Science.gov

Sample records for air vehicles directorate

  1. Environmental Assessment, Balloon Launch and Landing Operations, Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2012-06-01

    wetlands are in riparian zones and include oxbow lakes , marshes, cienegas, and bosques. Extreme aridity and seasonally varying precipitation are the...MAJOR RIVERS - LAKE RESERVOIR - TRIBAL LANDS D AFFECTED COUNTY IIBALDUR\\PROJIAFRL_396452\\MAPFILES\\EIS\\FIG2-2_EXCLUSION_ZONE MXD TMCBROOM 2117...ASSESSMENT, BALLOON LAUNCH AND LANDING OPERATIONS, AIR FORCE RESEARCH LABORATORY KIRTLAND AIR FORCE BASE - LAKE RESERVOIR MAJOR RIVERS

  2. Air Force Research Laboratory Sensors Directorate Leadership Legacy, 1960-2011

    DTIC Science & Technology

    2011-03-01

    AFRL -RY-WP-TM-2011-1017 AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE LEADERSHIP LEGACY, 1960-2011 Compiled by Raymond C. Rang...Structures Divi- sion, Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, N.M. 7. March 1998 - July 1999, Chief, Integration and... Research Laboratory ( AFRL ), and Deputy Director of the Sensors Direc- torate, Air Force Research

  3. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  4. Nuclear air cushion vehicles.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    This paper serves several functions. It identifies the 'state-of-the-art' of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant. Using mission studies and cost estimates, the report describes some of the advantages of nuclear power for large air cushion vehicles. The paper also summarizes the technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies that have been performed at NASA Lewis Research Center.

  5. Transatmospheric vehicle (TAV) research & development at Wright Laboratory{close_quote}s Flight Dynamics Directorate

    SciTech Connect

    Karasopoulos, H.

    1996-03-01

    The Structures and Aeromechanics Divisions of the Flight Dynamics Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio have a long history of activities in transatmospheric vehicle (TAV) technology development. Included in these activities were research and development efforts in thermal protection systems (TPS), cryogenic fuel tanks, and hot structures. Additional efforts existed in the aerodynamics, aerothermodynamics, and performance of transatmospheric, hypersonic, and lifting reentry vehicle configurations. High payoff TAVresearch and development activities in the Flight Dynamics Directorate continue today and are planned for the future. {copyright} {ital 1996 American Institute of Physics.}

  6. Calculation of Manpower Requirements for Vehicle Maintenance at U.S. Army Installation Directorates of Engineering and Housing, Based on Air Force, Navy and Army Reserves Staffing Techniques

    DTIC Science & Technology

    1988-10-01

    request; maintains suspense files; inspects and maintains tools; schedules precision measurement equipment (PME); performs tool crib inventory. 3...assets. 12. Tool Crib. Issues and receives tools upon request; maintains suspense file; inspects and maintains tools; schedules precision measurement...MOTORCYCLE, PACKAGE DELIVERY, 3-WHEEL WITH SIDE CAR (ALSO SERVICE VEHICLE) 0905 Z SCOOT PK 3-4WRL SCOOTER , MOTOR, PKG DELIVERY, 3-4 WHEEL WITH SIDE CAR 0907 Z

  7. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  8. Environmental Assessment for Air Force Research Laboratory Space Vehicles Integrated Experiments Division Office Space at Kirtland Air Force Base, Albuquerque, New Mexico

    DTIC Science & Technology

    2005-06-01

    AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland

  9. Air cushion vehicles: A briefing

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Finnegan, P. M.

    1971-01-01

    Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described.

  10. APEX (Air Pollution Exercise) Volume 1: Game Director's Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Game Director's Manual is the first in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The participants, which may range in number from 18 to…

  11. Intelligence Applied to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Gross, Anthony R.; Fletcher, L. Skip; Zornetzer, Steven (Technical Monitor)

    2000-01-01

    The exponential growth in information technology has provided the potential for air vehicle capabilities that were previously unavailable to mission and vehicle designers. The increasing capabilities of computer hardware and software, including new developments such as neural networks, provide a new balance of work between humans and machines. This paper will describe several NASA projects, and review results and conclusions from ground and flight investigations where vehicle intelligence was developed and applied to aeronautical and space systems. In the first example, flight results from a neural network flight control demonstration will be reviewed. Using, a highly-modified F-15 aircraft, a NASA/Dryden experimental flight test program has demonstrated how the neural network software can correctly identify and respond to changes in aircraft stability and control characteristics. Using its on-line learning capability, the neural net software would identify that something in the vehicle has changed, then reconfigure the flight control computer system to adapt to those changes. The results of the Remote Agent software project will be presented. This capability will reduce the cost of future spacecraft operations as computers become "thinking" partners along with humans. In addition, the paper will describe the objectives and plans for the autonomous airplane program and the autonomous rotorcraft project. Technologies will also be developed.

  12. Mars 2050: Air Vehicles and Extreme Environments

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.

    2017-02-01

    Technologies that lead to the development of air vehicles for Mars and deep drilling or rover access to the martian poles will enable pioneering exploration and science of the planet while also benefiting outer planet and ocean world missions.

  13. Air quality impacts of electric vehicles

    SciTech Connect

    Hartgen, D.T.; Murthy, M.; Cheung, N.N.Y.; Patten, J.A.

    1994-12-31

    The potential air quality impacts of electric vehicles in North Carolina are evaluated considering both air pollution reductions from less use of internal combustion engine vehicles and also additional air pollution at electric power plants. Using a consumer survey of 260 households, estimates of EV sales at $20,000 per vehicle, $15,000 and $10,000 are first made. EV purchases are classified as to whether they would be additional (new to family) or replacements of conventional cars. For additional vehicles, the extra pollution is computed as mileage driven, times KWH/mile, times power plant pollution rates. This pollution is then attributed directly to power plants, using NC pollution rates and the NC fuel mix. For replacement vehicles, EV pollution added to power plants is offset by direct pollution savings from ICE vahicles. Pollution effects are computed for each observation and displayed on a GIS of the state. Results show that EV air pollution effects are highly dependent on the assumptions made about the fraction of additional vs. replacement vehicles, and future power plant emission rates. The study concludes that EV effects on air pollution are highly uncertain.

  14. Aerodynamics for Revolutionary Air Vehicles

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Singer, Bart A.; Leavitt, Laurence D.

    2003-01-01

    Aeronautics research has seriously declined partly because of the perception that it is a mature science and only incremental improvements are possible. Recent aeronautics roadmapping activities at NASA Langley paint a different picture of the future. Breakthroughs are still felt to be possible if we expand the current design space of today's vehicles and optimize the airspace and vehicles as a system. The paper describes some of the challenges that the aircraft and airline industry face. These challenges include political, technical and environmental issues. Examples of the opportunities and technologies that could provide a different vision for the future are discussed.

  15. Flexible-Wing-Based Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Jenkins, David A.; Ettinger, Scott; Lian, Yong-Sheng; Shyy, Wei; Waszak, Martin R.

    2002-01-01

    This paper documents the development and evaluation of an original flexible-wing-based Micro Air Vehicle (MAV) technology that reduces adverse effects of gusty wind conditions and unsteady aerodynamics, exhibits desirable flight stability, and enhances structural durability. The flexible wing concept has been demonstrated on aircraft with wingspans ranging from 18 inches to 5 inches. Salient features of the flexible-wing-based MAV, including the vehicle concept, flexible wing design, novel fabrication methods, aerodynamic assessment, and flight data analysis are presented.

  16. Air Cushion Crash Rescue Vehicle (ACCRV)

    DTIC Science & Technology

    1987-10-01

    x 13.3 x 5.7 Battery Incl. Monitors 1 DC Defibril- 11.90 3.8 x 13.3 x 9.2 Battery Inc\\. lator 106 -) 0) ho cd o +-> w c cd 3...reverse if necessary and identify by block number) Current USAF crash rescue vehicles have been designed to operate on the roads, ramps, taxiways...Cushion Crash Rescue Vehicle (ACCRV) has been designed by integrating a retractable air cushion system with a crash rescue vehicle. This report

  17. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  18. Covert air vehicle 2003 LDRD final report.

    SciTech Connect

    Spletzer, Barry Louis; Callow, Diane Schafer; Salton, Jonathan Robert; Fischer, Gary John

    2003-11-01

    This report describes the technical work carried out under a 2003 Laboratory Directed Research and Development project to develop a covert air vehicle. A mesoscale air vehicle that mimics a bird offers exceptional mobility and the possibility of remaining undetected during flight. Although some such vehicles exist, they are lacking in key areas: unassisted landing and launching, true mimicry of bird flight to remain covert, and a flapping flight time of any real duration. Current mainstream technology does not have the energy or power density necessary to achieve bird like flight for any meaningful length of time; however, Sandia has unique combustion powered linear actuators with the unprecedented high energy and power density needed for bird like flight. The small-scale, high-pressure valves and small-scale ignition to make this work have been developed at Sandia. We will study the feasibility of using this to achieve vehicle takeoff and wing flapping for sustained flight. This type of vehicle has broad applications for reconnaissance and communications networks, and could prove invaluable for military and intelligence operations throughout the world. Initial tests were conducted on scaled versions of the combustion-powered linear actuator. The tests results showed that heat transfer and friction effects dominate the combustion process at 'bird-like' sizes. The problems associated with micro-combustion must be solved before a true bird-like ornithopter can be developed.

  19. Autonomous unmanned air vehicles (UAV) techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Kai; Lee, Ting N.

    2007-04-01

    The UAVs (Unmanned Air Vehicles) have great potentials in different civilian applications, such as oil pipeline surveillance, precision farming, forest fire fighting (yearly), search and rescue, boarder patrol, etc. The related industries of UAVs can create billions of dollars for each year. However, the road block of adopting UAVs is that it is against FAA (Federal Aviation Administration) and ATC (Air Traffic Control) regulations. In this paper, we have reviewed the latest technologies and researches on UAV navigation and obstacle avoidance. We have purposed a system design of Jittering Mosaic Image Processing (JMIP) with stereo vision and optical flow to fulfill the functionalities of autonomous UAVs.

  20. Motor Vehicles, Air Pollution, and Climate Change

    NASA Astrophysics Data System (ADS)

    Mark, Jason

    2000-04-01

    Despite years of technical progress, motor vehicles continue to be a leading cause of environmental damage in the United States. For example, today's cars and trucks are the largest source of air pollution in many urban areas. US motor vehicles also account for 25 percent of the nation's carbon emissions, more than most countries emit from all sources combined. Fortunately, a host of technical improvements are emerging that could go a long ways towards taking vehicles out of the pollution picture. In the near-term, improving on the century-old internal combustion engine can deliver much-needed incremental gains. But electric drive vehicles--whether powered by batteries, small engines in hybrid configuration, or fuel cells--ultimately offer the greatest promise. Such technologies could dramatically reduce energy use, greenhouse gas emissions, and key air pollutants. The bulk of technical attention in recent years has been focused on improving the passenger vehicle, which will be the dominant energy consumer in the transportation sector for years to come. But freight trucks are also of growing concern, both because their contribution to global warming is on the rise and because serious questions are being raised about the public health impact of diesel technology. As a result, heavy trucks are emerging as a priority issue. Capitalizing on the opportunity presented by new technologies will not only require continued technical innovation but also policy action. As research into improved engines, fuels, and drive systems bears fruit over the coming years, aggressive and prudent policies will ensure that these new options make it onto the road and deliver on their environmental promise.

  1. The Advanced Guided Weapon Testbed (AGWT) at the Air Force Research Laboratory Munitions Directorate

    DTIC Science & Technology

    2010-08-01

    Performance Fighter Twin Turbine Helicopter Supersonic Cruise Missile Boosting Theater Target Deploying Post-Boost Vehicle Strategic Reentry Vehicle...High Performance Fighter Twin Turbine Helicopter Supersonic Cruise Missile Figure 17. Air breathing and ballistic missile RTC outputs in various...radiation and convection heat loads. It also models external source effects, including solar reflection, earth shine, and plume impingement. Over the

  2. Air cushion vehicles - Any potential for Canada?

    NASA Astrophysics Data System (ADS)

    Laframboise, J. F.

    1987-09-01

    The present evaluation of air cushion vehicle (ACV) operational and commercial suitability in the Canadian context notes that the most successful and durable ACV applications are those in which only ACVs can perform the required mission. An important factor is the reliability of the craft being tested in a given field of operations. Because of their low ground pressure, ACVs can operate over low-cost trails with an efficiency that compares with that of trucks over conventional roads; this renders them especially attractive for transportation networks in the North West Territories.

  3. Nonlinear dynamics of biomimetic micro air vehicles

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Kong, J.

    2008-02-01

    Flapping-wing micro air vehicles (FMAV) are new conceptual air vehicles that mimic the flying modes of birds and insects. They surpass the research fields of traditional airplane design and aerodynamics on application technologies, and initiate the applications of MEMS technologies on aviation fields. This paper studies a micro flapping mechanism that based upon insect thorax and actuated by electrostatic force. Because there are strong nonlinear coupling between the two physical domains, electrical and mechanical, the static and dynamic characteristics of this system are very complicated. Firstly, the nonlinear dynamic model of the electromechanical coupling system is set up according to the physical model of the flapping mechanism. The dynamic response of the system in constant voltage is studied by numerical method. Then the effect of damping and initial condition on dynamic characteristics of the system is analyzed in phase space. In addition, the dynamic responses of the system in sine voltage excitation are discussed. The results of research are helpful to the design, fabrication and application of the micro flapping mechanism of FMAV, and also to other micro electromechanical system that actuated by electrostatic force.

  4. Zinc air battery development for electric vehicles

    NASA Astrophysics Data System (ADS)

    Putt, R. A.; Merry, G. W.

