Science.gov

Sample records for air transport aircraft

  1. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  2. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  3. Hydrogen powered aircraft : The future of air transport

    NASA Astrophysics Data System (ADS)

    Khandelwal, Bhupendra; Karakurt, Adam; Sekaran, Paulas R.; Sethi, Vishal; Singh, Riti

    2013-07-01

    This paper investigates properties and traits of hydrogen with regard to environmental concerns and viability in near future applications. Hydrogen is the most likely energy carrier for the future of aviation, a fuel that has the potential of zero emissions. With investigation into the history of hydrogen, this study establishes issues and concerns made apparent when regarding the fuel in aero applications. Various strategies are analyzed in order to evaluate hydrogen's feasibility which includes production, storage, engine configurations and aircraft configurations.

  4. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  5. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  6. The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.

    1991-01-01

    Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.

  7. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  8. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  9. Predicting the impacts of new technology aircraft on international air transportation demand

    NASA Technical Reports Server (NTRS)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  10. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  11. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  12. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  13. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  14. Hypersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A hypersonic transport aircraft design project was selected as a result of interactions with NASA Lewis Research Center personnel and fits the Presidential concept of the Orient Express. The Graduate Teaching Assistant (GTA) and an undergraduate student worked at the NASA Lewis Research Center during the 1986 summer conducting a literature survey, and relevant literature and useful software were collected. The computer software was implemented in the Computer Aided Design Laboratory of the Mechanical and Aerospace Engineering Department. In addition to the lectures by the three instructors, a series of guest lectures was conducted. The first of these lectures 'Anywhere in the World in Two Hours' was delivered by R. Luidens of NASA Lewis Center. In addition, videotaped copies of relevant seminars obtained from NASA Lewis were also featured. The first assignment was to individually research and develop the mission requirements and to discuss the findings with the class. The class in consultation with the instructors then developed a set of unified mission requirements. Then the class was divided into three design groups (1) Aerodynamics Group, (2) Propulsion Group, and (3) Structures and Thermal Analyses Group. The groups worked on their respective design areas and interacted with each other to finally come up with an integrated conceptual design. The three faculty members and the GTA acted as the resource persons for the three groups and aided in the integration of the individual group designs into the final design of a hypersonic aircraft.

  15. Optical communications for transport aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1994-01-01

    Optical communications for transport aircraft are discussed. The problem involves: increasing demand for radio-frequency bands from an enlarging pool of users (aircraft, ground and sea vehicles, fleet operators, traffic control centers, and commercial radio and television); desirability of providing high-bandwidth dedicated communications to and from every aircraft in the National Airspace System; need to support communications, navigation, and surveillance for a growing number of aircraft; and improved meteorological observations by use of probe aircraft. The solution involves: optical signal transmission support very high data rates; optical transmission of signals between aircraft, orbiting satellites, and ground stations, where unobstructed line-of-sight is available; conventional radio transmissions of signals between aircraft and ground stations, where optical line-of-sight is unavailable; and radio priority given to aircraft in weather.

  16. Requirements for regional short-haul air service and the definition of a flight program to determine neighborhood reactions to small transport aircraft

    NASA Technical Reports Server (NTRS)

    Feher, K.; Bollinger, L.; Bowles, J. V.; Waters, M. H.

    1978-01-01

    An evaluation of the current status and future requirements of an intraregional short haul air service is given. A brief definition of the different types of short haul air service is given. This is followed by a historical review of previous attempts to develop short haul air service in high density urban areas and an assessment of the current status. The requirements for intraregional air service, the need for economic and environmental viability and the need for a flight research program are defined. A detailed outline of a research program that would determine urban community reaction to frequent operations of small transport aircraft is also given. Both the operation of such an experiment in a specific region (San Francisco Bay area) and the necessary design modifications of an existing fixed wing aircraft which could be used in the experiment are established. An estimate is made of overall program costs.

  17. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Concepts for possible future airplanes are studied that include all-wing distributed-load airplanes, multi-body airplanes, a long-range laminar flow control airplane, a nuclear powered airplane designed for towing conventionally powered airplanes during long range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short range feeder airplanes. Results indicate that each of these concepts has the potential for important performance and economic advantages, provided certain suggested research tasks are successfully accomplished. Indicated research areas include all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  18. Studies of advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.

    1978-01-01

    Several concepts for possible future airplanes, including all-wing distributed-load airplanes, multibody airplanes, a long-range laminar flow control airplane, a nuclear-powered airplane designed for towing conventionally powered airplanes during long-range cruise, and an aerial transportation system comprised of continuously flying liner airplanes operated in conjunction with short-range feeder airplanes are described. Performance and economic advantages of each concept are indicated. Further research is recommended in the following areas: all-wing airplane aerodynamics, aerial rendezvous, nuclear aircraft engines, air-cushion landing systems, and laminar flow control, as well as the basic research discipline areas of aerodynamics, structures, propulsion, avionics, and computer applications.

  19. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation is determined by the flag registry of the aircraft. The term “U.S. flag air carrier” means one of a class of...

  20. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation is determined by the flag registry of the aircraft. The term “U.S. flag air carrier” means one of a class of...

  1. Tankering Fuel on U.S. Air Force Transport Aircraft: An Assessment of Cost Savings

    DTIC Science & Technology

    2015-01-01

    software to determine whether their flights should tanker fuel to reduce operating costs. Since the Arabian oil embargo of 1973, air carriers have...Iraq and Afghanistan. The amounts of fuel that could potentially be tankered on these selected flights as well as the corresponding savings generated...possible need for compensation mechanisms within DoD as well as possible externalities that may result from an AMC tankering program. Our results

  2. A comparison of communication modes for delivery of air traffic control clearance amendments in transport category aircraft

    NASA Technical Reports Server (NTRS)

    Chandra, D.; Bussolari, S. R.; Hansman, R. J.

    1989-01-01

    A user centered evaluation is performed on the use of flight deck automation for display and control of aircraft horizontal flight path. A survey was distributed to pilots with a wide range of experience with the use of flight management computers in transport category aircraft to determine the acceptability and use patterns as reflected by the need for information displayed on the electronic horizontal situation indicator. A summary of survey results and planned part-task simulation to compare three communication modes (verbal, alphanumeric, graphic) are presented.

  3. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  4. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  5. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    A study of quiet turbofan short takeoff aircraft for short haul air transportation was conducted. The objectives of the study were to: (1) define representative aircraft configurations, characteristics, and costs associated with their development, (2) identify critical technology and technology related problems to be resolved in successful introduction of representative short haul aircraft, (3) determine relationships between quiet short takeoff aircraft and the economic and social viability of short haul, and (4) identify high payoff technology areas.

  6. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  7. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  8. Survivability Options for Maneuver and Transport Aircraft

    DTIC Science & Technology

    2005-01-01

    it is simply the next logical step in mechanized warfare and an ex- tension of ground operational maneuver as it has been conducted in the past. By...Survivability Options for Maneuver and Transport Aircraft bility and operational challenges.6 The research presented in this document, conducted as analytic...operational maneuver conducted mostly on the ground. We will then present the results of the analysis of operational maneuver by air, using the ASB

  9. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 2: Aircraft

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study of the quiet turbofan STOL aircraft for short haul transportation was conducted. The objectives of the study were as follows: (1) to determine the relationships between STOL characteristics and economic and social viability of short haul air transportation, (2) to identify critical technology problems involving introduction of STOL short haul systems, (3) to define representative aircraft configurations, characteristics, and costs, and (4) to identify high payoff technology areas to improve STOL systems. The analyses of the aircraft designs which were generated to fulfill the objectives are summarized. The baseline aircraft characteristics are documented and significant trade studies are presented.

  10. A parametric determination of transport aircraft price

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1975-01-01

    Cost per unit weight and other airframe and engine cost relations are given. Power equations representing these relations are presented for six airplane groups: general aircraft, turboprop transports, small jet transports, conventional jet transports, wide-body transports, supersonic transports, and for reciprocating, turboshaft, and turbothrust engines. Market prices calculated for a number of aircraft by use of the equations together with the aircraft characteristics are in reasonably good agreement with actual prices. Such price analyses are of value in the assessment of new aircraft devices and designs and potential research and development programs.

  11. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    NASA Technical Reports Server (NTRS)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  12. Study of quiet turbofan STOL aircraft for short haul transportation

    NASA Technical Reports Server (NTRS)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  13. Technology for design of transport aircraft. Lecture notes for MIT courses: Seminar 1.61 freshman seminar in air transportation and graduate course 1.201, transportation systems analysis

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1972-01-01

    The design parameters which determine cruise performance for a conventional subsonic jet transport are discussed. It is assumed that the aircraft burns climb fuel to reach cruising altitude and that aeronautical technology determines the ability to carry a given payload at cruising altitude. It is shown that different sizes of transport aircraft are needed to provide the cost optimal vehicle for different given payload-range objectives.

  14. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  15. International aircraft ECMO transportation: first French pediatric experience.

    PubMed

    Rambaud, Jerome; Léger, Pierre L; Porlier, Ludovic; Larroquet, Michelle; Raffin, Herve; Pierron, Charlotte; Walti, Herve; Carbajal, Ricardo

    2017-04-01

    Refractory severe hemodynamic or respiratory failure may require extracorporeal membrane oxygenation (ECMO). Since some patients are too sick to be transported safely to a referral ECMO center on conventional transportation, mobile ECMO transport teams have been developed. The experiences of some ECMO transport teams have already been reported, including air and international transport. We report the first French pediatric international ECMO transport by aircraft. This case shows that a long distance intervention of the pediatric ECMO transport team is feasible, even in an international setting. Long distance ECMO transportations are widely carried out for adults, but remain rare in neonates and children.

  16. The Small Aircraft Transportation System Project: An Update

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.

    2006-01-01

    To all peoples in all parts of the world throughout history, the ability to move about easily is a fundamental element of freedom. The American people have charged NASA to increase their freedom and that of their children knowing that their quality of life will improve as our nation s transportation systems improve. In pursuit of this safe, reliable, and affordable personalized air transportation option, in 2000 NASA established the Small Aircraft Transportation System (SATS) Project. As the name suggests personalized air transportation would be built on smaller aircraft than those used by the airlines. Of course, smaller aircraft can operate from smaller airports and 96% of the American population is within thirty miles of a high-quality, underutilized community airport as are the vast majority of their customers, family members, and favorite vacation destinations.

  17. Prospects for a civil/military transport aircraft

    NASA Technical Reports Server (NTRS)

    Jobe, C. E.; Noggle, L. W.; Whitehead, A. H., Jr.

    1978-01-01

    The similarities and disparities between commercial and military payloads, design features, missions, and transport aircraft are enumerated. Two matrices of civil/military transport aircraft designs were evaluated to determine the most cost effective payloads for a projected commercial route structure and air freight market. The probability of this market developing and the prospects for alternate route structures and freight markets are evaluated along with the possible impact on the aircraft designs. Proposals to stimulate the market and increase the viability of the common aircraft concept are reviewed and the possible impact of higher cargo demand on prospects for common civil/military freighters is postulated. The implications of planned advanced technology developments on the aircraft performance and cost are also considered.

  18. Advanced technology for future regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  19. Determination of tricresyl phosphate air contamination in aircraft.

    PubMed

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be <5 μg m(-3) compared with the 8-h time-weighted average exposure limit of 100 μg m(-3) for tri-o-cresyl phosphate. The highest concentrations were found at high engine power. Although TCP contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  20. Alternate-fueled transport aircraft possibilities

    NASA Technical Reports Server (NTRS)

    Aiken, W. S.

    1977-01-01

    The paper is organized to describe: (1) NASA's cryogenically fueled aircraft program; (2) LH2 subsonic and supersonic transport design possibilities (3) the fuel system and ground side problems associated with LH2 distribution; (4) a comparison of LCH4 with LH2; (5) the design possibilities for LCH4 fueled aircraft; and (6) a summary of where NASA's cryogenically fueled programs are headed.

  1. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  2. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  3. Scorpion: Close Air Support (CAS) aircraft

    NASA Technical Reports Server (NTRS)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  4. Indoor air quality investigation on commercial aircraft.

    PubMed

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  5. Commercial transport aircraft composite structures

    NASA Technical Reports Server (NTRS)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  6. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    The key materials question is addressed concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled transport aircraft fire. Technical opportunities are examined which are available through the modification of aircraft interior subsystem components, modifications that may reasonably be expected to provide improvements in aircraft fire safety. Subsystem components discussed are interior panels, seats, and windows. By virtue of their role in real fire situations and as indicated by the results of large scale simulation tests, these components appear to offer the most immediate and highest payoff possible by modifying interior materials of existing aircraft. These modifications have the potential of reducing the rate of fire growth, with a consequent reduction of heat, toxic gas, and smoke emission throughout the habitable interior of an aircraft, whatever the initial source of the fire.

  7. Engine selection for transport and combat aircraft

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.

    1972-01-01

    The procedures that are used to select engines for transport and combat aircraft are discussed. In general, the problem is to select the engine parameters including engine size in such a way that all constraints are satisfied and airplane performance is maximized. This is done for four different classes of aircraft: (1) a long haul conventional takeoff and landing (CTOL) transport, (2) a short haul vertical takeoff and landing (VTOL) transport, (3) a long range supersonic transport (SST), and (4) a fighter aircraft. For the commercial airplanes the critical constraints have to do with noise while for the fighter, maneuverability requirements define the engine. Generally, the resultant airplane performance (range or payload) is far less than that achievable without these constraints and would suffer more if nonoptimum engines were selected.

  8. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person or... in paragraph (c)(3) of this section, the owners of a downed aircraft shall remove the aircraft...

  9. Small transport aircraft technology. A report for the committee on commerce, science, and transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A preliminary assessment of the research and technology that NASA could undertake to improve small transport aircraft is presented. The advanced technologies currently under study for potential application to the small transport aircraft of the future are outlined. Background information on the commuter and shorthaul local service air carriers, the regulations pertaining to their aircraft and operations, and the overall airline system interface is included.

  10. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  11. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  12. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  13. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  14. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  15. Analysis of Small Aircraft as a Transportation System

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.

  16. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  17. Improving the efficiency of smaller transport aircraft

    SciTech Connect

    Jones, R.T.

    1984-07-01

    Considered apart from its propulsive system the high altitude airplane itself adapted to higher flight altitudes than those in current use. Scaling on the assumption of constant aircraft density indicates that this conclusion applies most importantly to smaller transport aircraft. Climb to 60,000 ft could save time and energy for trips as short as 500 miles. A discussion of the effect of winglets on aircraft efficiency is presented. A 10% reduction of induced drag below that of a comparable elliptic wing can be achieved either by horizontal or vertical wing tip extensions.

  18. Fireworthiness of transport aircraft interior systems

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.

    1981-01-01

    This paper presents an overview of certain aspects of the evaluation of the fireworthiness of transport aircraft interiors. First, it addresses the key materials question concerning the effect of interior systems on the survival of passengers and crew in the case of an uncontrolled fire. Second, it examines some technical opportunities that are available today through the modification of aircraft interior subsystem components, modifications that may reasonably by expected to provide improvements in aircraft fire safety. Cost and risk benefits still remain to be determined.

  19. Control Reallocation Strategies for Damage Adaptation in Transport Class Aircraft

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Krishnakumar, K.; Limes, Greg; Bryant, Don

    2003-01-01

    This paper examines the feasibility, potential benefits and implementation issues associated with retrofitting a neural-adaptive flight control system (NFCS) to existing transport aircraft, including both cable/hydraulic and fly-by-wire configurations. NFCS uses a neural network based direct adaptive control approach for applying alternate sources of control authority in the presence of damage or failures in order to achieve desired flight control performance. Neural networks are used to provide consistent handling qualities across flight conditions, adapt to changes in aircraft dynamics and to make the controller easy to apply when implemented on different aircraft. Full-motion piloted simulation studies were performed on two different transport models: the Boeing 747-400 and the Boeing C-17. Subjects included NASA, Air Force and commercial airline pilots. Results demonstrate the potential for improving handing qualities and significantly increased survivability rates under various simulated failure conditions.

  20. Aircraft Disinsection: A Guide for Military and Civilian Air Carriers (Desinsectisation des aeronefs: Un guide a l’intention des responsables des transports aeriens civils et militaires)

    DTIC Science & Technology

    1996-04-01

    D.K. Hayes, K. Stalker, and R. Pal, 1978. A comparison of Freon- and water -based insecticidal aerosols for air- craft disinsection. Bull. WHO 56(1):129...Chemical Pest Management Decision-making 32 12.2 Scheduling Insecticide Treatments 33 vi 12.3 Insecticide Selection 34 12.4 Equipment and Materials...walk to Aircraft Connections 42 12.7 Use of Insecticidal Baits 42 12.8 Fumigation 42 12.8.1 Fumigation with Methyl Bromide 42 12.8.2 Fumigation

  1. Composite structures for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F.

    1978-01-01

    The development of graphite-epoxy composite structures for use on commercial transport aircraft is considered. Six components, three secondary structures, and three primary structures, are presently under development. The six components are described along with some of the key features of the composite designs and their projected weight savings.

  2. Natural laminar flow application to transport aircraft

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1990-01-01

    A major goal of NASA during the last 15 years has been the development of laminar flow technology for aircraft drag reduction. Of equal importance is achieving a state of readiness that will allow the successful application of this technology by industry to large, long-range aircraft. Recent progress in achieving extensive laminar flow with limited suction on the Boeing 757 has raised the prospects from practical application of the hybrid laminar flow control (HLFC) concept to subsonic aircraft. Also, better understanding of phenomena affecting laminar flow stability and response to disturbances has encouraged consideration of natural laminar flow (NLF), obtained without suction or active mechanical means, for application to transport aircraft larger than previously thought feasible. These ideas have inspired the current NASA/ASEE project with goals as follows: explore the feasibility of extensive NLF for aircraft at high Reynolds number under realistic flight conditions; determine the potential applications of NLF technology and the conditions under which they may be achieved; and identify existing aircraft that could be adapted to carry out flight experiments to validate NLF technology application. To achieve these objectives, understanding of the physical limits to natural laminar flow and possible ways to extend these limits was sought. The primary factors involved are unit Reynolds number, Mach number, wing sweep, thickness, and lift coefficients as well as surface pressure gradients and curvature. Based on previous and ongoing studies using laminar boundary layer stability theory, the interplay of the above factors and the corresponding transition limits were postulated.

  3. Air medical transportation in India: Our experience

    PubMed Central

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Background and Aims: Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Material and Methods: Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. Results: 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation. PMID:27625486

  4. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  5. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  6. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  7. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  8. 36 CFR 2.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Aircraft and air delivery. 2... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are prohibited: (1) Operating or using aircraft on lands or waters other than at locations designated pursuant...

  9. Investigation of air transportation technology at Princeton University

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1983-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along six avenues during the past year: investigation of fuel use characteristics of general aviation aircraft, experimentation with an ultrasonic altimeter, single pilot instrument flight, application of fiber optics in flight control systems, voice recognition inputs for navigation/communication receiver tuning, and computer aided aircraft design.

  10. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  11. UK airmisses involving commercial air transport, January-April 1991

    NASA Astrophysics Data System (ADS)

    In the introduction the following are briefly discussed: origination of an airmiss; purpose of airmiss reports; investigation of airmiss reports; categorization of airmisses; involvement of commercial air transport aircraft; airmisses related to flying hours. Tabulated statistics of the following are presented: the number of incidents of commercial air transport airmisses; commercial air transport aircraft involved in airmisses; commercial air transport airmisses related to flying hours. Reports on the commercial air transport airmisses from Jan. - Apr. 1991 are presented. These contain summaries of: pilot reports, transcripts of relevant RT frequencies; radar video recordings, and reports from appropriate air traffic control and operating authorities. The working groups discussion is summarized, and the risk and cause assessed.

  12. Advanced Terrain Displays for Transport Category Aircraft.

    DTIC Science & Technology

    1992-02-01

    Map Displays, Terrain Displays, DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH Pilo t Performance, THE NATIONAL TECHNICAL INFORMATION SERVICE , Cockp •t...DOT/FAA/RD-9214 Advanced Terran Wigays DOT-VNTSC-FAA-92-4 frTaaotCta Research and Development Servic fo rasor atgr Washington, DC 20591 Aircraft...U.S. Department of Transportation Final Report Federal Aviation Administration January 1991-Sept. 1991 Research and Development Service Washington, DC

  13. Analytical Fuselage and Wing Weight Estimation of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.

    1996-01-01

    A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.

  14. [Cardiovascular disease and aircraft transportation: specificities and issues].

    PubMed

    Touze, Jean-Étienne; Métais, Patrick; Zawieja, Philippe

    2012-02-01

    With the development of air transport and travel to distant destinations, the number of passengers and elderly passengers on board increases each year. In this population, cardiovascular events are a major concern. Among medical incidents occurring in-flight they are second-ranked (10%) behind gastrointestinal disorders (25%). Their occurrence may involve life-threatening events and require resuscitation, difficult to perform during flight or in a precarious health environment. Coronary heart disease and pulmonary thromboembolic disease are the most serious manifestations. They are the leading cause of hospitalization in a foreign country and sudden cardiac death occurring during or subsequent to the flight. Their occurrence is explained on aircraft by hypoxia, hypobaria and decreased humidity caused by cabin pressurization and upon arrival by a different environmental context (extreme climates, tropical diseases). Moreover, the occurrence of a cardiovascular event during flight can represent for the air carrier a major economic and logistic problem when diversion occurred. Furthermore, the liability of the practitioner passenger could be involved according to airlines or to the country in which the aircraft is registered. In this context, cardiovascular events during aircraft transportation can be easily prevented by identifying high risk patients, respect of cardiovascular indications to travel, the implementation of simple preventive measures and optimization of medical equipment in commercial flights.

  15. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  16. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  17. The technology assessment of LTA aircraft systems. [hybrid airships for passenger and cargo transportation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advantages of conventional small and large airships over heavier than air aircraft are reviewed and the need for developing hybrid aircraft for passenger and heavy charge transport is assessed. Performance requirements and estimated operating costs are discussed for rota-ships to be used for short distance transportation near large cities as well as for airlifting civil engineering machinery and supplies for the construction of power stations, dams, tunnels, and roads in remote areas or on isolated islands.

  18. Investigation of air transportation technology at Princeton University, 1986

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  19. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  20. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  1. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  2. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  3. Passenger ride quality in transport aircraft

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Kuhlthau, A. R.; Richards, L. G.; Conner, D. W.

    1978-01-01

    Quantitative relationships are presented which can be used to account for passenger ride quality in transport aircraft. These relations can be used to predict passenger comfort and satisfaction under a variety of flight conditions. Several applications are detailed, including evaluation of use of spoilers to attenuate trailing vortices, identifying key elements in a complex maneuver which leads to discomfort, determining noise/motion tradeoffs, evaluating changes in wing loading, and others. Variables included in the models presented are motion, noise, temperature, pressure, and seating.

  4. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. The total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  5. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  6. Multidisciplinary optimization applied to a transport aircraft

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Wrenn, G. A.

    1984-01-01

    Decomposition of a large optimization problem into several smaller subproblems has been proposed as an approach to making large-scale optimization problems tractable. To date, the characteristics of this approach have been tested on problems of limited complexity. The objective of the effort is to demonstrate the application of this multilevel optimization method on a large-scale design study using analytical models comparable to those currently being used in the aircraft industry. The purpose of the design study which is underway to provide this demonstration is to generate a wing design for a transport aircraft which will perform a specified mission with minimum block fuel. A definition of the problem; a discussion of the multilevel composition which is used for an aircraft wing; descriptions of analysis and optimization procedures used at each level; and numerical results obtained to date are included. Computational times required to perform various steps in the process are also given. Finally, a summary of the current status and plans for continuation of this development effort are given.

