Science.gov

Sample records for air transport network

  1. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the

  2. Analysis of the Chinese provincial air transportation network

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Liang, Bo-Yuan; Hong, Chen; Lordan, Oriol

    2017-01-01

    The air transportation system is of a great impact on the economy and globalization of a country. In this paper, we analyze the Chinese air transportation network (ATN) from a provincial perspective via the complex network framework, where all airports located in one province are abstracted as a single node and flights between two provinces are denoted by a link. The results show that the network exhibits small-world property, homogeneous structure and disassortative mixing. The variation of the flight flow within 24 h is investigated and an obvious tide phenomenon is found in the dynamics of Chinese provincial ATN for high output level of tertiary industry. Our work will offer a novel approach for understanding the characteristic of the Chinese air transportation network.

  3. The accelerated growth of the worldwide air transportation network

    NASA Astrophysics Data System (ADS)

    Azzam, Mark; Klingauf, Uwe; Zock, Alexander

    2013-01-01

    Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.

  4. A design methodology for evolutionary air transportation networks

    NASA Astrophysics Data System (ADS)

    Yang, Eunsuk

    The air transportation demand at large hubs in the U.S. is anticipated to double in the near future. Current runway construction plans at selected airports can relieve some capacity and delay problems, but many are doubtful that this solution is sufficient to accommodate the anticipated demand growth in the National Airspace System (NAS). With the worsening congestion problem, it is imperative to seek alternative solutions other than costly runway constructions. In this respect, many researchers and organizations have been building models and performing analyses of the NAS. However, the complexity and size of the problem results in an overwhelming task for transportation system modelers. This research seeks to compose an active design algorithm for an evolutionary airline network model so as to include network specific control properties. An airline network designer, referred to as a network architect, can use this tool to assess the possibilities of gaining more capacity by changing the network configuration. Since the Airline Deregulation Act of 1978, the airline service network has evolved into a distinct Hub-and-Spoke (H&S) network. Enplanement demand on the H&S network is the sum of Origin-Destination (O-D) demand and transfer demand. Even though the flight or enplanement demand is a function of O-D demand and passenger routings on the airline network, the distinction between enplanement and O-D demand is not often made. Instead, many demand forecast practices in current days are based on scale-ups from the enplanements, which include the demand to and from transferring network hubs. Based on this research, it was found that the current demand prediction practice can be improved by dissecting enplanements further into smaller pieces of information. As a result, enplanement demand is decomposed into intrinsic and variable parts. The proposed intrinsic demand model is based on the concept of 'true' O-D demand which includes the direction of each round trip

  5. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  6. Network Theory: A Primer and Questions for Air Transportation Systems Applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.

  7. Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Scott, John M.

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21PstP thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within

  8. Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Scott, John

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which

  9. Analyzing the evolutionary mechanisms of the Air Transportation System-of-Systems using network theory and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Kotegawa, Tatsuya

    Complexity in the Air Transportation System (ATS) arises from the intermingling of many independent physical resources, operational paradigms, and stakeholder interests, as well as the dynamic variation of these interactions over time. Currently, trade-offs and cost benefit analyses of new ATS concepts are carried out on system-wide evaluation simulations driven by air traffic forecasts that assume fixed airline routes. However, this does not well reflect reality as airlines regularly add and remove routes. A airline service route network evolution model that projects route addition and removal was created and combined with state-of-the-art air traffic forecast methods to better reflect the dynamic properties of the ATS in system-wide simulations. Guided by a system-of-systems framework, network theory metrics and machine learning algorithms were applied to develop the route network evolution models based on patterns extracted from historical data. Constructing the route addition section of the model posed the greatest challenge due to the large pool of new link candidates compared to the actual number of routes historically added to the network. Of the models explored, algorithms based on logistic regression, random forests, and support vector machines showed best route addition and removal forecast accuracies at approximately 20% and 40%, respectively, when validated with historical data. The combination of network evolution models and a system-wide evaluation tool quantified the impact of airline route network evolution on air traffic delay. The expected delay minutes when considering network evolution increased approximately 5% for a forecasted schedule on 3/19/2020. Performance trade-off studies between several airline route network topologies from the perspectives of passenger travel efficiency, fuel burn, and robustness were also conducted to provide bounds that could serve as targets for ATS transformation efforts. The series of analysis revealed that high

  10. Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia (Editor)

    2004-01-01

    The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.

  11. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.

    PubMed

    Rood, Arthur S; Sondrup, A Jeffrey; Ritter, Paul D

    2016-04-01

    A methodology has been developed to quantify the performance of an air-monitoring network in terms of frequency of detection. Frequency of detection is defined as the fraction of "events" that result in a detection at either a single sampler or network of samplers. An "event" is defined as a release to the atmosphere of a specified amount of activity over a finite duration that begins on a given day and hour of the year. The methodology uses an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Another metric of interest determined by the methodology is called the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory Site ambient air-monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km region. Releases from six major facilities distributed over an area of 1,435 km were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical Sb releases and measurements. Relevant 1-wk release quantities from each emission source were calculated based on a dose of 1.9×10 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides were Am, Cs, Pu, Pu, Sr, and tritium. Results show the detection frequency was over 97.5% for the entire network considering all sources and radionuclides. Network intensity results ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly located and added little to the overall

  12. Toward Optimal Transport Networks

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.

    2008-01-01

    Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.

  13. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  14. Air Traffic Network Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The high level requirement of the Air Traffic Network (ATN) project is to provide a mechanism for evaluating the impact of router scheduling modifications on a networks efficiency, without implementing the modifications in the live network.

  15. Animal transportation networks

    PubMed Central

    Perna, Andrea; Latty, Tanya

    2014-01-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598

  16. An Investigation of Synchrony in Transport Networks

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Alexandrov, Natalia M.; Holroyd, Michael J.

    2007-01-01

    The cumulative degree distributions of transport networks, such as air transportation networks and respiratory neuronal networks, follow power laws. The significance of power laws with respect to other network performance measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis and design of air transportation networks must address network performance in the face of increasing demands and the need to contain and control local network disturbances, such as congestion. Toward this end, we investigate functional relationships that govern the performance of transport networks; for example, the links between the first nontrivial eigenvalue of a network's Laplacian matrix - a quantitative measure of network synchronizability - and other global network parameters. In particular, among networks with a fixed degree distribution and fixed network assortativity (a measure of a network's preference to attach nodes based on a similarity or difference), those with the small eigenvalue are shown to be poor synchronizers, to have much longer shortest paths and to have greater clustering in comparison to those with large. A simulation of a respiratory network adds data to our investigation. This study is a beginning step in developing metrics and design variables for the analysis and active design of air transport networks.

  17. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  18. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  19. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  20. Rotorcraft air transportation

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.

    1983-01-01

    Intermodal relationships and the particular ways in which they affect public transportation applications of rotorcraft are addressed. Some aspects of integrated services and general comparisons with other transportation modes are reviewed. Two potential application scenarios are discussed: down-to-downtown rotorcraft service and urban public transport rotorcraft service. It is concluded that to integrate well with ground access modes community rotorcraft service should be limited stop service with published schedules, and operate on a few specific routes between a few specific destinations. For downtown-to-downtown service, time savings favorable to rotorcraft are benefits that reflect its more direct access, relatively higher line-haul travel speeds, and less circuitous travel. For the scenario of public transport within urban areas, first, improving cruise speeds has a limited potential due to allowing for a ""station spacing'' effect. Secondly, public acceptance of higher acceleration/deceleration rates may be just as effective as a technological innovation as achieving higher cruise speeds.

  1. Transportation, Air Pollution, and Climate Change

    MedlinePlus

    ... Share Facebook Twitter Google+ Pinterest Contact Us Transportation, Air Pollution, and Climate Change Accomplishments & Successes View successes from ... reduce carbon pollution. Carbon pollution from transportation Other Air Pollution Learn about smog, soot, ozone, and other air ...

  2. A Global Airport-Based Risk Model for the Spread of Dengue Infection via the Air Transport Network

    PubMed Central

    Gardner, Lauren; Sarkar, Sahotra

    2013-01-01

    The number of travel-acquired dengue infections has seen a consistent global rise over the past decade. An increased volume of international passenger air traffic originating from regions with endemic dengue has contributed to a rise in the number of dengue cases in both areas of endemicity and elsewhere. This paper reports results from a network-based risk assessment model which uses international passenger travel volumes, travel routes, travel distances, regional populations, and predictive species distribution models (for the two vector species, Aedes aegypti and Aedes albopictus) to quantify the relative risk posed by each airport in importing passengers with travel-acquired dengue infections. Two risk attributes are evaluated: (i) the risk posed by through traffic at each stopover airport and (ii) the risk posed by incoming travelers to each destination airport. The model results prioritize optimal locations (i.e., airports) for targeted dengue surveillance. The model is easily extendible to other vector-borne diseases. PMID:24009672

  3. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation is determined by the flag registry of the aircraft. The term “U.S. flag air carrier” means one of a class of...

  4. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation is determined by the flag registry of the aircraft. The term “U.S. flag air carrier” means one of a class of...

  5. Congestion transition in air traffic networks.

    PubMed

    Monechi, Bernardo; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios.

  6. Congestion Transition in Air Traffic Networks

    PubMed Central

    Monechi, Bernardo; Servedio, Vito D. P.; Loreto, Vittorio

    2015-01-01

    Air Transportation represents a very interesting example of a complex techno-social system whose importance has considerably grown in time and whose management requires a careful understanding of the subtle interplay between technological infrastructure and human behavior. Despite the competition with other transportation systems, a growth of air traffic is still foreseen in Europe for the next years. The increase of traffic load could bring the current Air Traffic Network above its capacity limits so that safety standards and performances might not be guaranteed anymore. Lacking the possibility of a direct investigation of this scenario, we resort to computer simulations in order to quantify the disruptive potential of an increase in traffic load. To this end we model the Air Transportation system as a complex dynamical network of flights controlled by humans who have to solve potentially dangerous conflicts by redirecting aircraft trajectories. The model is driven and validated through historical data of flight schedules in a European national airspace. While correctly reproducing actual statistics of the Air Transportation system, e.g., the distribution of delays, the model allows for theoretical predictions. Upon an increase of the traffic load injected in the system, the model predicts a transition from a phase in which all conflicts can be successfully resolved, to a phase in which many conflicts cannot be resolved anymore. We highlight how the current flight density of the Air Transportation system is well below the transition, provided that controllers make use of a special re-routing procedure. While the congestion transition displays a universal scaling behavior, its threshold depends on the conflict solving strategy adopted. Finally, the generality of the modeling scheme introduced makes it a flexible general tool to simulate and control Air Transportation systems in realistic and synthetic scenarios. PMID:25993476

  7. Development of the Air Transport Industry

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The major developments are outlined in the U.S. scheduled air transport industry both domestic and international, together with a brief history of the European air transport system. The role and formulation of the U.S. Civil Aeronautics Board, International Civil Aviation Organization, and International Air Transport Association are also covered.

  8. Assessment of SRS ambient air monitoring network

    SciTech Connect

    Abbott, K.; Jannik, T.

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  9. Global Transport Networks and Infectious Disease Spread

    PubMed Central

    Tatem, A.J.; Rogers, D.J.; Hay, S.I.

    2011-01-01

    Air, sea and land transport networks continue to expand in reach, speed of travel and volume of passengers and goods carried. Pathogens and their vectors can now move further, faster and in greater numbers than ever before. Three important consequences of global transport network expansion are infectious disease pandemics, vector invasion events and vector-borne pathogen importation. This review briefly examines some of the important historical examples of these disease and vector movements, such as the global influenza pandemics, the devastating Anopheles gambiae invasion of Brazil and the recent increases in imported Plasmodium falciparum malaria cases. We then outline potential approaches for future studies of disease movement, focussing on vector invasion and vector-borne disease importation. Such approaches allow us to explore the potential implications of international air travel, shipping routes and other methods of transport on global pathogen and vector traffic. PMID:16647974

  10. Forecasting Air Force Logistics Command Second Destination Transportation: An Application of Multiple Regression Analysis and Neural Networks

    DTIC Science & Technology

    1990-09-01

    27 Neural Networks .... ................ 28 Single Layer Perceptron .... ............ .. 33 Multi-Layer Perceptron .... ............. ... 37...32 6. Single Layer Perceptron and Decision Boundary ........ .. 34 7. The Exclusive-OR Decision Region ... ............ ... 36 8. A Multi-Layer...Threshold Logic Function (17:5) 32 Single Layer Perceptron . The earliest implementation of nrurncomputing was the development of a network in the late

  11. Financing the Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Lloyd-Jones, D. J.

    1972-01-01

    The basic characteristics of the air transportation industry are outlined and it is shown how they affect financing requirements and patterns of production. The choice of financial timing is imperative in order to get the best interest rates available and to insure a fair return to investors. The fact that the industry cannot store its products has a fairly major effect on the amount of equipment to purchase, the amount of capital investment required, and the amount of return required to offset industry depriciation.

  12. Study of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Webb, H. M.

    1972-01-01

    Low density air transport refers to air service to sparsely populated regions. There are two major objectives. The first is to examine those characteristics of sparsely populated areas which pertain to air transportation. This involves determination of geographical, commercial and population trends, as well as those traveler characteristics which affect the viability of air transport in the region. The second objective is to analyze the technical, economic and operational characteristics of low density air service. Two representative, but diverse arenas, West Virginia and Arizona, were selected for analysis: The results indicate that Arizona can support air service under certain assumptions whereas West Virginia cannot.

  13. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  14. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  15. Reducing Air Pollution from International Transportation

    EPA Pesticide Factsheets

    Because of their reliance on petroleum-based fuels and their dramatic growth rates in recent decades, air and sea transport are responsible for significant emissions of both traditional air pollutants and greenhouse gases.

  16. Scaling in Transportation Networks

    PubMed Central

    Louf, Rémi; Roth, Camille; Barthelemy, Marc

    2014-01-01

    Subway systems span most large cities, and railway networks most countries in the world. These networks are fundamental in the development of countries and their cities, and it is therefore crucial to understand their formation and evolution. However, if the topological properties of these networks are fairly well understood, how they relate to population and socio-economical properties remains an open question. We propose here a general coarse-grained approach, based on a cost-benefit analysis that accounts for the scaling properties of the main quantities characterizing these systems (the number of stations, the total length, and the ridership) with the substrate's population, area and wealth. More precisely, we show that the length, number of stations and ridership of subways and rail networks can be estimated knowing the area, population and wealth of the underlying region. These predictions are in good agreement with data gathered for about subway systems and more than railway networks in the world. We also show that train networks and subway systems can be described within the same framework, but with a fundamental difference: while the interstation distance seems to be constant and determined by the typical walking distance for subways, the interstation distance for railways scales with the number of stations. PMID:25029528

  17. Air ambulance medical transport advertising and marketing.

    PubMed

    2011-01-01

    The National Association of EMS Physicians (NAEMSP), the American College of Emergency Physicians (ACEP), the Air Medical Physician Association (AMPA), the Association of Air Medical Services (AAMS), and the National Association of State EMS Officials (NASEMSO) believe that patient care and outcomes are optimized by using air medical transport services that are licensed air ambulance providers with robust physician medical director oversight and ongoing quality assessment and review. Only air ambulance medical transport services with these credentials should advertise/market themselves as air ambulance services.

  18. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  19. Transportation Networks for Emergency Evacuations

    SciTech Connect

    Franzese, Oscar; Liu, Cheng

    2008-01-01

    Evacuation modeling systems (EMS) have been developed to facilitate the planning, analysis, and deployment of emergency evacuation of populations at risk. For any EMS, data such as road network maps, traffic control characteristics, and population distribution play critical roles in delineating emergency zones, estimating population at risk, and determining evacuation routes. There are situations in which it is possible to plan in advance for an emergency evacuation including, for example, an explosion at a chemical processing facility or a radiological accident at a nuclear plant. In these cases, if an accident or a terrorist attack were to happen, then the best evacuation plan for the prevailing network and weather conditions would be deployed. In other instances -for example, the derailment of a train transporting hazardous materials-, there may not be any previously developed plan to be implemented and decisions must be made ad-hoc on if and how to identify and proceed with the best course of action to minimize losses. Although both cases require as a starting point the development of a transportation network model of the area at risk, which must include road capacity and topology, in the latter the available time to generate this network is extremely limited. This time constraint precludes the use of any traditional data gathering methodology and the network generation process has to rely on the use of GIS and stochastic modeling techniques. The generation of these transportation networks in real time is the focus of this entry.

  20. The Market Demand for Air Transportation

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    Although the presentation will touch upon the areas of market for air transportation, the theoretical foundations of the demand function, the demand models, and model selection and evaluation, the emphasis of the presentation will be on a qualitative description of the factors affecting the demand for air transportation. The presentation will rely heavily on the results of market surveys carried out by the Port of New York Authority, the University of Michigan, and Census of Transportation.

  1. Air medical transportation in India: Our experience

    PubMed Central

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Background and Aims: Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Material and Methods: Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. Results: 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation. PMID:27625486

  2. Anomalous Transport in Complex Networks

    NASA Astrophysics Data System (ADS)

    Lopez, Eduardo; Buldyrev, Sergey; Havlin, Shlomo; Stanley, H. Eugene

    2005-03-01

    To study transport properties of complex networks, we analyze the equivalent conductance G between two arbitrarily chosen nodes of random scale-free networks with degree distribution P(k)˜k^-λ in which each link has the same unit resistance. We predict a broad range of values of G, with a power-law tail distribution φSF(G)˜G^-gG, where gG=2λ-1, and confirm our predictions by simulations. The power-law tail in φSF(G) leads to large values of G, thereby significantly improving the transport in scale-free networks, compared to Erdos-R'enyi random graphs where the tail of the conductivity distribution decays exponentially. Based on a simple physical ``transport backbone'' picture we show that the conductances are well approximated by ckAkB/(kA+kB) for any pair of nodes A and B with degrees kA and kB. Thus, a single parameter c characterizes transport on scale-free networks.

  3. Statewide air medical transports for Massachusetts.

    PubMed

    Garthe, Elizabeth; Mango, Nicholas K; Prenney, Brad

    2002-01-01

    In 1997, the Massachusetts Department of Public Health (MDPH) established a process to centralize air medical transport information. This database is one of the first statewide, population-based sources for civilian rotary-wing air medical transports (U.S. Coast Guard, police, and military missions are not included). The purpose of this database is to facilitate MDPH review of air medical transport service utilization, with input from a multidisciplinary committee. This article discusses the challenges in producing uniform data from multiple service submissions and presents aggregate "baseline" utilization information for 1996. These data served as a starting point for later studies using data linkage. This indexed article is the first to report statewide, population-based data for all types of air medical helicopter transports. The only other indexed "statewide air medical transport" paper focused on scene transports to trauma centers in Pennsylvania. A previous article by the authors in the July-September 2000 Air Medical Journal provided an overview of air medical transports for fatal motor vehicle crashes for 1 region of the state.

  4. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  5. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  6. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  7. Charge transport network dynamics in molecular aggregates

    SciTech Connect

    Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.

    2016-07-20

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.

  8. Charge transport network dynamics in molecular aggregates

    PubMed Central

    Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.

    2016-01-01

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ∼100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871

  9. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  10. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel.

  11. Formal Methods Applications in Air Transportation

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  12. Information transport in multiplex networks

    NASA Astrophysics Data System (ADS)

    Pu, Cunlai; Li, Siyuan; Yang, Xianxia; Yang, Jian; Wang, Kai

    2016-04-01

    In this paper, we study information transport in multiplex networks comprised of two coupled subnetworks. The upper subnetwork, called the logical layer, employs the shortest paths protocol to determine the logical paths for packets transmission, while the lower subnetwork acts as the physical layer, in which packets are delivered by the biased random walk mechanism characterized with a parameter α. Through simulation, we obtain the optimal α corresponding to the maximum network lifetime and the maximum number of the arrival packets. Assortative coupling is better than random coupling and disassortative coupling, since it achieves better transmission performance. Generally, the more homogeneous the lower subnetwork is, the better the transmission performance, which is the opposite for the upper subnetwork. Finally, we propose an attack centrality for nodes based on the topological information of both subnetworks, and investigate the transmission performance under targeted attacks. Our work aids in understanding the spread and robustness issues of multiplex networks and provides some clues about the design of more efficient and robust routing architectures in communication systems.

  13. Motor transport related harmful PM2.5 and PM10: from onroad measurements to the modelling of air pollution by neural network approach on street and urban level

    NASA Astrophysics Data System (ADS)

    Lozhkina, O.; Lozhkin, V.; Nevmerzhitsky, N.; Tarkhov, D.; Vasilyev, A.

    2016-11-01

    The level of PM10 and PM2.5 concentrations in the air on seven roads in St. Petersburg, Russia, were investigated using gravimetry and nephelometry measurement techniques in 2013-2015. The effects of meteorological conditions (temperature, relative humidity, wind direction, and speed) and the intensity of traffic flows on the results of the measurements were also evaluated. On the base of the measurements, there was developed a neural network modelling approach that allowed to quantify exhaust / non-exhaust PM10 and PM 2.5 emissions and carry out numerical investigations of air pollution by transport related PM2.5 and PM10 on street and urban level in St. Petersburg.

  14. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  15. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  16. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  17. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  18. Opportunities to Improve Air Quality through Transportation Pricing Programs

    EPA Pesticide Factsheets

    This document is intended to give state and local air quality and transportation planners,elected government officials, and other interested parties background information on transportation pricing programs.

  19. Biological solutions to transport network design.

    PubMed

    Bebber, Daniel P; Hynes, Juliet; Darrah, Peter R; Boddy, Lynne; Fricker, Mark D

    2007-09-22

    Transport networks are vital components of multicellular organisms, distributing nutrients and removing waste products. Animal and plant transport systems are branching trees whose architecture is linked to universal scaling laws in these organisms. In contrast, many fungi form reticulated mycelia via the branching and fusion of thread-like hyphae that continuously adapt to the environment. Fungal networks have evolved to explore and exploit a patchy environment, rather than ramify through a three-dimensional organism. However, there has been no explicit analysis of the network structures formed, their dynamic behaviour nor how either impact on their ecological function. Using the woodland saprotroph Phanerochaete velutina, we show that fungal networks can display both high transport capacity and robustness to damage. These properties are enhanced as the network grows, while the relative cost of building the network decreases. Thus, mycelia achieve the seemingly competing goals of efficient transport and robustness, with decreasing relative investment, by selective reinforcement and recycling of transport pathways. Fungal networks demonstrate that indeterminate, decentralized systems can yield highly adaptive networks. Understanding how these relatively simple organisms have found effective transport networks through a process of natural selection may inform the design of man-made networks.

  20. Transport and urban air pollution in India.

    PubMed

    Badami, Madhav G

    2005-08-01

    The rapid growth in motor vehicle activity in India and other rapidly industrializing low-income countries is contributing to high levels of urban air pollution, among other adverse socioeconomic, environmental, health, and welfare impacts. This paper first discusses the local, regional, and global impacts associated with air pollutant emissions resulting from motor vehicle activity, and the technological, behavioral, and institutional factors that have contributed to these emissions, in India. The paper then discusses some implementation issues related to various policy measures that have been undertaken, and the challenges of the policy context. Finally, the paper presents insights and lessons based on the recent Indian experience, for better understanding and more effectively addressing the transport air pollution problem in India and similar countries, in a way that is sensitive to their needs, capabilities, and constraints.

  1. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... 29 Labor 4 2010-07-01 2010-07-01 false National Air Transport Adjustment Board. 1202.12 Section... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  2. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... 29 Labor 4 2011-07-01 2011-07-01 false National Air Transport Adjustment Board. 1202.12 Section... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  3. Dynamical properties of transportation on complex networks

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Gao, Zi-You

    2008-02-01

    We study the dynamical properties of transportation considering the topology structure of networks and congestion effects, based on a proposed simple model. We analyze the behavior of the model for finding out the relationship between the properties of transportation and the structure of network. Analysis and numerical results demonstrate that the transition from free flow to congested regime can be observed for both single link load and network load, but it is discontinuous for single link and continuous for network. We also find that networks with large average degree have small average link betweenness and are more tolerant to congestion, and networks with homogeneous structure can hold more vehicles in stationary state at the subcritical region. Furthermore, by allotting capacity with different mode to links, a manner of enhancing the performance of networks is introduced, which should be helpful in the design of traffic networks.

  4. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  5. Proceedings of the Air Transportation Management Workshop

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard (Editor); Tashker, Michael G. (Editor); Boyle, Angela M. (Editor)

    1995-01-01

    The Air Transportation Management (ATM) Workshop was held 31 Jan. - 1 Feb. 1995 at NASA Ames Research Center. The purpose of the workshop was to develop an initial understanding of user concerns and requirements for future ATM capabilities and to initiate discussions of alternative means and technologies for achieving more effective ATM capabilities. The topics for the sessions were as follows: viewpoints of future ATM capabilities, user requirements, lessons learned, and technologies for ATM. In addition, two panel sessions discussed priorities for ATM, and potential contributions of NASA to ATM. The proceedings contain transcriptions of all sessions.

  6. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  7. [Long-haul intensive care transports by air].

    PubMed

    Graf, Jürgen; Seiler, Olivier; Pump, Stefan; Günther, Marion; Albrecht, Roland

    2013-03-01

    The need for inter-hospital transports over long distances aboard air ambulances or airlines has increased in recent years, both in the civil as well as the military sector. More often severely ill intensive care patients with multiple organ failure and appropriate supportive care (e.g. mechanical ventilation, catecholamines, dialysis, cardiac assist devices) are transported by air. Despite the fact that long-haul intensive care transports by air ambulance and airlines via Patient Transport Compartment (PTC) are considered established modes of transport they always provide a number of challenges. Both modes of transport have distinct logistical and medical advantages and disadvantages. These-as well as the principal risks of an air-bound long-haul intensive care transport -have to be included in the risk assessment and selection of means of transport. Very often long-haul intensive care transports are a combination of air ambulance and scheduled airlines utilizing the PTC.

  8. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  9. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  10. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  11. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  12. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  13. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  14. Community Air Sensor Network (CAIRSENSE) project ...

    EPA Pesticide Factsheets

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, -0.25 to 0.76, -0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r 0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorihm to im

  15. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  16. Universal bursty behavior in the air transportation system

    NASA Astrophysics Data System (ADS)

    Ito, Hidetaka; Nishinari, Katsuhiro

    2015-12-01

    Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α =2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality.

  17. 49 CFR 1510.7 - Air transportation advertisements and solicitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Air transportation advertisements and... PASSENGER CIVIL AVIATION SECURITY SERVICE FEES § 1510.7 Air transportation advertisements and solicitations... part as “September 11th Security Fee” in all its advertisements and solicitations for...

  18. Transportation dynamics on networks of mobile agents.

    PubMed

    Yang, Han-Xin; Wang, Wen-Xu; Xie, Yan-Bo; Lai, Ying-Cheng; Wang, Bing-Hong

    2011-01-01

    Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest is the dependence of the throughput on the speed of agent movement and the communication range. Our computations reveal a hierarchical dependence for the former, while an algebraic power law is found between the throughput and the communication range with the exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.

  19. Transportation dynamics on networks of mobile agents

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Wen-Xu; Xie, Yan-Bo; Lai, Ying-Cheng; Wang, Bing-Hong

    2011-01-01

    Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest is the dependence of the throughput on the speed of agent movement and the communication range. Our computations reveal a hierarchical dependence for the former, while an algebraic power law is found between the throughput and the communication range with the exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.

  20. Anomalous Transport in Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    López, Eduardo; Buldyrev, Sergey V.; Havlin, Shlomo; Stanley, H. Eugene

    2005-06-01

    To study transport properties of scale-free and Erdős-Rényi networks, we analyze the conductance G between two arbitrarily chosen nodes of random scale-free networks with degree distribution P(k)˜k-λ in which all links have unit resistance. We predict a broad range of values of G, with a power-law tail distribution ΦSF(G)˜G-gG, where gG=2λ-1, and confirm our predictions by simulations. The power-law tail in ΦSF(G) leads to large values of G, signaling better transport in scale-free networks compared to Erdős-Rényi networks where the tail of the conductivity distribution decays exponentially. Based on a simple physical “transport backbone” picture we show that the conductances of scale-free and Erdős-Rényi networks are well approximated by ckAkB/(kA+kB) for any pair of nodes A and B with degrees kA and kB, where c emerges as the main parameter characterizing network transport.