    1991-07-01

    This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this 'soluble' zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (greater than 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high resistance failure of the cell. The Phase 1 program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/sq cm. By the end of the Phase 1 program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase 2 program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

  5. Zinc air battery development for electric vehicles

    SciTech Connect

    Putt, R.A.; Merry, G.W. )

    1991-07-01

    This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this soluble'' zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (> 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high-resistance failure of the cell. The Phase I program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/cm{sup 2}. By the end of the Phase I program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase II program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

  6. Air cushion vehicles for arctic operation

    NASA Astrophysics Data System (ADS)

    Koleser, J.; Lavis, D. R.

    1986-09-01

    Attention is given to the results of the NAVSEA FY85 Surface Ship Concept Formulation Design Study for an initial operational capability year-2000 air cushion vehicle (ACV) suitable for logistics and general search/rescue duties in the Arctic. Two designs were developed during the study; the first utilized an ACV design synthesis math model while the second evolved as a derivative of an existing U.S. production craft. Both are regarded as feasible from an engineering and naval architectural standpoint. Results of performance and cost trade-off studies suggest that, for an Arctic ACV, gas turbines are the preferred power plant choice and an aluminum alloy is the preferred hull structural material choice. The most appropriate skirt height is approximately 12 ft.

  7. Air-Conditioning for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  8. Zinc air battery development for electric vehicles

    NASA Astrophysics Data System (ADS)

    Putt, Ronald A.

    1990-05-01

    This document reports the progress and accomplishments of a 16 month program to develop a rechargeable zinc-air battery for electric vehicle propulsion, from October 1988 through January 1990. The program was the first stage in the transition of alkaline zinc electrode technology, invented at Lawrence Berkeley Laboratory, to private industry. The LBL invention teaches the use of a copper metal foam substrate for the zinc electrode, in combination with forced convection of electrolyte through the foam during battery operation. Research at LBL showed promise that this approach would avoid shape change (densification and dendrite growth), the primary failure mode of this electrode. The program comprised five tasks: (1) cell design, (2) capacity maximization, (3) cycle testing, (4) materials qualification, and (5) a cost/design study. The cell design contemplates a plate and frame stack, with alternating zinc and oxygen electrode frame assemblies between rigid end plates. A 200 Ah cell, as may be required for the EV application, would comprise a stack of five zinc and six oxygen electrode frame/assemblies.

  9. Advanced Metallic Air Vehicle Structure Program

    DTIC Science & Technology

    1976-08-01

    Patterson Air Force Base , Ohio 45433. AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND Best...Available Copy WRIGHT-PATTERSON AIR FORCE BASE , OHIO 45433 THIS DOCUMENT CONTAINED C) BLANK PAGES THAT HAVE 0 3 BEEN DELETED 9 NOTICES When Government...December 1975. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FB-A), Wright-Patterson Air Force Base , Ohio

  10. Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Vehicle Refueling Station, Northeast of AGE Storage Facility at far northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  11. Interior view Beale Air Force Base, Perimeter Acquisition Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Interior Beale Air Force Base, Perimeter Acquisition Vehicle Entry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Gate House, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. Looking north Beale Air Force Base, Perimeter Acquisition Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking north - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  14. Section 609 of the Clean Air Act: Motor Vehicle Air Conditioning

    EPA Pesticide Factsheets

    Fact sheet provides a general overview of EPA regulations under Section 609 of the Clean Air Act, which is focused on preventing the release of refrigerants during the servicing of motor vehicle air-conditioning systems and similar appliances.

  15. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  16. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  17. Gust Mitigation of Micro Air Vehicles Using Passive Articulated Wings

    PubMed Central

    Slegers, Nathan

    2014-01-01

    Birds and insects naturally use passive flexing of their wings to augment their stability in uncertain aerodynamic environments. In a similar manner, micro air vehicle designers have been investigating using wing articulation to take advantage of this phenomenon. The result is a class of articulated micro air vehicles where artificial passive joints are designed into the lifting surfaces. In order to analyze how passive articulation affects performance of micro air vehicles in gusty environments, an efficient 8 degree-of-freedom model is developed. Experimental validation of the proposed mathematical model was accomplished using flight test data of an articulated micro air vehicle obtained from a high resolution indoor tracking facility. Analytical investigation of the gust alleviation properties of the articulated micro air vehicle model was carried out using simulations with varying crosswind gust magnitudes. Simulations show that passive articulation in micro air vehicles can increase their robustness to gusts within a range of joint compliance. It is also shown that if articulation joints are made too compliant that gust mitigation performance is degraded when compared to a rigid system. PMID:24516368

  18. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''),...

  19. Missions and vehicle concepts for modern, propelled, lighter-than-air vehicles

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1984-01-01

    The results of studies conducted over the last 15 years to assess missions and vehicle concepts for modern, propelled, lighter-than-air vehicles (airships) were surveyed. Rigid and non-rigid airship concepts are considered. The use of airships for ocean patrol and surveillance is discussed along with vertical heavy lift airships. Military and civilian needs for high altitude platforms are addressed.

  20. Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program

    DTIC Science & Technology

    2009-03-01

    03/12/09; 88ABW-09-0990. 14. ABSTRACT The use of small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) in military reconnaissance...unmanned aerial systems. 15. SUBJECT TERMS Target acquisition, reconnaissance/surveillance, micro air vehicles 16. SECURITY CLASSIFICATION OF...more than doubled its use of drones between January and October 2007 while the number of unmanned flight hours for DoD systems soared to over

  1. The Director of Mobility Forces’ Role in the Command Control of Air Mobility Assets During Humanitarian Relief Operations

    DTIC Science & Technology

    2000-06-01

    U. S . Government. AFIT/ GMO /ENS/00E-02 Examining the Director of Mobility...RESEARCH PROJECT Timothy E. Bush, Major, USAF AFIT/ GMO /ENS/00E-02 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY...steadfast love, support and inspiration throughout the past year and our adventure together in the USAF. Also to my children , thank you for your

  2. Computerized Vehicle Routing Programs and Their Effect on Vehicle Utilization in the Air Force

    DTIC Science & Technology

    1993-09-01

    Programs 13 Current Commercial Programs .... .......... .. 20 Air Force Involvement in Computerized Routing Programs...41 3. Summary Report for Option 3 ... ........ 42 vi AFIT/GLM/LAL/93S-2 Abstract The purpose of this study is to determine if a commercial ...procedures of Air Force base transportation organizations. Second, researchers identify a commercial computerized vehicle routing program that

  3. Biological Inspiration for Agile Autonomous Air Vehicles

    DTIC Science & Technology

    2007-11-01

    vehicles in confined airspace will quickly exceed the abilities of a remote human operator, substantial autonomy is essential. The political, ethical ...and Kirschner, 1997 provide an in-depth but accessible discussion on the interplay of biochemistry, genetics and embryology in animal evolution

  4. Assessment on motor vehicle emissions and air quality in Beijing

    SciTech Connect

    Lixin Fu; Jiming Hao; Kebin He; Dongquan He

    1996-12-31

    It is occasionally reported that hourly ozone concentrations exceed the National Air Quality Standard (NAQS) of China in recent years in Beijing, which indicates that motor vehicle emissions are more and more important to the total air quality in urban area of Beijing. A deep investigation was carried out to collect the information on road status, vehicle number and types, fuel consumption, traffic condition, and vehicle management in Beijing, so that the real world emission factors (CO, HC, NO{sub x}) could be calculated by MOBILE5a model. The calculated results were comparable with limited testing data from other former researches. With a detailed survey on emissions from other sources such as oil refueling, plants HC emission, and other stationary sources, the emission inventory are established and further projected for the future years, thus the emission contribution rates are obtained for motor vehicle emissions. The results are given for different seasons and different areas in Beijing.

  5. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  6. Prototype air bag restraint for use in patrol vehicles

    SciTech Connect

    Marts, D.J.; Barker, S.G.

    1995-03-01

    An air bag has been designed and laboratory tested for use in existing police vehicles that will restrain a person if he or she becomes violent. The device will prevent self-injury and protect the vehicle and officer. The device does not pose a suffocation hazard and can be quickly and easily inflated or deflated by the officer from the front seat. The device is ready for field testing.

  7. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  8. Northwest passage: Trade route for large air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    A conceptual vehicle and powerplant (10,000-ton) nuclear-powered air-cushion vehicle (ACV) that could open the Northwest Passage and other Arctic passages to commercial traffic is identified. The report contains a description of the conceptual vehicle, including the powerplant and operations, an assessment of technical feasibility, estimates of capital and operating costs, and identification of eligible cargo and markets. A comparison of the nuclear ACV freighter with nuclear container ships shows that for containerized or roll-on/roll-off cargo the ACV would provide greatly reduced transit time between North Atlantic and North Pacific ports at a competitive cost.

  9. Mathematical Model of an Air Cushion Vehicle

    DTIC Science & Technology

    1975-05-01

    otion, cushion dynamics, control and machinery dynamics and water wave effects are mwdeled. DD IJ එ 1473 EOITION OF I NOV 6 IS OBSOLETE U...cushion pressure model, the calculations are based on scanty experimental and analytical evidence that should not be taken for more than what it is...updates are readily incorporated. Many of the forces acting on the vehicle are curve fits to experimental4data obtained by Bell Aerospace and used in their

  10. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  11. Measurement of Vehicle Air Conditioning Pull-Down Period

    SciTech Connect

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.; West, Brian H.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  12. Review of Our National Heritage of Launch Vehicles Using Aerodynamic Surfaces and Current Use of These by Other Nations. Part II; Center Director's Discretionary Fund Project Numbe

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1996-01-01

    Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability. As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director's Discretionary Fund Project 93-05 and has a previous and subsequent companion publication.

  13. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  14. Unmanned Air Vehicle -Version 1.0

    SciTech Connect

    Fred Oppel, SNL 06134

    2013-04-17

    This package contains modules that model the mobility of systems such as helicopters and fixed wing flying in the air. This package currently models first order physics - basically a velocity integrator. UAV mobility uses an internal clock to maintain stable, high-fidelity simulations over large time steps This package depends on interface that reside in the Mobility package.

  15. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D.

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  16. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D. , Inc., Cambridge, MA )

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  17. Collaborative tactical behaviors for autonomous ground and air vehicles

    NASA Astrophysics Data System (ADS)

    Albus, James; Barbera, Anthony; Scott, Harry; Balakirsky, Stephen

    2005-05-01

    Tactical behaviors for autonomous ground and air vehicles are an area of high interest to the Army. They are critical for the inclusion of robots in the Future Combat System (FCS). Tactical behaviors can be defined at multiple levels: at the Company, Platoon, Section, and Vehicle echelons. They are currently being defined by the Army for the FCS Unit of Action. At all of these echelons, unmanned ground vehicles, unmanned air vehicles, and unattended ground sensors must collaborate with each other and with manned systems. Research being conducted at the National Institute of Standards and Technology (NIST) and sponsored by the Army Research Lab is focused on defining the Four Dimensional Real-time Controls System (4D/RCS) reference model architecture for intelligent systems and developing a software engineering methodology for system design, integration, test and evaluation. This methodology generates detailed design requirements for perception, knowledge representation, decision making, and behavior generation processes that enable complex military tactics to be planned and executed by unmanned ground and air vehicles working in collaboration with manned systems.

  18. Flush Air Data Sensing System for Trans-Atmospheric Vehicles

    NASA Astrophysics Data System (ADS)

    Ellsworth, Joel

    2006-10-01

    With the emergence of multiple companies attempting to tap the space tourism market, as well as NASA's return to the moon initiative, an inexpensive but reliable means of determining wind relative vehicle attitude is becoming a necessity. The traditional means of obtaining air data (altitude, Mach number, angles of attack and sideslip) using fixed pitot probes and directional flow vanes is not viable for collecting data on high supersonic and hypersonic vehicles, due to the high temperatures and dynamic pressures. The solution is to use a matrix of flush mounted pressure ports on the vehicle nose or on an outboard wing leading edge. Since the ports will be located behind a detached shock wave at supersonic velocities, the temperatures will remain substantially lower. A Flush Air Data Sensing (FADS) system can also be used for subsonic conditions, although it must be calibrated for the effects of the vehicle geometry. The physics of air behavior and the mathematics of the solution algorithm will be presented. Several relevant examples of planned vehicles will be presented.

  19. Mechanically refuelable zinc/air electric vehicle cells

    NASA Astrophysics Data System (ADS)

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J. F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells, and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration - factors which define the essential functions of common automobiles. Such an electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  20. Mechanically refuelable zinc/air electric vehicle cells

    SciTech Connect

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J.F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration -- factors which define the essential functions of common automobiles. Such a electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described in this report focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  1. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    DTIC Science & Technology

    2011-03-03

    Thankfully, nature has already optimized micro air vehicles with the evolution of birds and insects, which become the instinctual inspirational candidates...properties to those wings found in nature. More specifically, with size comparable to a hummingbird , elastic modulus comparable to a cicada, and

  2. Simulation study of plane motion of air cushion vehicle

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Qin; Shi, Xiao-Cheng; Shi, Yi-Long; Bian, Xin-Qian

    2003-12-01

    This research is on horizontal plane motion equations of Air Cushion Vehicle (ACV) and its simulation. To investigate this, a lot of simulation study including ACV’s voyage and turning performance has been done. It was found that the voyage simulation results were accorded with ACV own characteristic and turning simulation results were accorded with USA ACV’s movement characteristic basically.

  3. A zinc-air battery and flywheel zero emission vehicle

    SciTech Connect

    Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

    1995-10-03

    In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

  4. Death by a Thousand Cuts: Micro-Air Vehicles (MAV) in the Service of Air Force Missions

    DTIC Science & Technology

    2001-04-01

    exotic approaches as air suction/injection along the wing surface (which might require micro -valves and micro - pumps ), wall heat transfer, or...AU/AWC/___/2001-4 AIR WAR COLLEGE AIR UNIVERSITY DEATH BY A THOUSAND CUTS: MICRO -AIR VEHICLES (MAV) IN THE SERVICE OF AIR FORCE MISSIONS by...Dates Covered (from... to) - Title and Subtitle Death by a thousand Cuts: Micro -Air Vehicles (MAV) in the Service of Air Force Missions Contract

  5. Prospects for future hypersonic air-breathing vehicles

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.; Blankson, Isaiah M.