  7. High-speed Civil Transport Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.

    1992-01-01

    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.

  8. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person or... business of the Federal government, or emergency rescues in accordance with the directions of the...

  9. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person or... business of the Federal government, or emergency rescues in accordance with the directions of the...

  10. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person or... business of the Federal government, or emergency rescues in accordance with the directions of the...

  11. 36 CFR 1002.17 - Aircraft and air delivery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Aircraft and air delivery... USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person or... business of the Federal government, or emergency rescues in accordance with the directions of the...

  12. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  13. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  14. National General Aviation Roadmap Definition for a Small Aircraft Transportation System Concept

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2000-01-01

    This paper presents trends and forces that shape 21 st century demand for higher-speed personal air transportation and outlines guidance developed by NASA in partnership with other federal and state government and industry partners, for Small Aircraft Transportation System (SATS) investment and partnership planning.

  15. INFORMATION: Audit Report on The Office of Secure Transportation DC-9 Aircraft Refurbishment

    SciTech Connect

    2009-05-01

    The National Nuclear Security Administration's (NNSA) Office of Secure Transportation (OST) maintains a fleet of seven aircraft to transport sensitive items, equipment and security personnel. Based on increasing requirements for transporting components and security personnel, OST decided to add a heavy transport aircraft to meet the Department's weapons surety and emergency response missions. In 2004, as a replacement following the sale of a portion of its fleet, OST acquired a DC-9 cargo aircraft that had been excessed by the U.S. military. Prior to integrating the DC-9 into its fleet, NNSA ordered a refurbishment of the aircraft. This refurbishment project was to permit the aircraft to be certified to civil air standards so that it could transport passengers for site visits, training and other travel. The NNSA Service Center (Service Center) awarded a contract for the refurbishment of the aircraft in December 2004. In recent years, the Office of Inspector General has addressed a number of issues relating to the Department's aircraft management activities and services. As part of our ongoing review process and because of the national security importance of its fleet of aircraft, we conducted this review to determine whether OST had an effective and efficient aviation management program.

  16. Cabin cruising altitudes for regular transport aircraft.

    PubMed

    2008-04-01

    The adverse physiological effects of flight, caused by ascent to altitude and its associated reduction in barometric pressure, have been known since the first manned balloon flights in the 19th century. It soon became apparent that the way to protect the occupant of an aircraft from the effects of ascent to altitude was to enclose either the individual, or the cabin, in a sealed or pressurized environment. Of primary concern in commercial airline transport operations is the selection of a suitable cabin pressurization schedule that assures adequate oxygen partial pressures for all intended occupants. For the past several decades, 8000 ft has been accepted as the maximum operational cabin pressure altitude in the airline industry. More recent research findings on the physiological and psycho-physiological effects of mild hypoxia have provided cause for renewed discussion of the "acceptability" of a maximum cabin cruise altitude of 8000 ft; however, we did not find sufficient scientific data to recommend a change in the cabin altitude of transport category aircraft. The Aerospace Medical Association (AsMA) should support further research to evaluate the safety, performance and comfort of occupants at altitudes between 5000 and 10,000 ft.

  17. Proceedings of the Monterey Conference on Planning for Rotorcraft and Commuter Air Transportation

    NASA Technical Reports Server (NTRS)

    Stockwell, W. L.

    1983-01-01

    Planning and technological issues involved in rotorcraft and commuter fixed-wing air transportation are discussed. Subject areas include the future community environment, aircraft technology, community transportation planning, and regulatory perspectives.

  18. A critical review of reported air concentrations of organic compounds in aircraft cabins.

    PubMed

    Nagda, N L; Rector, H E

    2003-09-01

    This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.

  19. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  20. Indoor air quality: recommendations relevant to aircraft passenger cabins.

    PubMed

    Hocking, M B

    1998-07-01

    To evaluate the human component of aircraft cabin air quality the effects of respiration of a resting adult on air quality in an enclosed space are estimated using standard equations. Results are illustrated for different air volumes per person, with zero air exchange, and with various air change rates. Calculated ventilation rates required to achieve a specified air quality for a wide range of conditions based on theory agree to within 2% of the requirements determined using a standard empirical formula. These calculations quantitatively confirm that the air changes per hour per person necessary for ventilation of an enclosed space vary inversely with the volume of the enclosed space. However, they also establish that the ventilation required to achieve a target carbon dioxide concentration in the air of an enclosed space with a resting adult remains the same regardless of the volume of the enclosed space. Concentration equilibria resulting from the interaction of the respiration of a resting adult with various ventilation conditions are compared with the rated air exchange rates of samples of current passenger aircraft, both with and without air recirculation capability. Aircraft cabin carbon dioxide concentrations calculated from the published ventilation ratings are found to be intermediate to these sets of results obtained by actual measurement. These findings are used to arrive at recommendations for aircraft builders and operators to help improve aircraft cabin air quality at minimum cost. Passenger responses are suggested to help improve their comfort and decrease their exposure to disease transmission, particularly on long flights.

  1. Cyclone: A close air support aircraft for tomorrow

    NASA Technical Reports Server (NTRS)

    Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric

    1991-01-01

    To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.

  2. A Small Aircraft Transportation System (SATS) Demand Model

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.

  3. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 4: Markets

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A marketing study to determine the acceptance and utilization of a STOL aircraft short-haul air transportation system was conducted. The relationship between STOL characteristics and the economic and social viability of STOL as a short-haul reliever system was examined. A study flow chart was prepared to show the city pair and traffic split analysis. The national demand for STOL aircraft, as well as the foreign and military markets, were analyzed.

  4. Artificial Icing Test, Utility Tactical Transport Aircraft System (UTTAS), Boeing Vertol YUH-61A Helicopter

    DTIC Science & Technology

    1977-01-01

    Tactical Transport Aircraft System," 10 November 1975. 2. Letter, AVSCOM, DRSAV-EQI, 25 May 1976, subject: Utility Tactical Tranport Aircraft System...Parts, Helicopter Icing Spray System (HISS). 12 November 1973, with Change 1, 15 July 1976. 8. Technical Report. Environmental Research and Technology ...and static air temperature was obtained from table 3. Relative humidity was then computed using the values obtained from table 2 and equation 1: PS

  5. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  6. Passenger aircraft cabin air quality: trends, effects, societal costs, proposals.

    PubMed

    Hocking, M B

    2000-08-01

    As aircraft operators have sought to substantially reduce propulsion fuel cost by flying at higher altitudes, the energy cost of providing adequate outside air for ventilation has increased. This has lead to a significant decrease in the amount of outside air provided to the passenger cabin, partly compensated for by recirculation of filtered cabin air. The purpose of this review paper is to assemble the available measured air quality data and some calculated estimates of the air quality for aircraft passenger cabins to highlight the trend of the last 25 years. The influence of filter efficiencies on air quality, and a few medically documented and anecdotal cases of illness transmission aboard aircraft are discussed. Cost information has been collected from the perspective of both the airlines and passengers. Suggestions for air quality improvement are given which should help to result in a net, multistakeholder savings and improved passenger comfort.

  7. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  8. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 5: Economics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The economic aspects of the STOL aircraft for short-haul air transportation are discussed. The study emphasized the potential market, the preferred operational concepts, the design characteristics, and the economic viability. Three central issues governing economic viability are as follows: (1) operator economics given the market, (2) the required transportation facilities, and (3) the external economic effects of a set of regional STOL transportation systems.

  9. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  10. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  11. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Doc No: 2012-1243] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar...: Notice of intent to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For... Radar Altimeter Equipment (For Air Carrier Aircraft). The effect of the cancelled TSO will result in...

  12. A parametric analysis of transport aircraft system weights and costs

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1974-01-01

    In determining unit and operating costs for advanced aircraft, it has been found that by having first-order weight and performance approximations for the aircraft systems and structural components, a step increase in cost prediction accuracy results. This paper presents first-order approximation equations for these systems and components. These equations were developed from data for most current jet transports, and they have been ordered to use a minimum number of performance parameters such as aircraft style, number of passengers, empty and gross weight, cargo load, and operating range. A NASA Ames Research Center aircraft cost program has been used to compare calculated and actual weights for the same aircraft. Good aircraft cost correlation is shown to exist between calculated first-order and actual aircraft weight data.

  13. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high efficiency propeller driven aircraft of non-U.S. manufacture. During the past year, an aircraft was designed with ranges of up to 1500 nautical miles and passenger loads between 50 and 90. Special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Several designs are presented which place a high premium on design innovation.

  14. Some considerations for air transportation analysis to non-urban areas.

    NASA Technical Reports Server (NTRS)

    Norman, S. D.

    1973-01-01

    Review of some of the problems associated with air transportation to and from nonurban areas. While a significant proportion of public transportation needs of nonurban areas are met by aircraft, there are indications that improvement in air transportation service are called for and would be rewarded by increased patronage. However, subsidized local service carriers are attracted by large aircraft operation, and there is a tendency to discontinue service to low density areas. Prospects and potential means for reversing this trend are discussed.

  15. Rotorcraft air transportation

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.

    1983-01-01

    Intermodal relationships and the particular ways in which they affect public transportation applications of rotorcraft are addressed. Some aspects of integrated services and general comparisons with other transportation modes are reviewed. Two potential application scenarios are discussed: down-to-downtown rotorcraft service and urban public transport rotorcraft service. It is concluded that to integrate well with ground access modes community rotorcraft service should be limited stop service with published schedules, and operate on a few specific routes between a few specific destinations. For downtown-to-downtown service, time savings favorable to rotorcraft are benefits that reflect its more direct access, relatively higher line-haul travel speeds, and less circuitous travel. For the scenario of public transport within urban areas, first, improving cruise speeds has a limited potential due to allowing for a ""station spacing'' effect. Secondly, public acceptance of higher acceleration/deceleration rates may be just as effective as a technological innovation as achieving higher cruise speeds.

  16. Simulating the global transport of nitrogen oxides emissions from aircraft

    NASA Astrophysics Data System (ADS)

    Sausen, R.; Köhler, I.

    1994-05-01

    With the atmosphere general circulation model ECHAM the passive transport of NOx emitted from global subsonic air traffic and the NOx concentration change due to these emissions are investigated. The source of NOx is prescribed according to an aircraft emission data base. The sink of NOx is parameterized as an exponential decay process with globally constant lifetime. Simulations in perpetual January and July modes are performed. Both the resulting mean and the standard deviation of the NOx mass mixing ratio are analysed. In January horizontal dispersion is more pronounced and vertical mixing is smaller than in July. In both cases the resulting quasi-stationary fields of the mass mixing ratio display a pronounced zonal asymmetry. The variability accounts up to 30% of the mean field.

  17. Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel…

  18. Assessment of the application of advanced technologies to subsonic CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Graef, J. D.; Sallee, G. P.; Verges, J. T.

    1974-01-01

    Design studies of the application of advanced technologies to future transport aircraft were conducted. These studies were reviewed from the perspective of an air carrier. A fundamental study of the elements of airplane operating cost was performed, and the advanced technologies were ranked in order of potential profit impact. Recommendations for future study areas are given.

  19. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  20. Development of a 21st Century Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Holmes, Bruce J.; Hansen, Frederick

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring the next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  1. Emerging Climate-data Needs in the Air Transport Sector

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.

    2014-12-01

    This paper addresses the nature of climate information needed within the air-transport sector. Air transport is not a single economic sector with uniform needs for climate data: airport, airline, and air-navigation services are the principal sub-sectors, each with their own particular climate-related decision contexts. For example, airports function as fixed infrastructure that is primarily affected by probabilities of extreme events that could hamper runway/taxiway operations, interfere with worker availability, or impede travel to and from the airport by passengers. Airlines, in contrast, are more concerned with changes in atmospheric conditions (upper-air turbulence, convective weather events, etc.) that might require consideration in long-term decisions related to flight-planning processes and aircraft equipage. Air-navigation service providers have needs that are primarily concerned with assurance of safe spatial separation of aircraft via sensor data and communications links. In addition to present-day commercial air transport, we discuss what climate data may be needed for new types of air transport that may emerge in the next couple of decades. These include, for example, small aircraft provided on-demand to non-pilot travelers, high-altitude supersonic business and commercial jets, and very large numbers of un-manned aircraft. Finally, we give examples relating to key technical challenges in providing decision-relevant climate data to the air-transport sector. These include: (1) identifying what types of climate data are most relevant the different decisions facing the several segments of this industry; (2) determining decision-appropriate time horizons for forecasts of this data; and (3) coupling the uncertainties inherent in these forecasts to the decision process.

  2. Aircraft Survivability: Transport Aircraft Safety and Survivability, Spring 2005

    DTIC Science & Technology

    2005-01-01

    Regulations ( CFR ), Part 129, as a regularly scheduled international passenger and cargo flight from JFK to Charles de Gaulle Airport, Paris, France... CFR 25.903(d)(1), states that “Design precautions must be taken to minimize the hazards to the airplane in the event of an engine rotor failure...conducting aircraft configura- tion trade studies and as a certifica- tion tool to show compliance with Title 14 CFR 25.903(d)(1). It should be noted that

  3. The cetaceopteryx: A global range military transport aircraft

    NASA Technical Reports Server (NTRS)

    Brivkalns, Chad; English, Nicole; Kazemi, Tahmineh; Kopel, Kim; Kroger, Seth; Ortega, ED

    1993-01-01

    This paper presents a design of a military transport aircraft capable of carrying 800,000 lbs of payload from any point in the United States to any other point in the world. Such massive airlift requires aggressive use of advanced technology and a unique configuration. The Cetaceopteyx features a joined wing, canard and six turbofan engines. The aircraft has a cost 1.07 billion (1993) dollars each. This paper presents in detail the mission description, preliminary sizing, aircraft configuration, wing design, fuselage design, empennage design, propulsion system, landing gear design, structures, drag, stability and control, systems layout, and cost analysis of the aircraft.

  4. Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  5. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  6. Structural dynamics research in a full-scale transport aircraft crash test

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.; Hayduk, R. J.; Thomson, R. G.

    1986-01-01

    A remotely piloted air-to-ground crash test of a full-scale transport aircraft was conducted for the first time for two purposes: (1) to demonstrate performance of an antimisting fuel additive in suppressing fire in a crash environment, and (2) to obtain structural dynamics data under crash conditions for comparison with analytical predictions. The test, called the Controlled Impact Demonstration (CID), was sponsored by FAA and NASA with cooperation of industry, the Department of Defense, and the British and French governments. The test aircraft was a Boeing 720 jet transport. The aircraft impacted a dry lakebed at Edwards Air Force Base, CA. The purpose of this paper is to discuss the structural aspects of the CID. The fuselage section tests and the CID itself are described. Structural response data from these tests are presented and discussed. Nonlinear analytical modeling efforts are described, and comparisons between analytical results and experimental results are presented.

  7. Analysis of operational requirements for medium density air transportation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The medium density air travel market was studied to determine the aircraft design and operational requirements. The impact of operational characteristics on the air travel system and the economic viability of the study aircraft were also evaluated. Medium density is defined in terms of numbers of people transported (20 to 500 passengers per day on round trip routes), and frequency of service ( a minumium of two and maximum of eight round trips per day) for 10 regional carriers. The operational characteristics of aircraft best suited to serve the medium density air transportation market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations could be conducted. The impact of selected aircraft on the medium density market, economics, and operations is ascertained. Research and technology objectives for future programs in medium density air transportation are identified and ranked.

  8. NASA's Role in Aeronautics: A Workshop. Volume 3: Transport aircraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Segments of the spectrum of research and development activities that clearly must be within the purview of NASA in order for U.S. transport aircraft manufacturing and operating industries to succeed and to continue to make important contributions to the nation's wellbeing were examined. National facilities and expertise; basic research, and the evolution of generic and vehicle class technologies were determined to be the areas in which NASA has an essential role in transport aircraft aeronautics.

  9. Air Cargo Transportation Route Choice Analysis

    NASA Technical Reports Server (NTRS)

    Obashi, Hiroshi; Kim, Tae-Seung; Oum, Tae Hoon

    2003-01-01

    Using a unique feature of air cargo transshipment data in the Northeast Asian region, this paper identifies the critical factors that determine the transshipment route choice. Taking advantage of the variations in the transport characteristics in each origin-destination airports pair, the paper uses a discrete choice model to describe the transshipping route choice decision made by an agent (i.e., freight forwarder, consolidator, and large shipper). The analysis incorporates two major factors, monetary cost (such as line-haul cost and landing fee) and time cost (i.e., aircraft turnaround time, including loading and unloading time, custom clearance time, and expected scheduled delay), along with other controls. The estimation method considers the presence of unobserved attributes, and corrects for resulting endogeneity by use of appropriate instrumental variables. Estimation results find that transshipment volumes are more sensitive to time cost, and that the reduction in aircraft turnaround time by 1 hour would be worth the increase in airport charges by more than $1000. Simulation exercises measures the impacts of alternative policy scenarios for a Korean airport, which has recently declared their intention to be a future regional hub in the Northeast Asian region. The results suggest that reducing aircraft turnaround time at the airport be an effective strategy, rather than subsidizing to reduce airport charges.

  10. Experimental Aircraft Association (EAA) - AirVenture 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experimental Aircraft Association (EAA) - AirVenture 2003: ER-2 aircraft. A NASA high-altitude ER-2 environmental research jet aircraft arrived at Oshkosh, Wisconsin on July 29, 2003 to take part in the world's larest aviation event, AirVenture 2003. The ER-2, built on the same assembly line as Air Force U-2 reconnaissance aircraft, i sused for atmospheric sampling and environmental research. Its duties include flights to remote locations where meteorites have fallen to Earth, sweeping the sky to see if particles of these from space can be collected for research before the trail goes cold. The NASA ER-2 is capable of flight above 70,000 ft. It has been used for replicating accuracy of instrumentation on those satellites. Two ER-2's are based at NASA's Dryden Flight Research Center in California's Mojave Desert. The flight from Dryden to Oshkosh took four hours at an altitude of 65,000 ft. AirVenture, an event of the Experimental Aircraft Association runs from July 29 to August 4, 2003 and is expected to draw as many as 800.000 visitors. NASA has exhibits and aircraft on display at this major show.

  11. Investigation of air transportation technology at Princeton University, 1984

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  12. Transportation, Air Pollution, and Climate Change

    MedlinePlus

    ... Share Facebook Twitter Google+ Pinterest Contact Us Transportation, Air Pollution, and Climate Change Accomplishments & Successes View successes from ... reduce carbon pollution. Carbon pollution from transportation Other Air Pollution Learn about smog, soot, ozone, and other air ...

  13. Forecasting the demand potential for STOL air transportation

    NASA Technical Reports Server (NTRS)

    Fan, S.; Horonjeff, R.; Kanafani, A.; Mogharabi, A.

    1973-01-01

    A process for predicting the potential demand for STOL aircraft was investigated to provide a conceptual framework, and an analytical methodology for estimating the STOL air transportation market. It was found that: (1) schedule frequency has the strongest effect on the traveler's choice among available routes, (2) work related business constitutes approximately 50% of total travel volume, and (3) air travel demand follows economic trends.

  14. Price Determination of General Aviation, Helicopter, and Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1978-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for general aviation, helicopter, and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly as to how new technologies, aircraft complexity and inflation have affected these.

  15. Journal of Air Transportation, Volume 10, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Unal, Mehmet (Editor); Gudmundsson, Sveinn Vidar (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    Topics discussed include: Mitigation Alternatives for Carbon Dioxide Emissions by the Air Transport Industry in Brazil; Air Transport Regulation Under Transformation: The Case of Switzerland; An Estimation of Aircraft Emissions at Turkish Airports; Guide to the Implementation of Iso 14401 at Airports; The Impact of Constrained Future Scenarios on Aviation and Emissions; The Immediate Financial Impact of Transportation Deregulation on the Stockholders of the Airline Industry; Aviation Related Airport Marketing in an Overlapping Metropolitan Catchment Area: The Case of Milan's Three Airports; and Airport Pricing Systems and Airport Deregulation Effects on Welfare.

  16. Pollution Emission Analysis of Selected Air Force Aircraft

    DTIC Science & Technology

    1974-04-29

    percent for large non-combat tranaport engines) are proposed. Eraoke numbers wlilch will ensure Invisible aircraft smoke plumes are specified. The...standards are being violated, as well as being significant sources of smoke , ,••(3) that maintenance of the national ambient sir quality BlSndards...and reduced impact of smoke emission requires that air- craft and aircraft engines be Bubjected to a program of control compatible with their

  17. A-2000: Close air support aircraft design team

    NASA Technical Reports Server (NTRS)

    Carrannanto, Paul; Lim, Don; Lucas, Evangeline; Risse, Alan; Weaver, Dave; Wikse, Steve

    1991-01-01

    The US Air Force is currently faced with the problem of providing adequate close air support for ground forces. Air response to troops engaged in combat must be rapid and devastating due to the highly fluid battle lines of the future. The A-2000 is the result of a study to design an aircraft to deliver massive fire power accurately. The low cost A-2000 incorporates: large weapons payload; excellent maneuverability; all weather and terrain following capacity; redundant systems; and high survivability.

  18. Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.

    2005-01-01

    The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.

  19. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  20. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  1. Transport Aircraft System Identification from Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2008-01-01

    Recent studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and rotary dynamic terms but replace conventional acceleration terms with more general indicial functions. In the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced controls technology. This paper describes initial application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle.

  2. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  3. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Environmental Protection Agency 40 CFR Parts 87 and 1068 Control of Air Pollution From Aircraft and Aircraft... AGENCY 40 CFR Parts 87 and 1068 [EPA-HQ-OAR-2010-0687; FRL-9437-2] RIN 2060-AO70 Control of Air Pollution... engines which in her judgment causes or contributes to air pollution that may reasonably be anticipated...

  4. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    NASA Technical Reports Server (NTRS)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  5. Design of a turbofan powered regional transport aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The majority of the market for small commercial transport aircraft is dominated by high-efficiency, propeller-driven aircraft of non-U.S. manufacture. During the past year senior student design teams at Purdue developed and then responded to a Request For Proposal (RFP) for a regional transport aircraft. The RFP development identified promising world markets and their needs. The students responded by designing aircraft with ranges of up to 1500 n.m. and passenger loads of 50 to 90. During the design project, special emphasis was placed upon keeping acquisition cost and direct operating costs at a low level while providing passengers with quality comfort levels. Twelve student teams worked for one semester developing their designs. Several of the more successful designs and those that placed a high premium on innovation are described. The depth of detail and analysis in these student efforts are also illustrated.

  6. Impact of composites on future transport aircraft

    NASA Technical Reports Server (NTRS)

    Kinder, Robert H.

    1993-01-01

    In the current environment, new technology must be cost-effective in addition to improving operability. Various approaches have been used to determine the 'hurdle' or 'breakthrough' return that must be achieved to gain customer commitment for a new product or aircraft, or in this case, a new application of the technology. These approaches include return-on-investment, payback period, and addition to net worth. An easily understood figure-of-merit and one used by our airline customers is improvement in direct operating cost per seat-mile. Any new technology must buy its way onto the aircraft through reduction in direct operating cost (DOC).