  1. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  2. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  3. Fluctuations and Redundancy in Optimal Transport Networks

    NASA Astrophysics Data System (ADS)

    Corson, Francis

    2010-01-01

    The structure of networks that provide optimal transport properties has been investigated in a variety of contexts. While many different formulations of this problem have been considered, it is recurrently found that optimal networks are trees. It is shown here that this result is contingent on the assumption of a stationary flow through the network. When time variations or fluctuations are allowed for, a different class of optimal structures is found, which share the hierarchical organization of trees yet contain loops. The transitions between different network topologies as the parameters of the problem vary are examined. These results may have strong implications for the structure and formation of natural networks, as is illustrated by the example of leaf venation networks.

  4. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  5. UK airmisses involving commercial air transport, January-April 1991

    NASA Astrophysics Data System (ADS)

    In the introduction the following are briefly discussed: origination of an airmiss; purpose of airmiss reports; investigation of airmiss reports; categorization of airmisses; involvement of commercial air transport aircraft; airmisses related to flying hours. Tabulated statistics of the following are presented: the number of incidents of commercial air transport airmisses; commercial air transport aircraft involved in airmisses; commercial air transport airmisses related to flying hours. Reports on the commercial air transport airmisses from Jan. - Apr. 1991 are presented. These contain summaries of: pilot reports, transcripts of relevant RT frequencies; radar video recordings, and reports from appropriate air traffic control and operating authorities. The working groups discussion is summarized, and the risk and cause assessed.

  6. Demand and Congestion in Multiplex Transportation Networks.

    PubMed

    Chodrow, Philip S; Al-Awwad, Zeyad; Jiang, Shan; González, Marta C

    Urban transportation systems are multimodal, sociotechnical systems; however, while their multimodal aspect has received extensive attention in recent literature on multiplex networks, their sociotechnical aspect has been largely neglected. We present the first study of an urban transportation system using multiplex network analysis and validated Origin-Destination travel demand, with Riyadh's planned metro as a case study. We develop methods for analyzing the impact of additional transportation layers on existing dynamics, and show that demand structure plays key quantitative and qualitative roles. There exist fundamental geometrical limits to the metro's impact on traffic dynamics, and the bulk of environmental accrue at metro speeds only slightly faster than those planned. We develop a simple model for informing the use of additional, "feeder" layers to maximize reductions in global congestion. Our techniques are computationally practical, easily extensible to arbitrary transportation layers with complex transfer logic, and implementable in open-source software.

  7. Demand and Congestion in Multiplex Transportation Networks

    PubMed Central

    al-Awwad, Zeyad; Jiang, Shan; González, Marta C.

    2016-01-01

    Urban transportation systems are multimodal, sociotechnical systems; however, while their multimodal aspect has received extensive attention in recent literature on multiplex networks, their sociotechnical aspect has been largely neglected. We present the first study of an urban transportation system using multiplex network analysis and validated Origin-Destination travel demand, with Riyadh’s planned metro as a case study. We develop methods for analyzing the impact of additional transportation layers on existing dynamics, and show that demand structure plays key quantitative and qualitative roles. There exist fundamental geometrical limits to the metro’s impact on traffic dynamics, and the bulk of environmental accrue at metro speeds only slightly faster than those planned. We develop a simple model for informing the use of additional, “feeder” layers to maximize reductions in global congestion. Our techniques are computationally practical, easily extensible to arbitrary transportation layers with complex transfer logic, and implementable in open-source software. PMID:27657738

  8. Community core detection in transportation networks

    NASA Astrophysics Data System (ADS)

    De Leo, Vincenzo; Santoboni, Giovanni; Cerina, Federica; Mureddu, Mario; Secchi, Luca; Chessa, Alessandro

    2013-10-01

    This work analyzes methods for the identification and the stability under perturbation of a territorial community structure with specific reference to transportation networks. We considered networks of commuters for a city and an insular region. In both cases, we have studied the distribution of commuters’ trips (i.e., home-to-work trips and vice versa). The identification and stability of the communities’ cores are linked to the land-use distribution within the zone system, and therefore their proper definition may be useful to transport planners.

  9. Combined Heat, Air, Moisture, and Pollutants Transport in Building Environmental Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jianshun Jensen S.

    Combined heat, air, moisture and pollutants transport (CHAMP) exists across multi-scales of a building environmental system (BES): around the building, through the building shell/envelope, inside a multizone building, and in the micro-environments around occupants. This paper reviews previous work and presents a system model for simulating these transport processes and their impacts on indoor environmental quality. Components of the system model include a multizone network flow model for whole building, a room model for air and pollutant movement in ventilated spaces, a coupled heat, air, moisture, and pollutant transport model for building shell, an HVAC model for describing the dynamics of the heating, ventilating and air-conditioning (HVAC) system, and shared databases of weather conditions, transport properties of building materials, and volatile organic compounds (VOCs) emissions from building materials and furnishings. The interactions among the different components, and challenges in developing the CHAMP system model for intelligent control of BES are also discussed.

  10. Progress in photonic transport network systems

    NASA Astrophysics Data System (ADS)

    Sato, Ken-Ichi

    2002-07-01

    The network paradigm is changing rapidly spurred by the dramatic increase in IP traffic and recent progress in photonic network technologies. A key requirement, enhancing the performance of existing IP-based multimedia communication networks, can be most effectively achieved by introducing optical path technologies that exploit wavelength routing. Cost effective and reliable optical cross-connection is essential. Different optical switch technologies have been proposed and tested. Among them, the PLC (Planer Lightwave Circuit) switch has demonstrated excellent performance, particularly with regard to system reliability. Network control mechanisms based on the overlay and peer model models have been developed. The presentation will highlight some of the key system technologies. To develop very large scale and robust networks, effective traffic engineering capabilities are necessary. This will be achieved through optical path control. To develop future IP-centric networks, an operation mechanism based on distributed control is important. The degree to which the necessary transport and IP routing functions are integrated will determine system cost-effectiveness. The Photonic MPLS (Multi Protocol Label Switching) router, which integrates all the functions and provides seamless operation between IP and optical layers, has been proposed and developed. The technical feasibility of a recent prototype system has been proven. Finally, some of the cutting-edge photonic transport technologies that we have recently developed are demonstrated; these technologies will enable us to achieve another level of network performance enhancement in the future.

  11. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  12. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  13. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  14. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  15. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any...

  16. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Unauthorized air transportation. 221.5... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff publications shall not contain fares or charges, or their governing provisions, applicable to foreign...

  17. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Unauthorized air transportation. 221.5... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff publications shall not contain fares or charges, or their governing provisions, applicable to foreign...

  18. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  19. Optimally designed quantum transport across disordered networks.

    PubMed

    Walschaers, Mattia; Diaz, Jorge Fernandez-de-Cossio; Mulet, Roberto; Buchleitner, Andreas

    2013-11-01

    We establish a general mechanism for highly efficient quantum transport through finite, disordered 3D networks. It relies on the interplay of disorder with centrosymmetry and a dominant doublet spectral structure and can be controlled by the proper tuning of only coarse-grained quantities. Photosynthetic light harvesting complexes are discussed as potential biological incarnations of this design principle.

  20. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  1. Particle Swarm Transport in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  2. Feedback network models for quantum transport

    NASA Astrophysics Data System (ADS)

    Gough, John

    2014-12-01

    Quantum feedback networks have been introduced in quantum optics as a framework for constructing arbitrary networks of quantum mechanical systems connected by unidirectional quantum optical fields, and has allowed for a system theoretic approach to open quantum optics systems. Our aim here is to establish a network theory for quantum transport systems where typically the mediating fields between systems are bidirectional. Mathematically, this leads us to study quantum feedback networks where fields arrive at ports in input-output pairs, making it a special case of the unidirectional theory where inputs and outputs are paired. However, it is conceptually important to develop this theory in the context of quantum transport theory—the resulting theory extends traditional approaches which tend to view the components in quantum transport as scatterers for the various fields, in the process allowing us to consider emission and absorption of field quanta by these components. The quantum feedback network theory is applicable to both Bose and Fermi fields, moreover, it applies to nonlinear dynamics for the component systems. We advance the general theory, but study the case of linear passive quantum components in some detail.

  3. Feedback network models for quantum transport.

    PubMed

    Gough, John

    2014-12-01

    Quantum feedback networks have been introduced in quantum optics as a framework for constructing arbitrary networks of quantum mechanical systems connected by unidirectional quantum optical fields, and has allowed for a system theoretic approach to open quantum optics systems. Our aim here is to establish a network theory for quantum transport systems where typically the mediating fields between systems are bidirectional. Mathematically, this leads us to study quantum feedback networks where fields arrive at ports in input-output pairs, making it a special case of the unidirectional theory where inputs and outputs are paired. However, it is conceptually important to develop this theory in the context of quantum transport theory-the resulting theory extends traditional approaches which tend to view the components in quantum transport as scatterers for the various fields, in the process allowing us to consider emission and absorption of field quanta by these components. The quantum feedback network theory is applicable to both Bose and Fermi fields, moreover, it applies to nonlinear dynamics for the component systems. We advance the general theory, but study the case of linear passive quantum components in some detail.

  4. The Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    NASA Technical Reports Server (NTRS)

    Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1997-01-01

    Topics reported on in the proceedings include: Industrial reform and air transport development in China; the economic effects of airline deregulation and the Open-Sky policy of Korea; Open Skies in India; Japanese domestic air fares under the regulatory regime; the competitive position of airline networks; air transport and regional economic development in the European Union; and corporate dilemmas and strategies of European Airlines.

  5. Air Cargo Transportation Route Choice Analysis

    NASA Technical Reports Server (NTRS)

    Obashi, Hiroshi; Kim, Tae-Seung; Oum, Tae Hoon

    2003-01-01

    Using a unique feature of air cargo transshipment data in the Northeast Asian region, this paper identifies the critical factors that determine the transshipment route choice. Taking advantage of the variations in the transport characteristics in each origin-destination airports pair, the paper uses a discrete choice model to describe the transshipping route choice decision made by an agent (i.e., freight forwarder, consolidator, and large shipper). The analysis incorporates two major factors, monetary cost (such as line-haul cost and landing fee) and time cost (i.e., aircraft turnaround time, including loading and unloading time, custom clearance time, and expected scheduled delay), along with other controls. The estimation method considers the presence of unobserved attributes, and corrects for resulting endogeneity by use of appropriate instrumental variables. Estimation results find that transshipment volumes are more sensitive to time cost, and that the reduction in aircraft turnaround time by 1 hour would be worth the increase in airport charges by more than $1000. Simulation exercises measures the impacts of alternative policy scenarios for a Korean airport, which has recently declared their intention to be a future regional hub in the Northeast Asian region. The results suggest that reducing aircraft turnaround time at the airport be an effective strategy, rather than subsidizing to reduce airport charges.

  6. Investigation of air transportation technology at Princeton University, 1990-1991

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    The Air Transportation Technology Program at Princeton University is a program that emphasizes graduate and undergraduate student research. The program proceeded along six avenues during the past year: microburst hazards to aircraft, intelligent failure tolerant control, computer-aided heuristics for piloted flight, stochastic robustness of flight control systems, neural networks for flight control, and computer-aided control system design.

  7. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 5

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities. The Conference proceedings of the 2003 Air Transport Research Society (ATRS) world conference, volume 5 is presented. The topics include: 1) The Temporal Configuration of Airline Networks in Europe; 2) Determination and Applications of Environmental Costs at Different Sized Airports-Aircraft Noise and Engine Emissions; 3) Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector; 4) An Assessment of the Sustainability of Air Transport System: Quantification of Indicators; 5) Regulation, Competition and Network Evolution in Aviation; 6) Regulation in the Air: Price and Frequency Cap; 7) Industry Consolidation and Future Airline Network Structures in Europe; 8) Application of Core Theory to the U.S. Airline Industry; 9) Air Freight Transshipment Route Choice Analysis; 10) A Fuzzy Approach of the Competition on Air Transport Market; and 11) Developing Passenger Demand Models for International Aviation from/to Egypt: A Case Study of Cairo Airport and Egyptair.

  8. Air Transport of Spent Nuclear Fuel (SNF) Assemblies

    SciTech Connect

    Haire, M.J.; Moses, S.D.; Shapovalov, V.I.; Morenko, A.

    2007-07-01

    Sometimes the only feasible means of shipping research reactor spent nuclear fuel (SNF) among countries is via air transport because of location or political conditions. The International Atomic Energy Agency (IAEA) has established a regulatory framework to certify air transport Type C casks. However, no such cask has been designed, built, tested, and certified. In lieu of an air transport cask, research reactor SNF has been transported using a Type B cask under an exemption with special arrangements for administrative and security controls. This work indicates that it may be feasible to transport commercial power reactor SNF assemblies via air, and that the cost is only about three times that of shipping it by railway. Optimization (i.e., reduction) of this cost factor has yet to be done. (authors)

  9. Optimal transport exponent in spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Li, G.; Reis, S. D. S.; Moreira, A. A.; Havlin, S.; Stanley, H. E.; Andrade, J. S., Jr.

    2013-04-01

    The imposition of a cost constraint for constructing the optimal navigation structure surely represents a crucial ingredient in the design and development of any realistic navigation network. Previous works have focused on optimal transport in small-world networks built from two-dimensional lattices by adding long-range connections with Manhattan length rij taken from the distribution Pij˜rij-α, where α is a variable exponent. It has been shown that, by introducing a cost constraint on the total length of the additional links, regardless of the strategy used by the traveler (independent of whether it is based on local or global knowledge of the network structure), the best transportation condition is obtained with an exponent α=d+1, where d is the dimension of the underlying lattice. Here we present further support, through a high-performance real-time algorithm, on the validity of this conjecture in three-dimensional regular as well as in two-dimensional critical percolation clusters. Our results clearly indicate that cost constraint in the navigation problem provides a proper theoretical framework to justify the evolving topologies of real complex network structures, as recently demonstrated for the networks of the US airports and the human brain activity.

  10. Population-weighted efficiency in transportation networks

    PubMed Central

    Dong, Lei; Li, Ruiqi; Zhang, Jiang; Di, Zengru

    2016-01-01

    Transportation efficiency is critical for the operation of cities and is attracting great attention worldwide. Improving the transportation efficiency can not only decrease energy consumption, reduce carbon emissions, but also accelerate people’s interactions, which will become more and more important for sustainable urban living. Generally, traffic conditions in less-developed countries are not so good due to the undeveloped economy and road networks, while this issue is rarely studied before, because traditional survey data in these areas are scarce. Nowadays, with the development of ubiquitous mobile phone data, we can explore the transportation efficiency in a new way. In this paper, based on users’ call detailed records (CDRs), we propose an indicator named population-weighted efficiency (PWE) to quantitatively measure the efficiency of the transportation networks. PWE can provide insights into transportation infrastructure development, according to which we identify dozens of inefficient routes at both the intra- and inter-city levels, which are verified by several ongoing construction projects in Senegal. In addition, we compare PWE with excess commuting indices, and the fitting result of PWE is better than excess commuting index, which also proves the validity of our method. PMID:27230706

  11. Population-weighted efficiency in transportation networks

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Li, Ruiqi; Zhang, Jiang; di, Zengru

    2016-05-01

    Transportation efficiency is critical for the operation of cities and is attracting great attention worldwide. Improving the transportation efficiency can not only decrease energy consumption, reduce carbon emissions, but also accelerate people’s interactions, which will become more and more important for sustainable urban living. Generally, traffic conditions in less-developed countries are not so good due to the undeveloped economy and road networks, while this issue is rarely studied before, because traditional survey data in these areas are scarce. Nowadays, with the development of ubiquitous mobile phone data, we can explore the transportation efficiency in a new way. In this paper, based on users’ call detailed records (CDRs), we propose an indicator named population-weighted efficiency (PWE) to quantitatively measure the efficiency of the transportation networks. PWE can provide insights into transportation infrastructure development, according to which we identify dozens of inefficient routes at both the intra- and inter-city levels, which are verified by several ongoing construction projects in Senegal. In addition, we compare PWE with excess commuting indices, and the fitting result of PWE is better than excess commuting index, which also proves the validity of our method.

  12. Population-weighted efficiency in transportation networks.

    PubMed

    Dong, Lei; Li, Ruiqi; Zhang, Jiang; Di, Zengru

    2016-05-27

    Transportation efficiency is critical for the operation of cities and is attracting great attention worldwide. Improving the transportation efficiency can not only decrease energy consumption, reduce carbon emissions, but also accelerate people's interactions, which will become more and more important for sustainable urban living. Generally, traffic conditions in less-developed countries are not so good due to the undeveloped economy and road networks, while this issue is rarely studied before, because traditional survey data in these areas are scarce. Nowadays, with the development of ubiquitous mobile phone data, we can explore the transportation efficiency in a new way. In this paper, based on users' call detailed records (CDRs), we propose an indicator named population-weighted efficiency (PWE) to quantitatively measure the efficiency of the transportation networks. PWE can provide insights into transportation infrastructure development, according to which we identify dozens of inefficient routes at both the intra- and inter-city levels, which are verified by several ongoing construction projects in Senegal. In addition, we compare PWE with excess commuting indices, and the fitting result of PWE is better than excess commuting index, which also proves the validity of our method.

  13. Journal of Air Transportation; Volume 9, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2004-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  14. Journal of Air Transportation, Volume 10, No. 1

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor); Lucas, Sarah (Editor); Scarpellini-Metz, Nanette (Editor)

    2005-01-01

    The mission of the Journal of Air Transportation (JA is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  15. Journal of Air Transportation, Volume 11, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2007-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy

  16. Integrative Analysis of the Physical Transport Network into Australia

    PubMed Central

    Cope, Robert C.; Ross, Joshua V.; Wittmann, Talia A.; Prowse, Thomas A. A.; Cassey, Phillip

    2016-01-01

    Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999–2012. Seaborne and air traffic were weighted to calculate a “weighted cumulative impact” score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong), and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights), were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy. PMID:26881782

  17. Integrative Analysis of the Physical Transport Network into Australia.

    PubMed

    Cope, Robert C; Ross, Joshua V; Wittmann, Talia A; Prowse, Thomas A A; Cassey, Phillip

    2016-01-01

    Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999-2012. Seaborne and air traffic were weighted to calculate a "weighted cumulative impact" score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong), and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights), were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy.

  18. Adaptation and optimization of biological transport networks.

    PubMed

    Hu, Dan; Cai, David

    2013-09-27

    It has been hypothesized that topological structures of biological transport networks are consequences of energy optimization. Motivated by experimental observation, we propose that adaptation dynamics may underlie this optimization. In contrast to the global nature of optimization, our adaptation dynamics responds only to local information and can naturally incorporate fluctuations in flow distributions. The adaptation dynamics minimizes the global energy consumption to produce optimal networks, which may possess hierarchical loop structures in the presence of strong fluctuations in flow distribution. We further show that there may exist a new phase transition as there is a critical open probability of sinks, above which there are only trees for network structures whereas below which loops begin to emerge.

  19. Agenda and Presentations from Circumpolar Workshop: Transport and Clean Air

    EPA Pesticide Factsheets

    EPA and its partners convened Transport and Clean Air, a Circumpolar Workshop held in December 2013. This seminar allowed leading experts to share best practices on reducing emissions of particulates and black carbon from diesel sources in the Arctic.

  20. Measuring the Air Quality and Transportation Impacts of Infill Development

    EPA Pesticide Factsheets

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  1. Studies in the demand for short haul air transportation

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Gosling, G.; Taghavi, S.

    1975-01-01

    Demand is analyzed in a short haul air transportation corridor. Emphasis is placed on traveler selection from available routes. Model formulations, estimation techniques, and traffic data handling are included.

  2. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  3. Community rotorcraft air transportation benefits and opportunities

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.; Freund, D. J.; Winick, R. M.; Cafarelli, N. J.; Hodgkins, R. F.; Vickers, T. K.

    1981-01-01

    Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings.

  4. Myosin-driven transport network in plants

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Turner, Hannah L.; Makarova, Kira S.; Iranzo, Jaime; Mekhedov, Sergei L.; Koonin, Eugene V.; Dolja, Valerian V.

    2017-01-01

    We investigate the myosin XI-driven transport network in Arabidopsis using protein–protein interaction, subcellular localization, gene knockout, and bioinformatics analyses. The two major groups of nodes in this network are myosins XI and their membrane-anchored receptors (MyoB) that, together, drive endomembrane trafficking and cytoplasmic streaming in the plant cells. The network shows high node connectivity and is dominated by generalists, with a smaller fraction of more specialized myosins and receptors. We show that interaction with myosins and association with motile vesicles are common properties of the MyoB family receptors. We identify previously uncharacterized myosin-binding proteins, putative myosin adaptors that belong to two unrelated families, with four members each (MadA and MadB). Surprisingly, MadA1 localizes to the nucleus and is rapidly transported to the cytoplasm, suggesting the existence of myosin XI-driven nucleocytoplasmic trafficking. In contrast, MadA2 and MadA3, as well as MadB1, partition between the cytosolic pools of motile endomembrane vesicles that colocalize with myosin XI-K and diffuse material that does not. Gene knockout analysis shows that MadB1–4 contribute to polarized root hair growth, phenocopying myosins, whereas MadA1–4 are redundant for this process. Phylogenetic analysis reveals congruent evolutionary histories of the myosin XI, MyoB, MadA, and MadB families. All these gene families emerged in green algae and show concurrent expansions via serial duplication in flowering plants. Thus, the myosin XI transport network increased in complexity and robustness concomitantly with the land colonization by flowering plants and, by inference, could have been a major contributor to this process. PMID:28096376

  5. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  6. Lagrangian Flow networks: a new way to characterize transport and connectivity in geophysical flows

    NASA Astrophysics Data System (ADS)

    Ser-Giacomi, Enrico; Hernandez-Garcia, Emilio; Lopez, Cristobal; Rossi, Vincent; Vasile, Ruggero

    2015-04-01

    Water and air transport are among the basic processes shaping the climate of our planet. Heat and salinity fluxes change sea water density, and thus drive the global thermohaline circulation. Atmospheric winds force the ocean motion, and also transport moisture, heat or chemicals, impacting the regional climate. We describe transport among different regions of the ocean or the atmosphere by flow networks, giving a discrete and robust representation of the fluid advection dynamics. We use network-theory tools to gain insights into transport problem. Local and global features of the networks are extracted from many numerical experiments to give a time averaged description of the system. Classical concepts like dispersion, mixing and connectivity are finally related to a set of network-like objects contributing to build a "dictionary" between network measures and physical quantities in geophysical flows.

  7. An investigation of short haul air transportation in the southeastern United States

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Yuan, H. S.

    1977-01-01

    The specific objectives of this stage of the study are numerous. First, an attempt is made to characterize the travel patterns in the study region, both in terms of origin destination patterns, and connecting and through trip patterns. Second, the structure of the air service in the region is characterized in an attempt to develop an understanding of the evolution of the short haul air transportation network. Finally, a look is taken at the socioeconomic environment of Atlanta and the region in order to seek an explanation for the historic evolution of short haul air travel activities and the rather high growth rates experienced in recent years.

  8. Peterson Air Force Base Transportation Plan Final Environmental Assessment

    DTIC Science & Technology

    2013-03-01

    Final Environmental Assessment Peterson Air Force Base Transportation Plan March 2013 FELSBURG H O L T & U L L E V I G Report Documentation Page Form...ABSTRACT unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 PETERSON AIR...4-1 4.2 Off-Base Activities

  9. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  10. Journal Article: the National Dioxin Air Monitoring Network ...

    EPA Pesticide Factsheets

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric CDDs, CDFs and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. Designed in 1997, NDAMN has been implemented in phases, with the first phase consisting of 9 monitoring stations. Previously EPA has reported on the preliminary results of monitoring at 9 rural locations from June1998 through June 19991. The one-year measurement at the 9 stations indicated an annual mean TEQDF–WHO98 air concentration of 12 fg m-3. Since this reporting, NDAMN has been extended to include additional stations. The following is intended to be an update to this national monitoring effort. We are reporting the air monitoring results of 22 NDAMN stations operational over 9 sampling moments from June 1998 to December 1999. Fifteen stations are in rural areas, and 6 are located in National Parks. One station is located in suburban Wa

  11. Representativeness of air quality monitoring networks

    NASA Astrophysics Data System (ADS)

    Duyzer, Jan; van den Hout, Dick; Zandveld, Peter; van Ratingen, Sjoerd

    2015-03-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in four large cities. The concentrations calculated at the location of the monitoring stations, compared well with the concentrations measured at the stations indicating that the models worked well. Therefore the calculated concentration distributions were used as a proxy for the actual concentration distributions across the cities. The distributions of these proxy concentrations across the city populations was determined and cumulative population distribution curves were estimated. The calculated annual mean values at the monitoring network stations were located on the population distribution curves to estimate the fractions of the populations that the monitoring network stations represent. This macro scale procedure is used to evaluate which subgroups of the monitoring stations can be reliably used to decide on compliance or to estimate the concentration the population is exposed to. In addition, the CAR model and Computational Fluid Dynamics (CFD) models are used to investigate the effect of micro scale siting of the monitoring stations within the streets. The following observations were made: - Berlin and London networks cover the distribution of concentrations to which the population is exposed rather well, while Stuttgart and Barcelona have stations at sites with mainly the higher concentrations and the exposure is covered less well. - The networks in London and Berlin, with a substantial number of urban background stations, seem fit to monitor the average population exposure, contrary to those in Stuttgart and Barcelona with only a limited number of these stations. - The concentrations measured at street stations hardly reflect the calculated differences in street

  12. Transportation by Air-On the Ground

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A Rolair air flotation system is a spinoff of NASA/General Motors technology developed for the Apollo Program. It allows heavy loads to be moved easily by separating the load from the ground by a thin air cushion, virtually eliminating surface friction. Rolair Systems, Inc. was formed by former General Motors engineers and has successfully employed the system for both aerospace and nonaerospace industries.

  13. Journal of Air Transportation, Volume 10, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Unal, Mehmet (Editor); Gudmundsson, Sveinn Vidar (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    Topics discussed include: Mitigation Alternatives for Carbon Dioxide Emissions by the Air Transport Industry in Brazil; Air Transport Regulation Under Transformation: The Case of Switzerland; An Estimation of Aircraft Emissions at Turkish Airports; Guide to the Implementation of Iso 14401 at Airports; The Impact of Constrained Future Scenarios on Aviation and Emissions; The Immediate Financial Impact of Transportation Deregulation on the Stockholders of the Airline Industry; Aviation Related Airport Marketing in an Overlapping Metropolitan Catchment Area: The Case of Milan's Three Airports; and Airport Pricing Systems and Airport Deregulation Effects on Welfare.

  14. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  15. Environic implications of lighter than air transportation

    NASA Technical Reports Server (NTRS)

    Horsbrugh, P.

    1975-01-01

    The advent of any new system of transportation must now be reviewed in the physical context and texture of the landscape. Henceforward, all transportation systems will be considered in respect of their effects upon the environment to ensure that they afford an environic asset as well as provide an economic benefit. The obligations which now confront the buoyancy engineers are emphasized so that they may respond to these ethical and environic urgencies simultaneously with routine technical development.

  16. Evaluating transport in irregular pore networks

    NASA Astrophysics Data System (ADS)

    Klimenko, Dimitri A.; Hooman, Kamel; Klimenko, Alexander Y.

    2012-07-01

    A general approach for investigating transport phenomena in porous media is presented. This approach has the capacity to represent various kinds of irregularity in porous media without the need for excessive detail or computational effort. The overall method combines a generalized effective medium approximation (EMA) with a macroscopic continuum model in order to derive a transport equation with explicit analytical expressions for the transport coefficients. The proposed form of the EMA is an anisotropic and heterogeneous extension of Kirkpatrick's EMA [Rev. Mod. Phys.RMPHAT0034-686110.1103/RevModPhys.45.574 45, 574 (1973)] which allows the overall model to account for microscopic alterations in connectivity (with the locations of the pores and the orientation and length of the throat) as well as macroscopic variations in transport properties. A comparison to numerical results for randomly generated networks with different properties is given, indicating the potential for this methodology to handle cases that would pose significant difficulties to many other analytical models.

  17. Analytical and experimental study on complex compressed air pipe network

    NASA Astrophysics Data System (ADS)

    Gai, Yushou; Cai, Maolin; Shi, Yan

    2015-09-01

    To analyze the working characteristics of complex compressed air networks, numerical methods are widely used which are based on finite element technology or intelligent algorithms. However, the effectiveness of the numerical methods is limited. In this paper, to provide a new method to optimize the design and the air supply strategy of the complex compressed air pipe network, firstly, a novel method to analyze the topology structure of the compressed air flow in the pipe network is initially proposed. A matrix is used to describe the topology structure of the compressed air flow. Moreover, based on the analysis of the pressure loss of the pipe network, the relationship between the pressure and the flow of the compressed air is derived, and a prediction method of pressure fluctuation and air flow in a segment in a complex pipe network is proposed. Finally, to inspect the effectiveness of the method, an experiment with a complex network is designed. The pressure and the flow of airflow in the network are measured and studied. The results of the study show that, the predicted results with the proposed method have a good consistency with the experimental results, and that verifies the air flow prediction method of the complex pipe network. This research proposes a new method to analyze the compressed air network and a prediction method of pressure fluctuation and air flow in a segment, which can predicate the fluctuation of the pressure according to the flow of compressed air, and predicate the fluctuation of the flow according to the pressure in a segment of a complex pipe network.