    1991-01-01

    The age of hypersonics is (almost) here. This is evident from the amount of activity in the United States, Europe, the USSR and Japan; this activity is a reflection of technical progress in key areas which will enable new vehicle systems, as well as renewed interest in the utilization of these systems. The current situation, at least in the United States, is the product of an interesting history which is briefly reviewed here. The context for hypersonic applications is discussed, but the emphasis is on hypersonic technology issues and needs, particularly for propulsion and technology integration. The paper concludes with prospects for accomplishing the objective of air-breathing hypersonic vehicle systems.

  6. [Motor vehicle source contributions to air pollutants in Beijing].

    PubMed

    Hao, J; Wu, Y; Fu, L; He, K; He, D

    2001-09-01

    Beijing's motor vehicle emission inventory based on GIS technology was developed, and used to estimate the contribution rate of different types of vehicles and different areas of vehicles to the total vehicular emissions in the urban area of Beijing. ISCST3, a gaussian dispersion air quality model, was modified at low wind speed condition, and then used to facilitate the study of the spatial and temporal distribution of CO and NOx concentrations in Beijing. It was shown that vehicle source emissions of CO and NOx accounted for 76.8% and 40.2%, respectively, of the total emissions in 1995. The simulation results also showed that emissions from the vehicle sources had contributed 76.5% and 68.4% of the total CO and NOx concentrations in urban atmosphere of Beijing in 1995, and were even higher at down-town and near the arteries. Therefore, strategies for CO and NOx pollution control will of necessity need to focus on the vehicle sources.

  7. Powering future vehicles with the refuelable zinc/air battery

    SciTech Connect

    1995-10-01

    A recent road test at LLNL underscored the zinc/air battery`s capacity to give electric vehicles some of the attractive features of gas-driven cars: a 400-km range between refueling, 10-minute refueling, and highway-safe acceleration. Developed at Lawrence Livermore National Laboratory, the battery weights only one-sixth as much as standard lead/acid batteries and occupies one-third the space, yet costs less per mile to operate. What`s more, because the battery is easily refuelable, it promises trouble-free, nearly 24-hour-a-day operation for numerous kinds of electric vehicles, from forklifts to delivery vans and possibly, one day, personal automobiles. The test of a Santa Barbara Municipal Transit bus with a hybrid of zinc/air and lead/acid batteries capped a short development period for the zinc/air battery. The test run indicated the zinc/air battery`s potential savings in vehicle weight from 5.7 to 4.0 metric tons, in battery weight from 2.0 to 0.3 metric tons, in battery volume from 0.79 to 0.25 m{sup 3}, and in electricity cost from 5.6 cents per mile to 4.7 cents per mile. The power, however, remains the same.

  8. Developments in skirt systems for air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Inch, Peter; Prentice, Mark E.; Lewis, Carol Jean

    The present evaluation of the development status of air-cushion vehicle (ACV) skirts emphasizes the materials employed, with a view to the formulation of materials-performance requirements for next-generation AVCs and, in particular, an 'air-cushion catamaran' surface-effect ship (SES). Attention is given to novel skirt-design features which furnish substantial savings in maintenance costs. The employment of extant test rig data and the use of CAD methods are discussed, and the features of a novel system for the direct fixing of a bow finger onto an SES structure are noted.

  9. Episodic air quality impacts of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  10. PECASE: Soaring Mechanisms for Flapping-Wing Micro Air Vehicles

    DTIC Science & Technology

    2015-03-31

    stability (e.g. using a positive wing dihedral). Many insects effectively use gliding modes to extend flight duration - for example. Monarch...strategies for flapping/gliding intermittent flight through the development of a robotic insect capable of bio-inspired flapping/gliding flight and a...apply this to increase the performance of insect -scale MAVs. 15. SUBJECT TERMS micro air vehicles, bioinspired flight, bioinspired robotics 16

  11. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Bond, W. H.; Yi, A. C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  12. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    SciTech Connect

    Bond, W.H.; Yi, A.C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize `waverider` aerodynamics show great promise to reduce the vehicle weight. 5 refs.

  13. In-vehicle particle air pollution and its mitigation

    NASA Astrophysics Data System (ADS)

    Tartakovsky, L.; Baibikov, V.; Czerwinski, J.; Gutman, M.; Kasper, M.; Popescu, D.; Veinblat, M.; Zvirin, Y.

    2013-01-01

    This work presents results of particle mass, number and size measurements inside passenger cars (PCs), vans and urban buses. Effects of the in-cabin air purifier on particle concentrations and average size inside a vehicle are studied. Use of the air purifier leads to a dramatic reduction, by 95-99%, in the measured ultrafine particles number concentration inside a vehicle compared with outside readings. Extremely low particle concentrations may be reached without a danger of vehicle occupants' exposure to elevated CO2 levels. The lowest values of particle concentrations inside a PC without air purifier are registered under the recirculation ventilation mode, but the issue of CO2 accumulation limits the use of this mode to very short driving events. Lower PM concentrations are found inside newer cars, if this ventilation mode is used. Great differences by a factor of 2.5-3 in PM10 concentrations are found between the PCs and the buses. Smoking inside a car leads to a dramatic increase, by approximately 90 times, in PM2.5 concentrations.

  14. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Parts 80, 85, 86, 600, 1036, 1037, 1065, and 1066 RIN 2060-A0 Control of Air Pollution From... (``EPA'') is announcing an extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule...

  15. Potential impacts of electric vehicles on air quality in Taiwan.

    PubMed

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions.

  16. High specific energy and specific power aluminum/air battery for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Kindler, A.; Matthies, L.

    2014-06-01

    Micro air vehicles developed under the Army's Micro Autonomous Systems and Technology program generally need a specific energy of 300 - 550 watt-hrs/kg and 300 -550 watts/kg to operate for about 1 hour. At present, no commercial cell can fulfill this need. The best available commercial technology is the Lithium-ion battery or its derivative, the Li- Polymer cell. This chemistry generally provides around 15 minutes flying time. One alternative to the State-of-the Art is the Al/air cell, a primary battery that is actually half fuel cell. It has a high energy battery like aluminum anode, and fuel cell like air electrode that can extract oxygen out of the ambient air rather than carrying it. Both of these features tend to contribute to a high specific energy (watt-hrs/kg). High specific power (watts/kg) is supported by high concentration KOH electrolyte, a high quality commercial air electrode, and forced air convection from the vehicles rotors. The performance of this cell with these attributes is projected to be 500 watt-hrs/kg and 500 watts/kg based on simple model. It is expected to support a flying time of approximately 1 hour in any vehicle in which the usual limit is 15 minutes.

  17. Conceptual design of flapping-wing micro air vehicles.

    PubMed

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

  18. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AK62 Federal Motor Vehicle Safety... that amended the Federal motor vehicle safety standard for air brake systems by requiring substantial... 37122) amending Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to...

  19. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Administration 49 CFR Part 571 [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to require improved...

  20. Operational noise data for the LACV-30 air cushion vehicle

    NASA Astrophysics Data System (ADS)

    Schomer, P. D.

    1985-03-01

    Operational data for the LACV-30 air cushion vehicle were gathered and developed into sound exposure level vs distance curves. These data are available for the Army Environmental Hygiene Agency (AEHA) to use in developing noise zone maps for LACV-30 operations in support of the Army Installation Compatible Use Program (ICUZ). ICUZ defines Hand use compatible with various noise levels and establishes a policy for achieving such uses. Although the Army classifies the LACV-30 as an amphibious vehicle, an examination of its noise characteristics and operations showed it most closely resembles a helicopter. Thus, the methodology for gathering rotary wing aircraft data was used. Measurements of LACV-30's passby runs over water at various distances and speeds were similar in concept to flyover and flyby measurements for helicopters, and the land maneuver measurements corresponded most nearly to a helicopter's hover measurements.

  1. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  2. Comparative Analysis of Leasing versus Buying General Purpose Vehicles (Sedan) in the Korean Air Force

    DTIC Science & Technology

    2002-03-01

    COMPARATIVE ANALYSIS OF LEASING VERSUS BUYING GENERAL PURPOSE VEHICLES (SEDAN) IN THE KOREAN AIR FORCE...leasing versus buying vehicle study started from the recognition of this situation in which ROKAF needs an efficient and effective vehicle procurement...versus buying vehicles , which has been used in buying versus leasing decision. This research analyzed two variables, logistics benefits and costs, and

  3. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  4. Creating new cities through the large air-cushion vehicle.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Finnegan, P. M.

    1972-01-01

    The air-cushion vehicle (ACV) can travel over concrete roads, grass, sand, mud, swamp, snow, ice, and water. This mobility makes possible a totally new geographical freedom in choosing transportation routes, locating ports, and laying out a city. By the 1980s fleets of large ACV freighters could begin carrying ocean-going cargo. The mobility of an ACV fleet would allow placing hoverports away from areas now crowded. New cities could rise along shallow or reef-bound seacoasts and rivers, just as cities once rose around deep-water seaports.

  5. Thirty years of research and development of air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Bertelsen, William R.

    This paper describes the conception of the air cushion vehicle (ACV) from experiments with the ground effect of a VTOL aircraft model. Then it describes the evolution of the ultimate ACV drive system through building and testing many models and 16 full-scale ACV to arrive at complete controllability. Adequate control of the frictionless craft, which are without inherent yaw stability, requires control force of the order of magnitude of propulsion. The derived gimbal fans provide such control force in the form of direct thrust, which is instantly available in any of 360 degrees, meterable, instantly cancelable, and reversible.

  6. Director to Director.

    ERIC Educational Resources Information Center

    Child Care Information Exchange, 1991

    1991-01-01

    Presents ideas about customer service that were offered by child care directors at the 1990 Directors' Network Conference. Topics include the implementation of infant and toddler care, parent evaluation forms, junior teacher helpers, parent involvement, credit card tuition payments, family picnics, center interviews and tours, and center telephone…

  7. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  8. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  9. Low Earth Orbit Raider (LER) winged air launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Feaux, Karl; Jordan, William; Killough, Graham; Miller, Robert; Plunk, Vonn

    1989-01-01

    The need to launch small payloads into low earth orbit has increased dramatically during the past several years. The Low Earth orbit Raider (LER) is an answer to this need. The LER is an air-launched, winged vehicle designed to carry a 1500 pound payload into a 250 nautical mile orbit. The LER is launched from the back of a 747-100B at 35,000 feet and a Mach number of 0.8. Three staged solid propellant motors offer safe ground and flight handling, reliable operation, and decreased fabrication cost. The wing provides lift for 747 separation and during the first stage burn. Also, aerodynamic controls are provided to simplify first stage maneuvers. The air-launch concept offers many advantages to the consumer compared to conventional methods. Launching at 35,000 feet lowers atmospheric drag and other loads on the vehicle considerably. Since the 747 is a mobile launch pad, flexibility in orbit selection and launch time is unparalleled. Even polar orbits are accessible with a decreased payload. Most importantly, the LER launch service can come to the customer, satellites and experiments need not be transported to ground based launch facilities. The LER is designed to offer increased consumer freedom at a lower cost over existing launch systems. Simplistic design emphasizing reliability at low cost allows for the light payloads of the LER.

  10. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  11. Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph Actuator

    DTIC Science & Technology

    2012-06-01

    Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph Actuator by Asha J. Hall, Richard A...Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6040 June 2012 Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate ...2011 to April 2012 4. TITLE AND SUBTITLE Flapping Wing Technology for Micro Air Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph

  12. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  13. Resources and Fact Sheets on Servicing Motor Vehicle Air Conditioners (Summary Page)

    EPA Pesticide Factsheets

    Page provides links to resources that can assist motor vehicle air-conditioning system technicians in understanding system servicing requirements and best practices, and learn about alternative refrigerants.

  14. Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle exposure.

    PubMed

    Park, J H; Spengler, J D; Yoon, D W; Dumyahn, T; Lee, K; Ozkaynak, H

    1998-01-01

    The air exchange rates or air changes per hour (ACH) were measured under 4 conditions in 3 stationary automobiles. The ACH ranged between 1.0 and 3.0 h-1 with windows closed and no mechanical ventilation, between 1.8 and 3.7 h-1 for windows closed with fan set on recirculation, between 13.3 and 26.1 h-1 for window open with no mechanical ventilation, and between 36.2 and 47.5 h-1 for window closed with the fan set on fresh air. ACHs for windows closed with no ventilation were higher for the older automobile than for the newer automobiles. With the windows closed and fan turned off, ACH was not influenced by wind speed (p > 0.05). When the window was open, ACH appeared to be greatly affected by wind speed (R2 = 0.86). These measurements are relevant to understanding exposures inside automobiles to sources such as dry-cleaned clothes, cigarettes and airbags. Therefore, to understand the in-vehicle exposure to these internal sources, perchloroethylene (PCE) emitted from dry-cleaned clothes and environmental tobacco smoke (ETS) inside a vehicle were modeled for simulated driving cycles. Airbag deployment was also modeled for estimating exposure level to alkaline particulate and carbon monoxide (CO). Average exposure to PCE inside a vehicle for 30 minutes period was high (approximately 780 micrograms/m3); however, this is only 6% of the two-week exposure that is influenced by the storage of dry cleaned clothing at home. On the other hand, the exposure levels of respirable suspended particulate (RSP) and formaldehyde due to ETS could reach 2.1 mg/m3 and 0.11 ppm, respectively, when a person smokes inside a driving car even with the window open. In modeling the in-vehicle concentrations following airbag deployment, the average CO level over 20 minutes would not appear to present problem (less than 28 ppm). The peak concentration of respirable particulate would have exceeded 140 mg/m3. Since most of the particle mass is composed of alkaline material, these high levels

  15. Vehicle expectations in air transportation for the year 2000

    NASA Technical Reports Server (NTRS)

    Hearth, D. P.