  7. Optimizing Airspace System Capacity Through a Small Aircraft Transportation System: An Analysis of Economic and Operational Considerations

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.

    2001-01-01

    America's air transport system is currently faced with two equally important dilemmas. First, congestion and delays associated with the overburdened hub and spoke system will continue to worsen unless dramatic changes are made in the way air transportation services are provided. Second, many communities and various regions of the country have not benefited from the air transport system, which tends to focus its attention on major population centers. An emerging solution to both problems is a Small Aircraft Transportation System (SATS), which will utilize a new generation of advanced small aircraft to provide air transport services to those citizens who are poorly served by the hub and spoke system and those citizens who are not served at all. Using new innovations in navigation, communication, and propulsion technologies, these aircraft will enable users to safely and reliably access the over 5,000 general aviation landing facilities around the United States. A small aircraft transportation system holds the potential to revolutionize the way Americans travel and to greatly enhance the use of air transport as an economic development tool in rural and isolated communities across the nation.

  8. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  9. Air transportation in the California Corridor of 2010

    NASA Technical Reports Server (NTRS)

    Cameron, M.; Mahaffy, K.; Yanagi, G.; Lechmanski, L.; Riddle, T.; Howard, K.; Chan, C.; Gorman, M.; Bauer, B.

    1989-01-01

    The topic of the 1988-1989 NASA/USRA Advanced Design Project at California Polytechnic State University, San Luis Obispo, was the development of an air transportation system to meet the needs of the California Corridor for the year 2010. As aircraft design is taught by two instructors having different philosophies about the teaching process, the two classes took different approaches to address the problem. The first part of this summary (California Air Transit System) represents the work done by the students of Professor A. E. Andreoli, who followed a systems approach, emphasizing the determination of the proper mission. The second part of the summary (Four Aircraft to Service the California Corridor) contains the four aircraft designed by Dr. D. R. Sandlin's class based on specifications determined from work done in previous years.

  10. Impact of aircraft plume dynamics on airport local air quality

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.; Waitz, Ian A.

    2013-08-01

    Air quality degradation in the locality of airports poses a public health hazard. The ability to quantitatively predict the air quality impacts of airport operations is of importance for assessing the air quality and public health impacts of airports today, of future developments, and for evaluating approaches for mitigating these impacts. However, studies such as the Project for the Sustainable Development of Heathrow have highlighted shortcomings in understanding of aircraft plume dispersion. Further, if national or international aviation environmental policies are to be assessed, a computationally efficient method of modeling aircraft plume dispersion is needed. To address these needs, we describe the formulation and validation of a three-dimensional integral plume model appropriate for modeling aircraft exhaust plumes at airports. We also develop a simplified concentration correction factor approach to efficiently account for dispersion processes particular to aircraft plumes. The model is used to explain monitoring station results in the London Heathrow area showing that pollutant concentrations are approximately constant over wind speeds of 3-12 m s-1, and is applied to reproduce empirically derived relationships between engine types and peak NOx concentrations at Heathrow. We calculated that not accounting for aircraft plume dynamics would result in a factor of 1.36-2.3 over-prediction of the mean NOx concentration (depending on location), consistent with empirical evidence of a factor of 1.7 over-prediction. Concentration correction factors are also calculated for aircraft takeoff, landing and taxi emissions, providing an efficient way to account for aircraft plume effects in atmospheric dispersion models.

  11. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was

  12. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  13. A Program in Air Transportation Technology (Joint University Program)

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1996-01-01

    The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.

  14. Boeing 747 aircraft with large external pod for transporting outsize cargo

    NASA Technical Reports Server (NTRS)

    Price, J. E.; Quartero, C. B.; Smith, P. M.; Washburn, G. F.

    1979-01-01

    The effect on structural arrangement, system weight, and range performance of the cargo pod payload carrying capability was determined to include either the bridge launcher or a spacelab module on a Boeing 747 aircraft. Modifications to the carrier aircraft and the installation time required to attach the external pod to the 747 were minimized. Results indicate that the increase in pod size was minimal, and that the basic 747 structure was adequate to safely absorb the load induced by ground or air operation while transporting either payload.

  15. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  16. Investigation of air transportation technology at Princeton University, 1985

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.

  17. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  18. Study of the cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Hopkins, J. P.

    1976-01-01

    Practical means were assessed for achieving reduced fuel consumption in commercial air transportation. Five areas were investigated: current aircraft types, revised operational procedures, modifications to current aircraft, derivatives of current aircraft and new near-term fuel conservative aircraft. As part of a multiparticipant coordinated effort, detailed performance and operating cost data in each of these areas were supplied to the contractor responsible for the overall analysis of the cost/benefit tradeoffs for reducing the energy consumption of the domestic commercial air transportation system. A follow-on study was performed to assess the potential of an advanced turboprop transport aircraft concept. To provide a valid basis for comparison, an equivalent turbofan transport aircraft concept incorporating equal technology levels was also derived. The aircraft as compared on the basis of weight, size, fuel utilization, operational characteristics and costs.

  19. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  20. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  1. Development of the Air Transport Industry

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The major developments are outlined in the U.S. scheduled air transport industry both domestic and international, together with a brief history of the European air transport system. The role and formulation of the U.S. Civil Aeronautics Board, International Civil Aviation Organization, and International Air Transport Association are also covered.

  2. Analysis of Aircraft Evasion Strategies in Air-to-Air Missille Effectiveness Models

    DTIC Science & Technology

    1975-08-01

    AD-A015 238 ANALYSIS OF AIRCRAFT EVASION STRATEGIES IN AIR-TO-AIR MISSILE EFFECTIVENESS MObri ’ G. Carpenter, et al Grumman Aerospace Corporation ...overall tep t Es CIS*atiet d) Oft ’IsNA 1tTNG AC ?v I TV ? corpor te author) 2S. REPORT SECUNITY CLASSIrICA TION Unclassified ;rummn Aerospace... Corporation b RoU N/A I NEPOA’ I ?LE nalysis of Aircraft Evasion Strategies in Air-to-Air Missile Effectiveness Models 4 DESCRIP T IVE *40TS ’Type of repct

  3. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  4. Development of an energy-absorbing passenger seat for a transport aircraft

    NASA Technical Reports Server (NTRS)

    Eichelberger, C. P.; Alfaro-Bou, E.; Fasanella, E. L.

    1985-01-01

    Commercial air transport passenger safety and survivability, in the event of an impact-survivable crash, are subjects receiving increased technical focus/study by the aviation community. A B-720 aircraft, highly instrumented, and remotely controlled from the ground by a pilot in a simulated cockpit, was crashed on a specially prepared gravel covered impact site. The aircraft was impacted under controlled conditions in an air-to-ground gear-up mode, at a nominal speed of 150 knots and 4-1/2 deg glide slope. Data from a number of on board, crash worthiness experiments provided valuable information related to structural loads/failure modes, antimisting kerosene fuel, passenger and attendant restraint systems and energy absorbing seats. The development of an energy absorbing (EA) seat accomplished through innovative modification of a typical modern standard commercial aviation transport, three passenger seat is described.

  5. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  6. Parametric study of transport aircraft systems cost and weight

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Trapp, D. L.; Kimoto, B. W.; Marsh, D. P.

    1977-01-01

    The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information.

  7. Overview of the Small Aircraft Transportation System Project Four Enabling Operating Capabilities

    NASA Technical Reports Server (NTRS)

    Viken, Sally A.; Brooks, Frederick M.; Johnson, Sally C.

    2005-01-01

    It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand still steadily increasing. NASA, FAA, and the National Consortium for Aviation Mobility (NCAM) have partnered to aid in increasing the mobility throughout the United States through the Small Aircraft Transportation System (SATS) project. The SATS project has been a five-year effort to provide the technical and economic basis for further national investment and policy decisions to support a small aircraft transportation system. The SATS vision is to enable people and goods to have the convenience of on-demand point-to-point travel, anywhere, anytime for both personal and business travel. This vision can be obtained by expanding near all-weather access to more than 3,400 small community airports that are currently under-utilized throughout the United States. SATS has focused its efforts on four key operating capabilities that have addressed new emerging technologies, procedures, and concepts to pave the way for small aircraft to operate in nearly all weather conditions at virtually any runway in the United States. These four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. The SATS project culminated with the 2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th, by showcasing the accomplishments achieved throughout the project and demonstrating that a small aircraft transportation system could be viable. The technologies, procedures, and concepts were successfully demonstrated to show that they were safe, effective, and affordable for small aircraft in near all weather conditions. The focus of this paper is to provide an overview of the technical and operational feasibility of the

  8. Investigation of air transportation technology at Princeton University, 1981

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1982-01-01

    A summary of the air transportation technology program is presented. The following topics were examined: (1) fuel use characteristics of general aviation aircraft; (2) dead-reckoning concept incorporating a fluidic rate sensor; (3) experimentation with an ultrasonic altimeter; (4) development of laser-based collision avoidance systems; (5) flight path reconstruction from sequential DME data; (6) application of fiber optics in flight control systems; and (7) voice recognition inputs for navigation/communication receiver tuning.

  9. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  10. Investigation of air transportation technology at Ohio University, 1984

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.

    1987-01-01

    The operational development of Loran-C for enroute navigation and nonprecision approaches was studied, and is only one of the many projects funded by the Joint University Program for Air Transportation at Ohio University. Other projects included work on the DATAC data bus monitor, global positioning system test bed receiver development, fiber optic data bus application in general aviation aircraft, and advanced remote monitoring techniques.

  11. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  12. Visual inspection reliability of transport aircraft

    NASA Astrophysics Data System (ADS)

    Spencer, Floyd W.

    1996-11-01

    The Federal Aviation Administration Technical Center has sponsored a visual inspection reliability program at its airworthiness assurance nondestructive inspection validation center (AANC). We report on the results of the benchmark phase of that program in which 12 inspectors were observed in two days of inspections on a Boeing 737 aircraft. All of the inspectors were currently employed with major airlines and all had experience inspecting the Boeing 737 aircraft. Each inspector spent 2 days at the AANC facility where they inspected to the same ten job cards. Each inspector was videotaped and all nonroutine repair actions were recorded for each inspector. Background information on each of the inspectors, including vision test results, was also gathered. The inspection results were correlated with the background variables. Aviation experience and a test time reflecting visual acuity were significantly correlated with performance factors. An analysis of the video tapes was performed to separate decision errors from search errors. Probability of detection curves were fit to the results of inspecting for cracks from beneath rivet heads in a task using prepared samples with known cracks.

  13. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  14. The Guardian: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  15. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  16. KC-130J Transport Aircraft (KC-130J)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-433 KC-130J Transport Aircraft (KC-130J) As of FY 2017 President’s Budget Defense Acquisition...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY

  17. NASA's Role in Aeronautics: A Workshop. Volume III - Transport Aircraft.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    The central task of a 1980 workshop on the role of the National Aeronautics and Space Administration (NASA) in aeronautics was to examine the relationship of NASA's research capabilities to the state of U.S. aviation and to make recommendations about NASA's future role in aeronautics. The specific task of the Panel on Transport Aircraft was to…

  18. Air transport of infants in Newfoundland and Labrador.

    PubMed Central

    Johnson, M. A.; Owers, J.; Horwood, P.

    1978-01-01

    Air transportation of 33 infants in small unpressurized aircraft over long distances is described. Twenty-six of the infants were transported more than 320 km in environmental temperatures varying from -35 to +21 degrees C. A commercially available incubator was used. Although more than half the infants had a rectal temperature within the normal range at the time of arrival at hospital, 12 infants had rectal temperatures above 37.5 degrees C as a result of efforts to diminish heat loss. Adequate oxygenation of infants at 3000 m in unpressurized aircraft can be difficult. Cold and vibration can affect equipment, and at high altitudes the readings from oxygen analysers may not be true. The use of an expanded transport team, which includes experienced nonmedical personnel, is particularly important in these cases. Images FIG. 1 FIG. 3 PMID:679112

  19. Study of aircraft in intraurban transportation systems, volume 3

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, D. E.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An investigation of three aircraft concepts, deflected slipstream STOL, helicopter VTOL, and fixed wing STOL, is presented. An attempt was made to determine the best concept for the intraurban transportation system. Desirability of the concept was based on ease of maintenance, development timing, reliability, operating costs, and the noise produced. Indications are that the deflected slipstream STOL is best suited for intraurban transportation. Tables and graphs are included.

  20. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  1. Estimation of glycol air emissions from aircraft deicing

    SciTech Connect

    McCready, D.

    1998-12-31

    Ethylene glycol (EG) and propylene glycol (PG)-based fluids (collectively referred to as glycol) are recognized as effective in removing and preventing snow and ice contamination on aircraft before take-off. Although much work has been done to develop an understanding of the potential impact of spent fluid run-off to water bodies, little attention has been paid to the potential environmental impact, if any, due to air emissions. In order to determine potential impact from air emissions, it is necessary to develop a protocol for estimating the glycol emissions during deicing operations. This paper presents two approaches for estimating glycol air emissions from aircraft deicing fluids (ADF) and aircraft anti-icing fluids (AAF). The first simple approach is based on emission factors and the quantity of fluid applied. The second approach estimates emissions for a typical deicing event based on site-specific parameters. Sample calculations are presented. The predicted glycol evaporation rates are quite low. Calculated emissions from ethylene glycol-based fluids are lower than emissions from PG-based fluids. The calculated air emissions for a typical event are less than a pound for EG-based fluids. The emission rate from PG-based fluids can be two times greater.

  2. Financing the Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Lloyd-Jones, D. J.

    1972-01-01

    The basic characteristics of the air transportation industry are outlined and it is shown how they affect financing requirements and patterns of production. The choice of financial timing is imperative in order to get the best interest rates available and to insure a fair return to investors. The fact that the industry cannot store its products has a fairly major effect on the amount of equipment to purchase, the amount of capital investment required, and the amount of return required to offset industry depriciation.

  3. Eagle RTS: A design for a regional transport aircraft

    NASA Technical Reports Server (NTRS)

    Bryer, Paul; Buckles, Jon; Lemke, Paul; Peake, Kirk

    1992-01-01

    This university design project concerns the Eagle RTS (Regional Transport System), a 66 passenger, twin turboprop aircraft with a range of 836 nautical miles. It will operate with a crew of two pilots and two flight attendents. This aircraft will employ the use of aluminum alloys and composite materials to reduce the aircraft weight and increase aerodynamic efficiency. The Eagle RTS will use narrow body aerodynamics with a canard configuration to improve performance. Leading edge technology will be used in the cockpit to improve flight handling and safety. The Eagle RTS propulsion system will consist of two turboprop engines with a total thrust of approximately 6300 pounds, 3150 pounds thrust per engine, for the cruise configuration. The engines will be mounted on the aft section of the aircraft to increase passenger safety in the event of a propeller failure. Aft mounted engines will also increase the overall efficiency of the aircraft by reducing the aircraft's drag. The Eagle RTS is projected to have a takeoff distance of approximately 4700 feet and a landing distance of 6100 feet. These distances will allow the Eagle RTS to land at the relatively short runways of regional airports.

  4. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel.

  5. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  6. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  7. Effect of electromagnetic interference by neonatal transport equipment on aircraft operation

    NASA Astrophysics Data System (ADS)

    Nish, William A.; Walsh, William F.; Land, Patricia; Swedenburg, Mark

    1989-06-01

    With the increase of the number of civilian air ambulance services operating in the United States, the potential to interference with any of the aircraft's electrical systems by the electromagnetic interference (EMI) produced by medical equipment is steadily increasing. About 70 percent of neonatal incubators, monitors, and ventilators tested over the past 15 years produced excessive EMI, by military standards. It is recommended that standards for acceptable EMI levels shold be developed by the FAA and that hospitals should not purchase transport equipment from manufacturers who refuse to meet EMI standards. It is also suggested that aircraft operators must be aware of possible interference with their aircraft, and insist on equipment which meets EMI standards.

  8. TAKEOFF AND LANDING PERFORMANCE CAPABILITIES OF TRANSPORT CATEGORY AIRCRAFT

    NASA Technical Reports Server (NTRS)

    Foss, W. E.

    1994-01-01

    One of the most important considerations in the design of a commercial transport aircraft is the aircraft's performance during takeoff and landing operations. The aircraft must be designed to meet field length constraints in accordance with airworthiness standards specified in the Federal Aviation Regulations. In addition, the noise levels generated during these operations must be within acceptable limits. This computer program provides for the detailed analysis of the takeoff and landing performance capabilities of transport category aircraft. The program calculates aircraft performance in accordance with the airworthiness standards of the Federal Aviation Regulations. The aircraft and flight constraints are represented in sufficient detail to permit realistic sensitivity studies in terms of either configuration modifications or changes in operational procedures. This program provides for the detailed performance analysis of the takeoff and landing capabilities of specific aircraft designs and allows for sensitivity studies. The program is not designed to synthesize configurations or to generate aerodynamic, propulsion, or structural characteristics. This type of information must be generated externally to the program and then input as data. The program's representation of the aircraft data is extensive and includes realistic limits on engine and aircraft operational boundaries and maximum attainable lift coefficients. The takeoff and climbout flight-path is generated by a stepwise integration of the equation of motion. Special features include options for nonstandard-day operation, for balanced field length, for derated throttle to meet a given field length for off-loaded aircraft, and for throttle cutback during climbout for community noise alleviation. Advanced takeoff procedures for noise alleviation such as programmed throttle and control flaps may be investigated with the program. Approach profiles may incorporate advanced procedures such as two segment

  9. Peripheral Jet Air Cushion Landing System Spanloader Aircraft. Volume I

    DTIC Science & Technology

    1979-12-01

    the Lockheed-Georgia Company attempted to solve the airport problem by use of a pressurized, trunk- type , air- cushi* landing system (ACLS) on its...which result from span distributed load type aircraft. To accomplish this objective the following study steps are performed: 1) A revised Spanloader...The fan performance characteristics, which are shown on Figure 25, were estimated by sealing an off-the-shelf Industrial type fan in accordance with

  10. Study of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Webb, H. M.

    1972-01-01

    Low density air transport refers to air service to sparsely populated regions. There are two major objectives. The first is to examine those characteristics of sparsely populated areas which pertain to air transportation. This involves determination of geographical, commercial and population trends, as well as those traveler characteristics which affect the viability of air transport in the region. The second objective is to analyze the technical, economic and operational characteristics of low density air service. Two representative, but diverse arenas, West Virginia and Arizona, were selected for analysis: The results indicate that Arizona can support air service under certain assumptions whereas West Virginia cannot.

  11. The Eliminator: A design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Hendrix, Mandy; Hoang, TY; Kokolios, Alex; Selyem, Sharon; Wardell, Mark; Winterrowd, David

    1991-01-01

    The Eliminator is the answer to the need for an affordable, maintainable, survivable, high performance close air support aircraft primarily for the United States, but with possible export sales to foreign customers. The Eliminator is twin turbofan, fixed wing aircraft with high mounted canards and low mounted wings. It is designed for high subsonic cruise and an attack radius of 250 nautical miles. Primarily it would carry 20 500 pound bombs as its main ordnance , but is versatile enough to carry a variety of weapons configurations to perform several different types of missions. It carries state of the art navigation and targeting systems to deliver its payload with pinpoint precision and is designed for maximum survivability of the crew and aircraft for a safe return and quick turnaround. It can operate from fields as short as 1800 ft. with easy maintenance for dispersed operation during hostile situations. It is designed for exceptional maneuverability and could be used in a variety of roles from air-to-air operations to anti-submarine warfare and maritime patrol duties.

  12. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    PubMed Central

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  13. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  14. Survey of projected growth and problems facing air transportation, 1975 - 1985

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Wilson, A.

    1975-01-01

    Results are presented of a survey conducted to determine the current opinion of people working in air transportation demand forecasting on the future of air transportation over the next ten years. In particular, the survey included questions on future demand growth, load factor, fuel prices, introduction date for the next new aircraft, the priorities of problems facing air transportation, and the probability of a substantial change in air transportation regulation. The survey participants included: airlines, manufacturers, universities, government agencies, and other organizations (financial institutions, private research companies, etc.). The results are shown for the average responses within the organization represented as well as the overall averages.

  15. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  16. Study of aircraft in intraurban transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Stout, E. G.; Kesling, P. H.; Matteson, H. C.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.

    1971-01-01

    An analysis of an effective short range, high density computer transportation system for intraurban systems is presented. The seven county Detroit, Michigan, metropolitan area, was chosen as the scenario for the analysis. The study consisted of an analysis and forecast of the Detroit market through 1985, a parametric analysis of appropriate short haul aircraft concepts and associated ground systems, and a preliminary overall economic analysis of a simplified total system designed to evaluate the candidate vehicles and select the most promising VTOL and STOL aircraft. Data are also included on the impact of advanced technology on the system, the sensitivity of mission performance to changes in aircraft characteristics and system operations, and identification of key problem areas that may be improved by additional research. The approach, logic, and computer models used are adaptable to other intraurban or interurban areas.

  17. Acoustical design economic trade off for transport aircraft

    NASA Astrophysics Data System (ADS)

    Benito, A.

    The effects of ICAO fixed certification limits and local ordinances on acoustic emissions from jets on commercial transport aircraft and costs of operations are explored. The regulations effectively ban some aircraft from operation over populated areas, impose curfews on airports and, in conjunction with local civil aviation rules, levy extra taxes and quotas on noisier equipment. Jet engine manufacturers have attempted to increase the flow laminarity, decrease the exhaust speed and develop acoustic liners for selected duct areas. Retrofits are, however, not usually cost effective due to increased operational costs, e.g., fuel consumption can increase after engine modification because of increased weight. Finally, an attempt is made to assess, monetarily, the costs of noise pollution, wherein fines are levied for noisy aircraft and the money is spent insulating homes from noise.

  18. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  19. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  20. Evaluation of all-electric secondary power for transport aircraft

    NASA Technical Reports Server (NTRS)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  1. Reducing Air Pollution from International Transportation

    EPA Pesticide Factsheets

    Because of their reliance on petroleum-based fuels and their dramatic growth rates in recent decades, air and sea transport are responsible for significant emissions of both traditional air pollutants and greenhouse gases.

  2. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  3. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    PubMed

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  4. Experiences performing conceptual design optimization of transport aircraft

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1984-01-01

    Optimum Preliminary Design of Transports (OPDOT) is a computer program developed at NASA Langley Research Center for evaluating the impact of new technologies upon transport aircraft. For example, it provides the capability to look at configurations which have been resized to take advantage of active controls and provide and indication of economic sensitivity to its use. Although this tool returns a conceptual design configuration as its output, it does not have the accuracy, in absolute terms, to yield satisfactory point designs for immediate use by aircraft manufacturers. However, the relative accuracy of comparing OPDOT-generated configurations while varying technological assumptions has been demonstrated to be highly reliable. Hence, OPDOT is a useful tool for ascertaining the synergistic benefits of active controls, composite structures, improved engine efficiencies and other advanced technological developments. The approach used by OPDOT is a direct numerical optimization of an economic performance index. A set of independent design variables is iterated, given a set of design constants and data. The design variables include wing geometry, tail geometry, fuselage size, and engine size. This iteration continues until the optimum performance index is found which satisfies all the constraint functions. The analyst interacts with OPDOT by varying the input parameters to either the constraint functions or the design constants. Note that the optimization of aircraft geometry parameters is equivalent to finding the ideal aircraft size, but with more degrees of freedom than classical design procedures will allow.

