further by Oberguggenberger; it has been extended to apply to ordinary differential. Systems of the type encountered in control in joint work with the PI and M. Oberguggenberger. This involved a 'mixture' of 'continuous' and 'discrete' methodology. ATC clearly involves mixtures of two sorts of mathematical problems: (1) The 'continuous' dynamics of a standard control type described by ordinary differential equations (ODE) of the form: {dx/dt = f(x, u)} and (2) the discrete lattice dynamics involved of cellular automata. Most of the CA literature involves a discretization of a partial differential equation system of the type encountered in physics problems (e.g. fluid and gas problems). Both of these directions requires much thinking and new development of mathematical fundamentals before they may be utilized in the ATC work. Rather than consider CA as 'discretization' of PDE systems, I believe that the ATC applications will require a completely different and new mathematical methodology, a sort of discrete analogue of jet bundles and/or the sheaf-theoretic techniques to topologists. Here too, I have begun work on virtually 'virgin' mathematical ground (at least from an 'applied' point of view) which will require considerable preliminary work.

  13. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  14. Perpetual factors involved in performance of air traffic controllers using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gershzohn, G.

    1978-01-01

    The task involved the control of two simulated aircraft targets per trial, in a 37.0 -km radius terminal area, by means of conventional radar vectoring and/or speed control. The goal was to insure that the two targets crossed the Missed Approach Point (MAP) at the runway threshold exactly 60 sec apart. The effects on controller performance of the MLS configuration under wind and no-wind conditions were examined. The data for mean separation time between targets at the MAP and the range about that mean were analyzed by appropriate analyses of variance. Significant effects were found for mean separation times as a result of the configuration of the MLS and for interaction between the configuration and wind conditions. The analysis of variance for range indicated significantly poorer performance under the wind condition. These findings are believed to be a result of certain perceptual factors involved in radar air traffic control (ATC) using the MLS with separation of targets in time.

  15. Air traffic management system design using satellite based geo-positioning and communications assets

    NASA Technical Reports Server (NTRS)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  16. Characteristics of DNA methylation changes induced by traffic-related air pollution.

    PubMed

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-01-15

    Traffic-related air pollution (TRAP) is a potential risk factor for numerous respiratory disorders, including lung cancer, while alteration of DNA methylation may be one of the underlying mechanisms. However, the effects of TRAP mixtures on DNA methylation have not been investigated. We have studied the effects of brief or prolonged TRAP exposures on DNA methylation in the rat. The exposures were performed in spring and autumn, with identical study procedures. In each season, healthy Wistar rats were exposed to TRAP at for 4 h, 7 d, 14 d, or 28 d. Global DNA methylation (LINE-1 and Alu) and specific gene methylation (p16(CDKN2A), APC, and iNOS) in the DNA from blood and lung tissues were quantified by pyrosequencing. Multiple linear regression was applied to assess the influence of air pollutants on DNA methylation levels. The levels of PM2.5, PM10, and NO2 in the high and moderate groups were significantly higher than in the control group. The DNA methylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, PM2.5, PM10, and NO2 exposures were associated with changes in%5mC (95% CI) in LINE-1, iNOS, p16(CDKN2A), and APC ranging from -0.088 (-0.150, -0.026) to 0.102 (0.049, 0.154) per 1 μg/m(3) increase in the pollutant concentration. Prolonged exposure to a high level of TRAP was negatively associated with LINE-1 and iNOS methylation, and positively associated with APC methylations in the DNA from lung tissues but not blood. These findings show that TRAP exposure is associated with decreased methylation of LINE-1 and iNOS, and increased methylation of p16(CDKN2A) and APC.

  17. Coverage of European air traffic for the Base Aircraft Data (BADA) revision 3.0. Report for January 1997-March 1998

    SciTech Connect

    Bos, A.