    1980-01-01

    This paper is intended to provide an overview of the air transportation system for the year 2000 in terms of vehicle expectations. Emphasis is placed on civil air transportation with the time period approached from the standpoint of evolutionary changes for the near term and also with the assumption of more revolutionary changes for the far term. The view along the evolutionary path begins with a historical review of airline market growth and the impact that technologies have had on airplane designs. Projections of the life expectancy of existing, derivative, and new airplanes are examined in terms of their productivity and fuel efficiency in view of the present and projected fuel usage and availability. The factors influencing airline growth are outlined and some views on whether another new generation of subsonic airplanes are in the offing are given along with an assessment of the economic viability of an advanced commercial supersonic transport in terms of its higher speed, higher productivity, and higher fuel usage. With regard to revolutionary changes, major technology breakthroughs are assumed to occur at a specified date. As an example, the impact of a dramatic reduction in skin friction drag is examined in terms of its effect on the airplane configuration, its propulsion systems, it projected fuel usage, and the air transportation system in which it must operate.

  16. A novel zinc-air battery for electric vehicles

    SciTech Connect

    Ross, P.N.

    1995-07-01

    A new type of zinc electrode is matched with new bifunctional air electrodes to produce a zinc-air battery of a novel design. The zinc electrode is a flow-thru type made from copper foam-metal. The air electrode uses corrosion resistant carbon black as a high area support for a highly dispersed spinel oxide electrocatalyst. The battery design employs flowing electrolyte, 12 M KOH saturated or supersaturated with zincate. Single cells as large as 200 cm{sup 2} (1/5 EV design scale) having a capacity of 20 AH have been tested with C/4--C/16 constant current cycling. More extensive and realistic life cycle testing was done with 2 Ah cells, including the Simplified Federal Urban Driving Schedule (SFUDS) cycle. This testing has confirmed that these cells can provide the necessary transient power response required for urban EV applications. The cells achieved an average of 72 SFUDS repetitions (7.2 hrs) per discharge cycle, more than twice the number with a sealed lead acid EV battery in similar testing. The full scale (30 kWh) EV battery design based on these single cell tests indicate an energy density of 90--100 Wh/kg, 60--80 W/kg, and a very low materials cost ($50 per kWh). These results indicate this battery would provide at least twice the vehicle range of a lead acid battery of the same volume at a comparable or even lower materials cost.

  17. Zinc air battery development for electric vehicles. Final report

    SciTech Connect

    Putt, R.A.; Merry, G.W.

    1991-07-01

    This report summarizes the results of research conducted during the sixteen month continuation of a program to develop rechargeable zinc-air batteries for electric vehicles. The zinc-air technology under development incorporates a metal foam substrate for the zinc electrode, with flow of electrolyte through the foam during battery operation. In this ``soluble`` zinc electrode the zincate discharge product dissolves completely in the electrolyte stream. Cycle testing at Lawrence Berkeley Laboratory, where the electrode was invented, and at MATSI showed that this approach avoids the zinc electrode shape change phenomenon. Further, electrolyte flow has been shown to be necessary to achieve significant cycle life (> 25 cycles) in this open system. Without it, water loss through the oxygen electrode results in high-resistance failure of the cell. The Phase I program, which focused entirely on the zinc electrode, elucidated the conditions necessary to increase electrode capacity from 75 to as much as 300 mAh/cm{sup 2}. By the end of the Phase I program over 500 cycles had accrued on one of the zinc-zinc half cells undergoing continuous cycle testing. The Phase II program continued the half cell cycle testing and separator development, further refined the foam preplate process, and launched into performance and cycle life testing of zinc-air cells.

  18. Flexible Wing Base Micro Aerial Vehicles: Composite Materials for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.; Ettinger, Scott; Jenkins, David; Martinez, Luis

    2002-01-01

    This paper will discuss the development of the University of Florida's Micro Air Vehicle concept. A series of flexible wing based aircraft that possess highly desirable flight characteristics were developed. Since computational methods to accurately model flight at the low Reynolds numbers associated with this scale are still under development, our effort has relied heavily on trial and error. Hence a time efficient method was developed to rapidly produce prototype designs. The airframe and wings are fabricated using a unique process that incorporates carbon fiber composite construction. Prototypes can be fabricated in around five man-hours, allowing many design revisions to be tested in a short period of time. The resulting aircraft are far more durable, yet lighter, than their conventional counterparts. This process allows for thorough testing of each design in order to determine what changes were required on the next prototype. The use of carbon fiber allows for wing flexibility without sacrificing durability. The construction methods developed for this project were the enabling technology that allowed us to implement our designs. The resulting aircraft were the winning entries in the International Micro Air Vehicle Competition for the past two years. Details of the construction method are provided in this paper along with a background on our flexible wing concept.

  19. The Air Force’s Evolved Expendable Launch Vehicle Competitive Procurement

    DTIC Science & Technology

    2014-03-04

    with ULA, committing the government to buy 35 launch vehicle booster cores over a five-year period, and the associated capability to launch them.2...EELV programmatic forecast dated June 2012. 2 The booster core is the main body of a launch vehicle. In the EELV program, common booster cores are...contributors to this report were Art Gallegos, Assistant Director; Peter Anderson, Claire Buck , Raj Chitikila, Desiree Cunningham, Laura Hook, John

  20. Virtual flight simulation of a dual rotor micro air vehicle

    NASA Astrophysics Data System (ADS)

    Cai, Hongming

    2015-02-01

    In this paper, a new computational method is developed based on computational fluid dynamics (CFD) coupled with rigid body dynamics (RBD) and flight control law in an in-house programmed source code. The CFD solver is established based on momentum source method, preconditioning method, lower-upper symmetric Gauss-Seidel iteration method, and moving overset grid method. Two-equation shear-stress transport k - ω turbulence model is employed to close the governing equations. Third-order Adams prediction-correction method is used to couple CFD and RBD in the inner iteration. The wing-rock motion of the delta wing is simulated to validate the capability of the computational method for virtual flight simulation. Finally, the developed computational method is employed to simulate the longitudinal virtual flight of a dual rotor micro air vehicle (MAV). Results show that the computational method can simulate the virtual flight of the dual rotor MAV.

  1. Flow sensitive actuators for micro-air vehicles

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Hays, M.; Fernandez, E.; Oates, W.; Alvi, F. S.

    2011-10-01

    A macrofiber piezoelectric composite has been developed for boundary layer management of micro-air vehicles (MAVs). Specifically, a piezoelectric composite that is capable of self-sensing and controlling flow has been modeled, designed, fabricated, and tested in wind tunnel studies to quantify performance characteristics, such as the velocity field response to actuation, which is relevant for actively managing boundary layers (laminar and transition flow control). A nonlinear piezoelectric plate model was utilized to design the active structure for flow control. The dynamic properties of the piezoelectric composite actuator were also evaluated in situ during wind tunnel experiments to quantify sensing performance. Results based on velocity field measurements and unsteady pressure measurements show that these piezoelectric macrofiber composites can sense the state of flow above the surface and provide sufficient control authority to manipulate the flow conditions for transition from laminar to turbulent flow.

  2. Computer-aided conceptual design of Air Cushion Vehicles

    NASA Astrophysics Data System (ADS)

    Band, E. G. U.; Lavis, D. R.

    This paper describes the development and use of a computer-aided design tool which has been used to explore preferred options for amphibious Air-Cushion Vehicle (ACV) and Surface-Effect Ship (SES) designs in support of U.S. Navy and U.S. Army programs. The tool, referred to as the ACV Design Synthesis Model (ADSM), is an interactive computer program which provides a description of feasible ACV or SES concepts that could be developed, by a competent design team, to perform the mission described by the input parameters. The paper discusses how the program was used to explore parametrically the design of a range of self-propelled hoverbarges to meet requirements of the U.S. Army Logistics Over the Shore (LOTS) phases of an amphibious landing. Examples of results are presented to illustrate the method used in determining design and performance trade-offs.

  3. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  4. Air pollution and health risks due to vehicle traffic

    PubMed Central

    Zhang, Kai; Batterman, Stuart

    2014-01-01

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed–volume relationship, the California Line Source Dispersion Model, an empirical NO2–NOx relationship, estimated travel time changes during congestion, and concentration–response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, “U” shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2–NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion

  5. Integration of an Autopilot for a Micro Air Vehicle

    NASA Technical Reports Server (NTRS)

    Platanitis, George; Shkarayev, Sergey

    2005-01-01

    Two autopilots providing autonomous flight capabilities are presented herein. The first is the Pico-Pilot, demonstrated for the 12-inch size class of micro air vehicles. The second is the MicroPilot MP2028(sup g), where its integration into a 36-inch Zagi airframe (tailless, elevons only configuration) is investigated and is the main focus of the report. Analytical methods, which include the use of the Advanced Aircraft Analysis software from DARCorp, were used to determine the stability and control derivatives, which were then validated through wind tunnel experiments. From the aerodynamic data, the linear, perturbed equations of motion from steady-state flight conditions may be cast in terms of these derivatives. Using these linear equations, transfer functions for the control and navigation systems were developed and feedback control laws based on Proportional, Integral, and Derivative (PID) control design were developed to control the aircraft. The PID gains may then be programmed into the autopilot software and uploaded to the microprocessor of the autopilot. The Pico-Pilot system was flight tested and shown to be successful in navigating a 12-inch MAV through a course defined by a number of waypoints with a high degree of accuracy, and in 20 mph winds. The system, though, showed problems with control authority in the roll and pitch motion of the aircraft: causing oscillations in these directions, but the aircraft maintained its heading while following the prescribed course. Flight tests were performed in remote control mode to evaluate handling, adjust trim, and test data logging for the Zagi with integrated MP2028(sup g). Ground testing was performed to test GPS acquisition, data logging, and control response in autonomous mode. Technical difficulties and integration limitations with the autopilot prevented fully autonomous flight from taking place, but the integration methodologies developed for this autopilot are, in general, applicable for unmanned air

  6. 77 FR 3386 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... emission vehicle program for light- duty vehicles (LEV II). The Clean Air Act (CAA) contains specific... Program that incorporates by reference provisions of California's LEV II rules and specifies a transition... (California LEV), under authority of section 177 of the CAA. The formal SIP Clean Vehicle SIP revision...

  7. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AL11 Federal Motor Vehicle Safety... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... published a final rule in the Federal Register amending Federal Motor Vehicle Safety Standard (FMVSS)...

  8. Air Force Research Laboratory Sensors Directorate Communications Branch History from 1960-2011

    DTIC Science & Technology

    2011-12-01

    was formed as part of the Air Force Avionics Laboratory in 1960 up until the present date. It covers the highlights of the Branch’s activities, but is...GHz) airborne terminals which could operate with a variety of data rates up to 274 Mbps. The ABIT operational scenario consists of the Air-to-Air (A...Paramax developed the ADM hardware and delivered it to WPAFB in 1991 for installation into the flight test aircraft. The 4950th Test Wing installed

  9. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  10. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  11. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  12. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  13. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  14. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  15. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  16. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  17. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0004: Advanced Sol-Gel Adhesion Processes

    DTIC Science & Technology

    2002-04-01

    AFRL-ML-WP-TR-2003-4173 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0004: Advanced Sol-Gel Adhesion Processes Kay Y...2001 – 03/31/2002 5a. CONTRACT NUMBER F33615-00-D-3052 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM

  18. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  19. Capability and Interface Assessment of Gaming Technologies for Future Multi-Unmanned Air Vehicle Systems

    DTIC Science & Technology

    2011-08-01

    technologies evaluated include Real-Time Strategy (RTS) games , which require the simultaneous control of multiple entities; Massively Multiplayer Online Role...Air Vehicle, Unmanned Air Vehicle Systems, Real-Time Strategy, Massively Multiplayer Online Role Playing Games , Situation Awareness, UAV, UAS, RTS...tested platform for simultaneous control of multiple entities. Similarly, the popularity of Massively Multiplayer Online Role Playing Games (MMORPG

  20. H-CANYON AIR EXHAUST TUNNEL INSPECTION VEHICLE DEVELOPMENT

    SciTech Connect

    Minichan, R.; Fogle, R.; Marzolf, A.

    2011-05-24

    The H-Canyon at Savannah River Site is a large concrete structure designed for chemical separation processes of radioactive material. The facility requires a large ventilation system to maintain negative pressure in process areas for radioactive contamination control and personnel protection. The ventilation exhaust is directed through a concrete tunnel under the facility which is approximately five feet wide and 8 feet tall that leads to a sand filter and stack. Acidic vapors in the exhaust have had a degrading effect on the surface of the concrete tunnels. Some areas have been inspected; however, the condition of other areas is unknown. Experience from historical inspections with remote controlled vehicles will be discussed along with the current challenge of inspecting levels below available access points. The area of interest in the exhaust tunnel must be accessed through a 14 X 14 inch concrete plug in the floor of the hot gang valve corridor. The purpose for the inspection is to determine the condition of the inside of the air tunnel and establish if there are any structural concerns. Various landmarks, pipe hangers and exposed rebar are used as reference points for the structural engineers when evaluating the current integrity of the air tunnel.

  1. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  2. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  3. Transportation vehicle energy intensities. A joint DOT/NASA reference paper. [energy consumption of air and ground vehicles

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Paullin, R. L.