  5. Defense Transportation: DOD Can Better Ensure That Federal Agencies Fully Reimburse for Using Military Aircraft

    DTIC Science & Technology

    2014-02-01

    governing the use of military aircraft by senior federal government officials from DOD, other executive branch agencies, the White House ...TRANSPORTATION DOD Can Better Ensure That Federal Agencies Fully Reimburse for Using Military Aircraft Why GAO Did This Study Senior federal government ...the management and use of these aircraft . GAO was requested to examine government officials’ use of military aircraft and the regulations

  6. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be... equipment. The number of days that aircraft owned or acquired through rental or lease (but not...

  7. Experimental Aircraft Association (EAA) - AirVenture 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experimental Aircraft Association (EAA) - AirVenture 2003: Artist Robert T. McCall discussed the motivation for his new NASA century-of-flight mural during unveiling ceremonies July 30, 2003 at the EAA convention in Oshkosh, Wisconsin. A panoramic mural commissioned by NASA to depict highlights of the first century of flight was unveiled at the world's largest aviation event, the Experimental Aircraft Associations AirVenture - Oshkosh convention in Oshkosh, Wisconsin. The mural, by aviation artist Robert McCall, measures six by 18 feet. McCall was on hand with NASA Dryden Flight Research Center director Kevin Peterson and Experimental Aircraft Association president Tom Poberezny for the official unveiling at Noon July 30, 2003. The painting depicts a host of milestone aircraft and spacecraft swirling around the original Wright Flyer, symbolically airborne in front of the sun at the dawn of the age of flight. In the foreground, fliers ranging from a happy-go-lucky aviator of World War One to a pair of free-floating astronauts, anonymous behind the reflective shields of their helmets, depict the people who animate the vehicles in the painting. The mural entitled 'Celebrating One Hundred Years of Powered Flight, 1903-2003' will be exhibited at the EAA as part fo the commemoration of a century of flight and eventually will go on permanent display at NASA's Dryden Flight Research Center on Edwards Air Force Base in California. NASA Dryden director Keven Peterson said: ' This is an exciting day for us. The painting...has been years in the making. The events it records were a century in the making. But this is a celebration of the future yet to be.' Tom Poberezny said he was proud NASA chose to unveil the mural at AirVenture, 'Experimental Aircraft Association has valued the relationship it has with NASA.' Robert McCall told the audience he enjoys the awe of flight. He said he likes to think humanity is still just experiencing the beginnings of flight.

  8. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  9. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  10. Design considerations for composite fuselage structure of commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Sakata, I. F.

    1981-01-01

    The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness.

  11. Air ambulance medical transport advertising and marketing.

    PubMed

    2011-01-01

    The National Association of EMS Physicians (NAEMSP), the American College of Emergency Physicians (ACEP), the Air Medical Physician Association (AMPA), the Association of Air Medical Services (AAMS), and the National Association of State EMS Officials (NASEMSO) believe that patient care and outcomes are optimized by using air medical transport services that are licensed air ambulance providers with robust physician medical director oversight and ongoing quality assessment and review. Only air ambulance medical transport services with these credentials should advertise/market themselves as air ambulance services.

  12. Analysis of operational requirements for medium density air transportation, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The medium density air travel market is examined and defined in terms of numbers of people transported per route per day and frequency of service. The operational characteristics for aircraft to serve this market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations can be conducted. The impact of the operational characteristics on the air travel system is evaluated along with the economic viability of the study aircraft. Research and technology programs for future study consideration are identified.

  13. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  14. 49 CFR 372.117 - Motor transportation of passengers incidental to transportation by aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the zone within which motor transportation is incidental to transportation by aircraft, except as it may be individually determined as provided in paragraph (c) of this section, shall not exceed in size... or depart and by the boundaries of the commercial zones (as defined by the Secretary) of...

  15. 49 CFR 372.117 - Motor transportation of passengers incidental to transportation by aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the zone within which motor transportation is incidental to transportation by aircraft, except as it may be individually determined as provided in section (c) herein, shall not exceed in size the area... the boundaries of the commercial zones (as defined by the Secretary) of any municipalities any part...

  16. 49 CFR 372.117 - Motor transportation of passengers incidental to transportation by aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the zone within which motor transportation is incidental to transportation by aircraft, except as it may be individually determined as provided in section (c) herein, shall not exceed in size the area... the boundaries of the commercial zones (as defined by the Secretary) of any municipalities any part...

  17. Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants

    SciTech Connect

    Ueda, H.; Mitsumoto, S.; Kurita, H.

    1988-02-01

    Flow mechanism causing nightttime smog was investigated by analyzing 1) continuous records of meteorological data and concentration of oxidants (Ox) for 15 days and 2) aircraft data along the transportation route of a polluted air mass.

  18. Compound aircraft transport study: Wingtip-docking compared to formation flight

    NASA Astrophysics Data System (ADS)

    Magill, Samantha A.

    Compound Aircraft Transport (CAT) flight involves two or more aircraft using the resources of each other; a symbiotic relationship exists consisting of a host, the mothership aircraft and a parasite, the hitchhiker aircraft. Wingtip-docked flight is just as its name implies; the two aircraft are connected wingtip-to-wingtip. Formation flight describes multiple aircraft or flying objects that maintain a pattern or shape in the air. There are large aerodynamic advantages in CAT flight. The aforementioned wingtip-docked flight increases total span of the aircraft, system, and formation flight utilizes the upwash from the trailing wingtip vortex of the lead aircraft (mothership) to reduce the energy necessary to achieve and/or maintain a specific flight, goal for the hitchhiker and the system. The Stability Wind Tunnel (6 x 6 x 24 foot test section) at Virginia Tech, computational aerodynamic analysis with the vortex lattice method (VLM), and a desktop aircraft model were used to answer questions of the best location for a hitchhiker aircraft and analyze stability of the CAT system. Three CAT flight configurations were highlighted: wingtip-docked, close formation, and towed formation. The wingtip-docked configuration had a 20--40% performance benefit for the hitchhiker compared to solo flight. The close formation configuration had performance benefits for the hitchhiker approximately 10 times that of solo flight, and the towed formation was approximately 8 times better than solo flight. The VLM analysis completed and reenforced the experimental wind tunnel data. A modified VLM program (VLM CAT) incorporated multiple aircraft in various locations as well as additional calculations for induced drag. VLM CAT results clearly followed the trends seen in the wind tunnel data, but since VLM did not model the fuselage, has assumptions like a flat wake, and is an inviscid computation it did not predict the large benefits or excursions as seen in the wind tunnel data. Increases

  19. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  20. Conceptual design proposal: HUGO global range/mobility transport aircraft

    NASA Technical Reports Server (NTRS)

    Johnston, Tom; Perretta, Dave; Mcbane, Doug; Morin, Greg; Thomas, Greg; Woodward, Joe; Gulakowski, Steve

    1993-01-01

    With the collapse of the former Soviet Union and the emergence of the United Nations actively pursuing a peace keeping role in world affairs, the United States has been forced into a position as the world's leading peace enforcer. It is still a very dangerous world with seemingly never ending ideological, territorial, and economic disputes requiring the U.S. to maintain a credible deterrent posture in this uncertain environment. This has created an urgent need to rapidly transport large numbers of troops and equipment from the continental United States (CONUS) to any potential world trouble spot by means of a global range/mobility transport aircraft. The most recent examples being Operation Desert Shield/Storm and Operation Restore Hope. To meet this challenge head-on, a request for proposal (RFP) was developed and incorporated into the 1992/1993 AIAA/McDonnell Douglas Corporation Graduate Team Aircraft Design Competition. The RFP calls for the conceptual design and justification of a large aircraft capable of power projecting a significant military force without surface transportation reliance.

  1. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  2. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  3. Transporting Government Agencies on Department of Defense Aircraft

    DTIC Science & Technology

    2000-06-01

    AFIT/ GMO /ENS/00E-5 TRANSPORTING GOVERNMENT AGENCIES ON DEPARTMENT OF DEFENSE AIRCRAFT GRADUATE RESEARCH PROJECT...Scenario #3 …………………………………………………………29 iv AFIT/ GMO /ENA/00E-5 Abstract The paper examines how the Department of Defense transports other...According to the FBI, there is a trend in the international terrorist community towards more scale attacks against a maximum number of people (2:2

  4. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  6. A simulator investigation of air-to-air combat maneuvering for tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Isleib, Douglas; Johns, John

    1989-01-01

    As part of the Marine Corps's development of employment methods and maneuver techniques for the V-22 Osprey tilt-rotor aircraft, a piloted simulation study of one-on-one air-combat maneuvering (ACM) was conducted at NASA Ames. In addition to V-22 ACM, the simulation provided an opportunity for a preliminary investigation of maneuver requirements for a possible armed-escort tilt-rotor aircraft. Results from the study indicate that the tilt-rotor's low-speed masking and high-speed dash capabilities significantly enhance its survivability against both fixed-wing and helicopter aggressors. Furthermore, the tilt-rotor's conversion capability and, in turn, the variety and extent of its maneuvering characteristics make it an effective air-combat aircraft.

  7. Conceptual design of a flying boom for air-to-air refueling of passenger aircraft

    NASA Astrophysics Data System (ADS)

    Timmermans, Ir. H. S.; La Rocca, ir. G., Dr.

    2014-10-01

    This paper describes the conceptual development of a flying boom for air-to-air refuelingof passenger aircraft. This operational concept is currently evaluated within the EC project RECREATE as a possible means to achieve significant increase in overall fuel efficiency. While in military aviation aerial refueling is performed with the tankerflyingahead and above the receiver aircraft, in case of passenger aircraft, safety, cost and comfort criteria suggest to invert the set up. This unconventional configuration would require a different refueling boom, able to extend from the tanker towards the cruiser, against wind and gravity. Amultidisciplinary design optimization framework was set up to size and compare various boom design solutions free of structural divergence and sufficientlycontrollable and with minimum values of weight and drag. Oneconcept, based on an innovative kinematic mechanism, was selected for its ability to meet all design constraints, with weight and drag values comparable to conventional boom designs.

  8. Terminal area considerations for an advanced CTOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.

    1975-01-01

    Projected future conditions at large urban airports were used to identify design objectives for a long-haul, advanced transport airplane introduced for operation in the mid-1980s. Operating constraints associated with airport congestion and aircraft noise and emissions were of central interest. In addition, some of the interaction of these constraints with aircraft fuel usage were identified. The study allowed for advanced aircraft design features consistent with the future operating period. A baseline 200 passenger airplane design was modified to comply with design requirements imposed by terminal area constraints. Specific design changes included: (1) modification of engine arrangement; wing planform; (2) drag and spoiler surfaces; (3) secondary power systems; (4) brake and landing gear characteristics; and (5) the aircraft avionics. These changes, based on exploratory design estimates and allowing for technology advance, were judged to enable the airplane to: reduce wake turbulence; handle steeper descent paths with fewer limitation due to engine characteristics; reduce runway occupancy times; improve community noise contours; and reduce the total engine emittants deposited in the terminal area. The penalties to airplane performance and operating cost associated with improving the terminal area characteristics of the airplane were assessed. Finally, key research problems requiring solution in order to validate the assumed advanced airplane technology were identified.

  9. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  10. Influence of Transport on Two-Dimensional Model Simulation: 2. Stratospheric Aircraft Perturbations. 2; Stratospheric Aircraft Perturbations

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.

    1999-01-01

    We have adopted the transport scenarios used in Part 1 to examine the sensitivity of stratospheric aircraft perturbations to transport changes in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric residence time and reduced the magnitude of the negative perturbation response in total ozone. Increasing the stratospheric K(sub yy) increased the residence time and enhanced the global scale negative total ozone response. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and results in a significantly weaker perturbation response, relative to the base case, throughout the stratosphere. We found a relatively minor model perturbation response sensitivity to the magnitude of K(sub yy) in the tropical stratosphere, and only a very small sensitivity to the magnitude of the horizontal mixing across the tropopause and to the strength of the mesospheric gravity wave drag and diffusion. These transport simulations also revealed a generally strong correlation between passive NO(sub y) accumulation and age of air throughout the stratosphere, such that faster transport rates resulted in a younger mean age and a smaller NO(y) mass accumulation. However, specific variations in K(sub yy) and mesospheric gravity wave strength exhibited very little NO(sub y)-age correlation in the lower stratosphere, similar to 3-D model simulations performed in the recent NASA "Models and Measurements" II analysis. The base model transport, which gives the most favorable overall comparison with inert tracer observations, simulated a global/annual mean total ozone response of -0.59%, with only a slightly larger response in the northern compared to the

  11. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  12. The Market Demand for Air Transportation

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    Although the presentation will touch upon the areas of market for air transportation, the theoretical foundations of the demand function, the demand models, and model selection and evaluation, the emphasis of the presentation will be on a qualitative description of the factors affecting the demand for air transportation. The presentation will rely heavily on the results of market surveys carried out by the Port of New York Authority, the University of Michigan, and Census of Transportation.

  13. 49 CFR Appendix to Part 800 - Request to the Secretary of the Department of Transportation To Investigate Certain Aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... surrounding certain fixed-wing and rotorcraft aircraft accidents and to submit a report to the Board from... application, amateur-built aircraft, restricted category aircraft, and all fixed-wing aircraft which have a... Transportation To Investigate Certain Aircraft Accidents Appendix to Part 800 Transportation Other...

  14. Adaptive Control of a Transport Aircraft Using Differential Thrust

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan

    2009-01-01

    The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.

  15. Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.; Hill, Melissa A.

    2012-01-01

    A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

  16. Future regional transport aircraft market, constraints, and technology stimuli

    NASA Technical Reports Server (NTRS)

    Harvey, W. Don; Foreman, Brent

    1992-01-01

    This report provides updated information on the current market and operating environment and identifies interlinking technical possibilities for competitive future commuter-type transport aircraft. The conclusions on the market and operating environment indicate that the regional airlines are moving toward more modern and effective fleets with greater passenger capacity and comfort, reduced noise levels, increased speed, and longer range. This direction leads to a nearly 'seamless' service and continued code-sharing agreements with the major carriers. Whereas the benefits from individual technologies may be small, the overall integration in existing and new aircraft designs can produce improvements in direct operating cost and competitiveness. Production costs are identified as being equally important as pure technical advances.

  17. Aerodynamic Effects and Modeling of Damage to Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.

    2008-01-01

    A wind tunnel investigation was conducted to measure the aerodynamic effects of damage to lifting and stability/control surfaces of a commercial transport aircraft configuration. The modeling of such effects is necessary for the development of flight control systems to recover aircraft from adverse, damage-related loss-of-control events, as well as for the estimation of aerodynamic characteristics from flight data under such conditions. Damage in the form of partial or total loss of area was applied to the wing, horizontal tail, and vertical tail. Aerodynamic stability and control implications of damage to each surface are presented, to aid in the identification of potential boundaries in recoverable stability or control degradation. The aerodynamic modeling issues raised by the wind tunnel results are discussed, particularly the additional modeling requirements necessitated by asymmetries due to damage, and the potential benefits of such expanded modeling.

  18. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  19. Statewide air medical transports for Massachusetts.

    PubMed

    Garthe, Elizabeth; Mango, Nicholas K; Prenney, Brad

    2002-01-01

    In 1997, the Massachusetts Department of Public Health (MDPH) established a process to centralize air medical transport information. This database is one of the first statewide, population-based sources for civilian rotary-wing air medical transports (U.S. Coast Guard, police, and military missions are not included). The purpose of this database is to facilitate MDPH review of air medical transport service utilization, with input from a multidisciplinary committee. This article discusses the challenges in producing uniform data from multiple service submissions and presents aggregate "baseline" utilization information for 1996. These data served as a starting point for later studies using data linkage. This indexed article is the first to report statewide, population-based data for all types of air medical helicopter transports. The only other indexed "statewide air medical transport" paper focused on scene transports to trauma centers in Pennsylvania. A previous article by the authors in the July-September 2000 Air Medical Journal provided an overview of air medical transports for fatal motor vehicle crashes for 1 region of the state.

  20. Advanced cargo aircraft may offer a potential renaissance in freight transportation

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J.; Sawyer, Wallace C.

    1993-01-01

    The increasing demand for air freight transportation has prompted studies of large, aerodynamically efficient cargo-optimized aircraft capable of carrying intermodal containers, which are typically 8 x 8 x 20 ft. Studies have accordingly been conducted within NASA to ascertain the specifications and projected operating costs of such a vehicle, as well as to identify critical, development-pacing technologies. Attention is here given not only to the rather conventional, 10-turbofan engined configuration thus arrived at, but numerous innovative configurations featuring such concepts as spanloading, removable cargo pods, and ground effect.

  1. Formal Modeling and Analysis of a Preliminary Small Aircraft Transportation System (SATS)Concept

    NASA Technical Reports Server (NTRS)

    Carrreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; Kalvala, Sara

    2004-01-01

    New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues associated with the software implementations and their underlying key algorithms. The criticality of such software systems necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.

  2. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  3. Preliminary design of a family of three close air support aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Darrah, Paul; Lussier, Wayne; Mills, Nikos

    1989-01-01

    A family of three Close Air Support aircraft is presented. These aircraft are designed with commonality as the main design objective to reduce the life cycle cost. The aircraft are low wing, twin-boom, pusher turbo-prop configurations. The amount of information displayed to the pilot was reduced to a minimum to greatly simplify the cockpit. The aircraft met the mission specifications and the performance and cost characteristics compared well with other CAS aircraft. The concept of a family of CAS aircraft seems viable after preliminary design.

  4. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  5. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  6. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  7. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  8. Experimental studies of thermal environment and contaminant transport in a commercial aircraft cabin with gaspers on.

    PubMed

    Li, B; Duan, R; Li, J; Huang, Y; Yin, H; Lin, C-H; Wei, D; Shen, X; Liu, J; Chen, Q

    2016-10-01

    Gaspers installed in commercial airliner cabins are used to improve passengers' thermal comfort. To understand the impact of gasper airflow on the air quality in a cabin, this investigation measured the distributions of air velocity, air temperature, and gaseous contaminant concentration in five rows of the economy-class section of an MD-82 commercial aircraft. The gaseous contaminant was simulated using SF6 as a tracer gas with the source located at the mouth of a seated manikin close to the aisle. Two-fifths of the gaspers next to the aisle were turned on in the cabin, and each of them supplied air at a flow rate of 0.66 l/s. The airflow rate in the economy-class cabin was controlled at 10 l/s per passenger. Data obtained in a previous study of the cabin with all gaspers turned off were used for comparison. The results show that the jets from the gaspers had a substantial impact on the air velocity and contaminant transport in the cabin. The air velocity in the cabin was higher, and the air temperature slightly more uniform, when the gaspers were on than when they were off, but turning on the gaspers may not have improved the air quality.

  9. C-130J Hercules Transport Aircraft (C-130J)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-220 C-130J Hercules Transport Aircraft (C-130J) As of FY 2017 President’s Budget Defense...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY...SMS) Version 3.2 and Barometric Vertical Navigation; 3. Block 8.1 Airline Operational Control SMS addition of crew select messaging On/Off switch and

  10. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  11. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  12. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at http://ntrs.nasa.gov.

  13. Conceptual design of hybrid-electric transport aircraft

    NASA Astrophysics Data System (ADS)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  14. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

  15. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  16. Advanced cockpit technology for future civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  17. 14 CFR 291.22 - Aircraft accident liability insurance requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Aircraft accident liability insurance... for All-Cargo Air Transportation § 291.22 Aircraft accident liability insurance requirement. No air carrier shall operate all-cargo aircraft or provide all-cargo air transportation unless such carrier...

  18. An Inter-comparative Study of the Effects of Aircraft on Surface Air Quality

    NASA Astrophysics Data System (ADS)

    Cameron, M. A.; Jacobson, M. Z.; Barrett, S. R. H.; Bian, H.; Chen, C. C.; Eastham, S. D.; Gettelman, A.; Khodayari, A.; Liang, Q.; Phoenix, D. B.; Selkirk, H. B.; Unger, N.; Wuebbles, D. J.; Yue, X.

    2015-12-01

    This study inter-compares, among five global models, the potential impacts of all commercial aircraft emissions worldwide on surface ozone and PM2.5. The models include climate-response models (CRMs) with interactive meteorology, chemical-transport models (CTMs) with prescribed meteorology, and models that integrate aspects of both. Previously, few studies have addressed the effects of cruise-altitude aircraft emissions on surface air quality, and each has provided a marginally different result. Here, model inputs are substantially harmonized in an effort to achieve a consensus about the state of understanding of impacts of 2006 commercial aviation emissions. Whereas, all models find that aircraft increase near-surface ozone (0.4 to 1.9% globally), perturbations in the Northern Hemisphere are highest in winter, when ambient ozone levels are lower and potentially of not as much concern to human health compared to the higher ozone in the summer months. Changes in surface-level PM2.5 in the CTMs (0.14 to 0.4%) and CRMs (-1.9 to 1.2%) may depend on highly-varying background aerosol fields among models and the inclusion of feedbacks between aircraft emissions and changes in meteorology. The CTMs tend to show an increase in surface PM2.5 primarily over high-traffic regions in the North American mid-latitudes. The CRMs, on the other hand, demonstrate the effects of changing meteorological fields and potential feedbacks on aviation emission impacts, and exhibit large perturbations over regions where natural emissions (e.g., soil dust and sea spray) are abundant. Excluding these emissions in the CRMs results in a smaller-in-magnitude surface change due to aviation. The changes in ozone and PM2.5 found here may be used to estimate ranges in the net impacts of aircraft on human health.

  19. Investigation of air transportation technology at Princeton University, 1992-1993

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1994-01-01

    The Air Transportation Research Program at Princeton University proceeded along five avenues during the past year: (1) Flight Control System Robustness; (2) Microburst Hazards to Aircraft; (3) Wind Rotor Hazards to Aircraft; (4) Intelligent Aircraft/Airspace Systems; and (5) Aerospace Optical Communications. This research resulted in a number of publications, including theses, archival papers, and conference papers. An annotated bibliography of publications that appeared between June 1992 and June 1993 is included. The research that these papers describe was supported in whole or in part by the Joint University Program, including work that was completed prior to the reporting period.

  20. Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Dubin, A. P.

    1976-01-01

    A study has been performed to evaluate the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of the fuel-conserving alternatives has been investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000.

  1. Factors Affecting the Corporate Decision-Making Process of Air Transport Manufacturers

    NASA Technical Reports Server (NTRS)

    Ollila, R. G.; Hill, J. D.; Noton, B. R.; Duffy, M. A.; Epstein, M. M.

    1976-01-01

    Fuel economy is a pivotal question influencing the future sale and utilization of commercial aircraft. The NASA Aircraft Energy Efficiency (ACEE) Program Office has a program intended to accelerate the readiness of advanced technologies for energy efficient aircraft. Because the decision to develop a new airframe or engine is a major financial hazard for manufacturers, it is important to know what factors influence the decision making process. A method is described for identifying and ranking individuals and organizations involved at each stage of commercial air transport development, and the barriers that must be overcome in adopting new technologies.

  2. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  3. Experimental investigation of personal air supply nozzle use in aircraft cabins.