    1998-03-01

    The air traffic statistics from the CFMU for December 1997 and January 1998 are used to determine the coverage of European air traffic by the Base of Aircraft Data (BADA) Revision 3.0. BADA consists of a set of aircraft models used at the EEC and other European research institutes for aircraft trajectory simulation. The results show that the 67 aircraft types within BADA 3.0 cover 89.4% of the European air traffic. The addition of 1 type would bring the coverage to the target of 90%.

  18. Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children with Asthma in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Ganguly, Rajiv; Isakov, Vlad; Burke, Janet; Arunachalam, Saravanan; Snyder, Michelle; Robins, Thomas; Lewis, Toby

    2015-01-01

    Vehicular traffic is a major source of ambient air pollution in urban areas. Traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter less than 2.5 μm in diameter, and diesel exhaust emissions, have been associated with adverse human health effects, especially in areas near major roads. In addition to emissions from vehicles, ambient concentrations of air pollutants include contributions from stationary sources and background (or regional) sources. Although dispersion models have been widely used to evaluate air quality strategies and policies and can represent the spatial and temporal variation in environments near roads, the use of these models in health studies to estimate air pollutant exposures has been relatively limited. This paper summarizes the modeling system used to estimate exposures in the Near-Roadway Exposure and Urban Air Pollutant Study, an epidemiological study that examined 139 children with asthma or symptoms consistent with asthma, most of whom lived near major roads in Detroit, Michigan. Air pollutant concentrations were estimated with a hybrid modeling framework that included detailed inventories of mobile and stationary sources on local and regional scales; the RLINE, AERMOD, and CMAQ dispersion models; and monitored observations of pollutant concentrations. The temporal and spatial variability in emissions and exposures over the 2.5-year study period and at more than 300 home and school locations was characterized. The paper highlights issues with the development and understanding of the significance of traffic-related exposures through the use of dispersion models in urban-scale exposure assessments and epidemiology studies. PMID:26139957

  19. Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study

    PubMed Central

    Sunyer, Jordi; Esnaola, Mikel; Alvarez-Pedrerol, Mar; Forns, Joan; Rivas, Ioar; López-Vicente, Mònica; Suades-González, Elisabet; Foraster, Maria; Garcia-Esteban, Raquel; Basagaña, Xavier; Viana, Mar; Cirach, Marta; Moreno, Teresa; Alastuey, Andrés; Sebastian-Galles, Núria; Nieuwenhuijsen, Mark; Querol, Xavier

    2015-01-01

    Background Air pollution is a suspected developmental neurotoxicant. Many schools are located in close proximity to busy roads, and traffic air pollution peaks when children are at school. We aimed to assess whether exposure of children in primary school to traffic-related air pollutants is associated with impaired cognitive development. Methods and Findings We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by school socioeconomic index; children were tested four times (i.e., to assess the 12-mo developmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution (elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10–700 nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside the classroom (indoor) simultaneously in each school pair. Cognitive development was assessed with the n-back and the attentional network tests, in particular, working memory (two-back detectability), superior working memory (three-back detectability), and inattentiveness (hit reaction time standard error). Linear mixed effects models were adjusted for age, sex, maternal education, socioeconomic status, and air pollution exposure at home. Children from highly polluted schools had a smaller growth in cognitive development than children from the paired lowly polluted schools, both in crude and adjusted models (e.g., 7.4% [95% CI 5.6%–8.8%] versus 11.5% [95% CI 8.9%–12.5%] improvement in working memory, p = 0.0024). Cogently, children attending schools with higher levels of EC, NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements; for example, a change from the first to the fourth quartile in indoor EC reduced the gain in working memory by 13.0% (95% CI 4.2%–23.1%). Residual confounding for social class could

  20. GIS-modeled indicators of traffic-related air pollutants and adverse pulmonary health among children in El Paso, Texas.