  18. Soil organic carbon, macropore networks and preferential transport

    NASA Astrophysics Data System (ADS)

    Larsbo, Mats; Koestel, John; Kätterer, Thomas; Jarvis, Nick

    2016-04-01

    Agricultural management practices such as tillage, crop rotations, residue management and fertilization can have a strong influence on soil organic carbon (SOC) stocks. An increase in SOC content will generally improve soil structure, which in turn determines the solute transport pathways through the soil. The aim of this study was to quantify the architecture of macropore networks in undisturbed soil columns (15 cm high, 12.7 cm diameter) sampled along a transect with natural variations in SOC using X-ray tomography and to relate the network characteristics to the degree of preferential transport in the columns. Two tracer experiments were carried out at constant irrigation rates of 2 and 5 mm h-1. We used the normalised 5% arrival time which reflects the tendency for early arrival of the solutes as a measure of the degree of preferential transport. The soil macropore networks were analysed in cylindrical sub-volumes (8 cm high, 10 cm diameter) located centrally within the soil columns. These sub-volumes were considered unaffected by sampling artefacts. Analyses were also carried out the for whole sample volumes to enable comparisons with the results from the transport experiments. Image processing and analysis were carried out in ImageJ and R. The same grey value threshold was applied to all images after harmonisation of grey values using the PVC column walls and the air outside the columns. This approach resulted in a satisfactory separation between the pore space and the surrounding soil matrix and organic matter. The SOC content along the transect, which varied from 4.2 to 15% , was correlated to all measures of the pore network for the sub-volumes except for the connectivity probability. Columns with high SOC content were associated with large macroporosities (both total and connected), large specific surface areas, large fractal dimensions and small mean pore thicknesses. The SOC content for whole sample volumes was positively correlated to 5% arrival times

  19. Synchronizing production and air transportation scheduling using mathematical programming models

    NASA Astrophysics Data System (ADS)

    Zandieh, M.; Molla-Alizadeh-Zavardehi, S.

    2009-08-01

    Traditional scheduling problems assume that there are always infinitely many resources for delivering finished jobs to their destinations, and no time is needed for their transportation, so that finished products can be transported to customers without delay. So, for coordination of these two different activities in the implementation of a supply chain solution, we studied the problem of synchronizing production and air transportation scheduling using mathematical programming models. The overall problem is decomposed into two sub-problems, which consists of air transportation allocation problem and a single machine scheduling problem which they are considered together. We have taken into consideration different constraints and assumptions in our modeling such as special flights, delivery tardiness and no delivery tardiness. For these purposes, a variety of models have been proposed to minimize supply chain total cost which encompass transportation, makespan, delivery earliness tardiness and departure time earliness tardiness costs.

  20. Emerging Climate-data Needs in the Air Transport Sector

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.

    2014-12-01

    This paper addresses the nature of climate information needed within the air-transport sector. Air transport is not a single economic sector with uniform needs for climate data: airport, airline, and air-navigation services are the principal sub-sectors, each with their own particular climate-related decision contexts. For example, airports function as fixed infrastructure that is primarily affected by probabilities of extreme events that could hamper runway/taxiway operations, interfere with worker availability, or impede travel to and from the airport by passengers. Airlines, in contrast, are more concerned with changes in atmospheric conditions (upper-air turbulence, convective weather events, etc.) that might require consideration in long-term decisions related to flight-planning processes and aircraft equipage. Air-navigation service providers have needs that are primarily concerned with assurance of safe spatial separation of aircraft via sensor data and communications links. In addition to present-day commercial air transport, we discuss what climate data may be needed for new types of air transport that may emerge in the next couple of decades. These include, for example, small aircraft provided on-demand to non-pilot travelers, high-altitude supersonic business and commercial jets, and very large numbers of un-manned aircraft. Finally, we give examples relating to key technical challenges in providing decision-relevant climate data to the air-transport sector. These include: (1) identifying what types of climate data are most relevant the different decisions facing the several segments of this industry; (2) determining decision-appropriate time horizons for forecasts of this data; and (3) coupling the uncertainties inherent in these forecasts to the decision process.

  1. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... carrier that provides scheduled passenger air transportation shall, within 15 days of the end of the month... Consumer Protection Division a report on any incidents involving the loss, injury, or death of an...

  2. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... carrier that provides scheduled passenger air transportation shall, within 15 days of the end of the month... Consumer Protection Division a report on any incidents involving the loss, injury, or death of an...

  3. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... carrier that provides scheduled passenger air transportation shall, within 15 days of the end of the month... Consumer Protection Division a report on any incidents involving the loss, injury, or death of an...

  4. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... carrier that provides scheduled passenger air transportation shall, within 15 days of the end of the month... Consumer Protection Division a report on any incidents involving the loss, injury, or death of an...

  5. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... carrier that provides scheduled passenger air transportation shall, within 15 days of the end of the month... Consumer Protection Division a report on any incidents involving the loss, injury, or death of an...

  6. Effects of burstiness on the air transportation system

    NASA Astrophysics Data System (ADS)

    Ito, Hidetaka; Nishinari, Katsuhiro

    2017-01-01

    The effects of burstiness in complex networks have received considerable attention. In particular, the effects on temporal distance and delays in the air transportation system are significant owing to their huge impact on our society. Therefore, in this paper, the temporal distance of empirical U.S. flight schedule data is compared with that of regularized data without burstiness to analyze the effects of burstiness. The temporal distance is calculated by a graph analysis method considering flight delays, missed connections, flight cancellations, and congestion. In addition, we propose two temporal distance indexes based on passengers' behavior to quantify the effects. As a result, we find that burstiness reduces both the scheduled and the actual temporal distances for business travelers, while delays caused by missed connections and congestion are increased. We also find that the decrease of the scheduled temporal distance by burstiness is offset by an increase of the delays for leisure passengers. Moreover, we discover that the positive effect of burstiness is lost when flight schedules are overcrowded.

  7. Journal Article: the National Dioxin Air Monitoring Network ...

    EPA Pesticide Factsheets

    In June, 1998, the U.S. EPA established the National Dioxin Air Monitoring Network (NDAMN). The primary goal of NDAMN is determine the temporal and geographical variability of atmospheric CDDs, CDFs, and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling stations, NDAMN has three primary purposes: (1) to determine the atmospheric levels and occurrences of dioxin-like compounds in rural and agricultural areas where livestock, poultry and animal feed crops are grown; (2) to provide measurements of atmospheric levels of dioxin-like compounds in different geographic regions of the U.S.; and (3) to provide information regarding the long-range transport of dioxin-like compounds in air over the U.S. At Dioxin 2000, we reported on the preliminary results of monitoring at 9 rural locations from June 1998 through June 1999. By the end of 1999, NDAMN had expanded to 21 sampling stations. Then, at Dioxin 2001, we reported the results of the first 18 months of operation of NDAMN at 15 rural and 6 National Park stations in the United States. The following is intended to be an update to this national monitoring effort. We are reporting the air monitoring results of 17 rural and 8 National Park NDAMN stations operational over 4 sampling moments during calendar year 2000. Two stations located in suburban Washington DC and San Francisco, CA are more urban in character and serve as an indicator of CDD/F and cop

  8. Air pollutant transport in a street canyon

    SciTech Connect

    Luke Chen; Hsu-Cheng Chang

    1996-12-31

    An air pollutant (CO) distribution in a typical street canyon is simulated to evaluate pedestrian exposure. In this study, we consider factors those may affect the pollutant distribution in a typical street canyon. The considered factors include aspect ratio of a street canyon, atmospheric stability, traffic load and turbulent buoyancy effect. A two-dimensional domain that includes suburban roughness and urban street canyon is considered. The factors such as atmospheric stability, traffic load and turbulent buoyancy are imposed through the associated boundary conditions. With numerical simulation, the critical aspect ration of a street canyon the includes two vortices and results in pollutant accumulation are found. The buoyant effect is found to raise the same pollutant concentration up to the position higher than the results come out from the case without buoyancy. The pedestrian exposure to the street air pollutant under various traffic loads and atmospheric stability are evaluated. This study conclude that the local building regulations that specify the building height/street width ratio will not cause significant pedestrian exposure to the street air pollution in most of traffic loads and atmospheric stability conditions.

  9. The U.S. Air Force Academy Falcon Telescope Network

    DTIC Science & Technology

    2014-09-01

    3048 The U.S. Air Force Academy Falcon Telescope Network Francis K. Chun, Roger D. Tippets, Michael E. Dearborn Department of Physics, U.S. Air...The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness...provides the equipment (e.g. telescope , mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners

  10. Forecasting the demand potential for STOL air transportation

    NASA Technical Reports Server (NTRS)

    Fan, S.; Horonjeff, R.; Kanafani, A.; Mogharabi, A.

    1973-01-01

    A process for predicting the potential demand for STOL aircraft was investigated to provide a conceptual framework, and an analytical methodology for estimating the STOL air transportation market. It was found that: (1) schedule frequency has the strongest effect on the traveler's choice among available routes, (2) work related business constitutes approximately 50% of total travel volume, and (3) air travel demand follows economic trends.

  11. Investigation of Air Transportation Technology at Princeton University, 1989-1990

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1990-01-01

    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given.

  12. Evaluation of the impact of transportation changes on air quality

    NASA Astrophysics Data System (ADS)

    Titos, G.; Lyamani, H.; Drinovec, L.; Olmo, F. J.; Močnik, G.; Alados-Arboledas, L.

    2015-08-01

    Transport regulation at local level for the abatement of air pollution has gained significant traction in the EU. In this work, we analyze the effect of different transportation changes on air quality in two similarly sized cities: Granada (Spain) and Ljubljana (Slovenia). Several air pollutants were measured at both sites before and after the implementation of the changes. In Ljubljana, a 72% reduction of local black carbon (BC), from 5.6 to 1.6 μg/m3, was observed after the restriction was implemented. In Granada, statistically significant reductions of 1.3 μg/m3 (37%) in BC and of 15 μg/m3 (33%) in PM10 concentrations were observed after the public transportation re-organization. However, the improvement observed in air quality was very local since other areas of the cities did not improve significantly. We show that closing streets to private traffic, renewal of the bus fleet and re-organization of the public transportation significantly benefit air quality.

  13. Radiant heat test of Perforated Metal Air Transportable Package (PMATP).

    SciTech Connect

    Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight

    2003-08-01

    A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.

  14. The technical challenge of air transportation - A Government view

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1977-01-01

    This paper reviews the research and technology that must be conducted, and the facility investments that must be made, in order to assure that the United States is adequately prepared to meet the challenges that air transportation will provide in the future. The technical focal points for the next decade are reviewed in the context of the emerging pattern of air transportation needs for the remainder of the Century and the prospects for satisfying these needs are discussed. Particular attention is given to the responsibility that the Government must assume in aviation R&T and to the relationship that must be encouraged between the Government, the Industry and the University Community.

  15. Investigation of air transportation technology at Princeton University, 1986

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  16. High temperature transport properties of air

    NASA Technical Reports Server (NTRS)

    Levin, E.; Partridge, Harry; Stallcop, J. R.

    1987-01-01

    A general computer code was developed to allow calculation of atom-atom and ion-atom transport collision integrals from accurate potential energy curves described by a set of discrete data points for a broad range of scattering conditions. This code is based upon semiclassical approximations that properly account for quantum mechanical behavior such as tunneling effects near a barrier maximum, resonance charge exchange, and nuclear symmetry effects. Transport collision integrals were determined for N-N, O-O, N(+)-N, and O(+)-O interactions from complete sets of accurate potential functions derived from combined experimental and ab initio structure calculations. For the O-O case, this includes results for excited states. The calculated values of the N(+)-N and O(+)-O resonance charge exchange cross section Q(ex) agree well with measurements from beam experiment that are available at high energies where the diffusion cross section Q(d) satisfies Q(d) approximately equal to 2Q(ex).

  17. Integrating air pollution modelling with scenario testing in road transport planning: the TRAEMS approach.

    PubMed

    Affum, J K; Brown, A L; Chan, Y C

    2003-08-01

    Transport add-on environmental modelling system (TRAEMS) is a GIS-based environmental modelling system designed to evaluate the environmental consequences of road traffic in urban areas. Its development has been underpinned by the premises that the evaluation of road traffic impacts is best undertaken during the early planning stages of road networks, and that this can utilise much of the data generated by the transport planners themselves as they apply their travel demand models as to planning of road networks. The system integrates information about traffic-usually from travel-forecasting models-with information about land use, to provide the input data to a range of commonly used models that estimate pollution from a road traffic system, and the energy consumption of that system. TRAEMS facilitates this integration and allows land use, transport and environmental planners to have rapid feedback on the environmental effects of road transport network scenarios that are being developed and tested. Its purpose is to aid in the selection of environmentally-preferred road networks and to highlight where management of pollution levels on future road networks will be required. TRAEMS has a modular structure. This paper describes the main features of the air pollution and fuel consumption modules of the system and illustrates the system's utility through case studies at both metropolitan-wide- and local-area scales.

  18. The Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    NASA Technical Reports Server (NTRS)

    Own, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1997-01-01

    The Aviation Institute University of Nebraska at Omaha (UNO) Monograph series has published the Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the World Conference on Transportation Research Society (WCTR) volume 1, number 3. The topics included in this document are: 1) Industrial Reform and Air Transport Development in China; 2) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 3) The Economic Effects of Airline Deregulation and the Open-Sky Policy of Korea; 4) "Open Skies" in India-Is the policy succeeding? 5) The Japanese Domestic Air Fares under the Regulatory Regime: What will be expected after the revision of current charging system? 6) The Competitive Position of Airline Networks; and 7) Air Transport and Regional Economic Development in the European Union.

  19. Investigation of air transportation technology at Princeton University

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1983-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along six avenues during the past year: investigation of fuel use characteristics of general aviation aircraft, experimentation with an ultrasonic altimeter, single pilot instrument flight, application of fiber optics in flight control systems, voice recognition inputs for navigation/communication receiver tuning, and computer aided aircraft design.

  20. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  1. Contact Information for EPA's Office of Transportation and Air Quality

    EPA Pesticide Factsheets

    You will find an EPA employee by name or by topic of interest, also, you will know who to contact if you want to find a specific transportation and air quality document, importing a vehicle to the US, and other frequently asked questions.

  2. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  3. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  4. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air transport traffic and capacity elements... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  5. 14 CFR 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air transport traffic and capacity elements... CERTIFICATED AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  6. Anomalous motor mediated cargo transport in microtubule networks

    NASA Astrophysics Data System (ADS)

    Vandal, Steven; Macveigh-Fierro, Daniel; Shen, Zhiyuan; Lemoi, Kyle; Vidali, Luis; Ross, Jennifer; Tuzel, Erkan

    Cargo transport is an important biological mechanism by which cells locomote, self-organize, and actively transport organelles. This transport is mediated by the cytoskeletal network and molecular motors; however, it is not known how network self-organization and dynamics affect these transport processes. In order to develop a mechanistic understanding of cargo transport, we use a coarse-grained Brownian dynamics model that incorporates the dynamics of these networks, as well as experimentally determined motor properties. We will test these models with two experimental systems: (1) in vitro microtubule networks with kinesin-1 motors, and quantum dot cargos on recreated microtubule networks, and (2) an excellent model organism, the moss Physcomitrella patens, in which chloroplasts are transported via the microtubule network by means of kinesin-like proteins. Phenomenological network characterizations are made, both in vivo and in vitro, and cargo motility is characterized using Mean Squared Displacement (MSD) measurements. Our simulations shed light on the role of network density and motor properties on the observed transport behavior, and improve our understanding of cargo transport in cells.

  7. Acoustophoretic contactless transport and handling of matter in air.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-07-30

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1-10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid-liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air.

  8. Acoustophoretic contactless transport and handling of matter in air

    PubMed Central

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-01-01

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1–10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid–liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air. PMID:23858454

  9. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  10. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  11. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  12. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  13. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  14. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  15. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Requirements for transit air cargo transport. 122...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.117 Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may...

  16. Lightweight simulation of air traffic control using simple temporal networks

    NASA Technical Reports Server (NTRS)

    Knight, Russell

    2005-01-01

    We provide a formulation of the air traffic control problem and a solver for this problem that makes use of temporal constraint networks and simple geometric reasoning. We provide results showing that this approach is practical for realistic simulated problems.

  17. The influence of transport network vulnerability for maritime ports

    NASA Astrophysics Data System (ADS)

    Ruscă, F.; Roşca, E.; Rusca, A.; Roşca, M.; Burciu, S.

    2015-11-01

    The concepts of reliability and vulnerability are quite important in assessing the ability of transport networks from land to provide continuity in operation tacking in consideration the relation with seaports. Transport infrastructure modernizing and extension according to land use and sustainable development requirements still represents a challenging issue among policy makers, regional/local communities and scientists. The interest for the researches reliability and vulnerability for transport networks who connect maritime ports with interior city's is generate by the natural disasters, the terrorist acts, unconventional war, etc.. Transport network modelling enable the development of mathematical models used in evaluating the reliability and vulnerability. Nodes or link disruption could have an important impact over transport network users. In our paper we investigates the Romanian road network vulnerability related to Danube crossing versus maritime ports (Constanta and Mangalia) and its mitigation by improving network topology. We use Visum software to promote a methodology to assess road transport network vulnerability versus Romanian seaports and we propose some solutions to reduce probability of road transport network to fail.

  18. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  19. What should ``damaged`` mean in air transport of fissile packages

    SciTech Connect

    Luna, R.E.; Falci, F.P.; Blackman, D.

    1995-12-31

    It is likely that the ongoing process to produce the 1996 version of the IAEA Regulation for the Safe Transport of Radioactive Materials, IAEA Safety Series 6(SS 6) will result in a more stringent package qualification standard for air transport of large quantities of radioactive materials (RAM) than is included in the 1990 version. During the process to define the scope of the new requirements there was extensive discussion of their impact on, and application to, fissile material package qualification criteria. Since fissile materials are shipped in a variety of packagings ranging from exempt to Type B, each packaging of each type must be evaluated for its ability to maintain subcriticality both alone and in arrays and in both damaged and undamaged condition. In the 1990 version of SS 6 ``damaged`` means the condition of a package after it had undergone the ``tests for demonstrating the ability to withstand accident conditions in transport,`` i.e., Type B qualification tests. These tests conditions are typical of severe accidents in surface modes, but are less severe than air mode qualification test environments to be applied to Type C packages. As a result, questions arose about the need for a corresponding change in the 1996 SS 6 to define ``damaged`` to include the Type C test regime for criticality evaluations of fissile packages in air transport.

  20. Vehicle expectations in air transportation for the year 2000

    NASA Technical Reports Server (NTRS)

    Hearth, D. P.

    1980-01-01

    This paper is intended to provide an overview of the air transportation system for the year 2000 in terms of vehicle expectations. Emphasis is placed on civil air transportation with the time period approached from the standpoint of evolutionary changes for the near term and also with the assumption of more revolutionary changes for the far term. The view along the evolutionary path begins with a historical review of airline market growth and the impact that technologies have had on airplane designs. Projections of the life expectancy of existing, derivative, and new airplanes are examined in terms of their productivity and fuel efficiency in view of the present and projected fuel usage and availability. The factors influencing airline growth are outlined and some views on whether another new generation of subsonic airplanes are in the offing are given along with an assessment of the economic viability of an advanced commercial supersonic transport in terms of its higher speed, higher productivity, and higher fuel usage. With regard to revolutionary changes, major technology breakthroughs are assumed to occur at a specified date. As an example, the impact of a dramatic reduction in skin friction drag is examined in terms of its effect on the airplane configuration, its propulsion systems, it projected fuel usage, and the air transportation system in which it must operate.

  1. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  2. Transportation Costs as a Consideration in Air Force Contracts.

    DTIC Science & Technology

    1979-03-10

    46556 _______________________ II. CONTROLLING OFFICE NAME AND ADDR ESS 12. REPORT DATE .4 - . 79Mar 10 AIR _~~~~~~~~~~ ØJSIN~~S RESEARC~1 MANN3~ 4~NT...these costs be understood and controlled . Many transportation decisions are made by the con trac tor under F.O.B. destination contracts versus those...imperative therefore , that these costs be understood and controlled . Like many business organiza tions , the United States Air Force faces problems of

  3. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  4. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  5. Complex quantum networks: From universal breakdown to optimal transport.

    PubMed

    Mülken, Oliver; Dolgushev, Maxim; Galiceanu, Mircea

    2016-02-01

    We study the transport efficiency of excitations on complex quantum networks with loops. For this we consider sequentially growing networks with different topologies of the sequential subgraphs. This can lead either to a universal complete breakdown of transport for complete-graph-like sequential subgraphs or to optimal transport for ringlike sequential subgraphs. The transition to optimal transport can be triggered by systematically reducing the number of loops of complete-graph-like sequential subgraphs in a small-world procedure. These effects are explained on the basis of the spectral properties of the network's Hamiltonian. Our theoretical considerations are supported by numerical Monte Carlo simulations for complex quantum networks with a scale-free size distribution of sequential subgraphs and a small-world-type transition to optimal transport.

  6. Complex quantum networks: From universal breakdown to optimal transport

    NASA Astrophysics Data System (ADS)

    Mülken, Oliver; Dolgushev, Maxim; Galiceanu, Mircea

    2016-02-01

    We study the transport efficiency of excitations on complex quantum networks with loops. For this we consider sequentially growing networks with different topologies of the sequential subgraphs. This can lead either to a universal complete breakdown of transport for complete-graph-like sequential subgraphs or to optimal transport for ringlike sequential subgraphs. The transition to optimal transport can be triggered by systematically reducing the number of loops of complete-graph-like sequential subgraphs in a small-world procedure. These effects are explained on the basis of the spectral properties of the network's Hamiltonian. Our theoretical considerations are supported by numerical Monte Carlo simulations for complex quantum networks with a scale-free size distribution of sequential subgraphs and a small-world-type transition to optimal transport.

  7. Investigation of air transportation technology at Princeton University, 1984

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  8. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  9. Investigation of air transportation technology at Princeton University, 1981

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1982-01-01

    A summary of the air transportation technology program is presented. The following topics were examined: (1) fuel use characteristics of general aviation aircraft; (2) dead-reckoning concept incorporating a fluidic rate sensor; (3) experimentation with an ultrasonic altimeter; (4) development of laser-based collision avoidance systems; (5) flight path reconstruction from sequential DME data; (6) application of fiber optics in flight control systems; and (7) voice recognition inputs for navigation/communication receiver tuning.

  10. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  11. Investigation of air transportation technology at Ohio University, 1984

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.

    1987-01-01

    The operational development of Loran-C for enroute navigation and nonprecision approaches was studied, and is only one of the many projects funded by the Joint University Program for Air Transportation at Ohio University. Other projects included work on the DATAC data bus monitor, global positioning system test bed receiver development, fiber optic data bus application in general aviation aircraft, and advanced remote monitoring techniques.

  12. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  13. Journal of Air Transportation, Volume 11, No. 1

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2006-01-01

    Topics covered include: Analysis of System-wide Investment in the National Airspace System: A Portfolio Analytical Framework and an Example; Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion; The Development of Jomo Kenyatta International Airport as a Regional Aviation Hub; Corporate Social Responsibility in Aviation; The Competitive Effects of Airline Mergers and Acquisitions: More Capital Market Evidence; and The Competitive Position of Hub Airports in the Transatlantic Market.

  14. Development of an Air Transport Type A Fissile Package

    SciTech Connect

    Blanton, P.; Ebert, K.

    2011-07-13

    This paper presents the summary of testing by the Savannah River National Laboratory (SRNL) to support development of a light weight (<140 lbs) air transport qualified Type A Fissile Packaging. The package design incorporates features and materials specifically designed to minimize packaging weight. The light weight package is being designed to provide confinement to the contents when subjected to the normal and hypothetical conditions required of an air transportable Type A Fissile radioactive material shipping package. The objective of these tests was to provide design input to the final design for the LORX Type A Fissile Air Transport Packaging when subjected to the performance requirements of the drop, crush and puncture probe test of 10CFR71. The post test evaluation of the prototype packages indicates that all of the tested designs would satisfactorily confine the content within the packaging. The differences in the performance of the prototypes varied significantly depending on the core materials and their relative densities. Information gathered from these tests is being used to develop the final design for the Department of Homeland Security.

  15. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  16. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  17. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  18. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  19. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  20. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    SciTech Connect

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-02-15

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  1. Air transport of infants in Newfoundland and Labrador.

    PubMed Central

    Johnson, M. A.; Owers, J.; Horwood, P.

    1978-01-01

    Air transportation of 33 infants in small unpressurized aircraft over long distances is described. Twenty-six of the infants were transported more than 320 km in environmental temperatures varying from -35 to +21 degrees C. A commercially available incubator was used. Although more than half the infants had a rectal temperature within the normal range at the time of arrival at hospital, 12 infants had rectal temperatures above 37.5 degrees C as a result of efforts to diminish heat loss. Adequate oxygenation of infants at 3000 m in unpressurized aircraft can be difficult. Cold and vibration can affect equipment, and at high altitudes the readings from oxygen analysers may not be true. The use of an expanded transport team, which includes experienced nonmedical personnel, is particularly important in these cases. Images FIG. 1 FIG. 3 PMID:679112

  2. Analysis of the Chinese air route network as a complex network

    NASA Astrophysics Data System (ADS)

    Cai, Kai-Quan; Zhang, Jun; Du, Wen-Bo; Cao, Xian-Bin

    2012-02-01

    The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.

  3. Universality at Breakdown of Quantum Transport on Complex Networks.

    PubMed

    Kulvelis, Nikolaj; Dolgushev, Maxim; Mülken, Oliver

    2015-09-18

    We consider single-particle quantum transport on parametrized complex networks. Based on general arguments regarding the spectrum of the corresponding Hamiltonian, we derive bounds for a measure of the global transport efficiency defined by the time-averaged return probability. For treelike networks, we show analytically that a transition from efficient to inefficient transport occurs depending on the (average) functionality of the nodes of the network. In the infinite system size limit, this transition can be characterized by an exponent which is universal for all treelike networks. Our findings are corroborated by analytic results for specific deterministic networks, dendrimers and Vicsek fractals, and by Monte Carlo simulations of iteratively built scale-free trees.

  4. Service-aware transport network: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Pan, James; White, Ian M.; Black, Jim; Lima, Claudio; Rabinovich, Boris; Huang, Ray

    2005-02-01

    In this paper we propose a new concept of future service-aware transport networks that are built on converged wireless-wired transport networks, enable service layer convergence, and also support application layer convergence. This concept is derived from the emerging trend of business convergence among the telecommunication, cable, and entertainment segments, and technology convergence among the telecommunications, computer, and software industries. We also identify QoS as a technical backbone to future service-aware transport networks, and from the perspective of an integrated carrier having both wireless and wired assets, discuss related research opportunities and challenges, especially those involved in optical networks. We finally present an adaptive apparatus for high availability, capacity efficiency, and QoS-guaranteed protection and restoration for optical networks. This paper is intended to promote academic and industrial attention to some core technical challenges that lie ahead for the telecommunication industry and to spur strategically important research and perhaps also some standards activities.

  5. Why social network analysis is important to Air Force applications

    NASA Astrophysics Data System (ADS)

    Havig, Paul R.; McIntire, John P.; Geiselman, Eric; Mohd-Zaid, Fairul

    2012-06-01

    Social network analysis is a powerful tool used to help analysts discover relationships amongst groups of people as well as individuals. It is the mathematics behind such social networks as Facebook and MySpace. These networks alone cause a huge amount of data to be generated and the issue is only compounded once one adds in other electronic media such as e-mails and twitter. In this paper we outline the basics of social network analysis and how it may be used in current and future Air Force applications.