    PubMed

    Fang, Zhaosong; Liu, Hong; Li, Baizhan; Baldwin, Andrew; Wang, Jian; Xia, Kechao

    2015-03-01

    To study air passengers' use of individual air supply nozzles in aircraft cabins, we constructed an experimental chamber which replicated the interior of a modern passenger aircraft. A series of experiments were conducted at different levels of cabin occupancy. Survey data were collected focused on the reasons for opening the nozzle, adjusting the level of air flow, and changing the direction of the air flow. The results showed that human thermal and draft sensations change over time in an aircraft cabin. The thermal sensation response was highest when the volunteers first entered the cabin and decreased over time until it stablized. Fifty-one percent of volunteers opened the nozzle to alleviate a feeling of stuffiness, and more than 50% adjusted the nozzle to improve upper body comfort. Over the period of the experiment the majority of volunteers chose to adjust their the air flow of their personal system. This confirms airline companies' decisions to install the individual aircraft ventilation systems in their aircraft indicates that personal air systems based on nozzle adjustment are essential for cabin comfort. These results will assist in the design of more efficient air distribution systems within passenger aircraft cabins where there is a need to optimize the air flow in order to efficiently improve aircraft passengers' thermal comfort and reduce energy use.

  4. 19 CFR 122.53 - Aircraft of foreign registry chartered or leased to U.S. air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Aircraft of foreign registry chartered or leased... Permit § 122.53 Aircraft of foreign registry chartered or leased to U.S. air carriers. Aircraft of foreign registry leased or chartered to a U.S. air carrier, while being operated by the U.S. air...

  5. 19 CFR 122.53 - Aircraft of foreign registry chartered or leased to U.S. air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft of foreign registry chartered or leased... Permit § 122.53 Aircraft of foreign registry chartered or leased to U.S. air carriers. Aircraft of foreign registry leased or chartered to a U.S. air carrier, while being operated by the U.S. air...

  6. 19 CFR 122.53 - Aircraft of foreign registry chartered or leased to U.S. air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Aircraft of foreign registry chartered or leased... Permit § 122.53 Aircraft of foreign registry chartered or leased to U.S. air carriers. Aircraft of foreign registry leased or chartered to a U.S. air carrier, while being operated by the U.S. air...

  7. 19 CFR 122.53 - Aircraft of foreign registry chartered or leased to U.S. air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Aircraft of foreign registry chartered or leased... Permit § 122.53 Aircraft of foreign registry chartered or leased to U.S. air carriers. Aircraft of foreign registry leased or chartered to a U.S. air carrier, while being operated by the U.S. air...

  8. 19 CFR 122.53 - Aircraft of foreign registry chartered or leased to U.S. air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Aircraft of foreign registry chartered or leased... Permit § 122.53 Aircraft of foreign registry chartered or leased to U.S. air carriers. Aircraft of foreign registry leased or chartered to a U.S. air carrier, while being operated by the U.S. air...

  9. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certificated takeoff weight (as defined in section 4492(b)) of 6,000 pounds or less, unless such aircraft is... property, even though there may be stopovers in the United States (such as, for example, to consolidate... the business of transporting property by air for hire (for example, by a freight forwarder), the...

  10. Investigation of air transportation technology at Princeton University, 1990-1991

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    The Air Transportation Technology Program at Princeton University is a program that emphasizes graduate and undergraduate student research. The program proceeded along six avenues during the past year: microburst hazards to aircraft, intelligent failure tolerant control, computer-aided heuristics for piloted flight, stochastic robustness of flight control systems, neural networks for flight control, and computer-aided control system design.

  11. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  12. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  13. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  14. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission...

  15. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  16. Point-to-Point! Validation of the Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.

    2006-01-01

    Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).

  17. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  18. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  19. Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Leshane, A. A.

    1976-01-01

    The RECAT study evaluated the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of these fuel-conserving alternatives was investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000. Consequently, while the RECAT results lend insight into the directions in which technology can best be pursued for improved air transport fuel economy, no single option studied in the RECAT program is indicative of a realistic future scenario.

  20. Procedure for generating global atmospheric engine emissions data from future supersonic transport aircraft. The 1990 high speed civil transport studies

    NASA Technical Reports Server (NTRS)

    Sohn, R. A.; Stroup, J. W.

    1990-01-01

    The input for global atmospheric chemistry models was generated for baseline High Speed Civil Transport (HSCT) configurations at Mach 1.6, 2.2, and 3.2. The input is supplied in the form of number of molecules of specific exhaust constituents injected into the atmosphere per year by latitude and by altitude (for 2-D codes). Seven exhaust constituents are currently supplied: NO, NO2, CO, CO2, H2O, SO2, and THC (Trace Hydrocarbons). An eighth input is also supplied, NO(x), the sum of NO and NO2. The number of molecules of a given constituent emitted per year is a function of the total fuel burned by a supersonic fleet and the emission index (EI) of the aircraft engine for the constituent in question. The EIs for an engine are supplied directly by the engine manufacturers. The annual fuel burn of a supersonic fleet is calculated from aircraft performance and economic criteria, both of which are strongly dependent on basic design parameters such as speed and range. The altitude and latitude distribution of the emission is determined based on 10 Intern. Air Transport Assoc. (IATA) regions chosen to define the worldwide route structure for future HSCT operations and the mission flight profiles.

  1. Air Quality in the Mid-Atlantic/Northeast Region: An Aircraft Survey

    NASA Astrophysics Data System (ADS)

    Marufu, L. T.; Doddridge, B.; Taubman, B.; Piety, C.

    2002-12-01

    Parts of the U.S. Mid-Atlantic and Northeast are frequently in violation of the 125 ppbv 1-hr national ambient air quality standard for ozone (O3). The frequency of occurrence and spatial coverage of these violations are expected to increase when/if new standards for fine particulate matter (PM) and ozone averaged over 8-hr come into effect. Online aircraft measurements provide a powerful tool for determining the levels and origins of both primary and secondary pollutants of interest. During the summer of 2002 the University of Maryland at College Park used a twin engine Piper Aztec-F PA-27-250 aircraft to; investigate pollution transport (ozone, haze, and gaseous precursors) over region, state, and class 1 area boundaries; characterize planetary boundary layer (PBL) height, dynamics and development; investigate cross-corridor (transport corridors, metropolitan/ industrial areas) differences in air quality aloft leading to downwind enhancements in pollutants; investigate mesoscale and sub-regional transport influences (e.g. bay and sea breezes, low-level jets, urban island effects) upon near surface air quality and visibility; acquire in situ data for initialization, constraint, and evaluation of ongoing and planned measurement analyses efforts and modeling studies within the region. A total of 54 research flights (192.5 hours), consisting of fixed-position vertical survey spirals and constant altitude transects, were made upwind, near and downwind of selected major cities/industrial areas, transport corridors and class 1 areas in the Northeast, Mid-Atlantic regions. Preliminary results from upwind, near and downwind data show that major cities/industrial areas (Richmond, Washington, Baltimore, Philadelphia, New York and Boston) and transport corridors are net sources of primary and secondary pollutants (gaseous precursors, ozone, and haze). Class 1 areas (Shenandoah national park VA, Lye Brook NY, Mt. Washington in New Hampshire NH and Acadia in ME), on the other

  2. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  3. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  4. Small Aircraft Transportation System Simulation Analysis of the HVO and ERO Concepts

    NASA Technical Reports Server (NTRS)

    Millsaps, Gary D.; Yackovetsky, Robert E. (Technical Monitor)

    2003-01-01

    It is acknowledged that the aviation and aerospace industries are primary forces influencing the industrial development and economic well being of the United States and many countries around the world. For decades the US national air transportation system has been the model of success - safely and efficiently moving people, cargo, goods and services and generating countless benefits throughout the global community; however, the finite nature of the system and many of its components is becoming apparent. Without measurable increases in the capacity of the national air transportation system, delays and service delivery failures will eventually become intolerable. Although the recent economic slowdown has lowered immediate travel demands, that trend is reversing and cargo movement remains high. Research data indicates a conservative 2.5-3.0% annual increase in aircraft operations nationwide through 2017. Such growth will place additional strains upon a system already experiencing capacity constraints. The stakeholders of the system will continue to endure ever-increasing delays and abide lesser levels of service to many lower population density areas of the country unless more efficient uses of existing and new transportation resources are implemented. NASA s Small Aircraft Transportation System program (SATS) is one of several technologies under development that are aimed at using such resources more effectively. As part of this development effort, this report is the first in a series outlining the findings and recommendations resulting from a comprehensive program of multi-level analyses and system engineering efforts undertaken by NASA Langley Research Center s Systems Analysis Branch (SAB). These efforts are guided by a commitment to provide systems-level analysis support for the SATS program. Subsequent efforts will build upon this early work to produce additional analyses and benefits studies needed to provide the technical and economic basis for national

  5. Propulsion challenges and opportunities for high-speed transport aircraft

    NASA Technical Reports Server (NTRS)

    Strack, William C.

    1987-01-01

    For several years there was a growing interest in the subject of efficient sustained supersonic cruise technology applied to a high-speed transport aircraft. The major challenges confronting the propulsion community for supersonic transport (SST) applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraints. A very large improvement in propulsion system efficiency is needed both at supersonic and subsonic cruise conditions. Toward that end, several advanced engine concepts are being considered that, together with advanced discipline and component technologies, promise at least 40 percent better efficiency that the Concorde engine. The quest for higher productivity through higher speed is also thwarted by the lack of a conventional, low-priced fuel that is thermally stable at the higher temperatures associated with faster flight. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage 3 noise levels. Innovative solutions may be necessary to reach acceptably low noise. While the technical challenges are indeed formidable, it is reasonable to assume that the current shortfalls in fuel economy and noise can be overcome through an aggressive propulsion research program.

  6. Formal Methods Applications in Air Transportation

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  7. 78 FR 26103 - Proposed Standard Operating Procedure (SOP) of the Aircraft Certification Service (AIR) Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Service (AIR) Project Prioritization and Resource Management ACTION: Notice of availability and request... process used to prioritize certification projects and manage certification project resources when local... Operating Procedure--Aircraft Certification Service Project Prioritization. FOR FURTHER INFORMATION...

  8. 76 FR 54528 - Standard Operating Procedures (SOP) of the Aircraft Certification Service (AIR) Process for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... (AIR) Process for the Sequencing of Certification and Validation Projects AGENCY: Federal Aviation...) standard operating procedure (SOP) describing the process used to sequence certification projects that are... Procedure--Aircraft Certification Service Project Sequencing to: Federal Aviation Administration,...

  9. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  10. Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion

    NASA Technical Reports Server (NTRS)

    Correnti, Vincenzo; Ignaccolo, Matteo; Capri, Salvatore; Inturri, Giuseppe

    2006-01-01

    The volume of air traffic worldwide is still in constant growth despite unfair events that sometimes occur. The demand for regional air transport is also increasing, thanks in part to the use of new vehicles purposely designed for short range flights which make this means of transport more attractive than in the past. This paper studies the possibility of using aircraft capable of vertical or short takeoff or landing (V/STOL), in particular the tiltrotor, in the regional air transport market and the impact on airport capacity that the use of this craft would have. With this in mind the advantages and disadvantages of using this vehicle are identified, as well as the changes to be made to the air transport system in order to exploit its full potential.

  11. No Winglets: What a Drag...Argument for Adding Winglets to Large Air Force Aircraft

    DTIC Science & Technology

    2008-01-01

    22134-5068 MASTER OF MILITARY STUDIES NO WINGLETS : WHAT A DRAG... ARGUMENT FOR ADDING WINGLETS TO LARGE AIR FORCE AIRCRAFT ,SUBMITTED IN PARTIAL...currently valid OMB control number. 1. REPORT DATE 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE No Winglets ...What a Drag...Argument for Adding Winglets to Large Air Force Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  12. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2007-02-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1), as was the

  13. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2006-12-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia only six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was indeed found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface due to the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1

  14. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.

    PubMed

    Alves, J G; Mairos, J C

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Institute of Radiation Protection (Neuherberg, Germany). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Institute, Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made.

  15. The Simulation of a Jumbo Jet Transport Aircraft. Volume 2: Modeling Data

    NASA Technical Reports Server (NTRS)

    Hanke, C. R.; Nordwall, D. R.

    1970-01-01

    The manned simulation of a large transport aircraft is described. Aircraft and systems data necessary to implement the mathematical model described in Volume I and a discussion of how these data are used in model are presented. The results of the real-time computations in the NASA Ames Research Center Flight Simulator for Advanced Aircraft are shown and compared to flight test data and to the results obtained in a training simulator known to be satisfactory.

  16. Potential of hydrogen fuel for future air transportation systems.

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.

    1973-01-01

    Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.

  17. Office of Inspector General audit report on aircraft and air service management programs

    SciTech Connect

    1999-01-01

    The Department of Energy`s (DOE) Albuquerque Operations Office (Albuquerque) owns seven aircraft that support defense programs, research and development efforts, emergency response programs, and official travel of Government and contractor employees. An Office of Inspector General (OIG) report, issued in 1994, identified concerns with Albuquerque`s cost for air service. Since that report, there have been reductions in cost and personnel indicating changes in air service requirements. This audit was conducted to determine (1) whether costs to operate Albuquerque`s aircraft were excessive and (2) if individual aircraft in the fleet were justified.

  18. Air pollution from aircraft operations at San Jose Municipal Airport, California

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1978-01-01

    The amount of air pollution discharged by arriving and departing aircraft at the San Jose Municipal Airport was estimated. These estimates were made for each one hour interval of a summer weekday in 1977. The contributions of both general aviation (personal and business aircraft) and certified air carriers (scheduled airliners) were considered. The locations at which the pollutants were discharged were estimated by approximating the flight paths of arriving and departing aircraft. Three types of pollutants were considered: carbon monoxide, hydrocarbons, and oxides of nitrogen.

  19. Analysis and testing of stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.; Wattman, W. J.

    1972-01-01

    Testing and evaluation of stability augmentation systems for aircraft flight control were conducted. The flutter suppression system analysis of a scale supersonic transport wing model is described. Mechanization of the flutter suppression system is reported. The ride control synthesis for the B-52 aeroelastic model is discussed. Model analyses were conducted using equations of motion generated from generalized mass and stiffness data.

  20. The energy dilemma and its impact on air transportation

    NASA Technical Reports Server (NTRS)

    Dyer, C. R. (Editor); Sincoff, M. Z. (Editor); Cribbins, P. D. (Editor)

    1973-01-01

    The dimensions of the energy situation are discussed in relation to air travel. Energy conservation, fuel consumption, and combustion efficiency are examined, as well as the proposal for subsonic aircraft using hydrogen fuel.

  1. Analytic and subjective assessments of operator workload imposed by communications tasks in transport aircraft

    NASA Technical Reports Server (NTRS)

    Eckel, J. S.; Crabtree, M. S.

    1984-01-01

    Analytical and subjective techniques that are sensitive to the information transmission and processing requirements of individual communications-related tasks are used to assess workload imposed on the aircrew by A-10 communications requirements for civilian transport category aircraft. Communications-related tasks are defined to consist of the verbal exchanges between crews and controllers. Three workload estimating techniques are proposed. The first, an information theoretic analysis, is used to calculate bit values for perceptual, manual, and verbal demands in each communication task. The second, a paired-comparisons technique, obtains subjective estimates of the information processing and memory requirements for specific messages. By combining the results of the first two techniques, a hybrid analytical scale is created. The third, a subjective rank ordering of sequences of communications tasks, provides an overall scaling of communications workload. Recommendations for future research include an examination of communications-induced workload among the air crew and the development of simulation scenarios.

  2. National Transportation Safety Board Aircraft Accident Investigation Supported

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    1999-01-01

    The main purpose of this investigation was for NASA to help the National Transportation Safety Board (NTSB) gain better understanding of the events that led to the loss of Comair Flight 3272 over Monroe, Michigan, on January 9, 1997. In-flight icing was suspected as being the primary cause of this accident. Of particular interest to the Safety Board was what NASA could learn about the potential performance degradation of the wing of the Embraer EMB-120 twin-turboprop commuter aircraft with various levels of ice contamination. NASA agreed to undertake (1) ice-accretion prediction computations with NASA s LEWICE program to bound the kind of contaminations that the vehicle may have developed, (2) testing in the NASA Lewis Research Center's Icing Research Tunnel to verify and refine the ice shapes developed by LEWICE, (3) a two-dimensional Navier- Stokes analysis to determine the performance degradation that those ice shapes could have caused, and (4) an examination using three-dimensional Navier-Stokes codes to study the three-dimensional effects of ice contamination.

  3. A concept for adaptive performance optimization on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R.; Enns, Dale F.

    1995-01-01

    An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.

  4. Impacts of aircraft emissions on the air quality near the ground

    NASA Astrophysics Data System (ADS)

    Lee, H.; Olsen, S. C.; Wuebbles, D. J.; Youn, D.

    2013-01-01

    The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the separated effects of aviation emissions occurring in the low, middle and upper troposphere. We show that emissions near cruise altitudes rather than emissions during landing and take-off are responsible for most of the total odd-nitrogen (NOy), ozone (O3) and aerosol perturbations near the ground with a noticeable seasonal difference. Overall, the perturbations of these species are smaller than 1 ppb even in winter when the perturbations are greater than in summer. Based on the widely used air quality standards and uncertainty of state-of-the-art models, we conclude that aviation-induced perturbations have a negligible effect on air quality even in areas with heavy air traffic. Aviation emissions lead to a less than 1% aerosol enhancement in the boundary layer due to a slight increase in ammonium nitrate (NH4NO3) during cold seasons and a statistically insignificant aerosol perturbation in summer. In addition, statistical analysis using probability density functions, Hellinger distance, and p-value indicate that aviation emissions outside the boundary layer do not affect the occurrence of extremely high aerosol concentrations in the boundary layer. An additional sensitivity simulation assuming the doubling of surface ammonia emissions demonstrates that the aviation induced aerosol increase near the ground is highly dependent on background ammonia concentrations whose current range of uncertainty is large.

  5. Impacts of aircraft emissions on the air quality near the ground

    NASA Astrophysics Data System (ADS)

    Lee, H.; Olsen, S. C.; Wuebbles, D. J.; Youn, D.

    2013-06-01

    The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The large-scale effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the separated effects of aviation emissions occurring in the low, middle and upper troposphere. We show that emissions near cruise altitudes (9-11 km in altitude) rather than emissions during landing and take-off are responsible for most of the total odd-nitrogen (NOy), ozone (O3) and aerosol perturbations near the ground with a noticeable seasonal difference. Overall, the perturbations of these species are smaller than 1 ppb even in winter when the perturbations are greater than in summer. Based on the widely used air quality standards and uncertainty of state-of-the-art models, we conclude that aviation-induced perturbations have a negligible effect on air quality even in areas with heavy air traffic. Aviation emissions lead to a less than 1% aerosol enhancement in the boundary layer due to a slight increase in ammonium nitrate (NH4NO3) during cold seasons and a statistically insignificant aerosol perturbation in summer. In addition, statistical analysis using probability density functions, Hellinger distance, and p value indicate that aviation emissions outside the boundary layer do not affect the occurrence of extremely high aerosol concentrations in the boundary layer. An additional sensitivity simulation assuming the doubling of surface ammonia emissions demonstrates that the aviation induced aerosol increase near the ground is highly dependent on background ammonia concentrations whose current range of uncertainty is large.

  6. Trends in cabin air quality of commercial aircraft: industry and passenger perspectives.

    PubMed

    Hocking, Martin B

    2002-01-01

    The small air space available per person in a fully occupied aircraft passenger cabin accentuates the human bioeffluent factor in the maintenance of air quality. The accumulation of carbon dioxide and other contributions to poor air quality that can occur with inadequate ventilation, even under normal circumstances, is related to the volume of available air space per person and various ventilation rates. This information is compared with established air quality guidelines to make specific recommendations with reference to aircraft passenger cabins under both normal and abnormal operating conditions. The effects of respiration on the air quality of any enclosed space from the respiration of a resting adult are estimated using standard equations. Results are given for different volumes of space per person, for zero air exchange, and for various air change rates. The required ventilation rates estimated in this way compared closely with results calculated using a standard empirical formula. The results confirm that the outside air ventilation required to achieve a target carbon dioxide concentration in the air of an occupied enclosed space remains the same regardless of the volume of that space. The outside air ventilation capability of older and more recent aircraft is then reviewed and compared with the actual measurements of cabin air quality for these periods. The correlation between calculated and measured aircraft cabin carbon dioxide concentrations from other studies was very good. Respiratory benefits and costs of returning to the 30% higher outside air ventilation rates and 8% higher cabin pressures of the 1960s and 1970s are outlined. Consideration is given to the occasional occurrence of certain types of aircraft malfunction that can introduce more serious contaminants to the aircraft cabin. Recommendations and suggestions for aircraft builders and operators are made that will help improve aircraft cabin air quality and the partial pressure of oxygen that

  7. Opportunities to Improve Air Quality through Transportation Pricing Programs

    EPA Pesticide Factsheets

    This document is intended to give state and local air quality and transportation planners,elected government officials, and other interested parties background information on transportation pricing programs.

  8. Study of aircraft in intraurban transportation systems, San Francisco Bay area

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The nine-county San Francisco Bay area is examined in two time periods (1975-1980 and 1985-1990) as a scenario for analyzing the characteristics of an intraurban, commuter-oriented aircraft transportation system. Aircraft have dominated the long-haul passenger market for some time, but efforts to penetrate the very-short-haul intraurban market have met with only token success. Yet, the characteristics of an aircraft transportation system-speed and flexibility-are very much needed to solve the transportation ills of our major urban areas. This study attempts to determine if the aircraft can contribute toward solving the transportation problems of major metropolitan areas and be economically viable in such an environment.

  9. DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.

    DTIC Science & Technology

    JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)

  10. Study of the application of hydrogen fuel to long-range subsonic transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility, practicability, and potential advantages/disadvantages of using liquid hydrogen as fuel in long range, subsonic transport aircraft of advanced design were studied. Both passenger and cargo-type aircraft were investigated. To provide a valid basis for comparison, conventional hydrocarbon (Jet A) fueled aircraft were designed to perform identical missions using the same advanced technology and meeting the same operational constraints. The liquid hydrogen and Jet A fueled aircraft were compared on the basis of weight, size, energy utilization, cost, noise, emissions, safety, and operational characteristics. A program of technology development was formulated.

  11. Factors affecting the retirement of commercial transport jet aircraft

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.; Swanson, J. A.

    1978-01-01

    A brief historical background of the technology and economics of aircraft replacement and retirement in the prejet era is presented to see whether useful insights can be obtained applicable to the jet area. Significant differences between the two periods were demonstated. Current technological and operational economic perspectives were investigated in detail. Some conclusions are drawn to aircraft retirement policies.

  12. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft; manned free balloons; special classes of aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates §...

  13. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft; manned free balloons; special classes of aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates §...

  14. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft; manned free balloons; special classes of aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates §...

  15. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft; manned free balloons; special classes of aircraft..., DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates §...

  16. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    PubMed

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft.

  17. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  18. A review of ONERA aerodynamic research in support of a future supersonic transport aircraft

    NASA Astrophysics Data System (ADS)

    Thibert, J. J.; Arnal, D.

    2000-11-01

    The ONERA activities concerning the aerodynamics of the future supersonic transport aircraft are reviewed. Section 1 is devoted to the performance prediction and detailed comparisons between CFD and wind-tunnel data are presented and discussed. Section 2 addresses the problem of the drag prediction in cruise flight conditions from wind-tunnel data. Skin friction coefficients values measured in flight are compared to the results of boundary layer computations. Section 3 is devoted to wing designs with numerical optimisation techniques. Several examples are presented and discussed. Results concerning riblets and laminar flow control are given in Section 4 part which also will present experiments carried out for attachment line contamination investigation. Results from basic research on supersonic laminar flows are also be presented. Section 5 deals with activities on air intake aerodynamics. After a brief recall of supersonic air intakes operational modes and a description of the Concorde air intake, comparisons between CFD and wind tunnel data on a generic 2D intake are presented. Basic experiments on intake internal flow are described and the problem of the internal shock control is addressed.