    PubMed

    Svendsen, Erik R; Gonzales, Melissa; Mukerjee, Shaibal; Smith, Luther; Ross, Mary; Walsh, Debra; Rhoney, Scott; Andrews, Gina; Ozkaynak, Halûk; Neas, Lucas M

    2012-10-01

    Investigators examined 5,654 children enrolled in the El Paso, Texas, public school district by questionnaire in 2001. Exposure measurements were first collected in the late fall of 1999. School-level and residence-level exposures to traffic-related air pollutants were estimated using a land use regression model. For 1,529 children with spirometry, overall geographic information system (GIS)-modeled residential levels of traffic-related ambient air pollution (calibrated to a 10-ppb increment in nitrogen dioxide levels) were associated with a 2.4% decrement in forced vital capacity (95% confidence interval (CI): -4.0, -0.7) after adjustment for demographic, anthropomorphic, and socioeconomic factors and spirometer/technician effects. After adjustment for these potential covariates, overall GIS-modeled residential levels of traffic-related ambient air pollution (calibrated to a 10-ppb increment in nitrogen dioxide levels) were associated with pulmonary function levels below 85% of those predicted for both forced vital capacity (odds ratio (OR) = 3.10, 95% CI: 1.65, 5.78) and forced expiratory volume in 1 second (OR = 2.35, 95% CI: 1.38, 4.01). For children attending schools at elevations above 1,170 m, a 10-ppb increment in modeled nitrogen dioxide levels was associated with current asthma (OR = 1.56, 95% CI: 1.08, 2.50) after adjustment for demographic, socioeconomic, and parental factors and random school effects. These results are consistent with previous studies in Europe and California that found adverse health outcomes in children associated with modeled traffic-related air pollutants.

  1. TRAFFIC-RELATED AIR POLLUTANTS AND CHILDREN'S RESPIRATORY HEALTH IN EL PASO AND DETROIT

    EPA Science Inventory

    Hypotheses -Specific Agent • Diesel exhaust particles • Ultrafine particles • Coarse-mode particles (road dust) • Noise and stress • Nonspecific irritants Previous Epidemiology • Kanawha Valley Health Study • Munich Traffic Study • Dutch Traffic Studies • S....

  2. Traffic-related air quality trends in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Pérez-Martínez, Pedro José; Fátima Andrade, María.; Miranda, Regina Maura

    2015-06-01

    The urban population of South America has grown at 1.05%/yr, greater urbanization increasing problems related to air pollution. In most large cities in South America, there has been no continuous long-term measurement of regulated pollutants. One exception is São Paulo, Brazil, where an air quality monitoring network has been in place since the 1970s. In this paper, we used an air quality-based approach to determine pollutant trends for emissions of carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), and coarse particulate matter (PM10), mostly from mobile sources, in the Metropolitan Region of São Paulo for the 2000-2013 period. Mobile sources included light-duty vehicles (LDVs, comprising gasoline- or ethanol-powered cars and motorcycles) and heavy-duty vehicles (HDVs, comprising diesel-powered trucks and buses). Pollutant concentrations for mobile source emissions were measured and correlated with fuel sales by the emission factors. Over the 2000-2013 period, concentrations of NOx, CO, and PM10 decreased by 0.65, 0.37, and 0.71% month-1, respectively, whereas sales of gasoline, ethanol, and diesel increased by 0.26, 1.96, and 0.38% month-1, respectively. LDVs were the major mobile source of CO, whereas LDVs were the major source of NOx and PM10. Increases in fuel sales and in the corresponding traffic volume were partially offset by decreases in pollutant concentrations. Between 2000 and 2013, there was a sharp (-5 ppb month-1) decrease in the concentrations of LDV-emitted CO, together with (less dramatic) decreases in the concentrations of HDV-emitted NOx and PM10 (-0.25 and -0.09 ppb month-1, respectively). Variability was greater for HDV-emitted NOx and PM10 (R = -0.47 and -0.41, respectively) than for LDV-emitted CO (R = -0.72). We draw the following conclusions: the observed concentrations of LDV-emitted CO decreased at a sharper rate than did those of HDV-emitted NOx and PM10; mobile source contributions to O3 formation varied significantly, LDVs