  6. A portfolio evaluation framework for air transportation improvement projects

    NASA Astrophysics Data System (ADS)

    Baik, Hyeoncheol

    This thesis explores the application of portfolio theory to the Air Transportation System (ATS) improvement. The ATS relies on complexly related resources and different stakeholder groups. Moreover, demand for air travel is significantly increasing relative to capacity of air transportation. In this environment, improving the ATS is challenging. Many projects, which are defined as technologies or initiatives, for improvement have been proposed and some have been demonstrated in practice. However, there is no clear understanding of how well these projects work in different conditions nor of how they interact with each other or with existing systems. These limitations make it difficult to develop good project combinations, or portfolios that maximize improvement. To help address this gap, a framework for identifying good portfolios is proposed. The framework can be applied to individual projects or portfolios of projects. Projects or portfolios are evaluated using four different groups of factors (effectiveness, time-to-implement, scope of applicability, and stakeholder impacts). Portfolios are also evaluated in terms of interaction-determining factors (prerequisites, co-requisites, limiting factors, and amplifying factors) because, while a given project might work well in isolation, interdependencies between projects or with existing systems could result in lower overall performance in combination. Ways to communicate a portfolio to decision makers are also introduced. The framework is unique because (1) it allows using a variety of available data, and (2) it covers diverse benefit metrics. For demonstrating the framework, an application to ground delay management projects serves as a case study. The portfolio evaluation approach introduced in this thesis can aid decision makers and researchers at universities and aviation agencies such as Federal Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD), in

  7. On the topology of optical transport networks

    NASA Astrophysics Data System (ADS)

    Cárdenas, J. P.; Santiago, A.; Losada, J. C.; Benito, R. M.; Mouronte, M. L.

    2010-09-01

    Synchronous Digital Hierarchy (SDH) is the standard technology for information transmission in broadband optical networks. Unlike systems with unplanned growth, such as those of natural origin or the Internet network, the SDH systems are strictly planned as rings, meshes, stars or tree-branches structures designed to connect different equipments. In spite of that, we have found that the SDH network operated by Telefónica in Spain shares remarkable topological properties with other real complex networks as a product of its evolution since 1992. In fact, we have found power-law scaling in the degree distribution (N·P(k) = k-γ) and small-world networks properties. The complexity found in SDH systems was reproduced by two models of complex networks, one of them considers real planning directives that take into account geographical and technological variables and the other one is based in the compatibility among SDH equipments.

  8. Inside the Mechanics of Network Development: How Competition and Strategy Reorganize European Air Traffic

    NASA Technical Reports Server (NTRS)

    Huber, Hans

    2006-01-01

    Air transport forms complex networks that can be measured in order to understand its structural characteristics and functional properties. Recent models for network growth (i.e., preferential attachment, etc.) remain stochastic and do not seek to understand other network-specific mechanisms that may account for their development in a more microscopic way. Air traffic is made up of many constituent airlines that are either privately or publicly owned and that operate their own networks. They follow more or less similar business policies each. The way these airline networks organize among themselves into distinct traffic distributions reveals complex interaction among them, which in turn can be aggregated into larger (macro-) traffic distributions. Our approach allows for a more deterministic methodology that will assess the impact of airline strategies on the distinct distributions for air traffic, particularly inside Europe. One key question this paper is seeking to answer is whether there are distinct patterns of preferential attachment for given classes of airline networks to distinct types of European airports. Conclusions about the advancing degree of concentration in this industry and the airline operators that accelerate this process can be drawn.

  9. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  10. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  11. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  12. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  13. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  14. A GIS Tool for simulating Nitrogen transport along schematic Network

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Maidment, D. R.; Yang, Z.; Whiteaker, T.; David, C. H.; Johnson, S.

    2012-12-01

    An automated method called the Arc Hydro Schematic Processor has been developed for water process computation on schematic networks formed from the NHDPlus and similar GIS river networks. The sechemtaic network represents the hydrologic feature on the ground and is a network of links and nodes. SchemaNodes show hydrologic features, such as catchments or stream junctions. SchemaLinks prescripe the connections between nodes. The schematic processor uses the schematic network to pass informatin through a watershed and move water or pollutants dwonstream. In addition, the schematic processor has a capability to use additional programming applied to the passed and/or received values and manipulating data trough network. This paper describes how the schemtic processor can be used to simulate nitrogen transport and transformation on river networks. For this purpose the nitrogen loads is estimated on the NHDPlus river network using the Schematic Processor coupled with the river routing model for the Texas Gulf Coast Hydrologic Region.

  15. Implementation of Satellite Techniques in the Air Transport

    NASA Astrophysics Data System (ADS)

    Fellner, Andrzej; Jafernik, Henryk

    2016-06-01

    The article shows process of the implementation satellite systems in Polish aviation which contributed to accomplishment Performance-Based Navigation (PBN) concept. Since 1991 authors have introduced Satellite Navigation Equipment in Polish Air Forces. The studies and researches provide to the Polish Air Force alternative approaches, modernize their navigation and landing systems and achieve compatibility with systems of the North Atlantic Treaty Organization (NATO) and International Civil Aviation Organization (ICAO). Acquired experience, conducted military tests and obtained results enabled to take up work scientifically - research in the environment of the civil aviation. Therefore in 2008 there has been launched cooperation with Polish Air Navigation Services Agency (PANSA). Thanks to cooperation, there have been compiled and fulfilled three fundamental international projects: EGNOS APV MIELEC (EGNOS Introduction in European Eastern Region - APV Mielec), HEDGE (Helicopters Deploy GNSS in Europe), SHERPA (Support ad-Hoc to Eastern Region Pre-operational in GNSS). The successful completion of these projects enabled implementation 21 procedures of the RNAV GNSS final approach at Polish airports, contributing to the implementation of PBN in Poland as well as ICAO resolution A37-11. Results of conducted research which served for the implementation of satellite techniques in the air transport constitute the meaning of this material.

  16. Transport and transformation of air pollutants from Israel's coastal area

    NASA Astrophysics Data System (ADS)

    Luria, M.; Almog, H.; Peleg, M.

    The occasional high ozone levels measured in Jerusalem could not be attributed solely to local sources such as vehicular traffic or industry. A satellite monitoring station was set up outside the city limits to explore the possibility of transport and transformation of air pollutants from the highly populated and industrialized coastal area of Israel to the inland hilly region. This study revealed that the high ozone levels were always associated with a parallel increase of SO 2 and that power plants and/or vehicles operating in the coastal region are a major source for the nitrogen oxides which undergo photochemical transformation to form ozone during inland travel of the air parcel under conditions of intense sunlight.

  17. Air transportation in the California Corridor of 2010

    NASA Technical Reports Server (NTRS)

    Cameron, M.; Mahaffy, K.; Yanagi, G.; Lechmanski, L.; Riddle, T.; Howard, K.; Chan, C.; Gorman, M.; Bauer, B.

    1989-01-01

    The topic of the 1988-1989 NASA/USRA Advanced Design Project at California Polytechnic State University, San Luis Obispo, was the development of an air transportation system to meet the needs of the California Corridor for the year 2010. As aircraft design is taught by two instructors having different philosophies about the teaching process, the two classes took different approaches to address the problem. The first part of this summary (California Air Transit System) represents the work done by the students of Professor A. E. Andreoli, who followed a systems approach, emphasizing the determination of the proper mission. The second part of the summary (Four Aircraft to Service the California Corridor) contains the four aircraft designed by Dr. D. R. Sandlin's class based on specifications determined from work done in previous years.

  18. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  19. Transport of continental air to the subantarctic Indian Ocean

    NASA Technical Reports Server (NTRS)

    Balkanski, Yves J.; Jacob, Daniel J.

    1990-01-01

    The occurrence of high Rn-222 episodes (radonic storms) observed at three islands (Crozet, Kerguelen, and Amsterdam) in the subantarctic Indian Ocean is simulated using a three-dimensional chemical tracer model. The chemical tracer model is described and the simulated time series of Rn-222 concentrations at the three islands are compared to observations. The origin, seasonal frequencies, and periodicities of the storms are examined. It is found that the storms are due to fast boundary layer advection of air from South Africa, made possible by the conjunction of a subtropical high SE of Madagascar and a midlatitudes low off the southern tip of Africa. The implications of the results for the transport of continental air to the subantarctic Indian Ocean are discussed.

  20. REVIEW OF THE RADNET AIR MONITORING NETWORK ...

    EPA Pesticide Factsheets

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original purpose of the system was to monitor fallout from weapons testing. Even though upgrades to and reconfiguration of the system have been planned for some time, the events of 9/11/01 gave impetus to a thorough upgrade of RadNet, primarily directed at providing more timely data and covering a larger portion of the nation's population. Moreover, the demands upon RadNet are now based upon homeland security support in addition to existing EPA monitoring responsibilities. Beginning in FY05 and continuing into FY13 up to135 near real-time air monitors will be put into operation across the country to provide decision making-data to EPA officials. Data will be transmitted from the monitors in all 50 states to a central database at the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama. The data will then be assessed and verified and made available to federal and state officials and, eventually, the public. A data flow model is being constructed to provide the most effective and efficient use of verified data obtained from the new radNet system The objective of the near-real time air monitoring component of RadNet is to provide verified decision-making data to fed

  1. Journal of Air Transportation, Volume 11, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Gudmundsson, Sveinn Vidar (Editor); EspiritoSanto, Jr. Respicio (Editor)

    2006-01-01

    The following topics were covered: How Do Airlines Perceive That Strategic Alliances Affect Their Individual Branding?; Airline Choice for Domestic Flights in Sao Paulo Metropolitan Area: An Application of the Conditional Logit Model; Consequences of Feeder Delays for the Success of A380 Operations; Inside the Mechanics of Network Development: How Competition and Strategy Reorganize European Air Traffic; The Opportunities and Threats of Turning Airports into Hubs; Another Approach to Enhance Airline Safety: Using System Safety Tools; A Simulation Based Approach for Contingency Planning for Aircraft Turnaround Activities in Airline Hubs; and The Council on Aviation Accreditation: Part One- Historical Foundation.

  2. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  3. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  4. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  5. Journal of Air Transportation, Volume 10, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    The following topics are discussed: The Effects of Safety Information on Aeronautical Decision Making; Design, Development, and Validation of an Interactive Multimedia Training Simulator for Responding to Air Transportation Bomb Threats; Discovering the Regulatory Considerations of the Federal Aviation Administration: Interviewing the Aviation Rulemaking Advisory Committee; How to Control Airline Routes from the Supply Side: The Case of TAP; An Attempt to Measure the Traffic Impact of Airline Alliances; and Study Results on Knowledge Requirements for Entry-level Airport Operations and Management Personnel.

  6. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  7. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  8. Investigation of air transportation technology at Princeton University, 1985

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.

  9. High-Speed Civil Transport Will Revolutionize Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced technologies that will allow industry to build a high-speed civil transport that will revolutionize overseas air travel. The technology challenges include developing low-cost materials and structural concepts as well as supersonic engines that can meet stringent noise and emissions standards. NASA's goal is to provide enabling technologies that will reduce the travel time to the Far East by 50 percent within 25 years, and do so at today's subsonic ticket prices. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  10. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  11. Emissions and Air Quality Impacts of Freight Transportation

    NASA Astrophysics Data System (ADS)

    Bickford, Erica

    Diesel freight vehicles (trucks + trains) are responsible for 20% of all U.S. nitrogen oxide (NOx) and 3% of fine particulate (PM2.5) emissions - pollutants that are harmful to human health. Freight tonnage is also projected to double over the next several decades, reaching 30 billion tons by 2050, increasing freight transport activity. Air quality impacts from increased activity, trade-offs between activity and vehicle technology improvements, as well as where to make infrastructure investments that encourage sustainable freight growth, are important considerations for transportation and air quality managers. To address these questions, we build a bottom-up roadway-by-roadway freight truck inventory (WIFE) and employ it to quantify emissions impacts of swapping biodiesel blends into the Midwest diesel freight truck fleet, and investigate emissions and air quality impacts of truck-to-rail freight modal shifts in the Midwest. We also evaluate the spatial and seasonal freight performance of WIFE modeled in a regional photochemical model (CMAQ) against satellite retrievals of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI). Results show that spatial and seasonal distribution of biodiesel affects regional emissions impacts. Summer high-blend deployment yields a larger annual emissions reduction than year-round low-blend deployment, however, technological improvements in vehicle emissions controls between 2009 and 2018 dwarf the impacts of biodiesel. Truck-to-rail modal shift analysis found 40% of daily freight truck VMT could be shifted to rail freight, causing a 26% net reduction in NOx emissions, and 31% less carbon dioxide (CO2) emissions. Despite significant emissions impacts, air quality modeling results showed mostly localized near roadway air quality improvements, with small regional net changes; yet, federal regulation of CO2 emissions and/or rising costs of diesel fuel could motivate shifting freight to more fuel efficient rail. Evaluation of

  12. A Framework for Dimensioning VDL-2 Air-Ground Networks

    NASA Technical Reports Server (NTRS)

    Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven

    2014-01-01

    This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.

  13. Performance Analysis of the AeroTP Transport Protocol for Highly-Dynamic Airborne Telemetry Networks

    DTIC Science & Technology

    2011-06-03

    Acknowledgment Options.” RFC 2018 (Proposed Standard ), Oct. 1996. [11] “The ns- 3 network simulator.” http://www.nsnam.org, July 2009. [12] M. AL-Enazi, S. A. Gogi...AFFTC-PA- 11146 Performance Analysis of the AeroTP Transport Protocol for Highly-Dynamic Airborne Telemetry Networks James P.G. Sterbenz...Kamakshi Sirisha Pathapati, Truc Anh N. Nguyen, Justin P. Rohrer AIR FORCE FLIGHT TEST CENTER EDWARDS AFB, CA JUNE 3 , 2011 A F F T C

  14. Characterizing air quality data from complex network perspective.

    PubMed

    Fan, Xinghua; Wang, Li; Xu, Huihui; Li, Shasha; Tian, Lixin

    2016-02-01

    Air quality depends mainly on changes in emission of pollutants and their precursors. Understanding its characteristics is the key to predicting and controlling air quality. In this study, complex networks were built to analyze topological characteristics of air quality data by correlation coefficient method. Firstly, PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) indexes of eight monitoring sites in Beijing were selected as samples from January 2013 to December 2014. Secondly, the C-C method was applied to determine the structure of phase space. Points in the reconstructed phase space were considered to be nodes of the network mapped. Then, edges were determined by nodes having the correlation greater than a critical threshold. Three properties of the constructed networks, degree distribution, clustering coefficient, and modularity, were used to determine the optimal value of the critical threshold. Finally, by analyzing and comparing topological properties, we pointed out that similarities and difference in the constructed complex networks revealed influence factors and their different roles on real air quality system.

  15. A Portable Low-Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    NASA Astrophysics Data System (ADS)

    Popoola, Olalekan; Mead, Iq; Bright, Vivien; Baron, Ronan; Saffell, John; Stewart, Gregor; Kaye, Paul; Jones, Roderic

    2013-04-01

    Outdoor air quality and its impact on human health and the environment have been well studied and it has been projected that poor air quality will surpass poor sanitation as the major course of environmental premature mortality by 2050 (IGAC / IGBP, release statement, 2012). Transport-related pollution has been regulated at various levels by enactment of legislations at local, national, regional and global stages. As part of the mitigation measures, routine measurements of atmospheric pollutants such as carbon monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO2) have to be established in areas where air quality problems are identified. In addition, emission inventories are also generated for different atmospheric environments including urban areas and airport environments required for air quality models. Whilst recognising that most of the existing sparse monitoring networks provide high temporal measurements, spatial data of these highly variable pollutants are not captured, making it difficult to adequately characterise the highly heterogeneous air quality. Spatial information is often obtained from model data which can only be constrained using measurements from the sparse monitoring networks. The work presented here shows the application of low-cost sensor networks aimed at addressing this missing spatial information. We have shown in previous studies the application of low-cost electrochemical sensor network instruments in monitoring road transport pollutants including CO, NO and NO2 in an urban environment (Mead et. al. 2012, accepted Atmospheric Environment). Modified versions of these instruments which include additional species such as O3, SO2, VOCs and CO2 are currently deployed at London Heathrow Airport (LHR) as part of the Sensor Network for Air Quality (SNAQ) project. Meteorology data such as temperature, relative humidity, wind speed and direction are also measured as well as size-speciated particulates (0.38 to 17.4 µm). A network of 50

  16. Test Report for Perforated Metal Air Transportable Package (PMATO) Prototype.

    SciTech Connect

    Bobbe, Jeffery G.; Pierce, Jim Dwight

    2003-06-01

    A prototype design for a plutonium air transport package capable of carrying 7.6 kg of plutonium oxide and surviving a ''worst-case'' plane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A series of impact tests were conducted on half-scale models of this design for side, end, and comer orientations at speeds close to 282 m/s onto a target designed to simulate weathered sandstone. These tests were designed to evaluate the performance of the overpack concept and impact-limiting materials in critical impact orientations. The impact tests of the Perforated Metal Air Transportable Package (PMATP) prototypes were performed at SNL's 10,000-ft rocket sled track. This report describes test facilities calibration and environmental testing methods of the PMATP under specific test conditions. The tests were conducted according to the test plan and procedures that were written by the authors and approved by SNL management and quality assurance personnel. The result of these tests was that the half-scale PMATP survived the ''worst-case'' airplane crash conditions, and indicated that a full-scale PMATP, utilizing this overpack concept and these impact-limiting materials, would also survive these crash conditions.

  17. Thermal analysis of Perforated Metal Air Transportable Package (PMATP) prototype.

    SciTech Connect

    Oneto, Robert; Levine, Howard; Mould, John; Pierce, Jim Dwight

    2003-08-01

    Sandia National Laboratories (SNL) has designed a crash-resistant container, the Perforated Metal Air Transportable Package (PMATP), capable of surviving a worst-case plane crash, including both impact and subsequent fire, for the air transport of plutonium. This report presents thermal analyses of the full-scale PMATP in its undamaged (pre-test) condition and in bounding post-accident states. The goal of these thermal simulations was to evaluate the performance of the package in a worst-case post-crash fire. The full-scale package is approximately 1.6 m long by 0.8 m diameter. The thermal analyses were performed with the FLEX finite element code. This analysis clearly predicts that the PMATP provides acceptable thermal response characteristics, both for the post-accident fire of a one-hour duration and the after-fire heat-soak condition. All predicted temperatures for the primary containment vessel are well within design limits for safety.

  18. A computational study of routing algorithms for realistic transportation networks

    SciTech Connect

    Jacob, R.; Marathe, M.V.; Nagel, K.

    1998-12-01

    The authors carry out an experimental analysis of a number of shortest path (routing) algorithms investigated in the context of the TRANSIMS (Transportation Analysis and Simulation System) project. The main focus of the paper is to study how various heuristic and exact solutions, associated data structures affected the computational performance of the software developed especially for realistic transportation networks. For this purpose the authors have used Dallas Fort-Worth road network with very high degree of resolution. The following general results are obtained: (1) they discuss and experimentally analyze various one-one shortest path algorithms, which include classical exact algorithms studied in the literature as well as heuristic solutions that are designed to take into account the geometric structure of the input instances; (2) they describe a number of extensions to the basic shortest path algorithm. These extensions were primarily motivated by practical problems arising in TRANSIMS and ITS (Intelligent Transportation Systems) related technologies. Extensions discussed include--(i) time dependent networks, (ii) multi-modal networks, (iii) networks with public transportation and associated schedules. Computational results are provided to empirically compare the efficiency of various algorithms. The studies indicate that a modified Dijkstra`s algorithm is computationally fast and an excellent candidate for use in various transportation planning applications as well as ITS related technologies.

  19. Smooth information flow in temperature climate network reflects mass transport

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-03-01

    A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

  20. 14 CFR 1300.3 - Supplementary regulations of the Air Transportation Stabilization Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Supplementary regulations of the Air Transportation Stabilization Board. 1300.3 Section 1300.3 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION OFFICE OF MANAGEMENT AND BUDGET AVIATION DISASTER RELIEF-AIR CARRIER GUARANTEE LOAN...

  1. Transportation dynamics on coupled networks with limited bandwidth

    NASA Astrophysics Data System (ADS)

    Li, Ming; Hu, Mao-Bin; Wang, Bing-Hong

    2016-12-01

    The communication networks in real world often couple with each other to save costs, which results in any network does not have a stand-alone function and efficiency. To investigate this, in this paper we propose a transportation model on two coupled networks with bandwidth sharing. We find that the free-flow state and the congestion state can coexist in the two coupled networks, and the free-flow path and congestion path can coexist in each network. Considering three bandwidth-sharing mechanisms, random, assortative and disassortative couplings, we also find that the transportation capacity of the network only depends on the coupling mechanism, and the fraction of coupled links only affects the performance of the system in the congestion state, such as the traveling time. In addition, with assortative coupling, the transportation capacity of the system will decrease significantly. However, the disassortative coupling has little influence on the transportation capacity of the system, which provides a good strategy to save bandwidth. Furthermore, a theoretical method is developed to obtain the bandwidth usage of each link, based on which we can obtain the congestion transition point exactly.

  2. Transportation dynamics on coupled networks with limited bandwidth.

    PubMed

    Li, Ming; Hu, Mao-Bin; Wang, Bing-Hong

    2016-12-14

    The communication networks in real world often couple with each other to save costs, which results in any network does not have a stand-alone function and efficiency. To investigate this, in this paper we propose a transportation model on two coupled networks with bandwidth sharing. We find that the free-flow state and the congestion state can coexist in the two coupled networks, and the free-flow path and congestion path can coexist in each network. Considering three bandwidth-sharing mechanisms, random, assortative and disassortative couplings, we also find that the transportation capacity of the network only depends on the coupling mechanism, and the fraction of coupled links only affects the performance of the system in the congestion state, such as the traveling time. In addition, with assortative coupling, the transportation capacity of the system will decrease significantly. However, the disassortative coupling has little influence on the transportation capacity of the system, which provides a good strategy to save bandwidth. Furthermore, a theoretical method is developed to obtain the bandwidth usage of each link, based on which we can obtain the congestion transition point exactly.

  3. Transportation dynamics on coupled networks with limited bandwidth

    PubMed Central

    Li, Ming; Hu, Mao-Bin; Wang, Bing-Hong

    2016-01-01

    The communication networks in real world often couple with each other to save costs, which results in any network does not have a stand-alone function and efficiency. To investigate this, in this paper we propose a transportation model on two coupled networks with bandwidth sharing. We find that the free-flow state and the congestion state can coexist in the two coupled networks, and the free-flow path and congestion path can coexist in each network. Considering three bandwidth-sharing mechanisms, random, assortative and disassortative couplings, we also find that the transportation capacity of the network only depends on the coupling mechanism, and the fraction of coupled links only affects the performance of the system in the congestion state, such as the traveling time. In addition, with assortative coupling, the transportation capacity of the system will decrease significantly. However, the disassortative coupling has little influence on the transportation capacity of the system, which provides a good strategy to save bandwidth. Furthermore, a theoretical method is developed to obtain the bandwidth usage of each link, based on which we can obtain the congestion transition point exactly. PMID:27966624

  4. Bus transport network model with ideal n-depth clique network topology

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Chen, Guang; Sun, Bao; Chen, Sheng-Yong; Wang, Wan-Liang

    2011-11-01

    We propose an ideal n-depth clique network model. In this model, the original network is composed of cliques (maximal complete subgraphs) that overlap with each other. The network expands continuously by the addition of new cliques. The final diameter of the network can be set in advance, namely, it is controllable. Assuming that the diameter of the network is n, the network exhibits a logistic structure with (n+1) layers. In this structure, the 0th layer represents the original network and each node of the (m)th layer (1≤m≤n) corresponds to a clique in the (m-1)th layer. In the growth process of the network, we ensure that any (m)th layer network is composed of overlapping cliques. Any node in an (m)th layer network corresponds to an m-depth community in the original network, and the diameter of an m-depth community is m. Therefore, the (n-1)th layer network will contain only one clique, the (n)th layer network will contain only one node, and the diameter of the corresponding original network is n. Then an ideal n-depth clique network will be obtained. Based on the ideal n-depth clique network model, we construct a bus transport network model with an ideal n-depth clique network topology (ICNBTN). Moreover, our study compares this model with the real bus transport network (RealBTN) of three major cities in China and a recently introduced bus transport network model (BTN) whose network properties correspond well with those of real BTNs. The network properties of the ICNBTN are much closer to those of the RealBTN than those of the BTN are. At the same time, the ICNBTN has higher clustering extent of bus routes, smaller network diameter, which corresponds to shorter maximum transfer times in a bus network, and lower average shortest path time coefficient than the BTN and the RealBTN. Therefore, the ICNBTN can achieve higher transfer efficiency for a bus transport system.

  5. 75 FR 12328 - Application of Charter Air Transport, Inc. for Commuter Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Charter Air Transport, Inc. for Commuter Authority AGENCY... it should not issue an order finding Charter Air Transport, Inc., fit, willing, and able,...

  6. The TOMPs ambient air monitoring network - Continuous data on UK air quality for over 20 years.

    PubMed

    Graf, Carola; Katsoyiannis, Athanasios; Jones, Kevin C; Sweetman, Andrew J

    2016-10-01

    Long-term air monitoring datasets are needed for persistent organic pollutants (POPs) to assess the effectiveness of source abatement measures and the factors controlling ambient levels. The Toxic Organic Micro Pollutants (TOMPs) Network, which has operated since 1991, collects ambient air samples at six sites across England and Scotland, using high-volume active air samplers. The network provides long-term ambient air trend data for a range of POPs at both urban and rural locations. Data from the network provides the UK Government, regulators and researchers with valuable information on emission/source controls and on the effectiveness of international chemicals regulation such as the Stockholm Convention and UN/ECE Protocol on POPs. The target chemicals of TOMPs have been polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and, since 2010, polybrominated diphenyl ethers (PBDEs). The continuous monitoring of these compounds demonstrates the constant decline in UK air concentrations over the last two decades, with average clearance rates for PCDD/Fs in urban locations of 5.1 years and for PCBs across all sites 6.6 years. No significant declines in rural locations for PCDD/Fs have been observed. There is a strong observable link between the declining ambient air concentrations and the emission reductions estimated in the annually produced National Atmospheric Emission Inventory (NAEI) dataset. These findings clearly demonstrate the unique strengths of long-term consistent datasets for the evaluation of the success of chemical regulation and control.

  7. Current-reinforced random walks for constructing transport networks

    PubMed Central

    Ma, Qi; Johansson, Anders; Tero, Atsushi; Nakagaki, Toshiyuki; Sumpter, David J. T.

    2013-01-01

    Biological systems that build transport networks, such as trail-laying ants and the slime mould Physarum, can be described in terms of reinforced random walks. In a reinforced random walk, the route taken by ‘walking’ particles depends on the previous routes of other particles. Here, we present a novel form of random walk in which the flow of particles provides this reinforcement. Starting from an analogy between electrical networks and random walks, we show how to include current reinforcement. We demonstrate that current-reinforcement results in particles converging on the optimal solution of shortest path transport problems, and avoids the self-reinforcing loops seen in standard density-based reinforcement models. We further develop a variant of the model that is biologically realistic, in the sense that the particles can be identified as ants and their measured density corresponds to those observed in maze-solving experiments on Argentine ants. For network formation, we identify the importance of nonlinear current reinforcement in producing networks that optimize both network maintenance and travel times. Other than ant trail formation, these random walks are also closely related to other biological systems, such as blood vessels and neuronal networks, which involve the transport of materials or information. We argue that current reinforcement is likely to be a common mechanism in a range of systems where network construction is observed. PMID:23269849

  8. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  9. An artificial neural network based groundwater flow and transport simulator

    SciTech Connect

    Krom, T.D.; Rosbjerg, D.

    1998-07-01

    Artificial neural networks are investigated as a tool for the simulation of contaminant loss and recovery in three-dimensional heterogeneous groundwater flow and contaminant transport modeling. These methods have useful applications in expert system development, knowledge base development and optimization of groundwater pollution remediation. The numerical model runs used to develop the artificial neural networks can be re-used to develop artificial neural networks to address alternative optimization problems or changed formulations of the constraints and or objective function under optimization. Artificial neural networks have been analyzed with the goal of estimating objectives which normally require the use of traditional flow and transport codes: such as contaminant recovery, contaminant loss (unrecovered) and remediation failure. The inputs to the artificial neutral networks are variable pumping withdrawal rates at fairly unconstrained 3-D locations. A forward-feed backwards error propagation artificial neural network architecture is used. The significance of the size of the training set, network architecture, and network weight optimization algorithm with respect to the estimation accuracy and objective are shown to be important. Finally, the quality of the weight optimization is studied via cross-validation techniques. This is demonstrated to be a useful method for judging training performance for strongly under-described systems.