    1974-01-01

    A compilation of data on the energy consumption of air and ground vehicles is presented. The ratio BTU/ASM, British Thermal Units/Available Seat Mile, is used to express vehicle energy intensiveness, and related to the energy consumed directly in producing seat-mile or ton-mile productivity. Data is presented on passenger and freight vehicles which are in current use or which are about to enter service, and advanced vehicles which may be operational in the 1980's and beyond. For the advanced vehicles, an estimate is given of the date of initial operational service, and the performance characteristics. Other key considerations in interpreting energy intensiveness for a given mode are discussed, such as: load factors, operations, overhead energy consumption, and energy investments in new structure and equipment.

  4. Dynamics, stability, and control analyses of flapping wing micro-air vehicles

    NASA Astrophysics Data System (ADS)

    Orlowski, Christopher T.; Girard, Anouck R.

    2012-05-01

    The paper presents an overview of the various analyses of flight dynamics, stability, and control of flapping wing micro-air vehicles available in the literature. The potential benefits of flapping wing micro-air vehicles for civil, military, and search and rescue operations are numerous. The majority of the flight dynamics research involves the standard aircraft (6DOF) equations of motion, although a growth is evident in examining the multibody flight dynamics models of flapping wing micro-air vehicles. The stability of flapping wing micro-air vehicles is largely studied in the vicinity of hover and forward flight. The majority of stability studies focus on linear, time-invariant stability in the vicinity of reference flight conditions, such as hover or forward flight. The consistent result is that flapping wing micro-air vehicles are unstable in an open loop setting. The unstable result is based on linear and nonlinear stability analyses. Control has been demonstrated for hovering and forward flight through various methods, both linear and nonlinear in nature. The entirety of reported research into the stability and control of flapping wing micro-air vehicles has neglected the mass effects of the wings on the position and orientation of the central body. Successful control of a flapping wing micro-air vehicle, with the wings' mass effects included, is still an open research area.

  5. A Discussion of Aerodynamic Control Effectors (ACEs) for Unmanned Air Vehicles (UAVs)

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    2002-01-01

    A Reynolds number based, unmanned air vehicle classification structure has been developed which identifies four classes of unmanned air vehicle concepts. The four unmanned air vehicle (UAV) classes are; Micro UAV, Meso UAV, Macro UAV, and Mega UAV. In a similar fashion a labeling scheme for aerodynamic control effectors (ACE) was developed and eleven types of ACE concepts were identified. These eleven types of ACEs were laid out in a five (5) layer scheme. The final section of the paper correlated the various ACE concepts to the four UAV classes and ACE recommendations are offered for future design activities.

  6. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  7. Preliminary performance estimates of an oblique, all-wing, remotely piloted vehicle for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Bailey, R. O.

    1974-01-01

    A computerized aircraft synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of an oblique, all-wing, remotely piloted vehicle (RPV) for the highly maneuverable, air-to-air combat role. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. The results are presented in terms of both the required vehicle weight to accomplish this mission and the combat effectiveness as measured by turning and acceleration capability. This report describes the synthesis program, the mission, the vehicle, and results from sensitivity studies. An optimization process has been used to establish the nominal RPV configuration of the oblique, all-wing concept for the specified mission. In comparison to a previously studied conventional wing-body canard design for the same mission, this oblique, all-wing nominal vehicle is lighter in weight and has higher performance.

  8. Membrane and adaptively-shaped wings for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng

    Micro air vehicles (MAVs), with wing span of 15 cm or less and flight speed around 10 m/s, have many applications in both civilian and military areas. The Reynolds number based on the given parameters is around 10 4, which often yields insufficient lift-to-drag ratio. Furthermore, one expects the unsteady effect to be noticeable for such flight vehicles. The flexible wing has been demonstrated to exhibit favorable characteristics such as passive adaptation to the flight; environment and delayed stall. The present study focuses on developing computational and modeling capabilities to better understand the MAV aerodynamics. Both flexible wings, utilizing membrane materials, and adaptively-shaped wings, utilizing piezo-actuated flaps, have been studied. In the adaptively-shaped wing study, we use piezo-actuated flaps to actively control the flow. We assess the impacts of the flap geometry, flapping amplitude, and turbulence; modeling on the flow structure with a parallel experimental effort. The membrane wing uses a passive control mechanism to delay the stall angle and to provide a smoother flight platform. Our study focuses on the mutual interactions between the membrane wing and its surrounding viscous flow. We compare the lift-to-drag ratio and the flow structure between the flexible wing and the corresponding rigid wing. We also investigate the aerodynamic characteristics associated with the low Reynolds number and low aspect ratio wing. To assist our study, we propose an automatic and efficient moving grid technique to facilitate the fluid and structure interaction computations; we also present a dynamic membrane model to study the intrinsic large deformation of the flexible membrane wing. Solutions obtained from the three-dimensional Navier-Stokes equations are presented to highlight, the salient features of the wing aerodynamics. Besides the aerodynamic study, we also perform shape optimization to improve the membrane wing performance. Since direct

  9. Unmanned air vehicle (UAV) ultra-persitence research

    SciTech Connect

    Dron, S. B.

    2012-03-01

    Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were

  10. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  11. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Transition to Low-GWP Alternatives in Passenger Vehicle Air Conditioners

    EPA Pesticide Factsheets

    This fact sheet provides current information on low global warming potential (GWP) alternatives in newly manufactured passenger vehicle air conditioners (ACs), in lieu of high-GWP hydrofluorocarbons (HFCs).

  13. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  14. Air Vehicles Technology Integration Program (AVTIP). Delivery Order 0020: Prediction of Manufacturing Tolerances for Laminar Flow

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2005-3060 AIR VEHICLES TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020 : Prediction Of... Technology Integration Program (AVTIP) 5b. GRANT NUMBER Delivery Order 0020 : Prediction Of Manufacturing Tolerances For Laminar Flow 5c. PROGRAM

  15. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  16. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  17. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  18. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Emergency Generator Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  19. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Clean Lubrication Oil Storage Tank & Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  20. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Supply Warehouse, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  1. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  2. Biomimetic Micro Air Vehicle Testing Development and Small Scale Flapping-Wing Analysis

    DTIC Science & Technology

    2008-03-01

    Gautam, J ., and Massey, K ., “The Development of a Miniature Flexible Flapping Wing Mechanism for Use in a Robotic Air Vehicle,” 45th AIAA Aerospace...Air Vehicles in the Service of Air Force Missions”’ Occasional Paper No. 29, Air War College, Jul. 2002. Isaac, K ., Colozza, A., Rolwes, J ., “Force...358, No. 1437, 29 Sept. 2003, pp. 1577-1587. PA, 1997. Noonan, K ., Yeager, W., Singleton, J ., Wilbur, M., Mirick, Paul H., “Wind Tunnel Evaluation

  3. Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...

  4. Assessing the Link between Environmental Concerns and Consumers' Decisions to Use Clean-Air Vehicles

    ERIC Educational Resources Information Center

    Plax, Timothy G.; Kearney, Patricia; Ross, Ted J.; Jolly, J. Christopher

    2008-01-01

    A consulting contract with the California Air Resources Board led to a project examining how California drivers' and fleet managers' perceptions, attitudes, and consumer behavior regarding Clean Vehicle Technologies influenced their own energy choices when it came to purchasing vehicles. The consultants examined archival research, conducted focus…

  5. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0054: Opportune Landing Site (OLS) Critical Experiment

    DTIC Science & Technology

    2008-04-01

    AFRL-RB-WP-TR-2009-3118 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0054: Opportune Landing Site (OLS) Critical...VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0054: Opportune Landing Site (OLS) Critical Experiment 5a. CONTRACT NUMBER F33615-00

  6. Dynamic Response Analysis of an Icosahedron Shaped Lighter Than Air Vehicle

    DTIC Science & Technology

    2015-03-26

    results using a modal analysis. The experimental setup designed will allow future research on the interaction between the frame and skin of icosahedron...Icosahedron Frame ( on Right) with Membrane Skin ( on Left)......................... 13 Figure 3: Beam Cross-section for Icosahedron Frame ...LTAV Lighter Than Air Vehicle m Meter M Mass Matrix MATLAB Matrix Laboratory MAV Micro Air Vehicle MPa Megapascal n Mode Number N Number of

  7. Vehicle performance optimization utilizing the air turbo-ramjet propulsion system: Methodology development and applications

    NASA Astrophysics Data System (ADS)

    Christensen, Kirk Le

    The ATR (Air TurboRocket) is an air breathing propulsion system in which the turbocompressor turbine is powered by a hot drive gas which is generated independently of the air flow through the compressor. The ATR has a lower specific impulse (Isp) and higher thrust compared to a similar size turbojet but a lower thrust and higher Isp compared to similar size solid rocket motor (SRM). This work defines the benefits of ATR propulsion for tactical vehicles. ATR simulation codes were developed to support analysis of hypothetical ATR powered vehicles. Both turbojet powered and SRM powered vehicles were also evaluated against range and time of flight as the major evaluation criteria. This analysis required the use of an existing turbojet code, a solid rocket motor (SRM) model, an aerodynamics predictor code (DATCOM) and a two dimensional, flat earth trajectory analysis code (ZTRAJ). Two weight class vehicles (800 and 3500 lbsbm) launched at Mach 0.9 and 10000 feet altitude were evaluated as well as a low Mach (0.1) launch of the 800 lbsbm class vehicle. These vehicles, with the three propulsion system options, required nine vehicle/trajectory analyses. The results of these analyses show that only the ATR powered vehicle is able to simultaneously meet minimum range and maximum flight time requirements. The SRM powered vehicle (because of its low Isp) only achieves about 50% of the range of the ATR powered vehicle. The turbojet powered vehicle (because of its low thrust) required more than 30% of the flight time required by the ATR powered vehicle for the same range.

  8. Energy-Based Design Methodology for Air Vehicle Systems: Aerodynamic Correlation Study

    DTIC Science & Technology

    2005-03-01

    ENERGY -BASED DESIGN METHODOLOGY FOR AIR VEHICLE SYSTEMS : AERODYNAMIC CORRELATION STUDY AFOSR: FA9550-64-"t/Dr. John Schmisseur AFOSR-NA C>(4-1-0- I...drag estimation and vehicle-level utilization of energy . The exergy utilization of a wing in a steady, low subsonic, three-dimensional, viscous flow...5a. CONTRACT NUMBER Energy -Based Design Methodology For Air Vehicle 5b. GRANT NUMBER Systems : Aerodynamic Correlation Study FA9550,-64 (9 4-1-- !(1 5c

  9. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  10. Clean Air Act Vehicle and Engine Enforcement Case Resolutions

    EPA Pesticide Factsheets

    The Clean Air Act requires new engines and equipment sold or distributed in the United States to be certified to meet EPA-established emissions requirements to protect public health and the environment from air pollution.

  11. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live...

  12. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live...

  13. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live...

  14. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live...

  15. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH..., Guinea Pigs, Nonhuman Primates, and Marine Mammals Transportation Standards § 3.138 Primary conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used...

  16. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH..., Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.114 Primary conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used...

  17. Progress towards the development of transient ram accelerator simulation as part of the U.S. Air Force Armament Directorate Research Program

    NASA Astrophysics Data System (ADS)

    Sinha, N.; York, B. J.; Dash, S. M.; Drabczuk, R.; Rolader, G. E.

    1992-07-01

    This paper describes the development of an advanced CFD simulation capability in support of the U.S. Air Force Armament Directorate's ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, high pressure thermochemistry, etc. Selected ram accelerator simulations are presented which serve to exhibit the CRAFT code's capabilities and identify some of the principal research/design issues.

  18. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection

    NASA Astrophysics Data System (ADS)

    Weis, Allison; Jaramillo, Paulina; Michalek, Jeremy

    2016-02-01

    We perform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed, normative optimization model of the PJM electricity grid that captures the change in power plant operations and related emissions due to vehicle charging. We estimate and monetize the resulting human health and environmental damages from life cycle air emissions for each vehicle technology. We model PJM using the most recent data available (2010) as well as projections of the PJM grid in 2018 and a hypothetical scenario with increased wind penetration. We assess a range of sensitivity cases to verify the robustness of our results. We find that PEVs have higher life cycle air emissions damages than gasoline HEVs in the recent grid scenario, which has a high percentage of coal generation on the margin. In particular, battery electric vehicles with large battery capacity can produce two to three times as much air emissions damage as gasoline HEVs, depending on charge timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs would produce air emissions damages comparable to or slightly lower than HEVs.

  19. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  20. Modeling and analysis of an articulated winged micro air vehicle for gust mitigation

    NASA Astrophysics Data System (ADS)

    Oduyela, Adetunji Y.

    Articulated micro air vehicles are a class of micro air vehicles comprised of a main center body attached to outer wings on both sides. As in the case of a single rigid micro air vehicle, the center body and the attached bodies in the articulated case are all responsible for the generation of aerodynamic forces and moments during flight resulting in a multibody system. While many approaches have been taken in the literature to model the system of equations resulting from such a complicated multibody system, this dissertation presents an approach based on a Newton-Euler multibody dynamics formulation where the multiple bodies are attached together with suitable joints. The number and type of joints determines the level of articulation and total degree of freedom for the entire system. Unlike most articulated air vehicle model formulations available in the literature, the final model formulation presented in this work provides joint force and moment data acting on the articulated MAV during flight. This feature allows such information to be available during the vehicle design and development stage where appropriate spring and dampers for the system are selected based on mission requirements. Experimental validation of the proposed mathematical model using experimental flight test data obtained from UAHuntsville's Autonomous Tracking and Optical Measurements laboratory allowed the comparison of the flight test results and model simulations. Analytical investigation of the gust alleviation properties of the articulated 8 degree-of-freedom micro air vehicle model was carried out using simulations with varying crosswind gust magnitudes and shows that the passive articulation in micro air vehicles increases their robustness to gusts when suitable joint parameters are selected.

  1. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  2. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  3. Design criteria for light high speed desert air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  4. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    PubMed Central

    Michalek, Jeremy J.; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B.