  3. Human activity under high pressure: A case study on fluctuation scaling of air traffic controller's communication behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Yanjun; Zhang, Qiqian; Zhu, Chenping; Hu, Minghua; Duong, Vu

    2016-01-01

    Recent human dynamics research has unmasked astonishing statistical characteristics such as scaling behaviors in human daily activities. However, less is known about the general mechanism that governs the task-specific activities. In particular, whether scaling law exists in human activities under high pressure remains an open question. In air traffic management system, safety is the most important factor to be concerned by air traffic controllers who always work under high pressure, which provides a unique platform to study human activity. Here we extend fluctuation scaling method to study air traffic controller's communication activity by investigating two empirical communication datasets. Taken the number of controlled flights as the size-like parameter, we show that the relationships between the average communication activity and its standard deviation in both datasets can be well described by Taylor's power law, with scaling exponent α ≈ 0.77 ± 0.01 for the real operational data and α ≈ 0.54 ± 0.01 for the real-time training data. The difference between the exponents suggests that human dynamics under pressure is more likely dominated by the exogenous force. Our findings may lead to further understanding of human behavior.

  4. Traffic-Related Air Pollution and Parkinson’s Disease in Denmark: A Case–Control Study

    PubMed Central

    Ritz, Beate; Lee, Pei-Chen; Hansen, Johnni; Lassen, Christina Funch; Ketzel, Matthias; Sørensen, Mette; Raaschou-Nielsen, Ole

    2015-01-01

    Background Very little is currently known about air pollutants’ adverse effects on neurodegenerative diseases even though recent studies have linked particulate exposures to brain pathologies associated with Parkinson’s and Alzheimer’s disease. Objective In the present study, we investigated long-term exposure to traffic-related air pollution and Parkinson’s disease. Methods In a case–control study of 1,696 Parkinson’s disease (PD) patients identified from Danish hospital registries and diagnosed 1996–2009 and 1,800 population controls matched by sex and year of birth, we assessed long-term traffic-related air pollutant exposures (represented by nitrogen dioxide; NO2) from a dispersion model, using residential addresses from 1971 to the date of diagnosis or first cardinal symptom for cases and the corresponding index date for their matched controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated with logistic regression, adjusting for matching factors and potential confounders. Results We found ambient air pollution from traffic sources to be associated with risk of PD, with a 9% higher risk (95% CI: 3, 16.0%) per interquartile range increase (2.97 μg/m3) in modeled NO2. For participants living for ≥ 20 years in the capital city, ORs were larger (OR = 1.21; 95% CI: 1.11, 1.31) than in provincial towns (OR = 1.10; 95% CI: 0.97, 1.26), whereas there was no association among rural residents. Conclusions Our findings raise concerns about potential effects of air pollution from traffic and other sources on the risk of PD, particularly in populations with high or increasing exposures. Citation Ritz B, Lee PC, Hansen J, Funch Lassen C, Ketzel M, Sørensen M, Raaschou-Nielsen O. 2016. Traffic-related air pollution and Parkinson’s disease in Denmark: a case–control study. Environ Health Perspect 124:351–356; http://dx.doi.org/10.1289/ehp.1409313 PMID:26151951

  5. Environmental Public Health Tracking of Childhood Asthma Using California Health Interview Survey, Traffic, and Outdoor Air Pollution Data

    PubMed Central

    Wilhelm, Michelle; Meng, Ying-Ying; Rull, Rudolph P.; English, Paul; Balmes, John; Ritz, Beate