  19. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  20. The transfer of carbon fibers through a commercial aircraft water separator and air cleaner

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.

    1979-01-01

    The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.

  1. Application of Hybrid Laminar Flow Control to Global Range Military Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1988-01-01

    A study was conducted to evaluate the application of hybrid laminar flow control (HLFC) to global range military transport aircraft. The global mission included the capability to transport 132,500 pounds of payload 6500 nautical miles, land and deliver the payload and without refueling return 6500 nautical miles to a friendly airbase. The preliminary design studies show significant performance benefits obtained for the HLFC aircraft as compared to counterpart turbulent flow aircraft. The study results at M=0.77 show that the largest benefits of HLFC are obtained with a high wing with engines on the wing configuration. As compared with the turbulent flow baseline aircraft, the high wing HLFC aircraft shows 17 percent reduction in fuel burned, 19.2 percent increase in lift-to-drag ratio, an insignificant increase in operating weight, and a 7.4 percent reduction in gross weight.

  2. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  3. Transport and urban air pollution in India.

    PubMed

    Badami, Madhav G

    2005-08-01

    The rapid growth in motor vehicle activity in India and other rapidly industrializing low-income countries is contributing to high levels of urban air pollution, among other adverse socioeconomic, environmental, health, and welfare impacts. This paper first discusses the local, regional, and global impacts associated with air pollutant emissions resulting from motor vehicle activity, and the technological, behavioral, and institutional factors that have contributed to these emissions, in India. The paper then discusses some implementation issues related to various policy measures that have been undertaken, and the challenges of the policy context. Finally, the paper presents insights and lessons based on the recent Indian experience, for better understanding and more effectively addressing the transport air pollution problem in India and similar countries, in a way that is sensitive to their needs, capabilities, and constraints.

  4. California air transportation study: A transportation system for the California Corridor of the year 2010

    NASA Technical Reports Server (NTRS)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  5. Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1981-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.

  6. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... 29 Labor 4 2010-07-01 2010-07-01 false National Air Transport Adjustment Board. 1202.12 Section... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  7. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... 29 Labor 4 2011-07-01 2011-07-01 false National Air Transport Adjustment Board. 1202.12 Section... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  8. Outcome, transport times, and costs of patients evacuated by helicopter versus fixed-wing aircraft.

    PubMed Central

    Thomas, F.; Wisham, J.; Clemmer, T. P.; Orme, J. F.; Larsen, K. G.

    1990-01-01

    We determined the differences in transport times and costs for patients transported by fixed-wing aircraft versus helicopter at ranges of 101 to 150 radial miles, where fixed-wing and helicopter in-hospital transports commonly overlap. Statistical analysis failed to show a significant difference between the trauma-care patients transported by helicopter (n = 109) and those transported by fixed-wing (n = 86) for age, injury severity score, hospital length of stay, hospital mortality, or discharge disability score. The times in returning patients to the receiving hospital by helicopter (n = 104) versus fixed-wing (n = 509) did not differ significantly. Helicopter transport costs per mile ($24), however, were 400% higher than those of fixed-wing aircraft with its associated ground ambulance transport costs ($6). Thus, helicopter transport is economically unjustified for interhospital transports exceeding 100 radial miles when an efficient fixed-wing service exists. PMID:2389575

  9. A study of subsonic transport aircraft configurations using hydrogen (H2) and methane (CH4) as fuel

    NASA Technical Reports Server (NTRS)

    Snow, D. B.; Avery, B. D.; Bodin, L. A.; Baldasare, P.; Washburn, G. F.

    1974-01-01

    The acceptability of alternate fuels for future commercial transport aircraft are discussed. Using both liquid hydrogen and methane, several aircraft configurations are developed and energy consumption, aircraft weights, range and payload are determined and compared to a conventional Boeing 747-100 aircraft. The results show that liquid hydrogen can be used to reduce aircraft energy consumption and that methane offers no advantage over JP or hydrogen fuel.

  10. A Preliminary Study of V/STOL Transport Aircraft and Bibliography of NASA Research in the VTOL-STOL Field

    NASA Technical Reports Server (NTRS)

    1961-01-01

    This group of papers was prepared by the staff of the Langley Research Center to assist in planning for future commercial air-transport facilities in the New York metropolitan area. Areas of particular interest were predictions regarding the types of V/STOL aircraft that are likely to be developed for various commercial transport applications, estimates of the performance and probable operating procedures for such aircraft, and the approximate dates these aircraft could be available for use. Although the NASA has made no comprehensive studies of this type, the extensive research program in the VTOL-STOL field during the last 10 years appeared to provide a source for some of the desired information . The five papers included herein were therefore prepared to summarize pertinent available material in a form suitable for the intended use. In several instances, new studies and analysis were required to provide the necessary information, but because of a time deadline, many of the significant points received only a cursory examination. For example, much of the quantitative data used in the papers for making generalized comparisons was obtained by approximate methods and is not considered appropriate for use in applications where precise estimates are required. It should be recognized, then, that the treatment of the V/STOL transport provided by this group of papers is necessarily of a preliminary nature.

  11. Propulsion system study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Hirschkron, R.; Warren, R. E.

    1981-01-01

    Propulsion system technologies applicable to the generation of commuter airline aircraft expected to enter service in the 1990's are identified and evaluated in terms of their impact on aircraft operating economics and fuel consumption. The most promising technologies in the areas of engine, propeller, gearbox, and nacelle design are recommended for future research. Each item under consideration is evaluated relative to a modern baseline engine, the General Electric CT7-5, in a current technology aircraft flying a fixed range and payload. The analysis is presented for two aircraft sizes (30 and 50 passenger), over a range of mission lengths (100 to 1100 km) and fuel costs ($264 to $396 per cu m).

  12. Development of EPA aircraft piston engine emission standards. [for air quality

    NASA Technical Reports Server (NTRS)

    Houtman, W.

    1976-01-01

    Piston engine light aircraft are significant sources of carbon monoxide in the vicinity of high activity general aviation airports. Substantial reductions in carbon monoxide were achieved by fuel mixture leaning using improved fuel management systems. The air quality impact of the hydrocarbon and oxides of nitrogen emissions from piston engine light aircraft were insufficient to justify the design constraints being confronted in present control system developments.

  13. Future Air Force aircraft propulsion control systems: The extended summary paper

    NASA Technical Reports Server (NTRS)

    Skira, C. A.

    1980-01-01

    Hydromechanical control technology simply cannot compete against the performance benefits offered by electronics. Future military aircraft propulsion control systems will be full authority, digital electronic, microprocessor base systems. Anticipating the day when microprocessor technology will permit the integration and management of aircraft flight control, fire control and propulsion control systems, the Air Force Aero Propulsion Laboratory is developing control logic algorithms for a real time, adaptive control and diagnostic information system.

  14. On a global aerodynamic optimization of a civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Savu, G.; Trifu, O.

    1991-01-01

    An aerodynamic optimization procedure developed to minimize the drag to lift ratio of an aircraft configuration: wing - body - tail, in accordance with engineering restrictions, is described. An algorithm developed to search a hypersurface with 18 dimensions, which define an aircraft configuration, is discussed. The results, when considered from the aerodynamic point of view, indicate the optimal configuration is one that combines a lifting fuselage with a canard.

  15. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  16. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  17. The SnoDog: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Ashbaugh, Scott; Bartel, Kent; Cavalli, J. R.; Chan, John; Chung, Jason; Dimaranan, Liza; Freese, Mike; Levitt, Rick; Soban, Dani

    1991-01-01

    U.S. military forces are presently searching for the next generation Close Air Support aircraft. The following report presents the SnoDog, a low-cost ($14.8 million) aircraft capable of operating from remote battlefields and unimproved airstrips. The configuration consists of a conventional, low aspect-ratio wing, twin booms, twin canted vertical stabilizers along with a high-mounted joined horizontal tail. A supercritical airfoil for the wing enhances aerodynamic performance, while the SnoDog's instability increases maneuverability over current close air support aircraft. Survivability was incorporated into the design by the use of a titanium tub to protect the cockpit from anti-aircraft artillery, as well as, the twin booms and retracted gear disposition. The booms aid survivability by supplying separated, redundant controls, and the landing gear are slightly exposed when retracted to enable a belly landing in emergencies. Designed to fly at Mach .76, the SnoDog is powered by two low-bypass turbofan engines. Engine accessibility and interchangeable parts make the SnoDog highly maintainable. The SnoDog is adaptable to many different missions, as it is capable of carrying advanced avionics pods, carrying external fuel tanks or refueling in-air, and carrying various types of munitions. This makes the SnoDog a multirole aircraft capable of air-to-air and air-to-ground combat. This combination of features make the SnoDog unique as a close air support aircraft, capable of meeting the U.S. military's future needs.

  18. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  19. Investigation of air transportation technology at Massachusetts Institute of Technology, 1986

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1988-01-01

    There were three areas of research sponsored in the Flight Transportation Lab. at MIT under the Joint University Research Program during 1986. The first was the completion of efforts investigating the possibility of using Loran-C for final approach guidance to a runway; the second is a preliminary exploration of the application of automated speech recognition in Air Traffic Control; the third is a continuation of a series of research topics into aircraft icing problems.

  20. Investigation of Air Transportation Technology at Princeton University, 1989-1990

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1990-01-01

    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given.

  1. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  2. Driving Parameters for Distributed and Centralized Air Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Feron, Eric

    2001-01-01

    This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.

  3. Proceedings of the Air Transportation Management Workshop

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard (Editor); Tashker, Michael G. (Editor); Boyle, Angela M. (Editor)

    1995-01-01

    The Air Transportation Management (ATM) Workshop was held 31 Jan. - 1 Feb. 1995 at NASA Ames Research Center. The purpose of the workshop was to develop an initial understanding of user concerns and requirements for future ATM capabilities and to initiate discussions of alternative means and technologies for achieving more effective ATM capabilities. The topics for the sessions were as follows: viewpoints of future ATM capabilities, user requirements, lessons learned, and technologies for ATM. In addition, two panel sessions discussed priorities for ATM, and potential contributions of NASA to ATM. The proceedings contain transcriptions of all sessions.

  4. [Long-haul intensive care transports by air].

    PubMed

    Graf, Jürgen; Seiler, Olivier; Pump, Stefan; Günther, Marion; Albrecht, Roland

    2013-03-01

    The need for inter-hospital transports over long distances aboard air ambulances or airlines has increased in recent years, both in the civil as well as the military sector. More often severely ill intensive care patients with multiple organ failure and appropriate supportive care (e.g. mechanical ventilation, catecholamines, dialysis, cardiac assist devices) are transported by air. Despite the fact that long-haul intensive care transports by air ambulance and airlines via Patient Transport Compartment (PTC) are considered established modes of transport they always provide a number of challenges. Both modes of transport have distinct logistical and medical advantages and disadvantages. These-as well as the principal risks of an air-bound long-haul intensive care transport -have to be included in the risk assessment and selection of means of transport. Very often long-haul intensive care transports are a combination of air ambulance and scheduled airlines utilizing the PTC.

  5. Considerations Relative to the Use of Canes by Blind Travelers in Air Carrier Aircraft Cabins,

    DTIC Science & Technology

    1980-07-01

    U) JUL 80 R F CHANDLER , J 0 GARNER, D L LOWREY UNCLASSIF lED FAAA-012EEEMEh EIEF’Tmom FAA-AM-80-12 CONSIDERATIONS RELATIVE TO THE USE OF CANES BY...BLIND TRAVELERS IN AIR CARRIER AIRCRAFT CABINS 0R. F. Chandler , J. D. Garner, D. L. Lowrey, qJ. G. Blethrow, and J. A. Anderson Civil Aeromedical...TRAVELERS IN AIR CARRIER AIRCRAFT CABINS 6 Perarming Organization Code .. PerformingOrgan ationReport No. 7.Au R. F. Chandler J. D./Garner D. L./Lowrey J

  6. Conflict Detection and Resolution for Future Air Transportation Management

    NASA Technical Reports Server (NTRS)

    Krozel, Jimmy; Peters, Mark E.; Hunter, George

    1997-01-01

    With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft.

  7. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  8. Propulsion Study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  9. Impact data from a transport aircraft during a controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Alfaro-Bou, E.; Hayduk, R. J.

    1986-01-01

    On December 1, 1984, the FAA and NASA conducted a remotely piloted air-to-ground crash test of a Boeing 720 transport aircraft instrumented to measure crash loads of the structure and the anthropomorphic dummy passengers. Over 330 time histories of accelerations and loads collected during the Full-Scale Transport Controlled Impact Demonstration (CID) for the 1-sec period after initial impact are presented. Although a symmetric 1 deg. nose-up attitude with a 17 ft/sec sink rate was planned, the plane was yawed and rolled 13 deg. at initial (left-wing) impact. The first fuselage impact occurred near the nose wheel well with the nose pitched down 2.5 deg. Peak normal (vertical) floor accelerations were highest in the cockpit and forward cabin near the nose wheel well and were approximately 14G. The remaining cabin floor received normal acceleration peaks of 7G or less. The peak longitudinal floor accelerations showed a similar distribution, with the highest (7G) in the cockpit and forward cabin, decreasing to 4G or less toward the rear. Peak transverse floor accelerations ranged from about 5G in the cockpit to 1G in the aft fuselage.

  10. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  11. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  12. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 6: Systems analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems analysis of the quiet turbofan aircraft for short-haul transportation was conducted. The purpose of the study was to integrate the representative data generated by aircraft, market, and economic analyses. Activities of the study were to develop the approach and to refine the methodologies for analytic tradeoff, and sensitivity studies of propulsive lift conceptual aircraft and their performance in simulated regional airlines. The operations of appropriate airlines in each of six geographic regions of the United States were simulated. The offshore domestic regions were evaluated to provide a complete domestic evaluation of the STOL concept applicability.

  13. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  14. Remotely Piloted Aircraft (RPA) Performing the Air Refueling Mission

    DTIC Science & Technology

    2012-06-01

    designed as a test of the feasibility of putting fuel on ships in such a way that aircraft could grab it and refuel in-flight on transatlantic flights. On...AR technology has evolved little in the last 50 years; the AF still uses the same basic refueling systems designed for SAC over half a century ago...to say that an additional advantage is the time compression from design , flight testing and operational delivery since the basic airframe has already

  15. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  16. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  17. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  18. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  19. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  20. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  1. 14 CFR 252.13 - Small aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Small aircraft. 252.13 Section 252.13 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.13 Small aircraft. Air carriers shall prohibit smoking on...

  2. An Efficient Algorithm for Commercial Aircraft Trajectory Optimization in the Air Traffic System

    NASA Astrophysics Data System (ADS)

    Devulapalli, Raghuveer

    A discrete search strategy is presented to determine optimal aircraft trajectories which can be unconstrained or regulated to follow current Air Traffic Control (ATC) procedures. The heuristic based Astar (A*) search algorithm has been selected for its efficiency and its inherent ability to handle numerous constraints as a discrete method. A point-mass aircraft model is assumed to accurately simulate commercial aircraft dynamics for the provided trajectories. The two dimensional space and the states of aircraft have been divided into discrete pieces. To show the effectiveness of the algorithm, two-dimensional vertical and horizontal profile are simulated. Simulation results compare optimal trajectories that range from unconstrained to those that completely adhere to strict ATC procedures. Those trajectories following ATC procedures follow a segmented flight pattern where each segment follows specified objectives, terminating when certain criteria has been met. Trajectories are optimized for a combination of time and fuel with an emphasis on reducing fuel consumption.

  3. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  4. 14 CFR 291.22 - Aircraft accident liability insurance requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Aircraft accident liability insurance... for All-Cargo Air Transportation § 291.22 Aircraft accident liability insurance requirement. No air... and maintains in effect aircraft accident liability coverage that meets the requirements of part...

  5. 14 CFR 291.22 - Aircraft accident liability insurance requirement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Aircraft accident liability insurance... for All-Cargo Air Transportation § 291.22 Aircraft accident liability insurance requirement. No air... and maintains in effect aircraft accident liability coverage that meets the requirements of part...

  6. 14 CFR 291.22 - Aircraft accident liability insurance requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Aircraft accident liability insurance... for All-Cargo Air Transportation § 291.22 Aircraft accident liability insurance requirement. No air... and maintains in effect aircraft accident liability coverage that meets the requirements of part...

  7. 14 CFR 291.22 - Aircraft accident liability insurance requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Aircraft accident liability insurance... for All-Cargo Air Transportation § 291.22 Aircraft accident liability insurance requirement. No air... and maintains in effect aircraft accident liability coverage that meets the requirements of part...

  8. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  9. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  10. Source Attribution and Interannual Variability of Arctic Pollution in Spring Constrained by Aircraft (ARCTAS, ARCPAC) and Satellite (AIRS) Observations of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Fisher, J. A.; Jacob, D. J.; Purdy, M. T.; Kopacz, M.; LeSager, P.; Carouge, C.; Holmes, C. D.; Yantosca, R. M.; Batchelor, R. L.; Strong, K.; Diskin, G. S.; Fuelberg, H. E.; Holloway, J. S.; McMillan, W. W.; Warner, J.; Streets, D. G.; Zhang, Q.; Wang, Y.; Wu, S.

    2009-01-01

    We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003-2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month-1 for Asian anthropogenic, 9.1 for European anthropogenic, 4.2 for North American anthropogenic, 9.3 for Russian biomass burning (anomalously large that year), and 21 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Synoptic pollution influences in the Arctic free troposphere include contributions of comparable magnitude from Russian biomass burning and from North American, European, and Asian anthropogenic sources. European pollution dominates synoptic variability near the surface. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS is capable of observing pollution transport to the Arctic in the mid-troposphere. The 2003-2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Nino Index, suggesting a link between El Nino and northward pollution transport. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007-2008 La Nina. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Nino conditions.

  11. 49 CFR 1510.7 - Air transportation advertisements and solicitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Air transportation advertisements and... PASSENGER CIVIL AVIATION SECURITY SERVICE FEES § 1510.7 Air transportation advertisements and solicitations... part as “September 11th Security Fee” in all its advertisements and solicitations for...

  12. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  13. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  14. Design of a small personal air monitor and its application in aircraft.

    PubMed

    van Netten, Chris

    2009-01-15

    A small air sampling system using standard air filter sampling technology has been used to monitor the air in aircraft. The device is a small ABS constructed cylinder 5 cm in diameter and 9 cm tall and can be operated by non technical individuals at an instant notice. It is completely self contained with a 4 AAA cell power supply, DC motor, a centrifugal fan, and accommodates standard 37 mm filters and backup pads. The monitor is totally enclosed and pre assembled in the laboratory. A 45 degrees twist of the cap switches on the motor and simultaneously opens up the intake ports and exhaust ports allowing air to pass through the filter. A reverse 45 degrees twist of the cap switches off the motor and closes all intake and exhaust ports, completely enclosing the filter. The whole monitor is returned to the laboratory by standard mail for analysis and reassembly for future use. The sampler has been tested for electromagnetic interference and has been approved for use in aircraft during all phases of flight. A set of samples taken by a BAe-146-300 crew member during two flights in the same aircraft and analyzed by GC-MS, indicated exposure to tricresyl phosphate (TCP) levels ranging from 31 to 83 nanograms/m(3) (detection limit <4.5 nanograms/m(3)). The latter elevated level was associated with the use of the auxiliary power unit (APU) in the aircraft. It was concluded that the air sampler was capable of monitoring air concentrations of TCP isomers in aircraft above 4.5 nanogram/m(3).

  15. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  16. Evaluation of septum-capped vials for storage of gas samples during air transport.

    PubMed

    Glatzel, Stephan; Well, Reinhard

    2008-01-01

    In order to provide information on the suitability of commonly used gas storage vials for air transport, we tested two vial types on their ability to preserve defined nitrous oxide concentrations and excess pressure when exposed to low pressure, low temperature and puncture by needles. Unlike in Crimp Cap vials, in Exetainers no nitrous oxide loss following low pressure storage was detectable. Tightness of Exetainers following multiple puncture was best using a small needle diameter. Pressure loss following 5, 10, or 25 punctures was lowest in the Exetainers. We conclude that Exetainers are suitable for storing gas samples for an extended period of time during aircraft transport.

  17. An Examination of the Relationship between Usage and Operating and Support Costs for Air Force Aircraft

    DTIC Science & Technology

    2007-09-01

    S Costs ....................................................................................................... 39 Econometric Methodology Overview...words, I use them both regularly in conversation. I must note that Claire and Yang showed great patience in explaining the nuances econometric theory...RECCE Reconnaissance Aircraft REMIS Reliability and Maintenance Information System SAF/FM Secretary of the Air Force financial Management TAI

  18. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the

  19. Personal Aircraft Point to the Future of Transportation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  20. Conflict Prevention and Separation Assurance Method in the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Carreno, Victor A.; Williams, Daniel M.; Munoz, Cesar

    2005-01-01

    A multilayer approach to the prevention of conflicts due to the loss of aircraft-to-aircraft separation which relies on procedures and on-board automation was implemented as part of the SATS HVO Concept of Operations. The multilayer system gives pilots support and guidance during the execution of normal operations and advance warning for procedure deviations or off-nominal operations. This paper describes the major concept elements of this multilayer approach to separation assurance and conflict prevention and provides the rationale for its design. All the algorithms and functionality described in this paper have been implemented in an aircraft simulation in the NASA Langley Research Center s Air Traffic Operation Lab and on the NASA Cirrus SR22 research aircraft.

  1. The RTL-46: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Dunbar, Christian; Prette, John; Andersen, Gerald; Sprunck, Martin; Vogel, Christine; Rivera, Francisco

    1993-01-01

    The RTL-46 provides an aircraft which utilizes advanced technology within the fictional Aeroworld market to better service the air travel customers and airlines of Aeroworld. The RTL-46 is designed to serve the portion of the travel market which flies less than 10,000 feet per flight. The design cruise velocity for the aircraft is 35 ft/sec, which rapidly expedites travel through Aeroworld. The major focus of the endeavor was to design an aircraft which would serve the Aeroworld market better than the existing aircraft, the HB-40. This could have been done through targeting another portion of the Aeroworld market or through serving the current HB-40 market more effectively. Due to the fact that approximately 70 percent of the potential Aeroworld passengers desired flights of 10,000 ft or less, this range became the target market for the RTL-46.

  2. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  3. Civil air transport: A fresh look at power-by-wire and fly-by-light

    NASA Astrophysics Data System (ADS)

    Sundberg, Gale R.

    1990-05-01

    Power-by-wire (PBW) is a key element under subsonic transport flight systems technology with potential savings of over 10 percent in gross take-off-weight and in fuel consumption compared to today's transport aircraft. The PBW technology substitutes electrical actuation in place of centralized hydraulics, uses internal starter-motor/generators and eliminates the need for variable engine bleed air to supply cabin comfort. The application of advanced fiber optics to the electrical power system controls, to built-in-test (BITE) equipment, and to fly-by-light (FBL) flight controls provides additional benefits in lightning and high energy radio frequency (HERF) immunity over existing mechanical or even fly-by-wire controls. The program plan is reviewed and a snapshot is given of the key technologies and their benefits to all future aircraft, both civil and military.