    2011-01-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO2 emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  5. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    PubMed

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-04

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent.

  6. Business Case Analysis of the Special Operations Air Mobility Vehicle

    DTIC Science & Technology

    2013-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT BUSINESS CASE ANALYSIS OF THE SPECIAL OPERATIONS AIR...2013 3. REPORT TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE BUSINESS CASE ANALYSIS OF THE SPECIAL OPERATIONS AIR...perform an industry analysis of the WSC training and aircraft sales industry; and (3) determine the expected government training capabilities and costs

  7. Prospects for future hypersonic air-breathing vehicles

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.; Blankson, Isaiah M.

    1991-01-01

    An overview of the technical progress achieved in key areas of hypersonic airbreathing vehicle development is presented. The context for hypersonic applications is discussed with emphasis placed on technology issues and requirements, particularly for propulsion and technology integration. Attention is given to CFD technology which allows the consideration of configurations and extrapolations to flight conditions that cannot be simulated on the ground.

  8. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  9. Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration

    SciTech Connect

    1995-03-01

    Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

  10. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  11. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    NASA Astrophysics Data System (ADS)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  12. Cooperation and Consensus Seeking for Teams of Unmanned Air Vehicles

    DTIC Science & Technology

    2007-06-30

    the second rendezvous , and (f) the second meeting of the perimeter endpoints. The algorithm was initiated at approximately 50 seconds, after the two...accomplish objectives that would be impossible for a single vehicle. For example, a formation of networked spacecraft could be used to synthesize a space-based...J. P. How, " Formation control strategies for a separated spacecraft interferome- ter," in Proceedings of the American Control Conference, June 1999

  13. Landing Craft Air Cushion (LCAC) Vehicle Crew Selection: An Overview.

    DTIC Science & Technology

    1996-06-01

    perceptual and psychomotor skills to operate. Control of the LCAC is similar to an aircraft although vehicle responses to control inputs are much...perceptual information, rapid cognitive processing abilities, fine psychomotor skills , and time-sharing ability. Thus, skills required to operate the...then combined to form a composite score This composite score is assumed to be a good indicator for the more complex psychomotor skills relevant to

  14. Configuration Studies of Personal Air Vehicles. Personal Air Vehicle and Flying Jeep Concepts: A Commentary on Promising Approaches or What Goes Around Comes Around (About Every Twenty Years)

    NASA Technical Reports Server (NTRS)

    Hall, David W.

    2001-01-01

    The NASA/Langley Personal Air Vehicle (PAV) Exploration (PAVE) and the DARPA (Defense Advanced Research Projects Agency) Dual Air/Road Transportation System (DARTS) projects were established to investigate the feasibility of creating vehicles which could replace, or at the very least augment, personal ground and air transportation schemes. This overall goal implies integrating several technology areas with practical everyday transportation requirements to design a class of vehicles which will achieve the following goals: (1) Vertical, Extremely Short, or Short Takeoff and Landing (VTOL, ESTOL, STOL) capability; (2) Operation at block speeds markedly faster than current combinations of land and air transportation, particularly in critical market areas; (3) Unit cost comparable to current luxury cars and small general aviation aircraft; (4) Excellent reliability; (5) Excellent safety; (6) Ability to integrate with existing land and air transportation systems. The conclusions of these configuration studies are summarized as follows: (1) Creation of the five assigned configurations prompted added explorations, some of which were dead-ends; (2) Some components could be common to all configurations such as avionics and dual-mode suspension schemes; (3) Single-Mode PAVs can be created by removing dual-mode-specific items; (4) Aviation history provided some intriguing starting points, as in what goes around comes around; (5) CTOL (Conventional Take-off and Landing) and STOL dual-mode PAVs look feasible with single-mode PAVs being simplifications of the dual-mode approach; (6) VTOL PAVs will require development; (7) More exotic collapsing mechanisms mechanisms need development; (8) As a teaching tool, PAVs are not yet a well-enough bounded design problem.

  15. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  16. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  17. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  18. Improving the aluminum-air battery system for use in electrical vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  19. Unmanned Combat Aerial Vehicles: A Close Air Support Alternative

    DTIC Science & Technology

    2007-11-02

    War College, Maxwell AFB AL, Jones Auditorium, 24 October 2002. 30 Terry Somerville , “Global Strike Task Force—Kicking Down the Door”, Air Force...2002, 34. 49 Anne Marie Squeo, “Pentagon’s Aerodynamic Shift—Ascendant Unmanned Planes May Mothball Some Manned Ones,” The Wall Street Journal, 14...2002. Somerville , Terry. “Global Strike Task Force—Kicking Down the Door.” Air Force Link, 10 August 2001, n.p. On-line. Internet, 12 November 2002

  20. Use of cooperative unmanned air and ground vehicles for detection and disposal of mines

    NASA Astrophysics Data System (ADS)

    Zawodny MacArthur, Erica; MacArthur, Donald; Crane, Carl

    2005-11-01

    The objective of this research is to extend the sensing capabilities of a multi-vehicle ground system by incorporating the environmental perception abilities of unmanned aerial vehicles. The aerial vehicle used in this research is a Miniature Aircraft Gas Xcell RC helicopter. It is outfitted with a sensor payload containing stereo vision cameras, GPS, and a digital compass. Geo- referenced images are gathered using the above sensors that are used in this research to create a map of the operating region. The ground vehicle used in this research is an automated Suzuki Mini-Quad ATV. It has the following onboard sensors: single-vision camera, laser range device, digital compass, GPS, and an encoder. The ground vehicle uses the above sensors and the map provided by the helicopter to traverse the region, locate, and isolate simulated land mines. The base station consists of a laptop that provides a communication link between the aerial and ground vehicle systems. It also provides the operator with system operation information and statistics. All communication between the vehicles and the base station is performed using JAUS (Joint Architecture for Unmanned Systems) messages. The JAUS architecture is employed as a means to organize inter-vehicle and intra-vehicle communication and system component hierarchy. The purpose of JAUS is to provide interoperability between various unmanned systems and subsystems for both military and commercial applications. JAUS seeks to achieve this through the development of functionally cohesive building blocks called components whose interface messages are clearly defined. The JAUS architecture allows for a layered control strategy which has specific message sets for each layer of control. Implementation of the JAUS architecture allows for ease of software development for a multi- vehicle system. This experiment demonstrates how an air-ground vehicle system can be used to cooperatively locate and dispose of simulated mines.

  1. On-Line Trajectory Optimization for Autonomous Air Vehicles

    DTIC Science & Technology

    2007-07-31

    equations of motion to handle cooperative path planning for multi-vehicles. • Application of genetic algorithms (GA) to solve multiple initial...1 17 1 165 sinsincos D vDD D uDDD Kg yy y xyy ψ λ ψψ λλ& (2.24) where 32 3 11 AAD = (2.25) 322 AfVfD −= (2.26) y yx ffBVAfffVABAVAD...value was needed, a variable step sweep was employed to find it. Otherwise the GA was used[26-28]. To begin the genetic algorithm, a set of 48

  2. Unsteady Low Reynolds Number Aerodynamics for Micro Air Vehicles (MAVs)

    DTIC Science & Technology

    2010-05-01

    of LEVs a t the model apex or wing /body “ juncture”? The hypothesis is that the wingtips stall, losing loading, resulting in a nose- up pitching ... flapping - wing vehicles, where the fast frequency models t he wing f lapping, while the s low frequency models t he gust. S ometimes pitch and plunge i...Study of a Canonical Pitch - Up , Pitch -Down Wing Maneuver". AIAA-2009-3687 30. Alam, M., Suzen, Y.D., and OL, M.V. "Numerical Simulations of

  3. Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2005-01-01

    A relatively unexplored method to improve the endurance of an autonomous aircraft is to use buoyant plumes of air found in the lower atmosphere called thermals or updrafts. Glider pilots and birds commonly use updrafts to improve range, endurance, or cross-country speed. This report presents a quantitative analysis of a small electric-powered uninhabited air vehicle using updrafts to extend its endurance over a target location. A three-degree-of-freedom simulation of the uninhabited air vehicle was used to determine the yearly effect of updrafts on performance. Surface radiation and rawinsonde balloon measurements taken at Desert Rock, Nevada, were used to determine updraft size, strength, spacing, shape, and maximum height for the simulation. A fixed-width spiral path was used to search for updrafts at the same time as maintaining line-of-sight to the surface target position. Power was used only when the aircraft was flying at the lower-altitude limit in search of updrafts. Results show that an uninhabited air vehicle with a nominal endurance of 2 hours can fly a maximum of 14 hours using updrafts during the summer and a maximum of 8 hours during the winter. The performance benefit and the chance of finding updrafts both depend on what time of day the uninhabited air vehicle is launched. Good endurance and probability of finding updrafts during the year was obtained when the uninhabited air vehicle was launched 30 percent into the daylight hours after sunrise each day. Yearly average endurance was found to be 8.6 hours with these launch times.

  4. Design and analysis of aluminum/air battery system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua; Knickle, Harold

    Aluminum (Al)/air batteries have the potential to be used to produce power to operate cars and other vehicles. These batteries might be important on a long-term interim basis as the world passes through the transition from gasoline cars to hydrogen fuel cell cars. The Al/air battery system can generate enough energy and power for driving ranges and acceleration similar to gasoline powered cars. From our design analysis, it can be seen that the cost of aluminum as an anode can be as low as US 1.1/kg as long as the reaction product is recycled. The total fuel efficiency during the cycle process in Al/air electric vehicles (EVs) can be 15% (present stage) or 20% (projected) comparable to that of internal combustion engine vehicles (ICEs) (13%). The design battery energy density is 1300 Wh/kg (present) or 2000 Wh/kg (projected). The cost of battery system chosen to evaluate is US 30/kW (present) or US$ 29/kW (projected). Al/air EVs life-cycle analysis was conducted and compared to lead/acid and nickel metal hydride (NiMH) EVs. Only the Al/air EVs can be projected to have a travel range comparable to ICEs. From this analysis, Al/air EVs are the most promising candidates compared to ICEs in terms of travel range, purchase price, fuel cost, and life-cycle cost.

  5. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  6. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0020: Prediction of Manufacturing Tolerances for Laminar Flow, Task 6

    DTIC Science & Technology

    2006-09-01

    AFRL-VA-WP-TR-2007-3086 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020: Prediction of Manufacturing Tolerances for...NUMBER F33615-00-D-3054-0020 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020

  7. A New High-Resolution Direction Finding Architecture Using Photonics and Neural Network Signal Processing for Miniature Air Vehicle Applications

    DTIC Science & Technology

    2015-09-01

    RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS by Robert...RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS 5. FUNDING...unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This paper investigates the design of an interferometric direction finding receiver

  8. Design of an air sampler for a small unmanned aerial vehicle.

    PubMed

    Peräjärvi, K; Lehtinen, J; Pöllänen, R; Toivonen, H

    2008-01-01

    In the aftermath of a nuclear accident or malevolent act, it is of paramount importance to have the capability to monitor airborne radioactive substances by collecting air samples. For potentially dangerous missions, the Radiation and Nuclear Safety Authority of Finland (STUK) has developed an air sampler to be used on a small unmanned aerial vehicle. When a Petrianov or Fluoropore filter is used in the sampler and the air velocity is 71 km h(-1), the air flow rate through the filter is 0.73 m(3) h(-1) or 0.23 m(3) h(-1), respectively. The present article introduces the developed air sampler using fluid dynamic simulations and wind tunnel data. The operation of the system was validated by collecting airborne radioactive aerosols from air.

  9. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    NASA Astrophysics Data System (ADS)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  10. 78 FR 11122 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Motor Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Motor.... SUMMARY: EPA is proposing to approve a State Implementation Plan (SIP) revision submitted by the... Philadelphia Area) to reflect the use of the most recent version of the Motor Vehicle Emission Simulator...

  11. 75 FR 6338 - Protection of Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Conditioning Sector Under the Significant New Alternatives Policy (SNAP) Program AGENCY: Environmental... to use conditions as a substitute for CFC-12 in motor vehicle air conditioning. The proposed... conditioning, subject to use conditions. The refrigerant discussed in the proposed action, for which...

  12. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... °C) or higher. The ambient temperature within the animal cargo space shall not exceed 85 °F (29.5 °C... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.37 Section 3.37 Animals and Animal Products ANIMAL AND PLANT...

  13. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT...

  14. 78 FR 25858 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Motor Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Motor Vehicle Emissions Budgets for the Pennsylvania Counties in the Philadelphia-Wilmington, PA-NJ-DE 1997...

  15. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  16. An Analysis of Skill Requirements for Operators of Amphibious Air Cushion Vehicles (ACVs).

    ERIC Educational Resources Information Center

    McKnight, A. James; And Others

    This report describes the skills required in the operation of an amphibious air cushion vehicle (ACV) in Army tactical and logistic missions. The research involved analyzing ACV characteristics, operating requirements, environmental effects, and results of a simulation experiment. The analysis indicates that ACV operation is complicated by an…

  17. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... and 86.1828-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test... with that item in that car line, within that test group. (2) Where it is expected that 33 percent...

  18. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light...-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test group, will be... that car line, within that test group. (2) Where it is expected that 33 percent or less of the car...

  19. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... and 86.1828-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test... with that item in that car line, within that test group. (2) Where it is expected that 33 percent...

  20. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... and 86.1828-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test... with that item in that car line, within that test group. (2) Where it is expected that 33 percent...