    2008-01-01

    Background Despite extensive evidence that air pollution affects childhood asthma, state-level and national-level tracking of asthma outcomes in relation to air pollution is limited. Objectives Our goals were to evaluate the feasibility of linking the 2001 California Health Interview Survey (CHIS), air monitoring, and traffic data; estimate associations between traffic density (TD) or outdoor air pollutant concentrations and childhood asthma morbidity; and evaluate the usefulness of such databases, linkages, and analyses to Environmental Public Health Tracking (EPHT). Methods We estimated TD within 500 feet of residential cross-streets of respondents and annual average pollutant concentrations based on monitoring station measurements. We used logistic regression to examine associations with reported asthma symptoms and emergency department (ED) visits/hospitalizations. Results Assignment of TD and air pollution exposures for cross-streets was successful for 82% of children with asthma in Los Angeles and San Diego, California, Counties. Children with asthma living in high ozone areas and areas with high concentrations of particulate matter < 10 μm in aerodynamic diameter experienced symptoms more frequently, and those living close to heavy traffic reported more ED visits/hospitalizations. The advantages of the CHIS for asthma EPHT include a large and representative sample, biennial data collection, and ascertainment of important socio-demographic and residential address information. Disadvantages are its cross-sectional design, reliance on parental reports of diagnoses and symptoms, and lack of information on some potential confounders. Conclusions Despite limitations, the CHIS provides a useful framework for examining air pollution and childhood asthma morbidity in support of EPHT, especially because later surveys address some noted gaps. We plan to employ CHIS 2003 and 2005 data and novel exposure assessment methods to re-examine the questions raised here. PMID

  6. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon

    NASA Astrophysics Data System (ADS)

    Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi

    2014-12-01

    Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route

  7. Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density.

    PubMed

    Boudia, Nacéra; Halley, Renée; Kennedy, Greg; Lambert, Jean; Gareau, Lise; Zayed, Joseph

    2006-07-31

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic derivative of manganese (Mn), used since 1976 in Canadian gasoline as an octane enhancer. Its combustion leads to the emission of Mn particles. Several studies carried out by our research group have established a correlation between atmospheric Mn concentrations and automobile traffic density, suggesting that MMT in gasoline could play a significant role. This study aims to measure Mn concentrations in the air of the underground subway in Montreal (Canada) and to examine the relation with nearby surface automobile traffic density and, by extension, with the use of MMT in gasoline. Three subway stations were chosen for their location in different microenvironments with different traffic densities. Respirable (MnR<5 microm) and total Mn (MnT) were sampled over two weeks, 5 days/week, 12 h/day. For the station located in the lower traffic density area, relatively low levels of MnR and MnT were found, with averages of 0.018 and 0.032 microg/m(3), respectively. These concentrations are within the range of the background levels in Montreal. For the other two stations, the average concentrations of MnR were twice as high and exceeded the US EPA reference concentration of 0.05 microg/m(3). Although there may be several sources of Mn from different components of the subway structure and vehicles, no correlation was found between subway traffic and atmospheric Mn in the subway. Since the air in the underground subway is pumped directly from outside without filtration, our findings strongly suggest that the combustion of MMT in automobiles is an important factor. PMID:16297437

  8. A Method for Making Cross-Comparable Estimates of the Benefits of Decision Support Technologies for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Lee, David; Long, Dou; Etheridge, Mel; Plugge, Joana; Johnson, Jesse; Kostiuk, Peter

    1998-01-01

    We present a general method for making cross comparable estimates of the benefits of NASA-developed decision support technologies for air traffic management, and we apply a specific implementation of the method to estimate benefits of three decision support tools (DSTs) under development in NASA's advanced Air Transportation Technologies Program: Active Final Approach Spacing Tool (A-FAST), Expedite Departure Path (EDP), and Conflict Probe and Trial Planning Tool (CPTP). The report also reviews data about the present operation of the national airspace system (NAS) to identify opportunities for DST's to reduce delays and inefficiencies.