  4. Proceedings of the Aircraft Wake Vortices Conference, March 15-17, 1977, held at the Transportation Systems Center, Kendall Square, Cambridge, MA

    DTIC Science & Technology

    1977-06-01

    SERVICE. 5 N , 08VIR GINIA 22161 1 JUN 22 1978 ApproO-, io•AP.]iC r;. A•., i~~trib litio l ixa1117itod HELD AT THE TRANSPORTATION SYSTEMS CENTER . KENDALL...on aircraft wake vortices was sponsored by the Transportation Systems Center and supported by the Federal Aviation Adminis- tration, U.S. Deparment of...The Wake Vortex Hazard; James Andersen, Director, Office of Air and Marine Systems, Transportation Systems Center Session 11: Vortex Sensors and Data

  5. Potential benefits for propfan technology on derivatives of future short- to medium-range transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.; Bowles, J. V.

    1980-01-01

    It is noted that several NASA-sponsored studies have identified a substantial potential fuel savings for high subsonic speed aircraft utilizing the propfan concept compared to the equivalent technology turbofan aircraft. Attention is given to a feasibility study for propfan-powered short- to medium-haul commercial transport aircraft conducted to evaluate potential fuel savings and identify critical technology requirements using the latest propfan performance data. An analysis is made of the design and performance characteristics of a wing-mounted and two-aft-mounted derivative propfan aircraft configurations, based on a DC-9 Super 80 airframe, which are compared to the baseline turbofan design. Finally, recommendations for further research efforts are also made.

  6. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  7. Analytical modeling of transport aircraft crash scenarios to obtain floor pulses

    NASA Technical Reports Server (NTRS)

    Wittlin, G.; Lackey, D.

    1983-01-01

    The KRAS program was used to analyze transport aircraft candidate crash scenarios. Aircraft floor pulses and seat/occupant responses are presented. Results show that: (1) longitudinal only pulses can be represented by equivalent step inputs and/or static requirements; (2) the L1649 crash test floor longitudinal pulse for the aft direction (forward inertia) is less than 9g static or an equivalent 5g pulse; aft inertia accelerations are extremely small ((ch76) 3g) for representative crash scenarios; (3) a viable procedure to relate crash scenario floor pulses to standard laboratory dynamic and static test data using state of the art analysis and test procedures was demonstrated; and (4) floor pulse magnitudes are expected to be lower for wide body aircraft than for smaller narrow body aircraft.

  8. Analysis of shock and vibration environments for cargo on C9B transport aircraft

    SciTech Connect

    Baca, T.J.; Doggett, J.W.; Davidson, C.A.

    1986-01-01

    The definition of shock and vibration environments on the floor of cargo aircraft is of prime interest to designers of hardware which must be transported on these planes and helicopters. The DOE/DOD Environmental Data Bank at Sandia National Laboratories maintains an extensive collection of environmental definitions for aircraft. This paper describes the process involved in acquiring and analyzing shock and vibration data on the cargo floor of a C9B turbojet aircraft for incorporation into the DOE/DOD Environmental Data Bank. The dual objectives of this paper are to show the procedure by which the environmental definition is created and to compare the results with existing definitions of shock and vibration environments on fixed wing aircraft. Special emphasis is placed on instrumentation considerations which help ensure data integrity.

  9. Air Force F-16 Aircraft Engine Aerosol Emissions Under Cruise Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.; Cofer, W. Randy, III; McDougal, David S.

    1999-01-01

    Selected results from the June 1997 Third Subsonic Assessment Near-Field Interactions Flight (SNIF-III) Experiment are documented. The primary objectives of the SNIF-III experiment were to determine the partitioning and abundance of sulfur species and to examine the formation and growth of aerosol particles in the exhaust of F-16 aircraft as a function of atmospheric and aircraft operating conditions and fuel sulfur concentration. This information is, in turn, being used to address questions regarding the fate of aircraft fuel sulfur impurities and to evaluate the potential of their oxidation products to perturb aerosol concentrations and surface areas in the upper troposphere. SNIF-III included participation of the Vermont and New Jersey Air National Guard F-16's as source aircraft and the Wallops Flight Facility T-39 Sabreliner as the sampling platform. F-16's were chosen as a source aircraft because they are powered by the modern F-100 Series 220 engine which is projected to be representative of future commercial aircraft engine technology. The T-39 instrument suite included sensors for measuring volatile and non-volatile condensation nuclei (CN), aerosol size distributions over the range from 0.1 to 3.0 (micro)m, 3-D winds, temperature, dewpoint, carbon dioxide (CO2), sulfur dioxide (SO2), sulfuric acid (H2SO4), and nitric acid (HNO3).

  10. C-130J Hercules Transport Aircraft (C-130J)

    DTIC Science & Technology

    2013-12-01

    Baseline (Production Estimate) Air Force Acquisition Executive ( AFAE ) Approved Acquisition Program Baseline (APB) dated October 25, 1996 Approved APB Air...Force Acquisition Executive ( AFAE ) Approved Acquisition Program Baseline (APB) dated April 25, 2007 C-130J December 2013 SAR April 16, 2014 17:01:01

  11. Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.

  12. Study of a very low cost air combat maneuvering trainer aircraft

    NASA Technical Reports Server (NTRS)

    Hill, G. C.; Bowles, J. V.

    1976-01-01

    A very low cost aircraft for performing Air Combat Maneuvering (ACM) training was studied using the BD-5J sport plane as a point of departure. The installation of a larger engine and increased fuel capacity were required to meet the performance and mission objectives. Reduced wing area increased the simulation of the ACM engagement, and a comparison with current tactical aircraft is presented. Other factors affecting the training transfer are considered analytically, but a flight evaluation is recommended to determine the concept utility.

  13. Sensitivity of urban air pollution to aircraft emissions in Paris area

    NASA Astrophysics Data System (ADS)

    Pison, I.; Menut, L.

    2003-04-01

    An accurate estimation of the emissions of primary pollutants is a key parameter for modeling surface concentrations observed during regional pollution events. These emissions are generally taken into account near the surface only, representing surface fluxes such as traffic, industries or biogenic sources. Other sources exist such as commercial aircraft emissions. In large urbanized areas, airports represent a non negligible source including landing and take-off of aircraft within the boundary layer. Even if these emissions certainly are not the most important process explaining urban pollution, the quantification of their impact on local pollution is rarely studied. This is the case of Paris where one national airport (Le Bourget) and two international airports (Roissy-Charles-de-Gaulle and Orly) are located less than 30~km from the center of the city. In this paper, we present the first model analysis of the impact of aircraft emissions over Paris area. Using a three-dimensional aircraft emission inventory we partly elaborated, we compare ozone surface concentrations obtained with and without these emissions by the chemistry-transport model CHIMERE. The observed differences show the spatial and temporal influence of these emissions within the boundary layer. This enables us to estimate the perturbations due to aircraft emissions on surface concentrations recorded in and around the city during the second intensive observation period (IOP2) of the ESQUIF project. Finally, aircraft emitted masses of VOCs and nitrogen oxides were disturbed in order to study the sensitivity of ozone concentrations to the accuracy of the inventory.

  14. Development of stitched/RTM primary structures for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hawley, Arthur V.

    1993-01-01

    This report covers work accomplished in the Innovative Composite Aircraft Primary Structure (ICAPS) program. An account is given of the design criteria and philosophy that guides the development. Wing and fuselage components used as a baseline for development are described. The major thrust of the program is to achieve a major cost breakthrough through development of stitched dry preforms and resin transfer molding (RTM), and progress on these processes is reported. A full description is provided on the fabrication of the stitched RTM wing panels. Test data are presented.

  15. Factors affecting the retirement of commercial transport jet aircraft

    NASA Technical Reports Server (NTRS)

    Spencer, F. A.

    1979-01-01

    The historical background of the technology and economics of aircraft replacement and retirement in the prejet era is reviewed in order to determine whether useful insights can be obtained applicable to the jet era. Significant differences between the two periods are noted. New factors are identified and examined. Topics discussed include concern over current policies regarding deregulation, regulatory reform, and retroactive noise regulations; financing and compliance legislation; aging; economic environment and inflation; technological progress; fuel efficiency and cost; and a financial perspective of replacement decisions.

  16. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  17. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED REGULATORY AUTHORITY IN AGREEMENT STATES AND IN OFFSHORE WATERS UNDER SECTION 274 Reciprocity §...

  18. 10 CFR 150.21 - Transportation of special nuclear material by aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED REGULATORY AUTHORITY IN AGREEMENT STATES AND IN OFFSHORE WATERS UNDER SECTION 274 Reciprocity §...

  19. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander; Gilyard, Glenn B.

    1999-01-01

    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  20. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  1. Study of quiet turbofan STOL aircraft for short-haul transportation. Volume 3: Airports

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The airport siting, design, cost, operation, and implementation aspects of a short takeoff aircraft transportation system are analyzed. Problem areas are identified and alternative solutions or actions required to achieve system implementation by the early 1980's are recommended. Factors associated with the ultimate community acceptance of the STOL program, such as noise, emissions, and congestion, are given special emphasis.

  2. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  3. Peroxy radicals and ozone photochemistry in air masses undergoing long-range transport

    NASA Astrophysics Data System (ADS)

    Parker, A. E.; Monks, P. S.; Jacob, M. J.; Penkett, S. A.; Lewis, A. C.; Stewart, D. J.; Whalley, L. K.; Methven, J.; Stohl, A.

    2009-09-01

    Concentrations of peroxy radicals (HO2+ΣiRiO2) in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W) in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72) between P(O3) and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.

  4. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 5

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities. The Conference proceedings of the 2003 Air Transport Research Society (ATRS) world conference, volume 5 is presented. The topics include: 1) The Temporal Configuration of Airline Networks in Europe; 2) Determination and Applications of Environmental Costs at Different Sized Airports-Aircraft Noise and Engine Emissions; 3) Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector; 4) An Assessment of the Sustainability of Air Transport System: Quantification of Indicators; 5) Regulation, Competition and Network Evolution in Aviation; 6) Regulation in the Air: Price and Frequency Cap; 7) Industry Consolidation and Future Airline Network Structures in Europe; 8) Application of Core Theory to the U.S. Airline Industry; 9) Air Freight Transshipment Route Choice Analysis; 10) A Fuzzy Approach of the Competition on Air Transport Market; and 11) Developing Passenger Demand Models for International Aviation from/to Egypt: A Case Study of Cairo Airport and Egyptair.

  5. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  6. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  7. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  8. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  9. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  10. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Unauthorized air transportation. 221.5... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff publications shall not contain fares or charges, or their governing provisions, applicable to foreign...

  11. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Unauthorized air transportation. 221.5... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff publications shall not contain fares or charges, or their governing provisions, applicable to foreign...

  12. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  13. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  14. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  15. Optimization via CFD of aircraft hot-air anti-icing systems

    NASA Astrophysics Data System (ADS)

    Pellissier, Mathieu Paul Constantin

    In-flight icing is a major concern in aircraft safety and a non-negligible source of incidents and accidents, and is still a serious hazard today. It remains consequently a design and certification challenge for aircraft manufacturers. The aerodynamic performance of an aircraft can indeed degrade rapidly when flying in icing conditions, leading to incidents or accidents. In-flight icing occurs when an aircraft passes through clouds containing supercooled water droplets at or below freezing temperature. Droplets impinge on its exposed surfaces and freeze, causing roughness and shape changes that increase drag, decrease lift and reduce the stall angle of attack, eventually inducing flow separation and stall. This hazardous ice accretion is prevented by the use of dedicated anti-icing systems, among which hot-air-types are the most common for turbofan aircraft. This work presents a methodology for the optimization of such aircraft hot-air-type anti-icing systems, known as Piccolo tubes. Having identified through 3D Computational Fluid Dynamics (CFD) the most critical in-flight icing conditions, as well as determined thermal power constraints, the objective is to optimize the heat distribution in such a way to minimize power requirements, while meeting or exceeding all safety regulation requirements. To accomplish this, an optimization method combining 3D CFD, Reduced-Order Models (ROM) and Genetic Algorithms (GA) is constructed to determine the optimal configuration of the Piccolo tube (angles of jets, spacing between holes, and position from leading edge). The methodology successfully results in increasingly optimal configurations from three up to five design variables.

  16. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  17. Determining the Orbit Locations of Turkish Airborne Early Warning and Control Aircraft Over the Turkish Air Space

    DTIC Science & Technology

    2009-03-01

    DETERMINING THE ORBIT LOCATIONS OF TURKISH AIRBORNE EARLY WARNING AND CONTROL AIRCRAFT OVER THE...Defense, the U.S. Government. AFIT/GOR/ENS/09-14 DETERMINING THE ORBIT LOCATIONS OF TURKISH AIRBORNE EARLY WARNING AND CONTROL AIRCRAFT OVER THE...AFIT/GOR/09-14 DETERMINING THE ORBIT LOCATIONS OF TURKISH AIRBORNE EARLY WARNING AND CONTROL AIRCRAFT OVER THE TURKISH AIR SPACE Nebi

  18. A Differential Thrust Controller for Air Cushion Landing System Aircraft

    DTIC Science & Technology

    1974-12-01

    8217 control installed, for each of the five time-delay values. In all cases , the average mean square error was reduced approximately 70% by the addition...assistance with explanations of the ACLS. Credit should also be given to Lieutenant John Pinnel , a classmate at the Air Force Institute of Technology...the system with and without the control installed, for each of the five time-delay values. In all cases , the average mean square error was reduced

  19. Damage tolerant composite wing panels for transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Peter J.; Wilson, Robert D.; Gibbins, M. N.

    1985-01-01

    Commercial aircraft advanced composite wing surface panels were tested for durability and damage tolerance. The wing of a fuel-efficient, 200-passenger airplane for 1990 delivery was sized using grahite-epoxy materials. The damage tolerance program was structured to allow a systematic progression from material evaluations to the optimized large panel verification tests. The program included coupon testing to evaluate toughened material systems, static and fatigue tests of compression coupons with varying amounts of impact damage, element tests of three-stiffener panels to evaluate upper wing panel design concepts, and the wing structure damage environment was studied. A series of technology demonstration tests of large compression panels is performed. A repair investigation is included in the final large panel test.

  20. Statistical approaches for identifying air pollutant mixtures associated with aircraft departures at Los Angeles International Airport.

    PubMed

    Diez, David M; Dominici, Francesca; Zarubiak, Darcy; Levy, Jonathan I

    2012-08-07

    Aircraft departures emit multiple pollutants common to other near-airport sources, making it challenging to determine relative source contributions. While there may not be unique tracers of aircraft emissions, examination of multipollutant concentration patterns in combination with flight activity can facilitate source attribution. In this study, we examine concentrations of continuously monitored air pollutants measured in 2008 near a departure runway at Los Angeles International Airport (LAX), considering single-pollutant associations with landing and takeoff (LTO) of the aircraft (LTO activity, weighted by LTO cycle fuel burn), as well as multipollutant predictors of binary LTO activity. In the single-pollutant analyses, one-minute average concentrations of carbon monoxide, carbon dioxide, nitrogen oxides, and sulfur dioxide are positively associated with fuel burn-weighted departures on the runway proximate to the monitor, whereas ozone is negatively associated with fuel burn-weighted departures. In analyses in which the flight departure is predicted by pollutant concentrations, carbon dioxide and nitrogen oxides are the best individual predictors, but including all five pollutants greatly increases the power of prediction compared to single-pollutant models. Our results demonstrate that air pollution impacts from aircraft departures can be isolated using time-resolved monitoring data, and that combinations of simultaneously measured pollutants can best identify contributions from flight activity.

  1. Study of air emissions related to aircraft deicing

    SciTech Connect

    Zarubiak, D.C.Z.; DeToro, J.A.; Menon, R.P.

    1997-12-31

    This paper outlines the results of a study that was conducted by Trinity Consultants Incorporated (Trinity) to estimate the airborne emissions of glycol from Type 1 Deicer fluid and potential exposure of ground personnel during routine deicing of aircraft. The study involved the experimental measurement of Type 1 Deicer fluid vapor emissions by Southern Research Institute (SRI, Research Triangle Park, NC). An open path Fourier Transform Infrared (FTIR) spectroscopic technique developed by SRI was used during a simulated airplane deicing event. The emissions measurement data are analyzed to obtain appropriate emission rates for an atmospheric dispersion modeling analysis. The modeled gaseous Type 1 Deicer fluid concentrations are determined from calculated emission rates and selected meteorological conditions. A propylene glycol (PG)-based Type 1 Deicer fluid was used. In order to examine the effects of the assumptions that are made for the development of the emission quantification and dispersion modeling methodologies, various scenarios are evaluated. A parametric analysis evaluates the effect of variations in the following parameters on the results of the study: glycol concentrations in deicing fluids, error limits of emission measurements, emission source heights, evaporation rate for various wind speeds, wind directions over typical physical layouts, and background (ambient) Type 1 Deicer fluid concentrations. The emissions for an EG based Type 1 Deicing fluid are expected to be between 80 and 85% of the reported data. In general, the model shows the region of maximum concentrations is located between 20 and 50 meters downwind from the trailing edge of the wing. This range is consistent with experimental findings. Depending on the specific modeled scenarios, maximum glycol concentrations are found to generally range between 50 and 500 milligrams per cubic meter.

  2. Unmanned Aircraft Systems in a Forward Air Controller (Airborne) Role

    DTIC Science & Technology

    2009-04-01

    not the answer. As Troy Caraway stated, “A FAC(A) is not a platform…but a specifically trained and qualified aviator.”39 Lack of maneuverability...The first factor requiring attention is the establishment of a test plan for UASs in the FAC(A) role. Troy Caraway , while serving as the Senior...Jonathan Greene, “Controlling CAS With the Predator: Is it Feasible?” Air Land Sea Bulletin, Issue No. 2006-02 (May 2006), 8. 39 Troy Caraway , Senior

  3. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    1986-01-01

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  4. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    NASA Technical Reports Server (NTRS)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  5. 78 FR 49729 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Air Force Launches, Aircraft and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Specified Activities; U.S. Air Force Launches, Aircraft and Helicopter Operations, and Harbor Activities Related to Launch Vehicles From Vandenberg Air Force Base (VAFB), California AGENCY: National Marine... has received a request from the U.S. Air Force (USAF) for authorization to take marine...

  6. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reporting of aircraft operating expenses and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Reporting Requirements § 298.63 Reporting...

  7. The Effect of Yaw Coupling in Turning Maneuvers of Large Transport Aircraft

    NASA Technical Reports Server (NTRS)

    McNeill, Walter E.; Innis, Robert C.

    1965-01-01

    A study has been made, using a piloted moving simulator, of the effects of the yaw-coupling parameters N(sub p) and N(sub delta(sub a) on the lateral-directional handling qualities of a large transport airplane at landing-approach airspeed. It is shown that the desirable combinations of these parameters tend to be more proverse when compared with values typical of current aircraft. Results of flight tests in a large variable-stability jet transport showed trends which were similar to those of the simulator data. Areas of minor disagreement, which were traced to differences in airplane geometry, indicate that pilot consciousness of side acceleration forces can be an important factor in handling qualities of future long-nosed transport aircraft.

  8. Transport Aircraft System Identification Using Roll and Yaw Oscillatory Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2010-01-01

    Continued studies have been undertaken to investigate and develop aerodynamic models that predict aircraft response in nonlinear unsteady flight regimes for transport configurations. The models retain conventional static and dynamic terms but replace conventional acceleration terms with indicial functions. In the Subsonic Fixed Wing Project of the NASA Fundamental Aeronautics Program and the Integrated Resilient Aircraft Controls project of the NASA Aviation Safety Program one aspect of the research is to apply these current developments to transport configurations to facilitate development of advanced simulation and control design technology. This paper continues development and application of a more general modeling methodology to the NASA Langley Generic Transport Model, a sub-scale flight test vehicle. In the present study models for the lateral-directional aerodynamics are developed.

  9. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  10. JEFF: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Jeff is a remotely piloted vehicle designed by the Blue Team, a division of AE441, Inc., to fulfill the mission proposed by G-Dome Enterprises: to build a cost efficient aircraft to service Aeroworld with overnight cargo delivery. The design of Jeff was most significantly influenced by the need to minimize costs. This objective was pursued by building fewer large planes as opposed to many small planes. Thus, by building an aircraft with a large payload capacity, G-Dome Enterprises will be able to minimize the large costs and the large number of cycles that are associated with a large fleet. Another factor which had a significant influence on our design was the constraint that our design had to fit into a 2'x2'x5' storage container. This constraint meant that unless we wanted to build foldable wings that Jeff's span would be limited to 10 feet. Since this was not enough lifting surface to suit our needs a canard configuration was chosen to get the needed lifting surface and avoid the structural dilemma of foldable wings. The aircraft is constructed mainly of balsa, with spruce wing and canard spars and a monokote covering. It was designed to support a maximum payload weight of 35 oz. (total aircraft weight of 108 oz.) and withstand a maximum load factor of 2.5.

  11. Capital Requirements for the Air Transport Industry

    NASA Technical Reports Server (NTRS)

    James, G. W.

    1972-01-01

    In recent years the U.S. scheduled airline industry has been involved in the largest re-equipment program that involves the addition of hundreds of new aircraft to the airline fleet. The costs associated with the purchase of this new equipment, along with the other costs involving such matters as the environment and security, are presenting the carriers with significant financial challenges.

  12. Operational Test Plan Concept for Evaluation of Close Air Support Alternative Aircraft

    DTIC Science & Technology

    1989-03-31

    to prepare an operational test plan to conduct a competitive fly-off of alternative aircraft for the close air support (CAS) mission and to complete...the test pLanbys>_ M &vach49- The Act also directed the Secretary of Defense to conduct an independent assessment of ongoing studies and analyses...commitment of forces and equipment by the Services and the likelihood of conducting the test on an active Army installation, the Army will be

  13. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2009-12-22

    Air Force is expected late next month.... Sen. Richard Shelby, R- Ala ., a Northrop supporter, and Rep. Norman Dicks, D-Wash., a Boeing supporter...from $2.1 billion per year to $3 billion per year by 2040 due to increasing depot maintenance and forecasted modernization programs in avionics and...China avionics access doors Source: Teal Group Note: Commercial variants of both aircraft types are powered by engines manufactured by either

  14. Predicting Disposal Costs for United States Air Force Aircraft (Briefing Charts)

    DTIC Science & Technology

    2015-05-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S Predicting Disposal Costs for United States Air Force Aircraft (Presentation) Mark F. Kaye...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4

  15. An Air-flow-direction Pickup Suitable for Telemetering Use on Pilotless Aircraft

    NASA Technical Reports Server (NTRS)

    Ikard, Wallace L

    1956-01-01

    A vane-type air-flow-direction pickup is described which is suitable for telemetering angle-of-attack and angle-of-sideslip data from rocket-propelled pilotless aircraft models. Test results which are presented show that the device performs well under high accelerations and is stable throughout a Mach number rage from subsonic to above a Mach number of 2.5.

  16. Design, Development, and Innovation of an Interactive Multimedia Training Simulator for Responding to Air Transportation Bomb Threats

    NASA Technical Reports Server (NTRS)

    Chung, Christopher A.; Marwaha, Shweta

    2005-01-01

    This paper describes an interactive multimedia simulator for air transportation bomb threat training. The objective of this project is to improve the air transportation sector s capability to respond to bomb threats received by commercial airports and aircraft. The simulator provides realistic training on receiving and responding to a variety of bomb threats that might not otherwise be possible due to time, cost, or operational constraints. Validation analysis indicates that the use of the simulator resulted in statistically significant increases in individual ability to respond to these types of bomb threats.