  1. Origin and Control of the Flow Structure on Unmanned Combat Air Vehicle

    DTIC Science & Technology

    2007-12-01

    Prescrtbed by ANSI Ski Z3S.18 AFOSR Final Repot 013108 ORIGIN AND CONTROL OF THE FLOW STRUCTURE ON UNMANNED COMBAT AIR VEHICLES AFOSR GRANT #FA9550-05...1991) described low-dimensional models for flows past a grooved channel and circular cylinders. By employing a Galerkin method, a governing partial

  2. CRITERIA AND AIR TOXIC EMISSIONS FROM IN-USE, LOW EMISSION VEHICLES (LEVS)

    EPA Science Inventory

    The U.S. Environmental Protection Agency implemented a program to identify tailpipe emissions of criteria and air toxic contaminants from in-use, light-duty Low Emission Vehicles (LEVs). EPA recruited twenty-five LEVs in 2002, and measured emissions on a chassis dynamometer usin...

  3. Feasibility report: Operation of light air cushion vehicle at McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Dibbern, J. S.

    1987-02-01

    This report explores the viability of the use of an air cushion vehicle (ACV) or hovercraft to perform logistic and scientific support in the area of McMurdo Station, Antarctica. After a review of personnel assets and facilities at McMurdo Station to support the ACV plus a reconnaissance of the five major routes selected, it appears that an air cushion vehicle in the 1 to 1 1/2 ton payload class would be of significant value to support operations. It would reduce transit times for surface vehicle traverses on the routes selected and reduce requirements for expenditure of helicopter flight time in others. Of major significance is the ability to handle passenger/shuttle requirements between the Scott Base transition and Williams Field Skiway. Use of the ACV for high frequency passenger operations would help preserve the snow road for cargo operations during periods of road deterioration.

  4. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  5. Zinc/air fuel cell for electric vehicles

    SciTech Connect

    Cherepy, N. J.; Krueger, R.; Cooper, J. F.

    1999-01-01

    We are conducting tests of an advanced zinc/air fuel cell design to determine effectiveness in various commercial applications. Our 322-cm2 cell uses gravity-fed zinc pellets as the anode, 12 M KOH electrolyte, and an air cathode catalyzed by a cobalt-porphyrin complex on carbon black. A single 322 cm2 cell runs at a standard operating power of 38 W (1200 W/m2) at 39 A (1245 A/m2) and 0.96 V with a power density of 2400 W/m2 at 0.67 V. With improved current collection hardware, already demonstrated in the laboratory, power generation increases to -3600 W/m2 at 1V. We conducted a 50-hour test in which a cell generated 587 Ah and 569 Wh. The power that may be generated increases by a factor of 2.5 between T = 28 °C and 52 °C. Electrolyte capacity, without stabilization additives, was measured at 147 Ah/L

  6. Effect of vehicle type on the performance of second generation air bags for child occupants.

    PubMed

    Arbogast, Kristy B; Durbin, Dennis R; Kallan, Michael J; Winston, Flaura K

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars - those children exposed to second-generation air bags were half as likely to sustain a serious injury - and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs.

  7. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  8. A fast ascent trajectory optimization method for hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Murillo, Oscar J., Jr.

    The objective of this dissertation is to investigate a fast and reliable method to generate three-dimensional optimal ascent trajectories for hypersonic air-breathing vehicles. The problem is notoriously difficult because of the strong nonlinear coupling amongst aerodynamics, propulsion, vehicle attitude and trajectory state. As such an algorithm matures, the ultimate goal is to realize optimal closed-loop ascent guidance for hypersonic air-breathing vehicles. The problem is formulated as a fuel-optimal control problem. The corresponding necessary conditions are given. It is shown how the original problem of search for the optimal control commands can be reduced to a univariate root-finding problem at each point along the trajectory. A finite difference scheme is used to numerically solve the associated two-point-boundary-value problem. Evaluation of the approach is done through open-loop solutions and closed-loop simulations. The results show promising potential of the proposed approach as a rapid trajectory optimization tool for the class of hypersonic air-breathing vehicles.

  9. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  10. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-04-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  11. Assessment of air quality in a commercial cattle transport vehicle in Swedish summer and winter conditions.

    PubMed

    Wikner, I; Gebresenbet, G; Nilsson, C

    2003-03-01

    Transport by road can induce significant stress in cattle. Thermal stress is among the main stress producing factors during transport. The provision of ventilation in livestock transport vehicles is usually through openings along the sides of the vehicle. The incoming air will affect air quality inside by regulating temperature, relative humidity, gas levels and levels of other contaminants. The aim of the present investigation was to map out the air quality in a commercial cattle transport vehicle under various climatic conditions and with varying stocking densities and transport times. Distributions of air temperature, relative humidity and concentrations of ammonia, carbon dioxide, oxygen and methane have been determined during 35 experimental journeys. In average the mean temperature inside the compartment was about 3 degrees C and 6 degrees C higher than outside temperature in summer (+7.8(-)+24.0 degrees C) and winter (-24.3(-)+12.7 degrees C) conditions respectively. The temperature increment inside, as could be expected from theory, increased with reduced ventilation and increased animal density. Many stops to load new animals lowered the temperature increment and relative humidity in winter time. In summer more stops made the compartment temperature and relative humidity increase. The inside temperature distribution was less than about 3 degrees C during both summer and winter season. Average ammonia level varied between 3 and 6 ppm depending on stocking density and number of stops with a maximum value of 18 ppm. No detectable methane levels could be found inside the compartment at any time.

  12. Concentrations of vehicle-related air pollutants in an urban parking garage.

    PubMed

    Kim, Sung R; Dominici, Francesca; Buckley, Timothy J

    2007-11-01

    There is growing evidence that traffic-related air pollution poses a public health threat, yet the dynamics of human exposure are not well understood. The urban parking garage is a microenvironment that is of concern but has not been characterized. Using time-resolved measurement methods, we evaluated air toxics levels within an urban parking garage and assessed the influence of vehicle activity and type on their levels. Carbon monoxide (CO) and particle-bound polycyclic aromatic hydrocarbons (pPAH) were measured with direct-reading instruments. Volatile organic compounds (VOCs) were measured in 30 min intervals using a sorbent tube loaded sequential sampler. Vehicle volume and type were evaluated by video recording. Sampling was conducted from June 24 to July 17, 2002. We observed garage traffic median volumes of 71 counts/h on weekdays and 6 counts/h on weekends. The 12-fold reduction in traffic volume from weekday to weekend corresponded with a decrease in median air pollution that varied from a minimum 2- (CO) to a maximum 7 (pPAH)-fold. The actual 30-min median weekday and weekend values were: CO--2.6/1.2 ppm; pPAH--19/2.6 ng/m(3); 1,3-butadiene-0.5/0.2 microg/m(3), MTBE-7.4/0.4 microg/m(3); and benzene-2.7/0.3 microg/m(3). The influence of traffic was quantified using longitudinal models. The pollutant coefficients provide an indication of the average air pollution vehicle source contribution and ranged from 0.31 (CO) to 1.08 (pPAH) percent increase/vehicle count. For some pollutants, a slightly higher (0.5-0.6%) coefficient was observed for light-trucks relative to cars. This study has public health relevance in providing a unique assessment of air pollution levels and source contribution for the urban parking garage.

  13. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  14. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Stargel, D. S.

    2012-01-01

    Future generations of NASA and U.S. Air Force vehicles will require lighter mass while being subjected to higher loads and more extreme service conditions over longer time periods than the present generation. Current approaches for certification, fleet management and sustainment are largely based on statistical distributions of material properties, heuristic design philosophies, physical testing and assumed similitude between testing and operational conditions and will likely be unable to address these extreme requirements. To address the shortcomings of conventional approaches, a fundamental paradigm shift is needed. This paradigm shift, the Digital Twin, integrates ultra-high fidelity simulation with the vehicle s on-board integrated vehicle health management system, maintenance history and all available historical and fleet data to mirror the life of its flying twin and enable unprecedented levels of safety and reliability.

  15. Design and analysis of biomimetic joints for morphing of micro air vehicles.

    PubMed

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-12-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  16. Cleaning the air and improving health with hydrogen fuel-cell vehicles.

    PubMed

    Jacobson, M Z; Colella, W G; Golden, D M

    2005-06-24

    Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.

  17. Analysis of possible improvement of acceleration of a high-velocity air-breathing flying vehicle

    NASA Astrophysics Data System (ADS)

    Goonko, Yu. P.; Mazhul, I. I.

    2008-09-01

    Results of parametric calculations of the total aeropropulsive characteristics and characteristics of acceleration of a small-scale high-velocity flying vehicle with an air-breathing engine are presented. Integral parameters of acceleration from the flight Mach number M∞ = 4 to M∞ = 7 are determined, namely, the time required fuel stock, and range. A schematic configuration of the vehicle is considered, which allows studying the basic parameters, such as the forebody shape, the angles of surfaces of compression of the stream captured by the inlet, angles of external aerodynamic surfaces of the airframe, relative planform area of the wing panels, and relative area of the nozzle cross section. A comparative estimate of the effect of these parameters shows that it is possible to improve the characteristics of acceleration of vehicles of the type considered.

  18. Orbit-on-demand vehicle propelled by air-turborocket/ramjet engines

    NASA Technical Reports Server (NTRS)

    Hartung, L.; Karkow, J.; Ordway, W.; Pickett, D.; Muras, A.

    1986-01-01

    A preliminary design study has been completed for a fully reusable, single-stage-to-orbit transatmospheric vehicle. The specified mission capability was to lift a 20,000 lb payload to low earth orbit. A ground accelerator-assisted horizontal take-off was chosen to increase operational flexibility. The multi-mode propulsion system included the use of air-turborocket, ramjet, scramjet and rocket engines. Weight and performance estimates were obtained for the vehicle. A computer package was developed to perform aerothermodynamic analyses of the propulsion modes throughout the flight environment from take-off to low earth orbit. Results are presented for a semi-optimized trajectory. The analysis indicates that a vehicle of this type has great potential for providing low cost, flexible access to space.

  19. Orbit-on-demand vehicle propelled by air-turborocket/ramjet engines

    NASA Astrophysics Data System (ADS)

    Hartung, L.; Karkow, J.; Ordway, W.; Pickett, D.; Muras, A.

    1986-06-01

    A preliminary design study has been completed for a fully reusable, single-stage-to-orbit transatmospheric vehicle. The specified mission capability was to lift a 20,000 lb payload to low earth orbit. A ground accelerator-assisted horizontal take-off was chosen to increase operational flexibility. The multi-mode propulsion system included the use of air-turborocket, ramjet, scramjet and rocket engines. Weight and performance estimates were obtained for the vehicle. A computer package was developed to perform aerothermodynamic analyses of the propulsion modes throughout the flight environment from take-off to low earth orbit. Results are presented for a semi-optimized trajectory. The analysis indicates that a vehicle of this type has great potential for providing low cost, flexible access to space.

  20. Three-dimensional air quality simulation study on low-emission vehicles in Southern California

    NASA Astrophysics Data System (ADS)

    Kunimi, H.; Ishizawa, S.; Yoshikawa, Y.

    The effect of low-emission vehicles on improving air quality in Southern California was analyzed using a three-dimensional simulation model. Simulations were performed using 1987 emission data and meteorological data released by the California Air Resources Board. Exhaust emission data at TLEV, LEV and ZEV levels were used in the analysis. The results show that a reduction in reactive organic gases (ROG) has a large effect on reducing the ozone concentration. The ozone reduction effects of alternative fuels like methanol or compressed natural gas can also be analyzed at the same stage as exhaust emissions from conventional gasoline vehicles by applying the maximum incremental reactivity index to correct measured ROG data. The ROG/NO x ratio at the time of peak ozone concentration correlates well with the ozone level, suggesting that a reduction in NO x emissions does not always lower the ozone concentration.

  1. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  2. Flexible Wing Base Micro Aerial Vehicles: Towards Flight Autonomy: Vision-Based Horizon Detection for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nechyba, Michael C.; Ettinger, Scott M.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Recently substantial progress has been made towards design building and testifying remotely piloted Micro Air Vehicles (MAVs). This progress in overcoming the aerodynamic obstacles to flight at very small scales has, unfortunately, not been matched by similar progress in autonomous MAV flight. Thus, we propose a robust, vision-based horizon detection algorithm as the first step towards autonomous MAVs. In this paper, we first motivate the use of computer vision for the horizon detection task by examining the flight of birds (biological MAVs) and considering other practical factors. We then describe our vision-based horizon detection algorithm, which has been demonstrated at 30 Hz with over 99.9% correct horizon identification, over terrain that includes roads, buildings large and small, meadows, wooded areas, and a lake. We conclude with some sample horizon detection results and preview a companion paper, where the work discussed here forms the core of a complete autonomous flight stability system.

  3. The influence of air bags and restraining devices on extremity injuries in motor vehicle collisions.

    PubMed

    McGovern, M K; Murphy, R X; Okunski, W J; Wasser, T E

    2000-05-01

    The influence of air bags and other restraining devices on injury after motor vehicle collisions is not well defined. This study examined the relationship between the use of restraining devices and the incidence of extremity injuries in motor vehicle collisions. A retrospective analysis was performed on motor vehicle collision data submitted to the Pennsylvania Trauma Outcome Study database from 1990 through 1995. Criteria for submission included trauma patients who were admitted to the intensive care unit, who died during hospitalization, who were hospitalized for more than 72 hours, or who were transferred in or out of the receiving hospital. A total of 21,875 patients met these criteria. These patients were analyzed for the presence or absence of upper and lower extremity injuries and were compared based on their use of restraining devices. Restraining devices were categorized into four groups: air bag alone, air bag and seat belt, seat belt or carseat without air bag, and no restraining device. Statistical analysis was performed using the chi-squared test of association. For contingency tables with small expected frequencies, Fisher's exact test was used. Study participants included 11,688 men and 10,185 women with a mean age of 38 +/- 20 years. There were 16,033 drivers and 5,842 passengers. Air bags were deployed in 472 instances. In 297 of these cases, additional restraint was provided with a seat belt. In 6,632 cases, air bags were not deployed; however, patients were restrained with either a seat belt or a carseat. In 14,771 cases, patients were not restrained. When comparing restraining devices as a group vs. no restraint, there was a significant decrease in the incidence of upper (p = 0.018) and lower (p < 0.001) extremity injuries. Air bags, however, were associated with an increased incidence of both upper (p = 0.033) and lower (p = 0.002) extremity injuries when compared with no restraint or when compared among patients who were restrained. As a group

  4. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    PubMed

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong.