  10. Network bipartivity and the transportation efficiency of European passenger airlines

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Gómez-Gardeñes, Jesús

    2016-06-01

    The analysis of the structural organization of the interaction network of a complex system is central to understand its functioning. Here, we focus on the analysis of the bipartivity of graphs. We first introduce a mathematical approach to quantify bipartivity and show its implementation in general and random graphs. Then, we tackle the analysis of the transportation networks of European airlines from the point of view of their bipartivity and observe significant differences between traditional and low cost carriers. Bipartivity shows also that alliances and major mergers of traditional airlines provide a way to reduce bipartivity which, in its turn, is closely related to an increase of the transportation efficiency.

  11. Molecular transport network security using multi-wavelength optical spins.

    PubMed

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  12. Air Quality Modeling Technical Support Document for the 2015 Ozone NAAQS Preliminary Interstate Transport Assessment

    EPA Pesticide Factsheets

    In this technical support document (TSD) EPA describes the air quality modeling performed to support the 2015 ozone National Ambient Air Quality Standards (NAAQS) preliminary interstate transport assessment Notice of Data Availability (NODA).

  13. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  14. Photo-induced Mass Transport through Polymer Networks

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Anthamatten, Mitchell

    2014-03-01

    Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.

  15. Predicting Heat Transport across Multiple Devices with Neural Networks

    NASA Astrophysics Data System (ADS)

    Luna, C. J.; Budny, R. V.; Meneghini, O.; Smith, S. P.; Penna, J.

    2014-10-01

    Three multi-layer, feed-forward, back-propagation neural networks have been built and trained on heat transport data from DIII-D, TFTR, and JET, respectively. A comparative analysis shows that previous success of neural networks in predicting heat transport in DIII-D is reproduced for both TFTR and JET. The effect of using different neural network topologies has been investigated across all of the devices. It is found that the neural networks can consistently predict the total species' heat fluxes for all of the devices, however they have difficulty in predicting the individual components of the heat fluxes in presence of significant transient variations in stored energy (i.e. non steady-state conditions). Such limitation has been addressed by providing the time-derivative information of the plasma parameters that are input to the neural network. Finally, an attempt is made to draw a connection between the most consistently successful neural network topologies and their relevance to the physics of heat transport in tokamak plasmas. Supported in part by U.S. DoE Contracts No. DE-AC02-09CH1146 and No. DE-FG02-95ER54309.

  16. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  17. An Optimization of the Maintenance Assets Distribution Network in the Argentine Air Force

    DTIC Science & Technology

    2015-03-26

    AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR FORCE...copyright protection in the United States. AFIT-ENS-MS-15-M-152 AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-MS-15-M-152 AN OPTIMIZATION OF THE MAINTENANCE ASSETS DISTRIBUTION NETWORK IN THE ARGENTINE AIR

  18. Simplified curve fits for the transport properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.

    1987-01-01

    New, improved curve fits for the transport properties of equilibruim air have been developed. The curve fits are for viscosity and Prandtl number as functions of temperature and density, and viscosity and thermal conductivity as functions of internal energy and density. The curve fits were constructed using grabau-type transition functions to model the tranport properties of Peng and Pindroh. The resulting curve fits are sufficiently accurate and self-contained so that they can be readily incorporated into new or existing computational fluid dynamics codes. The range of validity of the new curve fits are temperatures up to 15,000 K densities from 10 to the -5 to 10 amagats (rho/rho sub o).

  19. Fatigue and associated performance decrements in air transport operations

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.; Orlady, H. W.

    1981-01-01

    A study of safety reports was conducted to examine the hypothesis that fatigue and associated performance decrements occur in air transport operations, and that these are associated with some combination of factors: circadian desynchronosis, duty time; pre-duty activity; sleep; work scheduling; workload; and environmental deprivation. The findings are based on a selected sample of reported incidents in which the reporter associated fatigue with the occurrence. In comparing the fatigue reports with a control set, significant performance decrements were found to exist related to time-of-day, awareness and attention to duty, less significantly, final phases of flights. The majority of the fatigue incidents involved such unsafe events as altitude deviations, takeoffs and landing without clearance, and the like. Considerations of duty and sleep are the major factors in the reported fatigue conditions.

  20. The Economic Effect of Competition in the Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Hubbard, H. B.

    1972-01-01

    The air transportation industry has been described as a highly-competitive, regulated oligopoly or as a price-regulated cartel with blocked entry, resulting in excessive service and low load factors. The current structure of the industry has been strongly influenced by the hypotheses that increased levels of competition are desirable per se, and that more competing carriers can be economically supported in larger markets, in longer haul markets, with lower unit costs, and with higher fare levels. An elementary application of competition/game theory casts doubt on the validity of these hypotheses, but rather emphasizes the critical importance of the short-term non-variable costs in determining economic levels of competition.

  1. A methodology for long-range prediction of air transportation

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; English, J. M.

    1980-01-01

    A framework and methodology for long term projection of demand for aviation fuels is presented. The approach taken includes two basic components. The first was a new technique for establishing the socio-economic environment within which the future aviation industry is embedded. The concept utilized was a definition of an overall societal objective for the very long run future. Within a framework so defined, a set of scenarios by which the future will unfold are then written. These scenarios provide the determinants of the air transport industry operations and accordingly provide an assessment of future fuel requirements. The second part was the modeling of the industry in terms of an abstracted set of variables to represent the overall industry performance on a macro scale. The model was validated by testing the desired output variables from the model with historical data over the past decades.

  2. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  3. Evaluating network analysis and agent based modeling for investigating the stability of commercial air carrier schedules

    NASA Astrophysics Data System (ADS)

    Conway, Sheila Ruth

    For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment

  4. Survey of projected growth and problems facing air transportation, 1975 - 1985

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Wilson, A.

    1975-01-01

    Results are presented of a survey conducted to determine the current opinion of people working in air transportation demand forecasting on the future of air transportation over the next ten years. In particular, the survey included questions on future demand growth, load factor, fuel prices, introduction date for the next new aircraft, the priorities of problems facing air transportation, and the probability of a substantial change in air transportation regulation. The survey participants included: airlines, manufacturers, universities, government agencies, and other organizations (financial institutions, private research companies, etc.). The results are shown for the average responses within the organization represented as well as the overall averages.

  5. Proceedings of the Monterey Conference on Planning for Rotorcraft and Commuter Air Transportation

    NASA Technical Reports Server (NTRS)

    Stockwell, W. L.

    1983-01-01

    Planning and technological issues involved in rotorcraft and commuter fixed-wing air transportation are discussed. Subject areas include the future community environment, aircraft technology, community transportation planning, and regulatory perspectives.

  6. Enhanced energy transport in genetically engineered excitonic networks

    NASA Astrophysics Data System (ADS)

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  7. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    PubMed Central

    2016-01-01

    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006

  8. An Architectural Concept for Intrusion Tolerance in Air Traffic Networks

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Miner, Paul S.

    2003-01-01

    The goal of an intrusion tolerant network is to continue to provide predictable and reliable communication in the presence of a limited num ber of compromised network components. The behavior of a compromised network component ranges from a node that no longer responds to a nod e that is under the control of a malicious entity that is actively tr ying to cause other nodes to fail. Most current data communication ne tworks do not include support for tolerating unconstrained misbehavio r of components in the network. However, the fault tolerance communit y has developed protocols that provide both predictable and reliable communication in the presence of the worst possible behavior of a limited number of nodes in the system. One may view a malicious entity in a communication network as a node that has failed and is behaving in an arbitrary manner. NASA/Langley Research Center has developed one such fault-tolerant computing platform called SPIDER (Scalable Proces sor-Independent Design for Electromagnetic Resilience). The protocols and interconnection mechanisms of SPIDER may be adapted to large-sca le, distributed communication networks such as would be required for future Air Traffic Management systems. The predictability and reliabi lity guarantees provided by the SPIDER protocols have been formally v erified. This analysis can be readily adapted to similar network stru ctures.

  9. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  10. A Program in Air Transportation Technology (Joint University Program)

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1996-01-01

    The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.

  11. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  12. 77 FR 17394 - Hazardous Materials: Approval and Communication Requirements for the Safe Transportation of Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... transportation of hazardous materials by highway, rail, vessel, and air. The scope of the HMR includes hazardous.... Congress expressly authorized DOT to issue variances in the Hazardous Materials Transportation Act of 1975... include: The safety record for hazardous materials transported; transportation operations......

  13. Simulating unsteady flow and sediment transport in vegetated channel network

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Duan, Jennifer G.

    2014-07-01

    This paper presents a one-dimensional model for simulating flood routing and sediment transport over mobile alluvium in a vegetated channel network. The modified St. Venant equations together with the governing equations for suspended sediment and bed load transport were solved simultaneously to obtain flow properties and sediment transport rate. The Godunov-type finite volume method is employed to discretize the governing equations. Then, the Exner equation was solved for bed elevation change. Since sediment transport is non-equilibrium when bed is degrading or aggrading, a recovery coefficient for suspended sediment and an adaptation length for bed load transport were used to quantify the differences between equilibrium and non-equilibrium sediment transport rate. The influence of vegetation on floodplain and main channel was accounted for by adjusting resistance terms in the momentum equations for flow field. A procedure to separate the grain resistance from the total resistance was proposed and implemented to calculate sediment transport rate. The model was tested by a flume experiment case and an unprecedented flood event occurred in the Santa Cruz River, Tucson, Arizona, in July 2006. Simulated results of flow discharge and bed elevation changes showed satisfactory agreements with the measurements. The impacts of vegetation density on sediment transport and significance of non-equilibrium sediment transport model were discussed.

  14. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    NASA Technical Reports Server (NTRS)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  15. Stochastic Network Interdiction for Optimizing Defensive Counter Air Operations Planning

    DTIC Science & Technology

    2011-12-01

    the interdictor reveals his defensive strategy . Washburn and Wood [8] view the network interdiction problem as a simultaneous, two-person, zero-sum... the distance to the nearest refueling point . For example, the cost for an area ( , )i j AI∈ is one if an aircraft formation can stay on combat air...combination of area defense and point defense allows the defender to deploy more efficient tactics and protect more friendly assets with fewer resources

  16. Diffusive transport in networks built of containers and tubes.

    PubMed

    Lizana, L; Konkoli, Z

    2005-08-01

    We have developed analytical and numerical methods to study the transport of noninteracting particles in large networks consisting of M d -dimensional containers C1,...,C(M) with radii R(i) linked together by tubes of length l(ij) and radii a(ij) where i,j = 1,2,...,M. Tubes may join directly with each other, forming junctions. It is possible that some links are absent. Instead of solving the diffusion equation for the full problem we formulated an approach that is computationally more efficient. We derived a set of rate equations that govern the time dependence of the number of particles in each container, N1(t), N2(t),...,N(M)(t). In such a way the complicated transport problem is reduced to a set of M first-order integro-differential equations in time, which can be solved efficiently by the algorithm presented here. The workings of the method have been demonstrated on a couple of examples: networks involving three, four, and seven containers and one network with a three-point junction. Already simple networks with relatively few containers exhibit interesting transport behavior. For example, we showed that it is possible to adjust the geometry of the networks so that the particle concentration varies in time in a wave-like manner. Such behavior deviates from simple exponential growth and decay occurring in the two-container system.

  17. Transport efficiency and dynamics of hydraulic fracture networks

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  18. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  19. Properties of transportation dynamics on scale-free networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jian-Feng; Gao, Zi-You; Zhao, Xiao-Mei

    2007-01-01

    In this work, we study the statistical properties of transportation dynamics considering congestion effects, based on the standard Barabási-Albert scale-free model. In terms of user equilibrium (UE) condition, congestion effects can be described by cost function. Simulation results demonstrate that the cumulative load distribution exhibits a power-law behavior with Pl∼l, where l is the flow loaded on the node and γ≈2.7 which is much bigger than that obtained in many networks without considering congestion effects. That is, there exist fewer heavily loaded nodes in the network when considering congestion effects. Furthermore, by numerically investigating overload phenomenon of the heaviest loaded link removal in transportation networks, a phase-transition phenomenon is uncovered in terms of the key parameter characterizing the node capacity.

  20. Transporting live video over high packet loss networks

    NASA Astrophysics Data System (ADS)

    Werdin, Dave

    2013-05-01

    Transport of live video requires a robust backbone as live video decoders are subject to dropouts and buffer starvation. A short duration packet loss will many times cause a decoder to go black for many seconds as it reacquires the stream and clock. IP networks due to their connectionless approach and support for variable length packets, inherently display packet delivery variability. These characteristics most typically include packet loss, packet delay variation, and packets being delivered out of order. Deep Packet Recovery (DPR) techniques provide correction to IP network induced errors and issues. DPR can provide a much broader and stronger protection than traditional Forward Error Correction techniques enabling transport of live video across severely impaired networks.

  1. Mixed transportation network design under a sustainable development perspective.

    PubMed

    Qin, Jin; Ni, Ling-lin; Shi, Feng

    2013-01-01

    A mixed transportation network design problem considering sustainable development was studied in this paper. Based on the discretization of continuous link-grade decision variables, a bilevel programming model was proposed to describe the problem, in which sustainability factors, including vehicle exhaust emissions, land-use scale, link load, and financial budget, are considered. The objective of the model is to minimize the total amount of resources exploited under the premise of meeting all the construction goals. A heuristic algorithm, which combined the simulated annealing and path-based gradient projection algorithm, was developed to solve the model. The numerical example shows that the transportation network optimized with the method above not only significantly alleviates the congestion on the link, but also reduces vehicle exhaust emissions within the network by up to 41.56%.

  2. Understanding and managing disaster evacuation on a transportation network.

    PubMed

    Lambert, James H; Parlak, Ayse I; Zhou, Qian; Miller, John S; Fontaine, Michael D; Guterbock, Thomas M; Clements, Janet L; Thekdi, Shital A

    2013-01-01

    Uncertain population behaviors in a regional emergency could potentially harm the performance of the region's transportation system and subsequent evacuation effort. The integration of behavioral survey data with travel demand modeling enables an assessment of transportation system performance and the identification of operational and public health countermeasures. This paper analyzes transportation system demand and system performance for emergency management in three disaster scenarios. A two-step methodology first estimates the number of trips evacuating the region, thereby capturing behavioral aspects in a scientifically defensible manner based on survey results, and second, assigns these trips to a regional highway network, using geographic information systems software, thereby making the methodology transferable to other locations. Performance measures are generated for each scenario including maps of volume-to-capacity ratios, geographic contours of evacuation time from the center of the region, and link-specific metrics such as weighted average speed and traffic volume. The methods are demonstrated on a 600 segment transportation network in Washington, DC (USA) and are applied to three scenarios involving attacks from radiological dispersion devices (e.g., dirty bombs). The results suggests that: (1) a single detonation would degrade transportation system performance two to three times more than that which occurs during a typical weekday afternoon peak hour, (2) volume on several critical arterials within the network would exceed capacity in the represented scenarios, and (3) resulting travel times to reach intended destinations imply that un-aided evacuation is impractical. These results assist decisions made by two categories of emergency responders: (1) transportation managers who provide traveler information and who make operational adjustments to improve the network (e.g., signal retiming) and (2) public health officials who maintain shelters, food and

  3. Experimental Study of Heat Transport in Fractured Network

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria

    2015-04-01

    Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the

  4. Transportation of a microwave environment over networks and the applications

    NASA Astrophysics Data System (ADS)

    Shoji, Yozo

    2012-01-01

    The concept of the transportation of a microwave environment over networks using a digitized Radio-on-Fibre (DRoF) technique as well as the concept of in-network microwave processing, which could make the concept of "wired and wireless network virtualization" into a reality, is discussed. The new applications to a radio-on-demand service (RoD), software-defined radio-aware network (SDRAN), and microwave environments cloud are introduced. 10-Gbps Ethernet based microwave-to-network interface converter (MiNIC) are developed and the transportation of multiple digital TV broadcasting signals is demonstrated. It is shown that the MiNIC should use more than 8-bits resolution in digitization of a microwave environment when 7 channels of TV signals are included in it. The concept of remote microwave environments observation over networks is demonstrated, where the frequency channel and received signal strength indication (RSSI) of the detected digital TV broadcasting signals are remotely monitored.

  5. The world's air transportation services : data as to passengers, mail, and goods carried by American and European transportation services

    NASA Technical Reports Server (NTRS)

    1922-01-01

    This report presents detailed descriptions, statistics, and graphs on European and American air transport. The European countries listed are Belgium, Czecho-Slovakia, Denmark, France, Germany, Great Britain, Holland, and Italy.

  6. 76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air... Department is publishing the following notice on the enforcement of its rules relating to disclosure of code... Transportation, Office of the Secretary, Washington, DC Guidance on Disclosure of Code-Share Service Under...

  7. Performance verification of network function virtualization in software defined optical transport networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  8. Smogbusters: Grassroots Action for Clean Air and Sustainable Transport in Australia

    ERIC Educational Resources Information Center

    Manners, Eric; Wake, David; Carlisle, Rachel

    2009-01-01

    Smogbusters was a national, community-based, government-funded community education program promoting clean air and sustainable transport in Australia from 1994 to 2002. Smogbusters aimed to improve air quality primarily by raising awareness about motor vehicle transport and its negative impacts on health, the environment and communities, and by…

  9. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air transport traffic and capacity elements... elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  10. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air transport traffic and capacity elements... elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  11. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  12. Enhancing coherent transport in a photonic network using controllable decoherence

    PubMed Central

    Biggerstaff, Devon N.; Heilmann, René; Zecevik, Aidan A.; Gräfe, Markus; Broome, Matthew A.; Fedrizzi, Alessandro; Nolte, Stefan; Szameit, Alexander; White, Andrew G.; Kassal, Ivan

    2016-01-01

    Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable-strength decoherence is simulated by broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence. PMID:27080915

  13. Optimal transport in time-varying small-world networks

    NASA Astrophysics Data System (ADS)

    Chen, Qu; Qian, Jiang-Hai; Zhu, Liang; Han, Ding-Ding

    2016-03-01

    The time-order of interactions, which is regulated by some intrinsic activity, surely plays a crucial role regarding the transport efficiency of transportation systems. Here we study the optimal transport structure by measure of the length of time-respecting paths. Our network is built from a two-dimensional regular lattice, and long-range connections are allocated with probability Pi j˜rij -α , where ri j is the Manhattan distance. By assigning each shortcut an activity rate subjected to its geometric distance τi j˜rij -C , long-range links become active intermittently, leading to the time-varying dynamics. We show that for 0 network behaves as a small world with an optimal structural exponent αopt that slightly grows with C as αopt˜log(C ) , while for C ≫2 the αopt→∞ . The unique restriction between C and α unveils an optimization principle in time-varying transportation networks. Empirical studies on British Airways and Austrian Airlines provide consistent evidence with our conclusion.

  14. Analysis of air quality management with emphasis on transportation sources

    NASA Technical Reports Server (NTRS)

    English, T. D.; Divita, E.; Lees, L.

    1980-01-01

    The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.

  15. Locating inefficient links in a large-scale transportation network

    NASA Astrophysics Data System (ADS)

    Sun, Li; Liu, Like; Xu, Zhongzhi; Jie, Yang; Wei, Dong; Wang, Pu

    2015-02-01

    Based on data from geographical information system (GIS) and daily commuting origin destination (OD) matrices, we estimated the distribution of traffic flow in the San Francisco road network and studied Braess's paradox in a large-scale transportation network with realistic travel demand. We measured the variation of total travel time Δ T when a road segment is closed, and found that | Δ T | follows a power-law distribution if Δ T < 0 or Δ T > 0. This implies that most roads have a negligible effect on the efficiency of the road network, while the failure of a few crucial links would result in severe travel delays, and closure of a few inefficient links would counter-intuitively reduce travel costs considerably. Generating three theoretical networks, we discovered that the heterogeneously distributed travel demand may be the origin of the observed power-law distributions of | Δ T | . Finally, a genetic algorithm was used to pinpoint inefficient link clusters in the road network. We found that closing specific road clusters would further improve the transportation efficiency.

  16. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  17. Air transport of the IABP patient. Intra-Aortic Balloon Pump.

    PubMed

    Hatlestad, Daniel C; Van Horn, Julie

    2002-01-01

    The intra-aortic balloon pump (IABP) has evolved into an easily transported, computer-driven device for invasively assisting circulation. This article reviews the use of the IABP during interfacility patient transport by air. Air transport of the IABP-dependent patient creates unique clinical, logistical, and technical challenges. We review the function and clinical application of IABP in various air transport conditions. We also identify the complications of intra-aortic balloon pumping, such as hemorrhage, loss of trigger signals, cardiac arrest, and atmospheric pressure changes, and offer solutions. The effective clinical use of IABP in the air transport environment involves more than familiarity with the device and implications for its use; rapid identification of problems and implementation of solutions are required for successful transport and patient outcomes.

  18. Statistical theory of designed quantum transport across disordered networks.

    PubMed

    Walschaers, Mattia; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas

    2015-04-01

    We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalization of the chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior of characteristic statistical properties with the size of the network. We show that these analytical predictions compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble.

  19. Optimal resource allocation in random networks with transportation bandwidths

    NASA Astrophysics Data System (ADS)

    Yeung, C. H.; Wong, K. Y. Michael

    2009-03-01

    We apply statistical physics to study the task of resource allocation in random sparse networks with limited bandwidths for the transportation of resources along the links. Recursive relations from the Bethe approximation are converted into useful algorithms. Bottlenecks emerge when the bandwidths are small, causing an increase in the fraction of idle links. For a given total bandwidth per node, the efficiency of allocation increases with the network connectivity. In the high connectivity limit, we find a phase transition at a critical bandwidth, above which clusters of balanced nodes appear, characterized by a profile of homogenized resource allocation similar to the Maxwell construction.

  20. Identification of terms to define unconstrained air transportation demands

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Kuhilhau, A. R.

    1982-01-01

    The factors involved in the evaluation of unconstrained air transportation systems were carefully analyzed. By definition an unconstrained system is taken to be one in which the design can employ innovative and advanced concepts no longer limited by present environmental, social, political or regulatory settings. Four principal evaluation criteria are involved: (1) service utilization, based on the operating performance characteristics as viewed by potential patrons; (2) community impacts, reflecting decisions based on the perceived impacts of the system; (3) technological feasibility, estimating what is required to reduce the system to practice; and (4) financial feasibility, predicting the ability of the concepts to attract financial support. For each of these criteria, a set of terms or descriptors was identified, which should be used in the evaluation to render it complete. It is also demonstrated that these descriptors have the following properties: (a) their interpretation may be made by different groups of evaluators; (b) their interpretations and the way they are used may depend on the stage of development of the system in which they are used; (c) in formulating the problem, all descriptors should be addressed independent of the evaluation technique selected.

  1. Some considerations for air transportation analysis to non-urban areas.

    NASA Technical Reports Server (NTRS)

    Norman, S. D.

    1973-01-01

    Review of some of the problems associated with air transportation to and from nonurban areas. While a significant proportion of public transportation needs of nonurban areas are met by aircraft, there are indications that improvement in air transportation service are called for and would be rewarded by increased patronage. However, subsidized local service carriers are attracted by large aircraft operation, and there is a tendency to discontinue service to low density areas. Prospects and potential means for reversing this trend are discussed.

  2. The Scaling of Several Public Transport Networks in China

    NASA Astrophysics Data System (ADS)

    Guo, Long; Zhu, Yueying; Luo, Zhongjie; Li, Wei

    2013-06-01

    Public transport networks (PTNs) are often researched without reference to their geographical embedding. The question arises if there is any underlying structure or principle characterizing the observed behavior of geographically embedded transport routes. Here, we focus on the scaling properties of PTNs in Space L through fractal analysis and consider the effect of the real bus routes, which reflects the human movement between stations indirectly. We find that the PTN in Space L is the better basal one to mimic the human migration in city. Furthermore, we also research the scaling property of the correlation between stations and the distribution of node's weight, which shows the heterogeneous property of human activity between different stations. Our present work provides some new perspective and tools to realize the human migration on spatial networks.

  3. Global analysis for spread of infectious diseases via transportation networks.

    PubMed

    Nakata, Yukihiko; Röst, Gergely

    2015-05-01

    We formulate an epidemic model for the spread of an infectious disease along with population dispersal over an arbitrary number of distinct regions. Structuring the population by the time elapsed since the start of travel, we describe the infectious disease dynamics during transportation as well as in the regions. As a result, we obtain a system of delay differential equations. We define the basic reproduction number R(0) as the spectral radius of a next generation matrix. For multi-regional systems with strongly connected transportation networks, we prove that if R(0) ≤ 1 then the disease will be eradicated from each region, while if R(0) > 1 there is a globally asymptotically stable equilibrium, which is endemic in every region. If the transportation network is not strongly connected, then the model analysis shows that numerous endemic patterns can exist by admitting a globally asymptotically stable equilibrium, which may be disease free in some regions while endemic in other regions. We provide a procedure to detect the disease free and the endemic regions according to the network topology and local reproduction numbers. The main ingredients of the mathematical proofs are the inductive applications of the theory of asymptotically autonomous semiflows and cooperative dynamical systems. We visualise stability boundaries of equilibria in a parameter plane to illustrate the influence of the transportation network on the disease dynamics. For a system consisting of two regions, we find that due to spatial heterogeneity characterised by different local reproduction numbers, R(0) may depend non-monotonically on the dispersal rates, thus travel restrictions are not always beneficial.

  4. Why do Scale-Free Networks Emerge in Nature? From Gradient Networks to Transport Efficiency

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltan

    2004-03-01

    It has recently been recognized [1,2,3] that a large number of complex networks are scale-free (having a power-law degree distribution). Examples include citation networks [4], the internet [5], the world-wide-web [6], cellular metabolic networks [7], protein interaction networks [8], the sex-web [9] and alliance networks in the U.S. biotechnology industry [10]. The existence of scale-free networks in such diverse systems suggests that there is a simple underlying common reason for their development. Here, we propose that scale-free networks emerge because they ensure efficient transport of some entity. We show that for flows generated by gradients of a scalar "potential'' distributed on a network, non scale-free networks, e.g., random graphs [11], will become maximally congested, while scale-free networks will ensure efficient transport in the large network size limit. [1] R. Albert and A.-L. Barabási, Rev.Mod.Phys. 74, 47 (2002). [2] M.E.J. Newman, SIAM Rev. 45, 167 (2003). [3] S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford Univ. Press, Oxford, 2003. [4] S. Redner, Eur.Phys.J. B, 4, 131 (1998). [5] M. Faloutsos, P. Faloutsos and C. Faloutsos Comp.Comm.Rev. 29, 251 (1999). [6] R. Albert, H. Jeong, and A.L. Barabási, Nature 401, 130 (1999). [7] H. Jeong et.al. Nature 407, 651 (2000). [8] H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai, Nature 411, 41 (2001). [9] F. Liljeros et. al. Nature 411 907 (2000). [10] W. W. Powell, D. R. White, K. W. Koput and J. Owen-Smith Am.J.Soc. in press. [11] B. Bollobás, Random Graphs, Second Edition, Cambridge University Press (2001).

  5. Training augmentation device for the Air Force satellite Control Network

    NASA Technical Reports Server (NTRS)

    Shoates, Keith B.

    1993-01-01

    From the 1960's and into the early 1980's satellite operations and control were conducted by Air Force Systems Command (AFSC), now Air Force Materiel Command (AFMC), out of the Satellite Control Facility at Onizuka AFB, CA. AFSC was responsible for acquiring satellite command and control systems and conducting routine satellite operations. The daily operations, consisting of satellite health and status contacts and station keeping activities, were performed for AFSC by a Mission Control Team (MCT) staffed by civilian contractors who were responsible for providing their own technically 'qualified' personnel as satellite operators. An MCT consists of five positions: mission planner, ground controller, planner analyst, orbit analyst, and ranger controller. Most of the training consisted of On-the-Job-Training (OJT) with junior personnel apprenticed to senior personnel until they could demonstrate job proficiency. With most of the satellite operators having 15 to 25 years of experience, there was minimal risk to the mission. In the mid 1980's Air Force Space Command (AFSPACOM) assumed operational responsibility for a newly established control node at Falcon AFB (FAFB) in CO. The satellites and ground system program offices (SPO's) are organized under AFSC's Space and Missiles Systems Center (SMC) to function as a systems engineering and acquisition agency for AFSPACECOM. The collection of the satellite control nodes, ground tracking stations, computer processing equipment, and connecting communications links is referred to as the Air Force Satellite Control Network (AFSCN).

  6. 75 FR 50708 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Transportation Conformity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ...; Transportation Conformity Consultation Requirement AGENCY: Environmental Protection Agency (EPA). ACTION: Direct... ``Transportation Conformity.'' This approval will meet a requirement of the Clean Air Act (Act) and EPA's Transportation Conformity regulations. DATES: This direct final rule will be effective October 18, 2010,...