  9. Airborne Use of Traffic Intent Information in a Distributed Air-Ground Traffic Management Concept: Experiment Design and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Adams, Richard J.; Duley, Jacqueline A.; Legan, Brian M.; Barmore, Bryan E.; Moses, Donald

    2001-01-01

    A predominant research focus in the free flight community has been on the type of information required on the flight deck to enable pilots to "autonomously" maintain separation from other aircraft. At issue are the relative utility and requirement for information exchange between aircraft regarding the current "state" and/or the "intent" of each aircraft. This paper presents the experimental design and some initial findings of an experimental research study designed to provide insight into the issue of intent information exchange in constrained en-route operations and its effect on pilot decision making and flight performance. Two operational modes for autonomous operations were compared in a piloted simulation. The tactical mode was characterized primarily by the use of state information for conflict detection and resolution and an open-loop means for the pilot to meet operational constraints. The strategic mode involved the combined use of state and intent information, provided the pilot an additional level of alerting, and allowed a closed-loop approach to meeting operational constraints. Potential operational benefits of both modes are illustrated through several scenario case studies. Subjective data results are presented that generally indicate pilot consensus in favor of the strategic mode.

  10. Super Ensemble-based Aviation Turbulence Guidance (SEATG) for Air Traffic Management (ATM)

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Chan, William; Sridhar, Banavar; Sharman, Robert

    2014-05-01

    Super Ensemble (ensemble of ten turbulence metrics from time-lagged ensemble members of weather forecast data)-based Aviation Turbulence Guidance (SEATG) is developed using Weather Research and Forecasting (WRF) model and in-situ eddy dissipation rate (EDR) observations equipped on commercial aircraft over the contiguous United States. SEATG is a sequence of five procedures including weather modeling, calculating turbulence metrics, mapping EDR-scale, evaluating metrics, and producing final SEATG forecast. This uses similar methodology to the operational Graphic Turbulence Guidance (GTG) with three major improvements. First, SEATG use a higher resolution (3-km) WRF model to capture cloud-resolving scale phenomena. Second, SEATG computes turbulence metrics for multiple forecasts that are combined at the same valid time resulting in an time-lagged ensemble of multiple turbulence metrics. Third, SEATG provides both deterministic and probabilistic turbulence forecasts to take into account weather uncertainties and user demands. It is found that the SEATG forecasts match well with observed radar reflectivity along a surface front as well as convectively induced turbulence outside the clouds on 7-8 Sep 2012. And, overall performance skill of deterministic SEATG against the observed EDR data during this period is superior to any single turbulence metrics. Finally, probabilistic SEATG is used as an example application of turbulence forecast for air-traffic management. In this study, a simple Wind-Optimal Route (WOR) passing through the potential areas of probabilistic SEATG and Lateral Turbulence Avoidance Route (LTAR) taking into account the SEATG are calculated at z = 35000 ft (z = 12 km) from Los Angeles to John F. Kennedy international airports. As a result, WOR takes total of 239 minutes with 16 minutes of SEATG areas for 40% of moderate turbulence potential, while LTAR takes total of 252 minutes travel time that 5% of fuel would be additionally consumed to entirely

  11. Validating an Air Traffic Management Concept of Operation Using Statistical Modeling

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2013-01-01

    Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis

  12. Human factors issues in the use of artificial intelligence in air traffic control. October 1990 Workshop

    NASA Technical Reports Server (NTRS)

    Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)

    1991-01-01

    The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.

  13. How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training.

    PubMed

    Arbula, Sandra; Capizzi, Mariagrazia; Lombardo, Nicoletta; Vallesi, Antonino

    2016-01-01

    Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning. PMID:27311017

  14. How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training

    PubMed Central

    Arbula, Sandra; Capizzi, Mariagrazia; Lombardo, Nicoletta; Vallesi, Antonino

    2016-01-01

    Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning. PMID:27311017

  15. An assessment of hopanes in settled dust and air as indicators of exposure to traffic-related air pollution in Windsor, Ontario

    NASA Astrophysics Data System (ADS)