  17. Analysis of aircraft and satellite measurements from the intercontinental chemical transport experiment (INTEX-B) to quantify long-range transport of East Asian Sulfur to Canada

    NASA Astrophysics Data System (ADS)

    van Donkelaar, A.; Martin, R. V.; Leaitch, W. R.; MacDonald, A. M.; Walker, T. W.; Streets, D. G.; Zang, Q.; Dunlea, E.; Jimenez, J. L.; Dibb, J. E.; Huley, G.; Weber, R.; Andreae, M. O.

    2008-02-01

    We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April-May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant. Measured sulfate plumes in the free troposphere over British Columbia exceeded 1 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Trends in Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000-2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800-600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 63% of the measured sulfate at 600 hPa over British Columbia is due to East Asian sources. Simulation of INTEX-B and May 1985 aircraft measurements off the northwest coast of the United States reveals a 2.4-3.4 fold increase in the relative contribution of East Asian sulfate to the total burden. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.14-0.19 μg/m3 (~30%) and account for 40% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.27 μg/m3 per 10% increase in the

  18. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  19. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin.

    PubMed

    Isukapalli, Sastry S; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  20. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    PubMed Central

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2015-01-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin’s lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides. PMID:25642134

  1. The development and evaluation of advanced technology laminar-flow-control subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1978-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control (LFC) to the wings and empennage of long-range subsonic transport aircraft for initial operation in 1985. For a design mission range of 5500 n mi, advanced technology LFC and turbulent-flow aircraft were developed for a 200-passenger payload, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish optimum geometry, advanced system concepts were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. The final comparisons include consideation of maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft.

  2. Robust Gain-Scheduled Fault Tolerant Control for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Gregory, Irene

    2007-01-01

    This paper presents an application of robust gain-scheduled control concepts using a linear parameter-varying (LPV) control synthesis method to design fault tolerant controllers for a civil transport aircraft. To apply the robust LPV control synthesis method, the nonlinear dynamics must be represented by an LPV model, which is developed using the function substitution method over the entire flight envelope. The developed LPV model associated with the aerodynamic coefficient uncertainties represents nonlinear dynamics including those outside the equilibrium manifold. Passive and active fault tolerant controllers (FTC) are designed for the longitudinal dynamics of the Boeing 747-100/200 aircraft in the presence of elevator failure. Both FTC laws are evaluated in the full nonlinear aircraft simulation in the presence of the elevator fault and the results are compared to show pros and cons of each control law.

  3. Evaluation of routing and scheduling considerations for possible future commercial hypersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Feir, J. B.

    1974-01-01

    Travel markets which would be served by high speed commercial transport aircraft and the ability of the airlines to schedule and route the aircraft in a way that would achieve good daily utilization and productivity are examined. The following areas are considered: (1) identification of the major long-haul city pairs that would most likely demand nonstop service; (2) selection of flight tracks observing alternative sonic boom restrictions; (3) estimation of flight times for all city pairs for the various sonic boom constraints; (4) impact of airport curfews on possible departure and arrival schedules; (5) projection of passenger traffic volumes on the selected city pairs; and (6) potential daily utilization and aircraft productivity.

  4. A Feasibility Study of Life-Extending Controls for Aircraft Turbine Engines Using a Generic Air Force Model (Preprint)

    DTIC Science & Technology

    2006-12-01

    engine model is a detailed, physics-based engine model of a two-spool, non-augmented, low bypass ratio engine developed using MATLAB/ Simulink ® [9]. The...AFRL-PR-WP-TP-2007-218 A FEASIBILITY STUDY OF LIFE- EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT...SUBTITLE A FEASIBILITY STUDY OF LIFE-EXTENDING CONTROLS FOR AIRCRAFT TURBINE ENGINES USING A GENERIC AIR FORCE MODEL (PREPRINT) 5c. PROGRAM ELEMENT

  5. 14 CFR 61.63 - Additional aircraft ratings (other than for ratings at the airline transport pilot certification...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airship rating at that pilot certificate level. (c) Additional aircraft class rating. A person who applies...-than-air category rating with a balloon class rating and is seeking an airship class rating, then that..., rotorcraft, powered-lift, weight-shift-control aircraft, powered parachute, or airship rating at that...

  6. 14 CFR 61.63 - Additional aircraft ratings (other than for ratings at the airline transport pilot certification...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airship rating at that pilot certificate level. (c) Additional aircraft class rating. A person who applies...-than-air category rating with a balloon class rating and is seeking an airship class rating, then that..., rotorcraft, powered-lift, weight-shift-control aircraft, powered parachute, or airship rating at that...

  7. 14 CFR 61.63 - Additional aircraft ratings (other than for ratings at the airline transport pilot certification...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airship rating at that pilot certificate level. (c) Additional aircraft class rating. A person who applies...-than-air category rating with a balloon class rating and is seeking an airship class rating, then that..., rotorcraft, powered-lift, weight-shift-control aircraft, powered parachute, or airship rating at that...

  8. 14 CFR 61.63 - Additional aircraft ratings (other than for ratings at the airline transport pilot certification...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airship rating at that pilot certificate level. (c) Additional aircraft class rating. A person who applies...-than-air category rating with a balloon class rating and is seeking an airship class rating, then that..., rotorcraft, powered-lift, weight-shift-control aircraft, powered parachute, or airship rating at that...

  9. Air Transport of Spent Nuclear Fuel (SNF) Assemblies

    SciTech Connect

    Haire, M.J.; Moses, S.D.; Shapovalov, V.I.; Morenko, A.

    2007-07-01

    Sometimes the only feasible means of shipping research reactor spent nuclear fuel (SNF) among countries is via air transport because of location or political conditions. The International Atomic Energy Agency (IAEA) has established a regulatory framework to certify air transport Type C casks. However, no such cask has been designed, built, tested, and certified. In lieu of an air transport cask, research reactor SNF has been transported using a Type B cask under an exemption with special arrangements for administrative and security controls. This work indicates that it may be feasible to transport commercial power reactor SNF assemblies via air, and that the cost is only about three times that of shipping it by railway. Optimization (i.e., reduction) of this cost factor has yet to be done. (authors)

  10. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  11. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    NASA Technical Reports Server (NTRS)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  12. The outlook for aeronautics, 1980 - 2000 - Study report. [trends affecting civil air transportation and defense

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Trends in civil and military aviation in the period 1980-2000 are examined in terms of the role that NASA should play in aeronautical research and development during this period. Factors considered include the pattern of industry and government relationships, the character of the aircraft to be developed, and the technology advances that will be required as well as demographic, economic, and social factors. Trends are expressed in terms of the most probable developments in civil air transportation and air defense and several characteristically different directions for future development are defined. The longer term opportunities created by developments in air transporation extending into the next century are also examined. Within this framework, a preferred NASA role and a preferred set of objectives are formulated for the research and technology which should be undertaken by NASA during the period 1976-1985.

  13. The FAA aging airplane program plan for transport aircraft

    NASA Technical Reports Server (NTRS)

    Curtis, Dayton; Lewis, Jess

    1992-01-01

    The Federal Aviation Administration (FAA) Aging Airplane Program is focused on five program areas: maintenance, transport airplanes, commuter airplanes, airplane engines, and research. These programs are complementary and concurrent, and have been in effect since 1988. The programs address the aging airplane challenge through different methods, including policies, procedures, and hardware development. Each program is carefully monitored and its progress tracked to ensure that the needs of the FAA, the industry, and the flying public are being met.

  14. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  15. High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation

    NASA Technical Reports Server (NTRS)

    Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.

    1999-01-01

    The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.

  16. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  17. A survey of new technology for cockpit application to 1990's transport aircraft simulators

    NASA Technical Reports Server (NTRS)

    Holt, A. P., Jr.; Noneaker, D. O.; Walthour, L.

    1980-01-01

    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels.

  18. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  19. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  20. The Bunny: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Fulton, David; Gallagher, Patrick; Grannan, William; Martin, Jennifer; Mastej, Nicole; Wujek, Brett

    1993-01-01

    The Bunny is a single-engine, 100 passenger commercial transport designed to serve the high density short-to-medium range markets in AEROWORLD. The aircraft's design range is 10,000 feet at a cruise velocity of 30 ft/s. The aircraft features a low wing which incorporates polyhedral for roll control. Yaw and pitch control are accomplished by a rudder and elevator, respectively. Propulsion is provided by a nose-mounted Astro 15 electric motor powered by thirteen 1.2 V, 1000 mah batteries with a Zinger 12-6 propeller. The aircraft is structurally designed with a safety factor of 1.5 and is constructed primarily of balsa, bass, and birch wood. Passenger seating is arranged on two levels, with three-abreast on the lower level and two-abreast on the upper level. The factors which had the most significant influence on the final design were the direct operating cost and the take-off distance. The primary strength of The Bunny is its ability to compete economically with the HB-40. At full capacity and mid-range fuel costs, the cost per seat per thousand feet (CPSK) of this aircraft is 25% less than the HB-40. Another principal strength is its ability to operate in all airports in AEROWORLD. Also, The Bunny's two-piece removable wing is an advantage from a transportability standpoint.

  1. Detecting air traffic controller interventions in recorded air transportation system data

    NASA Astrophysics Data System (ADS)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  2. 14 CFR 21.21 - Issue of type certificate: normal, utility, acrobatic, commuter, and transport category aircraft...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Issue of type certificate: normal, utility...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates §...

  3. 14 CFR Appendix J to Part 141 - Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate J Appendix J to Part 141 Aeronautics and Space FEDERAL... PILOT SCHOOLS Pt. 141, App. J Appendix J to Part 141—Aircraft Type Rating Course, For Other Than...

  4. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  5. Journal of Air Transportation; Volume 9, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2004-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  6. Journal of Air Transportation, Volume 10, No. 1

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor); Lucas, Sarah (Editor); Scarpellini-Metz, Nanette (Editor)

    2005-01-01

    The mission of the Journal of Air Transportation (JA is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  7. Journal of Air Transportation, Volume 11, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2007-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy

  8. [New possibilities in emergency medical transportation and emergency services of Polish Medical Air Rescue].

    PubMed

    Gałazkowski, Robert

    2010-01-01

    In Poland, two types of medical services are accomplished by the Medical Air Rescue (MAR) operating all over the country: emergency transport from the incident scene to hospital and inter-hospital transport. Helicopters or planes are used for this purpose. In 2009, helicopters performed 4359 flights to incidents and 1537 inter-hospital transports whereas planes performed 589 inter-hospital ambulance and 196 rescue flights. MAR operates from 17 bases of the Helicopter Emergency Medical Service (HEMS) and one airbase. Helicopters are mainly used when medical transport is emergent, within the operational region of a given base whereas planes when the distance between the present and target airports exceeds 250 km. In 2008, new modern aircraft were introduced to HEMS-helicopters EC 135. They fulfil all requirements of air transport regulations and are adjusted to visual (VFR) and instrumental (IFR) flights rules, at day and night. The medical cabin of EC 135 is ergonomic and functional considering the majority of rescue activities under life-saving circumstances. It is equipped with ventilator, defibrillator, infusion pumps etc. Defibrillators have 12-lead ECG, E(T)CO2, SpO2, NIBP, and IBP modules. Transport ventilators can work in a variety of ventilation modes including CMV, SIMV, SVV, BILEVEL, PCV, ASB, PPV and CPAP. The purchase of helicopters with modern avionic and medical configuration ensures high quality services of MAR for many years to come.

  9. Modal analysis of sailplane and transport aircraft wings using the dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Banerjee, J. R.

    2016-05-01

    The purpose of this paper is to provide theory, results, discussion and conclusions arising from an in-depth investigation on the modal behaviour of high aspect ratio aircraft wings. The illustrative examples chosen are representative of sailplane and transport airliner wings. To achieve this objective, the dynamic stiffness method of modal analysis is used. The wing is represented by a series of dynamic stiffness elements of bending-torsion coupled beams which are assembled to form the overall dynamic stiffness matrix of the complete wing. With cantilever boundary condition applied at the root, the eigenvalue problem is formulated and finally solved with the help of the Wittrick-Williams algorithm to yield the eigenvalues and eigenmodes which are essentially the natural frequencies and mode shapes of the wing. Results for wings of two sailplanes and four transport aircraft are discussed and finally some conclusions are drawn

  10. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  11. An outlook for cargo aircraft of the future. [assessment of the future of air cargo by analyzing statistics and trends

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.; Whitehead, A. H., Jr.; Alford, W. J., Jr.

    1975-01-01

    An assessment is provided of the future of air cargo by analyzing air cargo statistics and trends, by noting air cargo system problems and inefficiencies, by analyzing characteristics of air-eligible commodities, and by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. NASA's proposed program is reviewed which would sponsor the research needed to provide for development of advanced designs by 1985.

  12. Agenda and Presentations from Circumpolar Workshop: Transport and Clean Air

    EPA Pesticide Factsheets

    EPA and its partners convened Transport and Clean Air, a Circumpolar Workshop held in December 2013. This seminar allowed leading experts to share best practices on reducing emissions of particulates and black carbon from diesel sources in the Arctic.

  13. Measuring the Air Quality and Transportation Impacts of Infill Development

    EPA Pesticide Factsheets

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  14. Studies in the demand for short haul air transportation

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Gosling, G.; Taghavi, S.

    1975-01-01

    Demand is analyzed in a short haul air transportation corridor. Emphasis is placed on traveler selection from available routes. Model formulations, estimation techniques, and traffic data handling are included.

  15. Propulsion challenges and opportunities for high-speed transport aircraft

    NASA Technical Reports Server (NTRS)

    Strack, William C.

    1990-01-01

    The major challenges confronting the propulsion community for supersonic transport applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraint. A very large improvement in propulsion system efficiency is needed both at supersonic cruise and subsonic cruise conditions. Toward this end, several advanced engine concepts are being considered that promise up to 25 pct. better efficiency than the Concorde engine. The quest for high productivity through higher speed is also thwarted by the lack of a conventional, low priced fuel that is thermally stable at the higher temperatures associated with faster flight. Extending Jet A type fuel to higher temperatures and the adoption of liquid natural gas or methane are two possibilities requiring further study. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage III noise levels. Innovative solutions may be necessary to reach acceptably low noise.

  16. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  17. Analysis of aeroelastic model stability augmentation systems. [for application to supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1971-01-01

    An analytical and mechanization study was conducted for two flutter stability augmentation systems. One concept uses only the wing trailing edge control surface. Another concept uses leading and trailing edge control surfaces operating simultaneously. The combined use of leading and trailing edge control surfaces should improve the surface coupling (controllability) with vertical bending and torsional structural modes and decrease the coupling between bending and torsional modes. The study was directed toward stability augmentation systems characteristics for the supersonic transport aircraft.

  18. In-service inspection methods for graphite-epoxy structures on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Phelps, M. L.

    1981-01-01

    In-service inspection methods for graphite-epoxy composite structures on commercial transport aircraft are determined. Graphite/epoxy structures, service incurred defects, current inspection practices and concerns of the airline and manufacturers, and other related information were determind by survey. Based on this information, applicable inspection nondestructive inspection methods are evaluated and inspection techniques determined. Technology is developed primarily in eddy current inspection.

  19. C-130 Force Structure: Air Force Addressed Statutory Elements in Its Report, but Decided Not to Transfer Certain Aircraft as Proposed

    DTIC Science & Technology

    2015-07-13

    provides life- cycle cost savings over earlier C-130 models. The National Defense Authorization Act (NDAA) for Fiscal Year 2013 required the Air...Air Force indicated instead its intent to redirect the transfer of the 10 C-130J aircraft from Keesler Air Force Base in Mississippi to Little Rock ...Air Force Base in Arkansas. Figure 1 shows a C-130J aircraft taking off from Little Rock Air Force Base, Arkansas. Air Mobility Command manages the

  20. Study of V/STOL aircraft implementation. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Androsky, A.; Miller, S. C.; Neiss, J. A.; Portenier, W. J.; Webb, H. M.

    1972-01-01

    An analysis of V/STOL aircraft implementation and utilization is presented. The subjects discussed are: (1) short haul air transportation requirements, (2) available aircraft technology, (3) aircraft production requirements, (4) airport requirements, (5) roles and responsibilities, and (6) cost and funding.

  1. 49 CFR 1544.225 - Security of aircraft and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.225 Security of aircraft and facilities. Each aircraft operator must use the procedures included, and the facilities and equipment described, in its... 49 Transportation 9 2010-10-01 2010-10-01 false Security of aircraft and facilities....

  2. 77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Federal Aviation Administration 14 CFR Part 33 Technical Amendment; Airworthiness Standards--Aircraft.... SUMMARY: This amendment corrects a number of errors in the airworthiness standards for aircraft engine... additional burden on any person. List of Subjects 14 CFR Part 33 Air transportation, Aircraft,...

  3. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    NASA Technical Reports Server (NTRS)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  4. Community rotorcraft air transportation benefits and opportunities

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.; Freund, D. J.; Winick, R. M.; Cafarelli, N. J.; Hodgkins, R. F.; Vickers, T. K.

    1981-01-01

    Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings.

  5. Study of the application of hydrogen fuel to long-range subsonic transport aircraft. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.; Lange, R. H.; Moore, J. W.

    1975-01-01

    The feasibility of using liquid hydrogen as fuel in advanced designs of long range, subsonic transport aircraft is assessed. Both passenger and cargo type aircraft are investigated. Comparisons of physical, performance, and economic parameters of the LH2 fueled designs with conventionally fueled aircraft are presented. Design studies are conducted to determine appropriate characteristics for the hydrogen related systems required on board the aircraft. These studies included consideration of material, structural, and thermodynamic requirements of the cryogenic fuel tanks and fuel systems with the structural support and thermal protection systems.

  6. Optimizing Air Transportation Service to Metroplex Airports. Part 1; Analysis of Historical Data

    NASA Technical Reports Server (NTRS)

    Donohue, George; Hoffman, Karla; Sherry, Lance; Ferguson, John; Kara, Abdul Qadar

    2010-01-01

    The air transportation system is a significant driver of the U.S. economy, providing safe, affordable, and rapid transportation. During the past three decades airspace and airport capacity has not grown in step with demand for air transportation (+4% annual growth), resulting in unreliable service and systemic delays. Estimates of the impact of delays and unreliable air transportation service on the economy range from $32B to $41B per year. This report describes the results of an analysis of airline strategic decision-making with regards to: (1) geographic access, (2) economic access, and (3) airline finances. This analysis evaluated markets-served, scheduled flights, aircraft size, airfares, and profit from 2005-2009. During this period, airlines experienced changes in costs of operation (due to fluctuations in hedged fuel prices), changes in travel demand (due to changes in the economy), and changes in infrastructure capacity (due to the capacity limits at EWR, JFK, and LGA). This analysis captures the impact of the implementation of capacity limits at airports, as well as the effect of increased costs of operation (i.e. hedged fuel prices). The increases in costs of operation serve as a proxy for increased costs per flight that might occur if auctions or congestion pricing are imposed.

  7. Heart rate, heart rate variability and behaviour of horses during air transport.

    PubMed

    Munsters, C C B M; de Gooijer, J-W; van den Broek, J; van Oldruitenborgh-Oosterbaan, M M Sloet

    2013-01-05

    Heart rate (HR), HR variability (HRV) and behaviour score (BS) of nine horses were evaluated during an eight-hour air transport between The Netherlands and New York. HR and HRV parameters were calculated every five minutes during the air transport. Compared with transit (40±3), mean HRs were higher during loading into the jet stall (67±21, P<0.001), loading into the aircraft (47±6, P=0.011), taxiing (50±8, P=0.001), and during periods of in-flight turbulence (46±7, P=0.017). During the flight, individual horses showed differences in mean HR (P=0.005) and peak HR (P<0.001). By contrast with HR data, HRV data did not differ between stages or horses. BS was highest during turbulence (3.2±0.4). However, behaviour did not always correspond with HR measurements: the least responsive horse had the highest HR. Loading into the jet stall caused the highest increase in HR and was considered the most stressful event. During transit, HR was generally comparable with resting rates. Previous studies have shown that loading and transporting by road caused more elevation in HR than during loading and transporting by air. HRV data were not found to be useful, and caution is needed when interpreting HRV data. Not every horse exhibited stress through visible (evasive) behaviour, and HR measurements may provide an additional tool to assess stress in horses.

  8. Peterson Air Force Base Transportation Plan Final Environmental Assessment

    DTIC Science & Technology

    2013-03-01

    Final Environmental Assessment Peterson Air Force Base Transportation Plan March 2013 FELSBURG H O L T & U L L E V I G Report Documentation Page Form...ABSTRACT unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 PETERSON AIR...4-1 4.2 Off-Base Activities

  9. Transportation by Air-On the Ground

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A Rolair air flotation system is a spinoff of NASA/General Motors technology developed for the Apollo Program. It allows heavy loads to be moved easily by separating the load from the ground by a thin air cushion, virtually eliminating surface friction. Rolair Systems, Inc. was formed by former General Motors engineers and has successfully employed the system for both aerospace and nonaerospace industries.

  10. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  11. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada

    NASA Astrophysics Data System (ADS)

    van Donkelaar, A.; Martin, R. V.; Leaitch, W. R.; MacDonald, A. M.; Walker, T. W.; Streets, D. G.; Zhang, Q.; Dunlea, E. J.; Jimenez, J. L.; Dibb, J. E.; Huey, L. G.; Weber, R.; Andreae, M. O.

    2008-06-01

    We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April-May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000-2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800-600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500-900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72-85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30%) and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.32 μg/m3 per 10% increase in the simulated

  12. Transport and Chemical Evolution over the Pacific (TRACE-P)Aircraft Mission: Design, Execution, and First Results

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-01-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 plus or minus 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to

  13. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  14. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  15. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  16. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  17. The Best Investment for the Air Superiority Fighter of the Year 2000: The Aircraft, Its Weapon System or Its Armament?

    DTIC Science & Technology

    1986-05-01

    Tactical Aircraft Division, 21 and 22 April 1986. 5. Study made in 1985 for a seminar of the Air War College by Colonel Bodie Bodenheim , USAF, and the...Magazine, January 1986, pp. 38-45. Ulsamer, Edgar , *Hard Calls on Tactical Technology.- Air Force Magazine, April 1986, pp. 58-64. A 0 _4 4.I _woo= ,DŔ

  18. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  19. Neural Network and Regression Approximations in High Speed Civil Transport Aircraft Design Optimization

    NASA Technical Reports Server (NTRS)

    Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    1998-01-01

    Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.

  20. Proposal and preliminary design for a high speed civil transport aircraft. Swift: A high speed civil transport for the year 2000

    NASA Technical Reports Server (NTRS)

    Banuelos, Aerobel; Caballero, Maria L.; Fields, Richard S., Jr.; Ledesma, Martha E.; Murakami, Lynne A.; Reyes, Joe T.; Westra, Bryan W.

    1992-01-01

    To meet the needs of the growing passenger traffic market in light of an aging subsonic fleet, a new breed of aircraft must be developed. The Swift is an aircraft that will economically meet these needs by the year 2000. Swift is a 246 passenger, Mach 2.5, luxury airliner. It has been designed to provide the benefit of comfortable, high speed transportation in a safe manner with minimal environmental impact. This report will discuss the features of the Swift aircraft and establish a solid, foundation for this supersonic transport of tomorrow.