  7. Pore network model of electrokinetic transport through charged porous media

    NASA Astrophysics Data System (ADS)

    Obliger, Amaël; Jardat, Marie; Coelho, Daniel; Bekri, Samir; Rotenberg, Benjamin

    2014-04-01

    We introduce a method for the numerical determination of the steady-state response of complex charged porous media to pressure, salt concentration, and electric potential gradients. The macroscopic fluxes of solvent, salt, and charge are computed within the framework of the Pore Network Model (PNM), which describes the pore structure of the samples as networks of pores connected to each other by channels. The PNM approach is used to capture the couplings between solvent and ionic flows which arise from the charge of the solid surfaces. For the microscopic transport coefficients on the channel scale, we take a simple analytical form obtained previously by solving the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel. These transport coefficients are upscaled for a given network by imposing conservation laws for each pores, in the presence of macroscopic gradients across the sample. The complex pore structure of the material is captured by the distribution of channel diameters. We investigate the combined effects of this complex geometry, the surface charge, and the salt concentration on the macroscopic transport coefficients. The upscaled numerical model preserves the Onsager relations between the latter, as expected. The calculated macroscopic coefficients behave qualitatively as their microscopic counterparts, except for the permeability and the electro-osmotic coupling coefficient when the electrokinetic effects are strong. Quantitatively, the electrokinetic couplings increase the difference between the macroscopic coefficients and the corresponding ones for a single channel of average diameter.

  8. Bus transport network of Shenyang considering competitive and cooperative relationship

    NASA Astrophysics Data System (ADS)

    Hu, Baoyu; Feng, Shumin; Nie, Cen

    2017-01-01

    Competition and cooperation is a universal phenomenon in bus transport networks (BTNs) because of the shared stations between bus routes. A measuring method is proposed for competitive and cooperative relationship between bus routes. Based on this measurement, we develop a new representation model for BTNs, namely competitive-cooperative space R. This model is applied to investigate empirically bus transport network of Shenyang (BTN-S) from China. We present the histograms of competitive-cooperative coefficients, competitive coefficients and cooperative coefficients to illustrate that competitive and cooperative relationship plays an important role in transporting passengers. The competitive-cooperative situation shows that cooperative relationship holds an absolutely dominant position in BTN-S. To explore the networked characteristics, we present some empirical distributions, for the number of bus stations on a route, the number of shared stations between two routes, degree and weighted degree, competitive strength, and cooperative strength. We also examine the correlations between degree and competitive strength, and between degree and cooperative strength. Besides, we investigate the diversities of competitive strength and cooperative strength in BTN-S. This study can help us to understand the BTN from a deeper level.

  9. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  10. Transportation and dynamic networks: Models, theory, and applications to supply chains, electric power, and financial networks

    NASA Astrophysics Data System (ADS)

    Liu, Zugang

    Network systems, including transportation and logistic systems, electric power generation and distribution networks as well as financial networks, provide the critical infrastructure for the functioning of our societies and economies. The understanding of the dynamic behavior of such systems is also crucial to national security and prosperity. The identification of new connections between distinct network systems is the inspiration for the research in this dissertation. In particular, I answer two questions raised by Beckmann, McGuire, and Winsten (1956) and Copeland (1952) over half a century ago, which are, respectively, how are electric power flows related to transportation flows and does money flow like water or electricity? In addition, in this dissertation, I achieve the following: (1) I establish the relationships between transportation networks and three other classes of complex network systems: supply chain networks, electric power generation and transmission networks, and financial networks with intermediation. The establishment of such connections provides novel theoretical insights as well as new pricing mechanisms, and efficient computational methods. (2) I develop new modeling frameworks based on evolutionary variational inequality theory that capture the dynamics of such network systems in terms of the time-varying flows and incurred costs, prices, and, where applicable, profits. This dissertation studies the dynamics of such network systems by addressing both internal competition and/or cooperation, and external changes, such as varying costs and demands. (3) I focus, in depth, on electric power supply chains. By exploiting the relationships between transportation networks and electric power supply chains, I develop a large-scale network model that integrates electric power supply chains and fuel supply markets. The model captures both the economic transactions as well as the physical transmission constraints. The model is then applied to the New

  11. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  12. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP < 100 μm) are collected for 24h at an interval of 3-6 days at all sites. Black carbon, typical persistent organic pollutants (PAHs) and heavy metals (particulate-bounded mercury) are measured to reveal their spatial and temporal distributions. Results revealed a consistent gradient decrease in almost all analyzed parameters along south-north gradient across the Himalayas, with a clear seasonal variation of higher values in pre-monsoon seasons. Analysis of geochemical signatures of carbonaceous aerosols indicated dominant sources from biomass burning and vehicle exhaust. PAHs concentrations and signatures from soils and aerosols indicated that low-ring PAHs can readily transport across the Himalayas. Integrated analysis of satellite images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia

  13. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  14. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  15. Radionuclide gas transport through nuclear explosion-generated fracture networks

    SciTech Connect

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  16. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  17. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  18. Efficient quantum transport in disordered interacting many-body networks.

    PubMed

    Ortega, Adrian; Stegmann, Thomas; Benet, Luis

    2016-10-01

    The coherent transport of n fermions in disordered networks of l single-particle states connected by k-body interactions is studied. These networks are modeled by embedded Gaussian random matrix ensemble (EGE). The conductance bandwidth and the ensemble-averaged total current attain their maximal values if the system is highly filled n∼l-1 and k∼n/2. For the cases k=1 and k=n the bandwidth is minimal. We show that for all parameters the transport is enhanced significantly whenever centrosymmetric embedded Gaussian ensemble (csEGE) are considered. In this case the transmission shows numerous resonances of perfect transport. Analyzing the transmission by spectral decomposition, we find that centrosymmetry induces strong correlations and enhances the extrema of the distributions. This suppresses destructive interference effects in the system and thus causes backscattering-free transmission resonances that enhance the overall transport. The distribution of the total current for the csEGE has a very large dominating peak for n=l-1, close to the highest observed currents.

  19. Efficient quantum transport in disordered interacting many-body networks

    NASA Astrophysics Data System (ADS)

    Ortega, Adrian; Stegmann, Thomas; Benet, Luis

    2016-10-01

    The coherent transport of n fermions in disordered networks of l single-particle states connected by k -body interactions is studied. These networks are modeled by embedded Gaussian random matrix ensemble (EGE). The conductance bandwidth and the ensemble-averaged total current attain their maximal values if the system is highly filled n ˜l -1 and k ˜n /2 . For the cases k =1 and k =n the bandwidth is minimal. We show that for all parameters the transport is enhanced significantly whenever centrosymmetric embedded Gaussian ensemble (csEGE) are considered. In this case the transmission shows numerous resonances of perfect transport. Analyzing the transmission by spectral decomposition, we find that centrosymmetry induces strong correlations and enhances the extrema of the distributions. This suppresses destructive interference effects in the system and thus causes backscattering-free transmission resonances that enhance the overall transport. The distribution of the total current for the csEGE has a very large dominating peak for n =l -1 , close to the highest observed currents.

  20. The multilayer temporal network of public transport in Great Britain

    NASA Astrophysics Data System (ADS)

    Gallotti, Riccardo; Barthelemy, Marc

    2015-01-01

    Despite the widespread availability of information concerning public transport coming from different sources, it is extremely hard to have a complete picture, in particular at a national scale. Here, we integrate timetable data obtained from the United Kingdom open-data program together with timetables of domestic flights, and obtain a comprehensive snapshot of the temporal characteristics of the whole UK public transport system for a week in October 2010. In order to focus on multi-modal aspects of the system, we use a coarse graining procedure and define explicitly the coupling between different transport modes such as connections at airports, ferry docks, rail, metro, coach and bus stations. The resulting weighted, directed, temporal and multilayer network is provided in simple, commonly used formats, ensuring easy access and the possibility of a straightforward use of old or specifically developed methods on this new and extensive dataset.

  1. The multilayer temporal network of public transport in Great Britain

    PubMed Central

    Gallotti, Riccardo; Barthelemy, Marc

    2015-01-01

    Despite the widespread availability of information concerning public transport coming from different sources, it is extremely hard to have a complete picture, in particular at a national scale. Here, we integrate timetable data obtained from the United Kingdom open-data program together with timetables of domestic flights, and obtain a comprehensive snapshot of the temporal characteristics of the whole UK public transport system for a week in October 2010. In order to focus on multi-modal aspects of the system, we use a coarse graining procedure and define explicitly the coupling between different transport modes such as connections at airports, ferry docks, rail, metro, coach and bus stations. The resulting weighted, directed, temporal and multilayer network is provided in simple, commonly used formats, ensuring easy access and the possibility of a straightforward use of old or specifically developed methods on this new and extensive dataset. PMID:25977806

  2. An effort for developing a seamless transport modeling and remote sensing system for air pollutants

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Goto, D.; Dai, T.; Misawa, S.; Uchida, J.; Schutgens, N.; Hashimoto, M.; Oikawa, E.; Takenaka, H.; Tsuruta, H.; Inoue, T.; Higurashi, A.

    2015-12-01

    Wide area of the globe, like Asian region, still suffers from a large emission of air pollutants and cause serious impacts on the earth's climate and the public health of the area. Launch of an international initiative, Climate and Clean Air Coalition (CCAC), is an example of efforts to ease the difficulties by reducing Short-Lived Climate Pollutants (SLCPs), i.e., black carbon aerosol, methane and other short-lived atmospheric materials that heat the earth's system, along with long-lived greenhouse gas mitigation. Impact evaluation of the air pollutants, however, has large uncertainties. We like to introduce a recent effort of projects MEXT/SALSA and MOEJ/S-12 to develop a seamless transport model for atmospheric constituents, NICAM-Chem, that is flexible enough to cover global scale to regional scale by the NICAM nonhydrostatic dynamic core (NICAM), coupled with SPRINTARS aerosol model, CHASER atmospheric chemistry model and with their three computational grid systems, i.e. quasi homogeneous grids, stretched grids and diamond grids. A local ensemble transform Kalman filter/smoother with this modeling system was successfully applied to data from MODIS, AERONET, and CALIPSO for global assimilation/inversion and surface SPM and SO2 air pollution monitoring networks for Japanese area assimilation. My talk will be extended to discuss an effective utility of satellite remote sensing of aerosols using Cloud and Aerosol Imager (CAI) on board the GOSAT satellite and Advanced Himawari Imager (AHI) on board the new third generation geostationary satellite, Himawari-8. The CAI has a near-ultraviolet channel of 380nm with 500m spatial resolution and the AHI has high frequency measurement capability of every 10 minutes. These functions are very effective for accurate land aerosol remote sensing, so that a combination with the developed aerosol assimilation system is promising.

  3. California air transportation study: A transportation system for the California Corridor of the year 2010

    NASA Technical Reports Server (NTRS)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  4. The Conference Proceedings of the 2001 Air Transport Research Society (ATRS) of the WCTR Society. Volume 2

    NASA Technical Reports Server (NTRS)

    Lee, Yeong-Heok (Editor); Bowen, Brent D. (Editor); Tarry, Scott E. (Editor)

    2001-01-01

    The ATRS held its 5th Annual conference at the City University of Hong Kong Campus in July 2001. The conference was a success with nearly 140 participants including 70 presenters. Titles that comprise Volume 2 include: Intelligent Airport Gate Assignment System; A Study on the Effects of the Personality Compatibility to the Job Performance; ITS/CVO Application for Air cargo Transportation in Korea; An Airport as a Logistics and Economic Hub: The Case of Incheon International Airport; The Impact Of Aviation Safety over the Consumer's Behavior; The Integration of China and Taiwan Air Networks for Direct Air Cargo Services; Quality perception and carrier choice in Civil Aviation; Future Trends in Business Travel Decision Making; Cooperation Among German Airports in Europe; Inbound and Outbound Air Passenger Traffic Forecasting between the United States and Selected Asian countries; An Evaluation of Alternative Facilities for Airport Redevelopment using Fuzzy Linguistic Approach; Economic Analysis of Airline Alliances; The Aviation Cooperation between the two Koreas Preparing for the Reunification of the Peninsula; and A Study on the Air Transport Cooperation in Northeast Asia between China, Japan and Korea.

  5. Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data

    EPA Science Inventory

    The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...

  6. Effects of the Air Traffic Control System on the Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Silsby, Norman S.; McLaughlin, Milton D.; Fischer, Michael C.

    1965-01-01

    A study of the problems anticipated with the introduction of the supersonic transport into the air traffic control system indicated that supersonic transport design allowances for time and fuel for maneuvering during climbouts may not be sufficient, that there is a greater communications-navigation work- load for the supersonic transport than for the subsonic jet transport during descent, and that use of a flight director to command pitch control guidance for the pilot would be helpful.

  7. Patterning of leaf vein networks by convergent auxin transport pathways.

    PubMed

    Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico

    2013-01-01

    The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

  8. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  9. Sediment transport mechanisms through the sustainable vegetated flow networks

    NASA Astrophysics Data System (ADS)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Understanding the pollution treatment efficiency of a sustainable urban drainage (SuDS) asset or network requires the influx, transport, detention and discharge of the pollutant within the system. To date event specific monitoring of sediment (primarily total suspended solids) concentrations in the inflow and discharge from SuDS have been monitored. Long term analysis of where the sediment is transported to and the residency time of this pollutant within the SuDS asset or network have not been unraveled due to the difficulty in monitoring specific sediment particulate movement. Using REO tracing methodology, sediment particulate movement has become possible. In tracing sediment movement from an urban surface the internal residency and transportation of this sediment has illustrated SuDS asset differences in multi-event detention. Of key importance is the finding that sediment remains within the SuDS asset for extended periods of time, but that the location sediment detention changes. Thus, over multiple rainfall-runoff events sediment is seen to move through the SuDS assets and network proving the assumption that detained sediment is permanent and stationary to be inaccurate. Furthermore, mass balance analysis of SuDS sediment indicates that there is notable re-suspension and ongoing release of sediment from the SuDS over time and cumulative rainfall-runoff events. Continued monitoring of sediment deposition and concentration in suspension illustrates that sediment detention within SuDS decreases over time/multiple events, without stabilizing within a 12 month period. Repeated experiments show a consistent pattern of detention and release for the three SuDS networks monitored in Scotland. Through consideration of both rainfall and flow factors the drivers of sediment transport within the monitored SuDS have been identified. Within the limitation of this field study the key drivers to SuDS sediment detention efficiency (or transport of sediment through the system

  10. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  11. Journal of Air Transportation World Wide, Volume 2, No. 1. Volume 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor)

    1997-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a key focal point of the journal will be in the area of aviation administration and policy.

  12. Journal of Air Transportation World Wide, Volume 4, No. 2. Volume 4

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    1999-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  13. Journal of Air Transportation World Wide, Volume 5, No. 2. Volume 5, No. 2

    NASA Technical Reports Server (NTRS)

    Browen, Brent D.

    2000-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  14. Journal of Air Transportation World Wide, Volume 3, No. 1. Volume 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor)

    1998-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  15. Random walk approach for dispersive transport in pipe networks

    NASA Astrophysics Data System (ADS)

    Sämann, Robert; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: particle transport, random walk, pipe, network, HYSTEM-EXTAN, OpenGeoSys After heavy pluvial events in urban areas the available drainage system may be undersized at peak flows (Fuchs, 2013). Consequently, rainwater in the pipe network is likely to spill out through manholes. The presence of hazardous contaminants in the pipe drainage system represents a potential risk to humans especially when the contaminated drainage water reaches the land surface. Real-time forecasting of contaminants in the drainage system needs a quick calculation. Numerical models to predict the fate of contaminants are usually based on finite volume methods. Those are not applicable here because of their volume averaging elements. Thus, a more efficient method is preferable, which is independent from spatial discretization. In the present study, a particle-based method is chosen to calculate transport paths and spatial distribution of contaminants within a pipe network. A random walk method for particles in turbulent flow in partially filled pipes has been developed. Different approaches for in-pipe-mixing and node-mixing with respect to the geometry in a drainage network are shown. A comparison of dispersive behavior and calculation time is given to find the fastest model. The HYSTEM-EXTRAN (itwh, 2002) model is used to provide hydrodynamic conditions in the pipe network according to surface runoff scenarios in order to real-time predict contaminant transport in an urban pipe network system. The newly developed particle-based model will later be coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). References: Fuchs, L. (2013). Gefährdungsanalyse zur Überflutungsvorsorge kommunaler Entwässerungssysteme. Sanierung und Anpassung von Entwässerungssystemen-Alternde Infrastruktur und Klimawandel, Österreichischer Wasser-und Abfallwirtschaftsverband, Wien, ISBN, 978-3. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie Gmb

  16. Situation assessment for air combat based on the Bayesian networks technology

    NASA Astrophysics Data System (ADS)

    Sun, Zhaolin; Yang, Hongwen; Hu, Weidong; Yu, Wenxian

    2005-11-01

    This paper researches on the method of situation assessment for the air combat based on the Bayesian networks technology. It analyzes the events occur in the process of air combat, and presents a hybrid method of fuzzy sets and Bayesian networks to detect these events. Then, it presents a method to construct Bayesian networks using the events and then uses the networks to reason the purpose of enemy fighter pilots. Finally, it shows the method by an illustrative example.

  17. Transport link scanner: simulating geographic transport network expansion through individual investments

    NASA Astrophysics Data System (ADS)

    Jacobs-Crisioni, C.; Koopmans, C. C.

    2016-07-01

    This paper introduces a GIS-based model that simulates the geographic expansion of transport networks by several decision-makers with varying objectives. The model progressively adds extensions to a growing network by choosing the most attractive investments from a limited choice set. Attractiveness is defined as a function of variables in which revenue and broader societal benefits may play a role and can be based on empirically underpinned parameters that may differ according to private or public interests. The choice set is selected from an exhaustive set of links and presumably contains those investment options that best meet private operator's objectives by balancing the revenues of additional fare against construction costs. The investment options consist of geographically plausible routes with potential detours. These routes are generated using a fine-meshed regularly latticed network and shortest path finding methods. Additionally, two indicators of the geographic accuracy of the simulated networks are introduced. A historical case study is presented to demonstrate the model's first results. These results show that the modelled networks reproduce relevant results of the historically built network with reasonable accuracy.

  18. Pan American Airways/Naval Air Transport Service/destroyer base site showing stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing stone wall around patio. View facing east-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  19. Pan American Airways/Naval Air Transport Service/destroyer base site showing brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing brick and concrete paving of patio, and circular planters. View facing east. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  20. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  1. Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion

    NASA Technical Reports Server (NTRS)

    Correnti, Vincenzo; Ignaccolo, Matteo; Capri, Salvatore; Inturri, Giuseppe

    2006-01-01

    The volume of air traffic worldwide is still in constant growth despite unfair events that sometimes occur. The demand for regional air transport is also increasing, thanks in part to the use of new vehicles purposely designed for short range flights which make this means of transport more attractive than in the past. This paper studies the possibility of using aircraft capable of vertical or short takeoff or landing (V/STOL), in particular the tiltrotor, in the regional air transport market and the impact on airport capacity that the use of this craft would have. With this in mind the advantages and disadvantages of using this vehicle are identified, as well as the changes to be made to the air transport system in order to exploit its full potential.

  2. The Importance of Moving Air-Water Interfaces for Colloid Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Flury, M.

    2015-12-01

    In the vadose zone, or in unsaturated porous media in general, transport of colloids is usually less pronounced than in groundwater. An important retention mechanism for colloids in unsaturated porous media is attachment to air-water interfaces. However, air-water interfaces can also lead to colloid mobilization and enhanced transport if air-water interfaces are moving, such as during infiltration, imbibition, and drainage. Colloid attachment to air-water interfaces is caused by surface tension forces, and these forces usually exceed other interactions forces; therefore, surface tension forces play a dominant role for colloid transport in unsaturated porous media. In this presentation, experimental and theoretical evidence of surface tension forces acting on colloids will be presented, and the role of moving air-water interfaces will be discussed.

  3. Universal scaling of optimal current distribution in transportation networks.

    PubMed

    Simini, Filippo; Rinaldo, Andrea; Maritan, Amos

    2009-04-01

    Transportation networks are inevitably selected with reference to their global cost which depends on the strengths and the distribution of the embedded currents. We prove that optimal current distributions for a uniformly injected d -dimensional network exhibit robust scale-invariance properties, independently of the particular cost function considered, as long as it is convex. We find that, in the limit of large currents, the distribution decays as a power law with an exponent equal to (2d-1)/(d-1). The current distribution can be exactly calculated in d=2 for all values of the current. Numerical simulations further suggest that the scaling properties remain unchanged for both random injections and by randomizing the convex cost functions.

  4. Climate and change: simulating flooding impacts on urban transport network

    NASA Astrophysics Data System (ADS)

    Pregnolato, Maria; Ford, Alistair; Dawson, Richard

    2015-04-01

    National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et

  5. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    Volume 3 of the 2003 Air Transport Reserch Society (ATRS) World Conference includes papers on topics relevant to airline operations worldwide. Specific topics include: European Union and civil aviation regimens;simulating decision making in airline operations, passenger points of view on convenient airports; route monopolies and nonlinear pricing; cooperation among airports in Europe; fleet modernizaiton in Brazil;the effects of deregulation on the growth of air transportation in Europe and the United States.

  6. Study of Tranexamic Acid During Air Medical Prehospital Transport Trial (STAAMP trial)

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-2-0080 TITLE: Study of Tranexamic Acid During Air Medical Prehospital Transport Trial (STAAMP trial) PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Study of Tranexamic Acid During Air Medical Prehospital Transport Trial (STAAMP trial) 5b. GRANT NUMBER W81XWH...IRB approval regarding changes to the protocol language. 15. SUBJECT TERMS Prehospital; Tranexamic acid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  7. Scattering and transport properties of tight-binding random networks

    NASA Astrophysics Data System (ADS)

    Martínez-Mendoza, A. J.; Alcazar-López, A.; Méndez-Bermúdez, J. A.

    2013-07-01

    We study numerically scattering and transport statistical properties of tight-binding random networks characterized by the number of nodes N and the average connectivity α. We use a scattering approach to electronic transport and concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from insulating to metallic behavior in the average scattering matrix elements <|Smn|2>, the conductance probability distribution w(T), the average conductance , the shot noise power P, and the elastic enhancement factor F by varying α from small (α→0) to large (α→1) values. We also show that all these quantities are invariant for fixed ξ=αN. Moreover, we proposes a heuristic and universal relation between <|Smn|2>, , and P and the disorder parameter ξ.

  8. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  9. An Algorithm for the Mixed Transportation Network Design Problem.

    PubMed

    Liu, Xinyu; Chen, Qun

    2016-01-01

    This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.

  10. An Algorithm for the Mixed Transportation Network Design Problem

    PubMed Central

    Liu, Xinyu; Chen, Qun

    2016-01-01

    This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately. PMID:27626803

  11. Modeling Tokamak Transport with Neural-Network Based Models

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Luna, C.; Penna, J.; Smith, S. P.; Lao, L. L.

    2014-10-01

    This work uses neural networks (NNs) as a means to extract information from the massive volume of aggregated data that are available either from experiments or from simulation databases, and distill an accurate transport model for the heat, particle, and momentum transport fluxes as a function of local dimensionless plasma parameters. The resulting model has been benchmarked with over 4000 DIII-D plasmas in different regimes, and it is able to capture the experimental behavior inside of ρ < 0 . 95 with average error <20% for all transport channels. The NN model was embedded into the ONETWO transport code and is now being used to develop time-dependent scenarios in support of DIII-D operations. The simulated temperature, density and rotation profiles closely match the experimental measurements, and a stiff response of the heat fluxes has been observed in the model for increasing source power. The numerical efficiency of the NN approach makes it ideal for real time plasma control and scenario preparation for current experiments and for ITER. Work supported in part by the US DOE under DE-FG02-95ER54309 and DE-FC02-04ER54698.

  12. Centrosymmetry enhances quantum transport in disordered molecular networks

    NASA Astrophysics Data System (ADS)

    Zech, Tobias; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas

    2014-05-01

    For more than 50 years we have known that photosynthetic systems harvest solar energy with almost unit quantum efficiency. However, recent experimental evidence of quantum coherence during the excitonic energy transport in photosynthetic organisms challenges our understanding of this fundamental biological function. Currently, and despite numerous efforts, the causal connection between coherence and efficiency is still a matter of debate. We show, through extensive simulations of quantum coherent transport on networks, that three dimensional structures characterized by centro-symmetric Hamiltonians are statistically more efficient than random arrangements. Moreover, a strong correlation of centro-symmetry with quantum efficiency is also observed under the coherent transport dynamics induced by experimentally estimated electronic Hamiltonians of the Fenna-Mathew-Olson complex of sulfur bacteria and of the cryptophyte PC645 complex of marine algae. The application of a genetic algorithm results in a set of optimized Hamiltonians only when seeded from the experimentally estimated Hamiltonian. These results suggest that what appears to be geometrically disordered complexes may well exhibit an inherent hidden symmetry which enhances the energy transport between chromophores. We are confident that our results will motivate research to explore the properties of nearly centro-symmetric Hamiltonians in realistic environments, and to unveil the role of symmetries for quantum effects in biology. The unravelling of such symmetries may open novel perspectives and suggest new design principles in the development of artificial devices.

  13. Investigating water transport through the xylem network in vascular plants.

    PubMed

    Kim, Hae Koo; Park, Joonghyuk; Hwang, Ildoo

    2014-04-01

    Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.

  14. 76 FR 52731 - On-Line Complaint Form for Service-Related Issues in Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Office of the Secretary On-Line Complaint Form for Service-Related Issues in Air Transportation AGENCY... public to electronically submit aviation service-related complaints against air carriers. DATES: Comments... U.S.C., Subtitle VII, to investigate and enforce consumer protection and civil rights laws...

  15. Impact of Clean Air Regulations on Nitrogen Fate and Transport in Neuse River Basin

    EPA Science Inventory

    We investigated impacts of Clean Air Act (CAA) nitrogen emissions regulations on the fate and transport of nitrogen for two watersheds in the Neuse River Basin. The Soil and Water Assessment Tool (SWAT) and the Community Multi-Scale Air Quality (CMAQ) models were used. Two scenar...

  16. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity elements. (a) Within each of the service classifications prescribed in section -19-4, data shall be... equipment. The number of days that aircraft owned or acquired through rental or lease (but not...

  17. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  18. The energy dilemma and its impact on air transportation

    NASA Technical Reports Server (NTRS)

    Dyer, C. R. (Editor); Sincoff, M. Z. (Editor); Cribbins, P. D. (Editor)

    1973-01-01

    The dimensions of the energy situation are discussed in relation to air travel. Energy conservation, fuel consumption, and combustion efficiency are examined, as well as the proposal for subsonic aircraft using hydrogen fuel.

  19. Journal of Air Transportation, Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)

    2007-01-01

    Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.

  20. A state-of-the-art review of transportation systems evaluation techniques relevant to air transportation, volume 1. [urban planning and urban transportation using decision theory

    NASA Technical Reports Server (NTRS)

    Haefner, L. E.

    1975-01-01

    Mathematical and philosophical approaches are presented for evaluation and implementation of ground and air transportation systems. Basic decision processes are examined that are used for cost analyses and planning (i.e, statistical decision theory, linear and dynamic programming, optimization, game theory). The effects on the environment and the community that a transportation system may have are discussed and modelled. Algorithmic structures are examined and selected bibliographic annotations are included. Transportation dynamic models were developed. Citizen participation in transportation projects (i.e, in Maryland and Massachusetts) is discussed. The relevance of the modelling and evaluation approaches to air transportation (i.e, airport planning) is examined in a case study in St. Louis, Missouri.

  1. 75 FR 13332 - Application of Charter Air Transport, Inc. for Commuter Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Charter Air Transport, Inc. for Commuter Authority Correction In notice document 2010-5555 appearing on page 12328 in the issue of Monday, March 15, 2010, make...

  2. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS AND DEFENSES § 203.5 Compliance as condition...

  3. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS AND DEFENSES § 203.5 Compliance as condition...

  4. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS AND DEFENSES § 203.5 Compliance as condition...

  5. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS AND DEFENSES § 203.5 Compliance as condition...

  6. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS AND DEFENSES § 203.5 Compliance as condition...

  7. The Role of the Federal Government in the Development of the US Air Transportation System

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    Reviewed are the roles of the various Federal agencies in the regulation, control, and development of the Air System, with major emphasis on the Department of Transportation (Office of the Secretary, Federal Aviation Administration, and National Transportation Safety Board) and the Civil Aeronautics Board.