    Curran, Jason

    Traffic-related air pollution (TRAP) has been linked with several adverse health effects. We investigated hopanes, markers of primary particle emissions from gasoline and diesel engines, in house dust as an alternative approach for assessing exposure to TRAP in Windsor, Ontario. Settled house dust was collected from the homes of 28 study participants (10 -- 13 yrs). The dust was then analyzed for a suite of hopanes by gas chromatography-mass spectrometry. We calculated correlations between dust hopane concentrations and estimates of annual average NO2 concentrations derived from an existing LUR model. Hopanes were consistently present in detectable quantities in house dust. Annual average outdoor NO2 estimated was moderately correlated with hopanes in house dust (r = 0.46; p<0.05). The correlations did not vary by infiltration efficiency or the presence of an attached garage. Hopanes measured in settled house dust show promise as an indicator of long-term exposure to traffic-related air pollution. Keywords: hopane; air pollution; traffic; dust; exposure; TRAP.

  16. Home outdoor models for traffic-related air pollutants do not represent personal exposure measurements in Southern California

    NASA Astrophysics Data System (ADS)

    Ducret-Stich, R.; Delfino, R. J.; Tjoa, T.; Gemperli, A.; Ineichen, A.; Wu, J.; Phuleria, H. C.; Liu, L.-J. S.

    2009-02-01

    Recent studies have used measurements or estimates of traffic-related air pollutants at home or school locations to link associations between exposure and health. However, little is known about the validity of these outdoor concentrations as an estimate for personal exposure to traffic. This paper compares modelled outdoor concentrations at home with personal exposure to traffic air pollution of 63 children in two areas in Los Angeles in 2003/2004. Exposure monitoring consisted of sixteen 10-day monitoring runs, with each run monitoring 4 subjects concurrently with the active personal DataRAM for particulate matter <2.5 μm (PM25), elemental carbon (EC) and organic carbon (OC). One child per run had concurrent indoor/outdoor home monitoring. Measurements at central sites (24-hr PM25, EC, OC) were taken daily and concentrations of PM25, EC, and OC from traffic sources were calculated using the CALINE4 model for individual residences. We modelled outdoor concentrations of PM2 5, EC and OC with multilinear regression including GIS and meteorological parameters and adjusted for auto-correlation between repeated measurements. The model fit (R2) for home outdoor estimates was 0.94, 0.74 and 0.80 for PM25, EC and OC, respectively. Comparisons between these outdoor estimates and the personal measurements showed a good agreement for PM25 (R2=0.65-0.70) with a mean bias of -0.7±11.8|ag for the smog receptor area, and 18.9±16.2|ag for the traffic impacted area. However the outdoor estimates were not related to personal exposure for EC (R2=0.01-0.29) and OC (R2=0.03- 0.14). Conclusions: Predictions of outdoor concentrations can be used as approximations of personal exposure to PM25. However, they are not appropriate for estimating personal exposure to traffic-related air pollutants including EC and OC in studies of acute exposure-response relationships.

  17. Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050

    PubMed Central

    Takeshita, Takayuki

    2011-01-01

    This paper presents global scenarios of sulphur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions from road transport through to 2050, taking into account the potential impacts of: (1) the timing of air pollutant emission regulation implementation in developing countries; (2) global CO2 mitigation policy implementation; and (3) vehicle cost assumptions, on study results. This is done by using a global energy system model treating the transport sector in detail. The major conclusions are the following. First, as long as non-developed countries adopt the same vehicle emission standards as in developed countries within a 30-year lag, global emissions of SO2, NOx, and PM from road vehicles decrease substantially over time. Second, light-duty vehicles and heavy-duty trucks make a large and increasing contribution to future global emissions of SO2, NOx, and PM from road vehicles. Third, the timing of air pollutant emission regulation implementation in developing countries has a large impact on future global emissions of SO2, NOx, and PM from road vehicles, whereas there is a possibility that global CO2 mitigation policy implementation has a comparatively small impact on them. PMID:21845172

  18. Evaluation of the 2006 Canadian Air Quality Modelling Platform for Policy Scenarios

    NASA Astrophysics Data System (ADS)

    Davignon, D.; Chen, J.; Cousineau, S.; Crevier, L.; Duhamel, A.; Gilbert, S.; Pavlovic, R.; Racine, J.; Samaali, M.; Sassi, M.