  8. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  9. Journal Article: EPA's National Dioxin Air Monitoring Network ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). NDAMN started with 10 sampling sites, adding more over time until the final count of 34 sites was reached by the beginning of 2003. Samples were taken quarterly, and the final sample count was 685. All samples were measured for 17 PCDD/PCDF congeners, 8 PCDD/PCDF homologue groups, and 7 dl-PCBs (note: 5 additional dl-PCBs were added for samples starting in the summer of 2002; 317 samples had measurements of 12 dl-PCBs). The overall average total toxic equivalent (TEQ) concentration in the United States was 11.2 fg TEQ m−3 with dl-PCBs contributing 0.8 fg TEQ m−3 (7%) to this total. The archetype dioxin and furan background air congener profile was seen in the survey averages and in most individual samples. This archetype profile is characterized by low and similar concentrations for tetra – through hexa PCDD/PCDF congeners, with elevations in four congeners – a hepta dioxin and furan congener, and both octa congeners. Sites were generally categorized as urban (4 sites), rural (23 sites), or remote (7 sites). The average TEQ concentrations over all sites and samples within these cat

  10. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  11. Electron transport in micro to nanoscale solid state networks

    NASA Astrophysics Data System (ADS)

    Fairbanks, Matthew Stetson

    This dissertation focuses on low-dimensional electron transport phenomena in devices ranging from semiconductor electron 'billiards' to semimetal atomic clusters to gold nanoparticles. In each material system, the goal of this research is to understand how carrier transport occurs when many elements act in concert. In the semiconductor electron billiards, magnetoconductance fluctuations, the result of electron quantum interference within the device, are used as a probe of electron transport through arrays of one, two, and three connected billiards. By combining two established analysis techniques, this research demonstrates a novel method for determining the quantum energy level spacing in each of the arrays. That information in turn shows the extent (and limits) of the phase-coherent electron wavefunction in each of the devices. The use of the following two material systems, the semimetal atomic clusters and the gold nanoparticles, is inspired by the electron billiard results. First, the output of the simple, rectangular electron billiards, the magnetoconductance fluctuations, is quite generally found to be fractal. This research addresses the question of what output one might expect from a device with manifestly fractal geometry by simulating the electrical response of fractal resistor networks and by outlining a method to implement such devices in fractal aggregates of semimetal atomic clusters. Second, in gold nanoparticle arrays, the number of array elements can increase by orders of magnitude over the billiard arrays, all with the potential to stay in a similar, phase-coherent transport regime. The last portion of this dissertation details the fabrication of these nanoparticle-based devices and their electrical characteristics, which exhibit strong evidence for electron transport in the Coulomb-blockade regime. A sketch for further 'off-blockade' experiments to realize magnetoconductance fluctuations, i.e. phase-coherent electron phenomena, is presented.

  12. Overview of the new National Near-Road Air Quality Monitoring Network

    EPA Science Inventory

    In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...

  13. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  14. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  15. An air-breathing ballistic space transporter for Europe

    NASA Technical Reports Server (NTRS)

    Kramer, P. A.; Buehler, R. D.

    1985-01-01

    With increasing transport requirements, reusable space transporters again receive serious consideration in Europe as successors to the Ariane family. The paper deals with a hydrogen-ramjet-propelled, 1-1/2-stage reusable ballistic space transporter with vertical take-off and landing and using liquid hydrogen/oxygen rockets. This novel concept was developed in a theoretical study at the University of Stuttgart. The results are compared with recently published studies of several other European space transporter concepts. The data derived for the Istra - concept are: 15.4 Mg payload into low Earth-orbit, 155 Mg gross lift-off mass, 10% payload ratio, which represents a 57% propellant saving, and 44% reduction in dry mass (structure and engines) compared with comparable two-stage pure rocket concepts.

  16. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  17. Assessment of the impact of advanced air-transport technology

    NASA Technical Reports Server (NTRS)

    Maxwell, R. L.; Dickinson, L. V., Jr.

    1981-01-01

    The long term prospects for commercial supersonic transportation appear attractive enough to keep supersonic research active and reasonably healthy. On the other hand, the uncertainties surrounding an advanced supersonic transport, (AST) specifically fuel price, fuel availability and noise, are too significant to warrant an accelerated research and development program until they are better resolved. It is estimated that an AST could capture about $50 billion (1979 dollars) of the potential $150 billion in sales up to the year 2010.

  18. Analysis of operational requirements for medium density air transportation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The medium density air travel market was studied to determine the aircraft design and operational requirements. The impact of operational characteristics on the air travel system and the economic viability of the study aircraft were also evaluated. Medium density is defined in terms of numbers of people transported (20 to 500 passengers per day on round trip routes), and frequency of service ( a minumium of two and maximum of eight round trips per day) for 10 regional carriers. The operational characteristics of aircraft best suited to serve the medium density air transportation market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations could be conducted. The impact of selected aircraft on the medium density market, economics, and operations is ascertained. Research and technology objectives for future programs in medium density air transportation are identified and ranked.

  19. Density-based and transport-based core-periphery structures in networks

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Cucuringu, Mihai; Porter, Mason A.

    2014-03-01

    Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transport. In such structures, core network components are well-connected both among themselves and to peripheral components, which are not well-connected to anything. We examine core-periphery structures in a wide range of examples of transportation, social, and financial networks—including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network, and a migration network between counties in the United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges, and we show that the resulting diagnostic is also useful for transportation networks. To examine the properties of transportation networks further, we develop a family of generative models of roadlike networks. We illustrate the effect of the dimensionality of the embedding space on transportation networks, and we demonstrate that the correlations between different measures of coreness can be very different for different types of networks.

  20. A Systems Approach to Scalable Transportation Network Modeling

    SciTech Connect

    Perumalla, Kalyan S

    2006-01-01

    Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory and speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.

  1. Modeling of transport phenomena in tokamak plasmas with neural networks

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Luna, C. J.; Smith, S. P.; Lao, L. L.

    2014-06-01

    A new transport model that uses neural networks (NNs) to yield electron and ion heat flux profiles has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest fidelity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport profiles. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range of plasma regimes. Although each radial location is calculated independently from the others, the heat flux profiles are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-defined, non-stochastic relationship between the input parameters and the experimentally measured transport fluxes. The numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.

  2. Modeling of transport phenomena in tokamak plasmas with neural networks

    SciTech Connect

    Meneghini, O.; Luna, C. J.; Smith, S. P.; Lao, L. L.

    2014-06-15

    A new transport model that uses neural networks (NNs) to yield electron and ion heat flux profiles has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest fidelity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport profiles. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range of plasma regimes. Although each radial location is calculated independently from the others, the heat flux profiles are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-defined, non-stochastic relationship between the input parameters and the experimentally measured transport fluxes. The numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.

  3. Electron transport in multiterminal networks of Majorana bound states

    NASA Astrophysics Data System (ADS)

    Weithofer, Luzie; Recher, Patrik; Schmidt, Thomas L.

    2014-11-01

    We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic nonlocal signatures in electronic transport. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions.

  4. Cross-layer restoration with software defined networking based on IP over optical transport networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young

    2015-10-01

    The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.

  5. IPv6 transport experiment using the GMPLS-controlled network of JGN II

    NASA Astrophysics Data System (ADS)

    Okamoto, S.; Otani, T.

    2005-11-01

    IPv6 transport over the GMPLS-controlled optical network of JGN II was experimentally investigated, and four FastEthernet IPv6 streams were successfully transported with OSPFv3 routing information exchange.

  6. Review of petroleum transport network models and their applicability to a national refinery model

    SciTech Connect

    Hooker, J. N.

    1982-04-01

    This report examines four petroleum transport network models to determine whether parts of them can be incorporated into the transportation component of a national refinery model. Two questions in particular are addressed. (a) How do the models under examination represent the oil transport network, estimate link capacities, and calculate transport costs. (b) Are any of these network representations, capacity estimates, or cost functions suitable for inclusion in a linear programming model of oil refinery and primary distribution in the US. Only pipeline and waterway transport is discussed. The models examined are the Department of Energy's OILNET model, the Department of Transportation's Freight Energy Model, the Federal Energy Administration Petroleum Transportation Network Model, and an Oak Ridge National Laboratory oil pipeline energy model. Link capacity and cost functions are recommended for each transport mode. The coefficients of the recommended pipeline cost functions remain to be estimated.

  7. Development of a multiple objective planning theory and system for sustainable air quality monitoring networks.

    PubMed

    Chen, Ching-Ho; Liu, Wei-Lin; Chen, Chia-Hsing

    2006-01-15

    Air quality monitoring data are important bases for air quality management strategies planning and performance assessment. Therefore, the environmental protection authorities need to plan the air quality monitoring network effectively. However, in Taiwan, the national Environmental Protection Administration (EPA) and some county environmental protection bureaus (EPB) separately installed their own monitoring stations. This study developed an integrated methodology and computer system for planning air quality monitoring networks. The environmental, social, and economic objectives and sub-objectives, and their weights were identified using system analysis and multiple objective planning, based on the principles of sustainable development. A multiple objective optimization model and procedure for sustainable air quality monitoring networks planning are developed in this study. According to the procedure, a multiple objective planning system for sustainable air quality monitoring networks (MOPSSAQMN) is developed using computer software based on the modified bounded implicit enumeration algorithm with the constraint arrangement method. The air quality monitoring network of Taoyuan County, in northern Taiwan, was used as a case study to demonstrate the proposed method. Two satisfactory alternatives based on different conditions were generated using MOPSSAQMN. The compared results show that this study generated better alternatives than the current monitoring network. An installation schedule for the alternative was proposed, and its first step is now being implemented by the EPB of Taoyuan County Government. The procedure and computer system developed in this study can be used to assist the competent authorities to devise good and different alternatives for air quality monitoring networks planning.

  8. Adaptive fuzzy-neural-network control for maglev transportation system.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  9. Transporting Students into Thin Air: Using Science to Enhance Reading

    ERIC Educational Resources Information Center

    Bricker, Patricia; Rogowski, Nick; Hedt, Melissa; Rolfe, Nadeen

    2010-01-01

    The "Into Thin Air" unit, based on the book by Jon Krakauer, was designed as an interdisciplinary unit for a small group of academically gifted sixth-grade students. It included hands-on, minds-on activities that would immerse students in the scientific, social, and personal struggles people face while attempting to climb the world's tallest…

  10. Investigation of air transportation technology at Ohio University, 1981. [loran

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1982-01-01

    The increased availability of Loran signals in the United States encouraged consideration of Loran for airborne applications. High quality signal processing to obtain effective signal-to-noise ratios which permit good reliability in position determination consistent with airborne applications is considered. Techniques for deriving air navigation quality information from Loran-C were investigated.

  11. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  12. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder

    PubMed Central

    León-Montiel, Roberto de J.; Quiroz-Juárez, Mario A.; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L.; Moya-Cessa, Héctor M.; Torres, Juan P.; Aragón, José L.

    2015-01-01

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed. PMID:26610864

  13. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder.

    PubMed

    León-Montiel, Roberto de J; Quiroz-Juárez, Mario A; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L; Moya-Cessa, Héctor M; Torres, Juan P; Aragón, José L

    2015-11-27

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed.

  14. Peroxy radicals and ozone photochemistry in air masses undergoing long-range transport

    NASA Astrophysics Data System (ADS)

    Parker, A. E.; Monks, P. S.; Jacob, M. J.; Penkett, S. A.; Lewis, A. C.; Stewart, D. J.; Whalley, L. K.; Methven, J.; Stohl, A.

    2009-09-01

    Concentrations of peroxy radicals (HO2+ΣiRiO2) in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W) in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72) between P(O3) and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.

  15. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  16. Conflict Detection and Resolution for Future Air Transportation Management

    NASA Technical Reports Server (NTRS)

    Krozel, Jimmy; Peters, Mark E.; Hunter, George

    1997-01-01

    With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft.

  17. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  18. Improved Results for Route Planning in Stochastic Transportation Networks

    NASA Technical Reports Server (NTRS)

    Boyan, Justin; Mitzenmacher, Michael

    2000-01-01

    In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.

  19. Joint University Program for Air Transportation Research, 1990-1991

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1991-01-01

    The goals of this program are consistent with the interests of both NASA and the FAA in furthering the safety and efficiency of the National Airspace System. Research carried out at the Massachusetts Institute of Technology (MIT), Ohio University, and Princeton University are covered. Topics studied include passive infrared ice detection for helicopters, the cockpit display of hazardous windshear information, fault detection and isolation for multisensor navigation systems, neural networks for aircraft system identification, and intelligent failure tolerant control.

  20. Potential of hydrogen fuel for future air transportation systems.

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.

    1973-01-01

    Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.

  1. Fetal evaluation for transport by ultrasound performed by air medical teams: A case series.

    PubMed

    Polk, James D; Merlino, James I; Kovach, Betty L; Mancuso, Charlene; Fallon, William F

    2004-01-01

    The air medical team has limited options when evaluating the obstetrical patient and assessing fetal health during air transport to a high-risk obstetrical unit. Traditionally, physical examination and a Doppler stethoscope have been used to determine fetal heart rates and movement. However, with the advent of portable ultrasound technology, new information about the mother and child are available to the air medical crew. The Fetal Evaluation for Transport with Ultrasound (FETUS) is a screening examination that consists of an evaluation of the fetal heart rate, position, and movement and general condition of the placenta. The examination can be repeated in flight with no acoustic distortion from rotor noise. The additional information can be advantageous when transport decisions need to be made or when conditions do not allow Doppler stethoscope use.

  2. Particulate air pollution in transport micro-environments.

    PubMed

    Nasir, Zaheer Ahmad; Colbeck, Ian

    2009-06-01

    To understand the dynamics of particulate matter inside train coaches and public cars, an investigation was carried out during 2004-2006. For air-conditioned rail coaches, during peak journey times, the mean concentrations of PM10, PM2.5 and PM1 were 44 microg m(-3), 14 microg m(-3) and 12 microg m(-3), respectively. The levels fell by more than half (21 microg m(-3), 6 microg m(-3), and 4 microg m(-3)) for the same size fractions, on the same route, during the off-peak journeys. On the other hand, in non-air-conditioned coaches, the PM10 concentrations of up to 95 microg m(-3) were observed during both peak and off-peak journeys. However the concentrations of PM2.5 and PM1 were 30 microg m(-3) and 12 microg m(-3) in peak journeys in comparison to 14 microg m(-3) and 6 microg m(-3) during off-peak journeys. Over a period of four months the concentrations of PM10, PM2.5 and PM1 in car journeys were generally similar during both morning and evening journeys with average values of 21 microg m(-3) for PM10, 9 microg m(-3) for PM2.5 and 6 microg m(-3) for PM1. However during October the average concentration of PM10 was 31 microg m(-3). An analysis of nearby fixed monitoring sites for both PM10 and PM2.5 revealed an episode of high particulate pollution over southern England during one week of October. There was no statistically significant difference between particulate matter levels for morning and evening car journeys. A statistically significant correlation was found between morning and evening PM10 (0.45), PM2.5 (0.39) and PM1 (0.46). In train journeys, a statistically significant difference was observed for peak and off-peak levels of PM10, PM2.5 and PM1 in air-conditioned coaches. On the other hand, in non air-conditioned coaches a significant difference was documented only for PM2.5 and PM1.

  3. Atmospheric transport and deposition of acidic air pollutants

    SciTech Connect

    Murphy, C.E. Jr.

    1981-01-01

    Although general principles which govern atmospheric chemistry of sulfur are understood, a purely theoretical estimation of the magnitude of the processes is not likely to be useful. Furthermore, the data base necessary to make empirical estimates does not yet exist. The sulfur budget of the atmosphere appears to be dominated by man-associated sulfur. The important processes in deposition of man-associated sulfur are wet deposition of sulfate and dry deposition of SO/sub 2/. The relative importance of sulfate and SO/sub 2/ to sulfur deposition (input to watersheds) depends on the air concentrations, and either compound may be the greater contributor depending on conditions. (PSB)

  4. 77 FR 38747 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... all cats and dogs transported by the carrier, regardless of whether the cat or dog is transported as a... required to report all incidents involving the loss, injury, or death of cats and dogs that occur while they are traveling in an airline's care, custody, or control, regardless of whether the cat or dog...

  5. The impact of changing technology on the demand for air transportation

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Taneja, N. K.

    1978-01-01

    Demand models for air transportation that are sensitive to the impact of changing technology were developed. The models are responsive to potential changes in technology, and to changing economic, social, and political factors as well. In addition to anticipating the wide differences in the factors influencing the demand for long haul and short haul air travel, the models were designed to clearly distinguish among the unique features of these markets.

  6. Adjoint transport calculations for sensitivity analysis of the Hiroshima air-over-ground environment

    SciTech Connect

    Broadhead, B.L.; Cacuci, D.G.; Pace, J.V. III

    1984-01-01

    A major effort within the US Dose Reassessment Program is aimed at recalculating the transport of initial nuclear radiation in an air-over-ground environment. This paper is the first report of results from adjoint calculations in the Hiroshima air-over-ground environment. The calculations use a Hiroshima/Nagasaki multi-element ground, ENDF/B-V nuclear data, one-dimensional ANISN flux weighting for neutron and gamma cross sections, a source obtained by two-dimensional hydrodynamic and three-dimensional transport calculations, and best-estimate atmospheric conditions from Japanese sources. 7 references, 2 figures.

  7. Journal of Air Transportation, Volume 9, No. 2. Volume 9, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Gudmundsson, Sveinn Vidar (Editor); Scarpellini, Nanette (Editor)

    2004-01-01

    The following articles from the "Journal of Air Transportation" were processed: Future Requirements and Concepts for Cabins of Blended Wing Body Configurations:A Scenario Approach; Future Scenarios for the European Airline Industry: A Marketing-Based Perspective; An Application of the Methodology for Assessment of the Sustainability of the Air Transport System; Modeling the Effect of Enlarged Seating Room on Passenger Preferences of Domestic Airlines in Taiwan; Developing a Fleet Standardization Index for Airline Pricing; and Future Airport Capacity Utilization in Germany: Peaked Congestion and/or Idle Capacity).

  8. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  9. Assessment of air quality in a commercial cattle transport vehicle in Swedish summer and winter conditions.

    PubMed

    Wikner, I; Gebresenbet, G; Nilsson, C

    2003-03-01

    Transport by road can induce significant stress in cattle. Thermal stress is among the main stress producing factors during transport. The provision of ventilation in livestock transport vehicles is usually through openings along the sides of the vehicle. The incoming air will affect air quality inside by regulating temperature, relative humidity, gas levels and levels of other contaminants. The aim of the present investigation was to map out the air quality in a commercial cattle transport vehicle under various climatic conditions and with varying stocking densities and transport times. Distributions of air temperature, relative humidity and concentrations of ammonia, carbon dioxide, oxygen and methane have been determined during 35 experimental journeys. In average the mean temperature inside the compartment was about 3 degrees C and 6 degrees C higher than outside temperature in summer (+7.8(-)+24.0 degrees C) and winter (-24.3(-)+12.7 degrees C) conditions respectively. The temperature increment inside, as could be expected from theory, increased with reduced ventilation and increased animal density. Many stops to load new animals lowered the temperature increment and relative humidity in winter time. In summer more stops made the compartment temperature and relative humidity increase. The inside temperature distribution was less than about 3 degrees C during both summer and winter season. Average ammonia level varied between 3 and 6 ppm depending on stocking density and number of stops with a maximum value of 18 ppm. No detectable methane levels could be found inside the compartment at any time.

  10. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection

  11. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  12. The Bunny: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Fulton, David; Gallagher, Patrick; Grannan, William; Martin, Jennifer; Mastej, Nicole; Wujek, Brett

    1993-01-01

    The Bunny is a single-engine, 100 passenger commercial transport designed to serve the high density short-to-medium range markets in AEROWORLD. The aircraft's design range is 10,000 feet at a cruise velocity of 30 ft/s. The aircraft features a low wing which incorporates polyhedral for roll control. Yaw and pitch control are accomplished by a rudder and elevator, respectively. Propulsion is provided by a nose-mounted Astro 15 electric motor powered by thirteen 1.2 V, 1000 mah batteries with a Zinger 12-6 propeller. The aircraft is structurally designed with a safety factor of 1.5 and is constructed primarily of balsa, bass, and birch wood. Passenger seating is arranged on two levels, with three-abreast on the lower level and two-abreast on the upper level. The factors which had the most significant influence on the final design were the direct operating cost and the take-off distance. The primary strength of The Bunny is its ability to compete economically with the HB-40. At full capacity and mid-range fuel costs, the cost per seat per thousand feet (CPSK) of this aircraft is 25% less than the HB-40. Another principal strength is its ability to operate in all airports in AEROWORLD. Also, The Bunny's two-piece removable wing is an advantage from a transportability standpoint.

  13. Driving Parameters for Distributed and Centralized Air Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Feron, Eric

    2001-01-01

    This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.

  14. The RTL-46: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Dunbar, Christian; Prette, John; Andersen, Gerald; Sprunck, Martin; Vogel, Christine; Rivera, Francisco

    1993-01-01

    The RTL-46 provides an aircraft which utilizes advanced technology within the fictional Aeroworld market to better service the air travel customers and airlines of Aeroworld. The RTL-46 is designed to serve the portion of the travel market which flies less than 10,000 feet per flight. The design cruise velocity for the aircraft is 35 ft/sec, which rapidly expedites travel through Aeroworld. The major focus of the endeavor was to design an aircraft which would serve the Aeroworld market better than the existing aircraft, the HB-40. This could have been done through targeting another portion of the Aeroworld market or through serving the current HB-40 market more effectively. Due to the fact that approximately 70 percent of the potential Aeroworld passengers desired flights of 10,000 ft or less, this range became the target market for the RTL-46.

  15. [Positive syphilis serodiagnositic tests in air transport workers].

    PubMed

    Castoro, G

    1980-07-14

    The present study was carried out by the Aeronautic Medicine Section of Alitalia at Fiumicino, where in the years 1976-1977 and in the first four months of 1978, 6700 samples of serum from ground and air personnel were analysed as part of a preventive medicine check-up. A high percentage of positivity (9 per thousand in 1976, 12 per thousand in 1977 and 11 per thousand in the first four months of 1978) was observed. The problems of continual travelling and staying in countries were syphilis presents a very high morbility rate are the reasons for the infection. Social, sanitary, deontological and human problems of department physicians delegated to treat the disease are discussed.

  16. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  17. The F-92 RELIANT: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The design proposal of a semester long design project by group 'F' for AE 441 is addressed. In formulating this design, the driving philosophy was not just to fulfill the mission requirements (discussed in chapter two), but to do so in a creative manner - this explains the unconventional aircraft design, named the F-92 RELIANT. Although unconventional, and perhaps more expensive to produce, the design has distinct advantages which could only be attained through such a creative design. Major components of the F-92 Reliant include: (1) unobstructed cargo bay, 1024 cu. in. capability; (2) loading ramp; (3) dual wing configuration; and (4) polyhedral wing configuration. These design components either originated or evolved to create an aircraft that would most effectively meet the goals of cargo transportation in AeroWorld at minimum cost.

  18. Transboundary health impacts of transported global air pollution and international trade.

    PubMed

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  19. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  20. Journal of Air Transportation World Wide, Volume 5, No. 1. Volume 5

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor)

    2000-01-01

    The Journal's mission is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  1. Network Centric Operations Conceptual Framework Air-to-Ground Case Study

    DTIC Science & Technology

    2004-06-01

    Network Centric Operations Conceptual Framework Air-to-Ground Case Study Final Brief 17 June 2004 Prepared by SAIC for: Evidence Based Research...JUN 2004 2. REPORT TYPE 3. DATES COVERED 00-00-2004 to 00-00-2004 4. TITLE AND SUBTITLE Network Centric Operations Conceptual Framework Air-to... conceptual framework which drove approach Cognitive Social Interviews to provide insights into cognitive process Assumptions OEF and OIF would

  2. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations.

  3. Lévy Walk Navigation in Complex Networks: A Distinct Relation between Optimal Transport Exponent and Network Dimension

    NASA Astrophysics Data System (ADS)

    Weng, Tongfeng; Small, Michael; Zhang, Jie; Hui, Pan

    2015-11-01

    We investigate, for the first time, navigation on networks with a Lévy walk strategy such that the step probability scales as pij ~ dij-α, where dij is the Manhattan distance between nodes i and j, and α is the transport exponent. We find that the optimal transport exponent αopt of such a diffusion process is determined by the fractal dimension df of the underlying network. Specially, we theoretically derive the relation αopt = df + 2 for synthetic networks and we demonstrate that this holds for a number of real-world networks. Interestingly, the relationship we derive is different from previous results for Kleinberg navigation without or with a cost constraint, where the optimal conditions are α = df and α = df + 1, respectively. Our results uncover another general mechanism for how network dimension can precisely govern the efficient diffusion behavior on diverse networks.

  4. In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network

    PubMed Central

    Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang

    2014-01-01

    The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948

  5. 77 FR 53779 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    .... DATES: Comments must be received by September 27, 2012. Comments received after this date will be... requirement for air carriers to report to the Department incidents involving the loss, injury, or death of an... be received 60 days after publication of the NPRM, or by August 28, 2012. Request for Comment...

  6. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certificated takeoff weight (as defined in section 4492(b)) of 6,000 pounds or less, unless such aircraft is... property, even though there may be stopovers in the United States (such as, for example, to consolidate... the business of transporting property by air for hire (for example, by a freight forwarder), the...

  7. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    NASA Technical Reports Server (NTRS)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  8. Pan American Airways/Naval Air Transport Service/destroyer base site at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site at the east side showing walkway and building foundation. View facing west-northwest. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  9. Three pairs of bollards of Pan American Airways/Naval Air Transport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three pairs of bollards of Pan American Airways/Naval Air Transport Service/destroyer base site. (The third pair is visible beyond the trees). View facing south-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  10. Impact of Clean Air Act Regulations on Nitrogen Fate and Transport in Neuse River Basin

    EPA Science Inventory

    This study investigated impacts of Clean Air Act Amendment (CAAA) NOx emissions regulations on the fate and transport of nitrogen for two watersheds in the Neuse River Basin, North Carolina, USA from 1990 to 2020. The Soil and Water Assessment Tool (SWAT) and the Community Multi-...

  11. Predicting the impacts of new technology aircraft on international air transportation demand

    NASA Technical Reports Server (NTRS)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  12. Air and Water Transportation Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on air and water transportation occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include civil aviation workers, air…

  13. The Gold Rush: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Clarke, Amanda; Degiorgio, Chris; Galka, Edmund; Stumm, Albert; Valenta, Lisa; Winter, Tom

    1993-01-01

    The remotely piloted vehicle (RPV) GoldRush was designed to complete the mission of transporting passengers in AeroWorld at a lower cost per seat per thousand feet (CPSPK) than the competition, the HB-40. There were two major factors which were constant considerations in the design process. The cost of manufacturing was the most important. In light of this, the designs were kept as simple as possible while considering trade-offs in performance. For example, the wing was not tapered so that several ribs could be cut at one time. Also of major importance was the takeoff distance. In order to serve all the cities in AeroWorld it was necessary to maintain a takeoff distance requirement of 24 feet. The takeoff distance proved to be the number one force in driving the design process. The Astro 25 engine and 13 inch propellor, a large wing area, and the high lift Wortmann airfoil were all chosen in order to satisfy this objective.

  14. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    PubMed

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  15. Transportation Secure Data Center: Real-World Data for Environmental and Air Quality Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Emissions and air pollution modeling, Vehicle energy and power analysis, Climate change impact studies, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  16. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  17. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  18. Journal Article: EPA's National Dioxin Air Monitoring Network (Ndamn): Design, Implementation, and Final Results

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (...

  19. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    PubMed

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  20. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport

    USGS Publications Warehouse

    Baehr, A.L.; Hoag, G.E.; Marley, M.C.

    1989-01-01

    Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.

  1. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  2. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  3. Using Hybrid Simulation/Analytical Queueing Networks to Capacitate USAF Air Mobility Command Passenger Terminals

    DTIC Science & Technology

    2012-03-01

    researchers have taken many approaches to quantify the impact of increasing demand and changing policies in the aviation industry . Aviation professionals...higher quality service, and more robust processes. The US Air Force has analogous interests to those in the civilian air industry , and can equally benefit...terminals throughout AMC. 5 II. Review of Related Literature Air transportation industry planners have heavily invested in studies focused on how best

  4. Modeling in-situ transport of uranine and colloids in the fracture network in KURT.

    PubMed

    Kim, Jung-Woo; Lee, Jae-Kwang; Baik, Min-Hoon; Jeong, Jongtae

    2015-02-01

    An in-situ dipole migration experiment was conducted using the conservative tracer uranine and latex colloids in KAERI (Korea Atomic Energy Research Institute) Underground Research Tunnel (KURT). The location and dimensions of the fractures between the two boreholes were estimated using the results of a borehole image processing system (BIPS) investigation, and the connectivity of the fractures was evaluated by a packer test. To investigate the flow and transport of uranine and colloids through an in-situ fracture network, a fracture network transport model was newly developed. The model consists of a series of one-dimensional advection-dispersion-matrix diffusion equations for each channel of the fracture network. Using the fracture network transport model, the most probable representation and the hydrologic parameters of the fracture network can be estimated by fitting the breakthrough of uranine. While the fracture network might not be unique, the representation chosen was adequate to describe the breakthrough of uranine and it represents a reasonable approach to modeling transport in the fracture network. An additional evaluation showed that the colloid transport in this study was influenced by filtration on the fracture surface rather than the enhancement of the colloid velocity. Overall, the model can explain successfully the in-situ experimental results of uranine and colloid transports through the fracture network.

  5. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  6. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    SciTech Connect

    Chinthavali, Supriya

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  7. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  8. Sustainable development of urban transport systems and human exposure to air pollution.

    PubMed

    Colvile, R N; Kaur, S; Britter, R; Robins, A; Bell, M C; Shallcross, D; Belcher, S E

    2004-12-01

    DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment, http://www.dapple.org.uk) is a major research project that will provide the understanding necessary to assess the sustainability of urban road transport in terms of exposure to traffic-related air pollution as an alternative to current indicators based on emissions, roadside, or far-from-road air pollution levels. The methodology is described, which combines on-street and laboratory measurement with modelling of the movement of air, vehicles, and vehicle exhaust emissions. The relationship between this kind of assessment and more realistic indicators of sustainability is discussed. The value of large-scale interdisciplinary research in this area is thus demonstrated.

  9. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  10. [New possibilities in emergency medical transportation and emergency services of Polish Medical Air Rescue].

    PubMed

    Gałazkowski, Robert

    2010-01-01

    In Poland, two types of medical services are accomplished by the Medical Air Rescue (MAR) operating all over the country: emergency transport from the incident scene to hospital and inter-hospital transport. Helicopters or planes are used for this purpose. In 2009, helicopters performed 4359 flights to incidents and 1537 inter-hospital transports whereas planes performed 589 inter-hospital ambulance and 196 rescue flights. MAR operates from 17 bases of the Helicopter Emergency Medical Service (HEMS) and one airbase. Helicopters are mainly used when medical transport is emergent, within the operational region of a given base whereas planes when the distance between the present and target airports exceeds 250 km. In 2008, new modern aircraft were introduced to HEMS-helicopters EC 135. They fulfil all requirements of air transport regulations and are adjusted to visual (VFR) and instrumental (IFR) flights rules, at day and night. The medical cabin of EC 135 is ergonomic and functional considering the majority of rescue activities under life-saving circumstances. It is equipped with ventilator, defibrillator, infusion pumps etc. Defibrillators have 12-lead ECG, E(T)CO2, SpO2, NIBP, and IBP modules. Transport ventilators can work in a variety of ventilation modes including CMV, SIMV, SVV, BILEVEL, PCV, ASB, PPV and CPAP. The purchase of helicopters with modern avionic and medical configuration ensures high quality services of MAR for many years to come.

  11. The U.S. Air Force Academy Falcon Telescope Network

    DTIC Science & Technology

    2014-09-05

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research...equipment (e.g. telescope , mount, camera, filter wheel, dome, weather stations, computers and storage devices) while the educational partners provide...After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network

  12. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyuan; Liu, Junfeng; Mauzerall, Denise L.; Emmons, Louisa K.; Walters, Stacy; Horowitz, Larry W.; Tao, Shu

    2014-11-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  13. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    NASA Astrophysics Data System (ADS)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM

  14. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  15. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  16. Detecting air traffic controller interventions in recorded air transportation system data

    NASA Astrophysics Data System (ADS)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  17. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    PubMed

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  18. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    PubMed Central

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-01-01

    NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  19. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Wang, C. Y.; Chen, K. S.

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm -2 for dry inlet air.

  20. High resolution atmospheric transport modelling in support of radionuclide detections at CTBTO network

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Szintai, B.; Kuśmierczyk-Michulec, J.; Carter, J. A.; Given, J. W.

    2014-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of seismic, infrasound, hydroacoustic, referred to as waveform, sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. While the process of event building for the waveform technologies is well-established, the task of event building using the radionuclide detections remains a challenge. One of the reasons is the complexity of the process of atmospheric transport of airborne radionuclides from their sources to the detecting stations and subsequent difficulties in representing this process in models. An atmospheric transport model is driven by meteorological fields generated by numerical models coupled to observations. In addition, it is equipped with parameterisations of sub-grid scale processes to account for incompleteness of the representation of meteorological processes in the meteorological fields. In this presentation we will discuss possibilities of improving the accuracy of the atmospheric transport modelling simulations in support of radionuclide detections at CTBTO. Some of these improvements can be implemented operationally, while others, due to their computational cost, could only be performed on request. We will present the influence an increase of resolution of global meteorological fields, provided by the EMCWF (European Centre of Medium-Range Weather Forecasts), has on the quality of the simulations. We will address possible benefits of using high resolution regional meteorological fields generated with the mesoscale model WRF (Weather research and Forecasting). We will illustrate the impact of parameterisations, namely those linked to the atmospheric

  1. Observation of regional air pollutant transport between the megacity Beijing and the North China Plain

    NASA Astrophysics Data System (ADS)

    Li, Yingruo; Ye, Chunxiang; Liu, Jun; Zhu, Yi; Wang, Junxia; Tan, Ziqiang; Lin, Weili; Zeng, Limin; Zhu, Tong

    2016-11-01

    Megacities have strong interactions with the surrounding regions through transport of air pollutants. It has been frequently addressed that the air quality of Beijing is influenced by the influx of air pollutants from the North China Plain (NCP). Estimations of air pollutant cross-boundary transport between Beijing and the NCP are important for air quality management. However, evaluation of cross-boundary transport using long-term observations is very limited. Using the observational results of the gaseous pollutants SO2, NO, NO2, O3, and CO from August 2006 to October 2008 at the Yufa site, a cross-boundary site between the megacity Beijing and the NCP, together with meteorological parameters, we explored a method for evaluating the transport flux intensities at Yufa, as part of the "Campaign of Air Quality Research in Beijing and Surrounding Region 2006-2008" (CAREBeijing 2006-2008). The hourly mean ± SD (median) concentration of SO2, NO, NO2, NOx, O3, Ox, and CO was 15 ± 16 (9) ppb, 12 ± 25 (3) ppb, 24 ± 19 (20) ppb, 36 ± 39 (23) ppb, 28 ± 27 (21) ppb, 52 ± 24 (45) ppb, and 1.6 ± 1.4 (1.2) ppm during the observation period, respectively. The bivariate polar plots showed the dependence of pollutant concentrations on both wind speed and wind direction, and thus inferred their dominant transport directions. Surface flux intensity calculations further demonstrated the regional transport influence of Beijing and the NCP on Yufa. The net surface transport flux intensity (mean ± SD) of SO2, NO, NO2, NOx, O3, Ox, and CO was 6.2 ± 89.5, -4.3 ± 29.5, -0.6 ± 72.3, -4.9 ± 93.0, 14.7 ± 187.8, 14.8 ± 234.9, and 70 ± 2830 µg s-1 m-2 during the observation period, respectively. For SO2, CO, O3, and Ox the surface flux intensities from the NCP to Yufa surpassed those from Beijing to Yufa in all seasons except winter, with the strongest net fluxes largely in summer, which were about 4-8 times those of other seasons. The surface transport flux intensity of NOx

  2. Optimizing Air Transportation Service to Metroplex Airports. Part 1; Analysis of Historical Data

    NASA Technical Reports Server (NTRS)

    Donohue, George; Hoffman, Karla; Sherry, Lance; Ferguson, John; Kara, Abdul Qadar

    2010-01-01

    The air transportation system is a significant driver of the U.S. economy, providing safe, affordable, and rapid transportation. During the past three decades airspace and airport capacity has not grown in step with demand for air transportation (+4% annual growth), resulting in unreliable service and systemic delays. Estimates of the impact of delays and unreliable air transportation service on the economy range from $32B to $41B per year. This report describes the results of an analysis of airline strategic decision-making with regards to: (1) geographic access, (2) economic access, and (3) airline finances. This analysis evaluated markets-served, scheduled flights, aircraft size, airfares, and profit from 2005-2009. During this period, airlines experienced changes in costs of operation (due to fluctuations in hedged fuel prices), changes in travel demand (due to changes in the economy), and changes in infrastructure capacity (due to the capacity limits at EWR, JFK, and LGA). This analysis captures the impact of the implementation of capacity limits at airports, as well as the effect of increased costs of operation (i.e. hedged fuel prices). The increases in costs of operation serve as a proxy for increased costs per flight that might occur if auctions or congestion pricing are imposed.

  3. Heart rate, heart rate variability and behaviour of horses during air transport.

    PubMed

    Munsters, C C B M; de Gooijer, J-W; van den Broek, J; van Oldruitenborgh-Oosterbaan, M M Sloet

    2013-01-05

    Heart rate (HR), HR variability (HRV) and behaviour score (BS) of nine horses were evaluated during an eight-hour air transport between The Netherlands and New York. HR and HRV parameters were calculated every five minutes during the air transport. Compared with transit (40±3), mean HRs were higher during loading into the jet stall (67±21, P<0.001), loading into the aircraft (47±6, P=0.011), taxiing (50±8, P=0.001), and during periods of in-flight turbulence (46±7, P=0.017). During the flight, individual horses showed differences in mean HR (P=0.005) and peak HR (P<0.001). By contrast with HR data, HRV data did not differ between stages or horses. BS was highest during turbulence (3.2±0.4). However, behaviour did not always correspond with HR measurements: the least responsive horse had the highest HR. Loading into the jet stall caused the highest increase in HR and was considered the most stressful event. During transit, HR was generally comparable with resting rates. Previous studies have shown that loading and transporting by road caused more elevation in HR than during loading and transporting by air. HRV data were not found to be useful, and caution is needed when interpreting HRV data. Not every horse exhibited stress through visible (evasive) behaviour, and HR measurements may provide an additional tool to assess stress in horses.

  4. Characteristics and transport of organochlorine pesticides in urban environment: air, dust, rain, canopy throughfall, and runoff.

    PubMed

    Zhang, Wei; Ye, Youbin; Hu, Dan; Ou, Langbo; Wang, Xuejun

    2010-11-01

    Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.

  5. A link-adding strategy for transport efficiency of complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong; Zhang, Shuai

    2016-12-01

    The transport efficiency is one of the critical parameters to evaluate the performance of a network. In this paper, we propose an improved efficient (IE) strategy to enhance the network transport efficiency of complex networks by adding a fraction of links to an existing network based on the node’s local degree centrality and the shortest path length. Simulation results show that the proposed strategy can bring better traffic capacity and shorter average shortest path length than the low-degree-first (LDF) strategy under the shortest path routing protocol. It is found that the proposed strategy is beneficial to the improvement of overall traffic handling and delivering ability of the network. This study can alleviate the congestion in networks, and is helpful to design and optimize realistic networks.

  6. International fixed satellite systems in synchronous digital hierarchy transport networks

    NASA Astrophysics Data System (ADS)

    Oei, W. S.; Tamboli, S.

    1992-10-01

    This paper discusses functional and architectural aspects and suitable networks scenarios for the integration of international fixed satellite systems, such as the INTELSAT system, in and between digital networks implementing the new CCITT synchronous digital hierarchy (SDH). The paper presents SDH transmission network functional requirements, and combines them with current and anticipated future FSS operational requirements. It is shown that integration permits the use of SDH functions and features for enhanced network service provisioning by FSS in the international network fabric, and leads to new FSS system design criteria.

  7. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  8. Key Metrics and Goals for NASA's Advanced Air Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce; Lee, David

    1998-01-01

    NASA's Advanced Air Transportation Technologies (AATT) program is developing a set of decision support tools to aid air traffic service providers, pilots, and airline operations centers in improving operations of the National Airspace System (NAS). NASA needs a set of unifying metrics to tie these efforts together, which it can use to track the progress of the AATT program and communicate program objectives and status within NASA and to stakeholders in the NAS. This report documents the results of our efforts and the four unifying metrics we recommend for the AATT program. They are: airport peak capacity, on-route sector capacity, block time and fuel, and free flight-enabling.

  9. The Symposium Proceedings of the 1998 Air Transport Research Group (ATRG). Volume 3

    NASA Technical Reports Server (NTRS)

    Reynolds-Feighan, Aisling (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    Contents include the following: airline deregulation in Australia: a medium term assessment; why can't Japan deregulate the airline industry and open the sky immediately?; toward a market-oriented air transport system?: present developments in Russian civil aviation performance and policy; the asian economic crisis and its implications for aviation policy in asia pacific: industry outlook approaching the next millennium; a tale of two airlines: the post privatization performance of two caribbean airlines: the role of capital productivity in British Airways' financial recovery; airline privatization: does it matter?; airfright demand: responding to new developments in logistics; and air cargo business relationships.

  10. An approach to market analysis for lighter than air transportation of freight

    NASA Technical Reports Server (NTRS)

    Roberts, P. O.; Marcus, H. S.; Pollock, J. H.

    1975-01-01

    An approach is presented to marketing analysis for lighter than air vehicles in a commercial freight market. After a discussion of key characteristics of supply and demand factors, a three-phase approach to marketing analysis is described. The existing transportation systems are quantitatively defined and possible roles for lighter than air vehicles within this framework are postulated. The marketing analysis views the situation from the perspective of both the shipper and the carrier. A demand for freight service is assumed and the resulting supply characteristics are determined. Then, these supply characteristics are used to establish the demand for competing modes. The process is then iterated to arrive at the market solution.

  11. Analysis of operational requirements for medium density air transportation, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The medium density air travel market is examined and defined in terms of numbers of people transported per route per day and frequency of service. The operational characteristics for aircraft to serve this market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations can be conducted. The impact of the operational characteristics on the air travel system is evaluated along with the economic viability of the study aircraft. Research and technology programs for future study consideration are identified.

  12. Effects of transportation on energy and air quality. Transportation research record

    SciTech Connect

    1997-11-01

    Partial Contents: Alternative Fuel Vehicle Programs: Applicability of Government Incentives; Transitional Alternative Fuels and Vehicles Model; Forecasting Cost Path of Electric Vehicle Drive System: Monte Carlo Experience Curve Simulation; Another Way to Go. Some Implications of Light-duty Diesel Strategy; Use of Episodic Controls to Reduce Frequency and Severity of Air Pollution Events; Conformity: Long-Term Prognoses for Selected Ozone Nonattainment Areas in California; Development of Comprehensive Modal Emissions Model: Operating Under Hot-Stabilized Conditions; and Implications of Transient Mode Duration for Spatially Disaggregated High-Resolution Emission Inventory Studies.

  13. The Conference Proceedings of the 1999 Air Transport Research Group (ATRG) of the WCTR Society. Volume 4

    NASA Technical Reports Server (NTRS)

    Zhang, Anming (Editor); Bowen, Brent D. (Editor)

    1999-01-01

    Issues around direct flights across Taiwan Strait are always one of the hottest topics in eastern Asia transport market. Although the direct links have not been connected yet, they are still highly concerned by different disciplines of politics, laws, and management. Airlines and related business also watch closely to these issues for policy changes will easily affect their interests in Chinese market which the future of the air transportation in eastern Asia is heavily depending on. In the past decades, Hong Kong was the most important hub in this market; it will still be an important one in the future. It is proved, however, traffic on the link between Hong Kong and Taiwan can be shifted to the link between Macau and Taiwan, so can it be shifted to the links across Taiwan Strait. Moreover, outgoing passengers from China transferred in Hong Kong can also find transit services in Taiwan. These movements will possibly cause a big change in eastern Asian air transport system for there are millions of passengers travelling in this area. The uncertainties of direct links across Taiwan Strait are still leaving, some problems unsolved. Whether the direct links will be defined as international routes or domestic' routes are not clear; the selection of hubs and airlines to provide direct services are not yet made; even the type of freedoms and bilateral agreements can also change the market and network quite a lot. A much bigger volume of passengers can also be found if further travelling deregulation for Chinese to travel across Taiwan Strait can be made. All these variables are making issues around direct flights worthy of continuous observant.

  14. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  15. Evaluation of septum-capped vials for storage of gas samples during air transport.

    PubMed

    Glatzel, Stephan; Well, Reinhard

    2008-01-01

    In order to provide information on the suitability of commonly used gas storage vials for air transport, we tested two vial types on their ability to preserve defined nitrous oxide concentrations and excess pressure when exposed to low pressure, low temperature and puncture by needles. Unlike in Crimp Cap vials, in Exetainers no nitrous oxide loss following low pressure storage was detectable. Tightness of Exetainers following multiple puncture was best using a small needle diameter. Pressure loss following 5, 10, or 25 punctures was lowest in the Exetainers. We conclude that Exetainers are suitable for storing gas samples for an extended period of time during aircraft transport.

  16. Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Leshane, A. A.

    1976-01-01

    The RECAT study evaluated the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of these fuel-conserving alternatives was investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000. Consequently, while the RECAT results lend insight into the directions in which technology can best be pursued for improved air transport fuel economy, no single option studied in the RECAT program is indicative of a realistic future scenario.

  17. Emergency medical kit for commercial airlines. Air Transport Medicine Committee, Aerospace Medical Association.

    PubMed

    Thibeault, C

    1998-11-01

    While it has been of general interest for a long time, the issue of a Medical Kit for Commercial Airlines is now close to the top of the priority list because of recent activities in Europe within the Joint Aviation Authorities (JAA) and in the United States at the Congressional Level. The Aerospace Medical Association (AsMA) requested its Air Transport Medicine Committee to review the situation and make recommendations for a basic medical kit for international airlines. After reviewing the contents of existing kits, and the limited amount of available data, a proposal was submitted to and accepted by the AsMA Council. This is just a beginning. The Air Transport Medicine Committee will continue to follow the evolution and periodically adapt the kit accordingly.

  18. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  19. Using full-mission simulation for human factors research in air transport operations

    NASA Technical Reports Server (NTRS)

    Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.

    1988-01-01

    This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.

  20. Networking of ACSC (Air Command and Staff College) Microcomputers.

    DTIC Science & Technology

    1988-01-01

    Digital Equipment Corporation , Hewlett Packard, Xerox Corporation , Ungermann-Bass Inc., and 3Com Corporation . In a recent survey, it was determined that...and - .i Intel corporations . Uses bus topology with coaxial 4’ cable. expandability -- Feature of a network allowing the network to be expanded with... communicatins channels are interconnected. peripherals -- Computer components such as terminals, printers, copiers, disk units or tape drives. personal

  1. Mitigating Task Saturation in Critical Care Air Transport Team Red Flag Checklist

    DTIC Science & Technology

    2015-04-14

    teamwork curriculum? Qual Saf Health Care. 2004; 13(6):417- 421. 29. Steinemann S, Berg B , Skinner A, DiTulio A, Anzelon K, et al. In situ...U b . ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (include area code) Standard Form 298 (Rev. 8-98...air transport. Crit Care Nurs Clin North Am. 2003; 15(2):221-231. 7. Davis B , Welch K, Walsh-Hart S, Hanseman D, Petro M, et al. Effective teamwork

  2. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  3. Investigation of air transportation technology at Massachusetts Institute of Technology, 1986

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1988-01-01

    There were three areas of research sponsored in the Flight Transportation Lab. at MIT under the Joint University Research Program during 1986. The first was the completion of efforts investigating the possibility of using Loran-C for final approach guidance to a runway; the second is a preliminary exploration of the application of automated speech recognition in Air Traffic Control; the third is a continuation of a series of research topics into aircraft icing problems.

  4. Progress in aeronautical research and technology applicable to civil air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1981-01-01

    Recent progress in the aeronautical research and technology program being conducted by the United States National Aeronautics and Space Administration is discussed. Emphasis is on computational capability, new testing facilities, drag reduction, turbofan and turboprop propulsion, noise, composite materials, active controls, integrated avionics, cockpit displays, flight management, and operating problems. It is shown that this technology is significantly impacting the efficiency of the new civil air transports. The excitement of emerging research promises even greater benefits to future aircraft developments.

  5. A Fuzzy Approach of the Competition on the Air Transport Market

    NASA Technical Reports Server (NTRS)

    Charfeddine, Souhir; DeColigny, Marc; Camino, Felix Mora; Cosenza, Carlos Alberto Nunes

    2003-01-01

    The aim of this communication is to study with a new scope the conditions of the equilibrium in an air transport market where two competitive airlines are operating. Each airline is supposed to adopt a strategy maximizing its profit while its estimation of the demand has a fuzzy nature. This leads each company to optimize a program of its proposed services (frequency of the flights and ticket prices) characterized by some fuzzy parameters. The case of monopoly is being taken as a benchmark. Classical convex optimization can be used to solve this decision problem. This approach provides the airline with a new decision tool where uncertainty can be taken into account explicitly. The confrontation of the strategies of the companies, in the ease of duopoly, leads to the definition of a fuzzy equilibrium. This concept of fuzzy equilibrium is more general and can be applied to several other domains. The formulation of the optimization problem and the methodological consideration adopted for its resolution are presented in their general theoretical aspect. In the case of air transportation, where the conditions of management of operations are critical, this approach should offer to the manager elements needed to the consolidation of its decisions depending on the circumstances (ordinary, exceptional events,..) and to be prepared to face all possibilities. Keywords: air transportation, competition equilibrium, convex optimization , fuzzy modeling,

  6. The Air Transportation Policy of Small States: Meeting the Challenges of Globalization

    NASA Technical Reports Server (NTRS)

    Antoniou, Andreas

    2001-01-01

    The air transport policies of small states are currently at a crossroad. Policy makers in these countries are facing a difficult dilemma: either follow the general trend of liberalization and pay the high cost of the resulting restructuring or maintain the existing regulatory and ownership structures at the risk of isolation thus undermining the viability and sustainability of their air transport sector and their economies in general. This paper proposes to explore the broad issues raised by this difficult dilemma, to outline its special significance in the context of small states and to delineate the options opened to the economic policymakers; in these states. After a brief note on the method of research, we sketch the main elements of the international air transport industry in which the airlines of small states are called upon to act. We then propose to review the main features of the analytical framework of this debate as it pertains to the special circumstances of these states. Then we focus on the challenges facing the airlines of Small States, while the next section proposes a number of the alternative policy options open to the policy makers in these states. The main conclusions are drawn in the final section.

  7. Journal of Air Transportation, Volume 8, No. 2. Volume 8, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Nickerson, Jocelyn (Editor)

    2003-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. This journal contains articles on the following:Fuel Consumption Modeling of a Transport Category Aircraft: A FlightOperationsQualityAssurance (F0QA) Analysis;Demand for Air Travel in the United States: Bottom-Up Econometric Estimation and Implications for Forecasts by Origin and Destination Pairs;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part I1 Political Oversight and Promotion;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part 111: Emerging Technologies;Ethics Education in University Aviation Management Programs in the US: Part Two B-Statistical Analysis of Current Practice;Integrating Human Factors into the Human-computer Interface: and How Best to Display Meteorological Information for Critical Aviation Decision-making and Performance.

  8. Turbulent transport across an interface between dry and humid air in a stratified environment

    NASA Astrophysics Data System (ADS)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  9. The outlook for aeronautics, 1980 - 2000 - Study report. [trends affecting civil air transportation and defense

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Trends in civil and military aviation in the period 1980-2000 are examined in terms of the role that NASA should play in aeronautical research and development during this period. Factors considered include the pattern of industry and government relationships, the character of the aircraft to be developed, and the technology advances that will be required as well as demographic, economic, and social factors. Trends are expressed in terms of the most probable developments in civil air transportation and air defense and several characteristically different directions for future development are defined. The longer term opportunities created by developments in air transporation extending into the next century are also examined. Within this framework, a preferred NASA role and a preferred set of objectives are formulated for the research and technology which should be undertaken by NASA during the period 1976-1985.

  10. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  11. Feasibility of Remote Ischemic Peri-conditioning during Air Medical Transport of STEMI Patients.

    PubMed

    Martin-Gill, Christian; Wayne, Max; Guyette, Francis X; Olafiranye, Oladipupo; Toma, Catalin

    2016-01-01

    Remote ischemic peri-conditioning (RIPC) has gained interest as a means of reducing ischemic injury in patients with acute ST-elevation myocardial infarction (STEMI) who are undergoing emergent primary percutaneous coronary intervention (pPCI). We aimed to evaluate the feasibility, process, and patient-related factors related to the delivery of RIPC during air medical transport of STEMI patients to tertiary pPCI centers. We performed a retrospective review of procedural outcomes of a cohort of STEMI patients who received RIPC as part of a clinical protocol in a multi-state air medical service over 16 months (March 2013 to June 2014). Eligible patients were transported to two tertiary PCI centers and received up to four cycles of RIPC by inflating a blood pressure cuff on an upper arm to 200 mmHg for 5 minutes and subsequently deflating the cuff for 5 minutes. Data regarding feasibility, process variables, patient comfort, and occurrence of hypotension were obtained from prehospital records and prospectively completed quality improvement surveys. The primary outcome was whether at least 3 cycles of RIPC were completed by air medical transport crews prior to pPCI. Secondary outcomes included the number of cycles completed prior to pPCI, time spent with the patient prior to transport (bedside time), patient discomfort level, and incidence of hypotension (systolic blood pressure <90 mmHg) during the procedure. RIPC was initiated in 99 patients (91 interfacility, 8 scene transports) and 83 (83.3%) received 3 or 4 cycles of RIPC, delivered over 25-35 minutes. Median bedside time for interfacility transfers was 8 minutes (IQR 7, 10). More than half of patients reported no pain related to the procedure (N = 53, 53.3%), whereas 5 (5.1%) patients reported discomfort greater than 5 out of 10. Two patients developed hypotension while receiving RIPC and both had experienced hypotension prior to initiation of RIPC. RIPC is feasible and safe to implement for STEMI patients

  12. Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza

    In this thesis, pore network modeling was used to study how the microstructure of the polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) influences multiphase transport within the composite layer. An equivalent pore network of a GDL was used to study the effects of GDL/catalyst layer condensation points and contact quality on the spatial distribution of liquid water in the GDL. Next, pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures, and favorable GDL compression values for preferred liquid water distributions were found for two commercially available GDL materials. Finally, a technique was developed for calculating the oxygen diffusivity in carbon paper substrates with a microporous layer (MPL) coating through pore network modeling. A hybrid network was incorporated into the pore network model, and effective diffusivity predictions of MPL coated GDL materials were obtained.

  13. Research on the net amount of air traffic network

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Wu, Zhenya

    2013-03-01

    As accurate prediction of traffic flow states could reduce the congestion possibility, the theoretical study of air traffic was how to determinate the next time the state with fluid mechanics based on random condition. Then, a novel depicting method of air traffic flow is proposed, which calculated the change of net amount in flow conservation equation with discrete time loss queuing, further, it could determine the relationship between flow and density. Compared to the existing general algorithm, the threshold of net amount was presented in the method, and it had good adaptability.

  14. Diverging Narratives: Evaluating the Uses of the Ideal-Typical Sequence of Transport Network Development

    ERIC Educational Resources Information Center

    Weber, Joe

    2004-01-01

    The development of new transport systems has been an important and highly visible component of economic development and spatial reorganization in the past two centuries. The Ideal-Typical Sequence of network development has been a widely used model of transport development. This paper shows that this model has been used in several different ways,…

  15. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  16. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  17. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.

  18. Application of Fiber-Optical Techniques in the Access Transmission and Backbone Transport of Mobile Networks

    NASA Astrophysics Data System (ADS)

    Hilt, Attila; Pozsonyi, László

    2012-09-01

    Fixed access networks widely employ fiber-optical techniques due to the extremely wide bandwidth offered to subscribers. In the last decade, there has also been an enormous increase of user data visible in mobile systems. The importance of fiber-optical techniques within the fixed transmission/transport networks of mobile systems is therefore inevitably increasing. This article summarizes a few reasons and gives examples why and how fiber-optic techniques are employed efficiently in second-generation networks.

  19. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-05

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  20. Exploratory Inquiry: Disparate Air Force Base Area Network Architectures

    DTIC Science & Technology

    2005-03-01

    Lieutenant Jamie Sharkey conducted a thesis on the key issues pertaining to Air Force enterprise architecture management. Discussion of...experience in fixed and tactical communications. His first duty station was McGuire AFB, New Jersey followed by assignments to Spangdahlem AB, Germany; the