    2009-12-01

    A modelling platform for the purposes of air quality policy scenario assessments is being setup and evaluated at Environment Canada. The main modelling system within the platform is the Environment Canada AURAMS (A Unified Regional Air quality Modelling System) which has explicit treatments of gaseous and particulate matter chemistry and physics. Additional components of the platform include the Global Environmental Model (GEM) for meteorology, the Sparse Matrix Operating Kernel Emissions (SMOKE) processing system, and a set of tools and models to diagnose and bridge results for health benefit and environmental impact analyses. In order to capture the seasonality and the distributions of the atmospheric conditions at different regions in Canada, the platform is applied for an annual simulation with a large domain encompassing the North American continent at 45-km grid resolution. The coarse resolution results are then refined with two nested domains for the east and west Canada at 22.5-km grid resolution. To evaluate of the modelling platform, the annual simulation results for 2006 are compared against ambient measurements for ozone and PM2.5. Measurement data are from both routine observational networks in Canada and United States (NAPS, IMPROVE, AQS), as well as non-routine measurement campaigns in 2006, which include vertical ozone profiles at selected locations in the domain. The presentation provides an overview of the current modelling platform setup and configurations, as well as discussions on the preliminary evaluation results from the annual simulations.

  19. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

    PubMed

    Brunekreef, Bert; Beelen, Rob; Hoek, Gerard; Schouten, Leo; Bausch-Goldbohm, Sandra; Fischer, Paul; Armstrong, Ben; Hughes, Edward; Jerrett, Michael; van den Brandt, Piet

    2009-03-01

    Evidence is increasing that long-term exposure to ambient air pollution is associated with deaths from cardiopulmonary diseases. In a 2002 pilot study, we reported clear indications that traffic-related air pollution, especially at the local scale, was related to cardiopulmonary mortality in a randomly selected subcohort of 5000 older adults participating in the ongoing Netherlands Cohort Study (NLCS) on diet and cancer. In the current study, referred to as NLCS-AIR, our objective was to obtain more precise estimates of the effects of traffic-related air pollution by analyzing associations with cause-specific mortality, as well as lung cancer incidence, in the full cohort of approximately 120,000 subjects. Cohort members were 55 to 69 years of age at enrollment in 1986. Follow-up was from 1987 through 1996 for mortality (17,674 deaths) and from late 1986 through 1997 for lung cancer incidence (2234 cases). Information about potential confounding variables and effect modifiers was available from the questionnaire that subjects completed at enrollment and from publicly available data (including neighborhood-scale information such as income distributions). The NLCS was designed for a case-cohort approach, which makes use of all the cases in the full cohort, while data for the random subcohort are used to estimate person-time experience in the study. Full information on confounders was available for the subjects in the random subcohort and for the emerging cases of mortality and lung cancer incidence during the follow-up period, and in NLCS-AIR we used the case-cohort approach to examine the relation between exposure to air pollution and cause-specific mortality and lung cancer. We also specified a standard Cox proportional hazards model within the full cohort, for which information on potential confounding variables was much more limited. Exposure to air pollution was estimated for the subjects' home addresses at baseline in 1986. Concentrations were estimated for

  20. Can Roadway Design be used to Mitigate Air Quality Impacts from Traffic?

    EPA Science Inventory

    Recent studies have confirmed the increased risks to human health for populations near roadways with large traffic volumes. This paper summarizes methods in which these impacts may be mitigated by infrastructure design options such as roadway configuration and roadside structures...