  5. Air Cushion Vehicle Operator Training System (ACVOTS). Simulator Requirements Analysis. Volume 2

    DTIC Science & Technology

    1982-06-01

    disadvantaqes associated with a model , however, remain. The laser-based system is currently underaoina extended evaluation in a helicopter simulator designed for... model . The basic system is well established, if rather ineffi- cient in its use of power and inflexible in nature. Some special design of the probe would...N-25-82 -22 . , ~it TRAINING SYSTEMS _ ANALYSIS & DESIGN L L" AIR CUSHION VEHICLE L OPERATOR TRAINING SYSTEM (ACVOTS) SIMULATOR REQUIREMENTS

  6. Structural Technology Evaluation and Analysis Program (STEAP). Delivery Order 0049: Computational Prototyping of Micro Air Vehicles

    DTIC Science & Technology

    2013-01-01

    integration at the system level . To quantitatively assess MAV technology, a more detailed engineering description is needed. 2 Approved for public...descriptions. A fairly unique source of system- level FWMAV data is the NATO AVT Task Group 184, “Characterization of Bio-Inspired Micro Air Vehicle...control geometric description utilizes the same underlying geometric description in the aerodynamics analysis, but adds an abstract level of describing

  7. The system integration and verification testing of an orbital maneuvering vehicle for an air bearing floor

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Martin, M. F.; Paulukaitis, K. R.; Haslam, J. W., Jr.; Henderson, D. E.

    1986-01-01

    The teleoperator and Robotics Evaluation Facility (TOREF) is composed of a 4,000 square foot precision air bearing floor, the Teleoperator Motion Base, the Target Motion and Support Simulator, the mock-ups of the Hubble Space Telescope, Multi-mission Modular Spacecraft, and the Orbital Maneuvering Vehicle (OMV). The TOREF and its general capabilities to support the OMV and other remote system simulations; the facility operating procedures and requirements; and the results of generic OMV investigations are summarized.

  8. Air Quality Impacts of Electrifying Vehicles and Equipment Across the United States.

    PubMed

    Nopmongcol, Uarporn; Grant, John; Knipping, Eladio; Alexander, Mark; Schurhoff, Rob; Young, David; Jung, Jaegun; Shah, Tejas; Yarwood, Greg

    2017-03-07

    U.S.-wide air quality impacts of electrifying vehicles and off-road equipment are estimated for 2030 using 3-D photochemical air quality model and detailed emissions inventories. Electrification reduces tailpipe emissions and emissions from petroleum refining, transport, and storage, but increases electricity demand. The Electrification Case assumes approximately 17% of light duty and 8% of heavy duty vehicle miles traveled and from 17% to 79% of various off-road equipment types considered good candidates for electrification is powered by electricity. The Electrification Case raises electricity demand by 5% over the 2030 Base Case but nitrogen oxide (NOx) emissions decrease by 209 thousand tons (3%) overall. Emissions of other criteria pollutants also decrease. Air quality benefits of electrification are modest, mostly less than 1 ppb for ozone and 0.5 μg m(-3) for fine particulate matter (PM2.5), but widespread. The largest reductions for ozone and PM occur in urban areas due to lower mobile source emissions. Electrifying off-road equipment yields more benefits than electrifying on-road vehicles. Reduced crude oil imports and associated marine vessel emissions cause additional benefits in port cities. Changes in other gas and PM emissions, as well as impacts on acid and nutrient deposition, are discussed.

  9. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  10. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    PubMed

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM <10 microm; N = 30). Rats continuously breathing polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P < 0.05) and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 +/- 0.01; P-20: 0.226 +/- 0.02; P < 0.05). Shorter exposure (6 h) and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  11. AirCRED : the rationale and structure of a tool for estimating air pollutant reduction credits for alternative fuel vehicles.

    SciTech Connect

    Saricks, C. L.; Energy Systems

    2002-01-01

    Primarily to assist the U.S. Department of Energy's Clean Cities coalitions in estimating the net benefits of reducing air pollutant emissions gained by acquiring original equipment manufacture (OEM) alternativefuel vehicles (AFVs), Argonne National Laboratory has developed a graphical user interface-based benefit calculation model called AirCred. The application of this modeling tool has been extended to the estimation of state implementation plan credits for AFVs that may be claimed in nonattainment and maintenance regions for ozone and carbon monoxide. The tool also has been approved for and applied to the quantification of projected program benefits in applications for grant support to purchase OEM AFVs under the U.S. Department of Transportation's Congestion Mitigation and Air Quality Program. First, the model's founding principles and relatively simple mechanics are presented, accompanied by graphic displays of data input screens and comparative results for various vehicular categories. Current and future plans are cited for enhancement of the tool, including its respecification for consistency with MOBILE6 and for air planning in the yet-to-be-designated nonattainment areas for ambient particulate matter of 2.5 {mu}m and smaller. Then some issues and controversies about how and where AirCred should be applied are chronicled. Finally, some example applications are presented to illustrate the residual benefits of AFVs over time relative to their conventionally fueled counterparts of the same (recent) model year. Results indicate that AFVs of certain categories will remain viable and attractive candidates for reducing air emissions in ozone and carbon monoxide air quality control regions well into the future.

  12. Air Intakes for High Speed Vehicles (Prises d’Air pour Vehicules a Grande Vitesse)

    DTIC Science & Technology

    1991-09-01

    directly from material supplied by AGARD or the authors . Published aeptember 1991 Copyright C AGARD 1991 All Rights Reserved ISBN 92-835-0637-5 Printed by...of Air Intakes Committee C (Chairman: J. Leynaert) Air Intakes Testing Methods The chapters were written by the authors noted in parenthesis and...fuel injection and effect expansion waves and separation induced mixing as well as chemical kinetics. Reference shockwaves. The author points to good

  13. The CREATE Program Software Applications for the Design and Analysis of Air Vehicles, Naval Vessels, Radio Frequency Antennas, and Ground Vehicles

    DTIC Science & Technology

    2015-07-10

    1 The CREATE Program Software Applications for the Design and Analysis of Air Vehicles, Naval Vessels, Radio Frequency Antennas, and Ground ... ground vehicles) through the construction and analysis of virtual prototypes for those systems. Code development began in 2008, and eight years later...in history–we have the potential to make accurate predictions of the behavior of complex physical systems (e.g. the weather, the behavior of chemical

  14. Approaches to S&T Cost Modeling at the U.S. Air Force Research Laboratory/Vehicle Aeronautics Directorate

    DTIC Science & Technology

    2000-09-01

    Figure 3). While accounting and finance warfighter, and focuses resources to: (1) Demonstrate may have access to a wealth of engineering, production...traditional accounting and finance data The paradigm of "performance at any price" must change or pricing approaches. Two, the technology has not under the...and finance , and there is a strong emphasis on of the VA technology set, effectively using existing achieving credible absolute values. In the Science

  15. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    PubMed

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.

  16. Landing Characteristics of a Re-entry Vehicle with Canted Multiple Air Bag Load Alleviation System

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Investigation of the Landing Characteristics of a Re-entry Vehicle Having a Canted Multiple Air Bag Load Alleviation System. An investigation was made to determine the landing-impact characteristics of a reentry vehicle having a multiple-air-bag load-alleviation system. A 1/16-scale dynamic model having four canted air bags was tested at flight-path angles of 90 degrees (vertical), 45 degrees, and 27 degrees for a parachute or paraglider vertical letdown velocity of 30 feet per second (full scale). Landings were made on concrete at attitudes ranging from -l5 degrees to 20 degrees. The friction coefficient between the model heat shield and the concrete was approximately 0.4. An aluminum diaphragm, designed to rupture at 10.8 pounds per square inch gage, was used to maintain initial pressure in the air bags for a short time period. [Entire movie available on DVD from CASI as Doc ID 20070030986. Contact help@sti.nasa.gov

  17. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    PubMed

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-06

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  18. High Altitude Long Endurance Air Vehicle Analysis of Alternatives and Technology Requirements Development

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    The objective of this study was to develop a variety of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) conceptual designs for two operationally useful missions (hurricane science and communications relay) and compare their performance and cost characteristics. Sixteen potential HALE UAV configurations were initially developed, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative (SR) propulsion systems. Through an Analysis of Alternatives (AoA) down select process, the two leading consumable fuel configurations (one each from the HTA and LTA alternatives) and an HTA SR configuration were selected for further analysis. Cost effectiveness analysis of the consumable fuel configurations revealed that simply maximizing vehicle endurance can lead to a sub-optimum system solution. An LTA concept with a hybrid propulsion system (solar arrays and a hydrogen-air proton exchange membrane fuel cell) was found to have the best mission performance; however, an HTA diesel-fueled wing-body-tail configuration emerged as the preferred consumable fuel concept because of the large size and technical risk of the LTA concept. The baseline missions could not be performed by even the best HTA SR concept. Mission and SR technology trade studies were conducted to enhance understanding of the potential capabilities of such a vehicle. With near-term technology SR-powered HTA vehicles are limited to operation in favorable solar conditions, such as the long days and short nights of summer at higher latitudes. Energy storage system specific energy and solar cell efficiency were found to be the key technology areas for enhancing HTA SR performance.

  19. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives.

    PubMed

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D; Morawska, Lidia

    2016-07-12

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research.

  20. Health effects associated with passenger vehicles: monetary values of air pollution.

    PubMed

    Marzouk, Mohamed; Madany, Magdy

    2012-01-01

    Air pollution is regarded as one of the highest priorities in environmental protection in both developed and developing countries. High levels of air pollution have adverse effects on human health that might cause premature death. This study presents the monetary value estimates for the adverse human health effects resulted from ambient air pollution. It aids decision makers to set priorities in the public health relevance of pollution abatement. The main driver of policymaker is the need to reduce the avoidable cardiopulmonary morbidity and mortality from pollutant exposures. The monetary valuation involves 2 steps: (i) relate levels of pollutants to mortality and morbidity (concentration-response relationships) and (ii) apply unit economic values. Cost of air pollution associated with passenger vehicles running over a major traffic bridge (6th of October Elevated Highway) is presented as a case study to demonstrate the use of monetary value of air pollution. The study proves that the cost of air pollution is extremely high and should not be overlooked.

  1. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives

    PubMed Central

    Villa, Tommaso Francesco; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran D.; Morawska, Lidia

    2016-01-01

    Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety. The aims of this review were to: (1) compile information on the use of UAVs for air quality studies; and (2) assess their benefits and range of applications. An extensive literature review was conducted using three bibliographic databases (Scopus, Web of Knowledge, Google Scholar) and a total of 60 papers was found. This relatively small number of papers implies that the field is still in its early stages of development. We concluded that, while the potential of UAVs for air quality research has been established, several challenges still need to be addressed, including: the flight endurance, payload capacity, sensor dimensions/accuracy, and sensitivity. However, the challenges are not simply technological, in fact, policy and regulations, which differ between countries, represent the greatest challenge to facilitating the wider use of UAVs in atmospheric research. PMID:27420065

  2. Indoor air as a vehicle for human pathogens: Introduction, objectives, and expectation of outcome.

    PubMed

    Sattar, Syed A

    2016-09-02

    Airborne spread of pathogens can be rapid, widespread, and difficult to prevent. In this international workshop, a panel of 6 experts will expound on the following: (1) the potential for indoor air to spread a wide range of human pathogens, plus engineering controls to reduce the risk for exposure to airborne infectious agents; (2) the behavior of aerosolized infectious agents indoors and the use of emerging air decontamination technologies; (3) a survey of quantitative methods to recover infectious agents and their surrogates from indoor air with regard to survival and inactivation of airborne pathogens; (4) mathematical models to predict the movement of pathogens indoors and the use of such information to optimize the benefits of air decontamination technologies; and (5) synergy between different infectious agents, such as legionellae and fungi, in the built environment predisposing to possible transmission-related health impacts of aerosolized biofilm-based opportunistic pathogens. After the presentations, the panel will address a set of preformulated questions on selection criteria for surrogate microbes to study the survival and inactivation of airborne human pathogens, desirable features of technologies for microbial decontamination of indoor air, knowledge gaps, and research needs. It is anticipated that the deliberations of the workshop will provide the attendees with an update on the significance of indoor air as a vehicle for transmitting human pathogens with a brief on what is currently being done to mitigate the risks from airborne infectious agents.

  3. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    PubMed

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae. The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  4. Prospects for utilization of air liquefaction and enrichment system (ALES) propulsion in fully reusable launch vehicles

    NASA Technical Reports Server (NTRS)

    Bond, W. H.; Yi, A. C.

    1993-01-01

    A concept is shown for a fully reusable, earth to orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high speed acceleration, both using LH2 fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90 percent pure LOX that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to Mach 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. The paper shows an approach and the corresponding technology needs for using ALES propulsion in a SSTO vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  5. Design of a Flush Airdata System (FADS) for the Hypersonic Air Launched Option (HALO) Vehicle

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a

  6. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    PubMed

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-06

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  7. Optimization of a Localized Air Conditioning System Using Thermoelectric Coolers for Commercial Vehicles

    NASA Astrophysics Data System (ADS)

    Wan, Qiushi; Deng, Yadong; Su, Chuqi; Wang, Yiping

    2016-11-01

    To improve the thermal comfort and energy saving of commercial vehicles, an auxiliary air conditioning (AC) system has been constructed. Several distributed components using thermoelectric coolers were applied in a localized AC system to adjust the microclimate around the driver only. A computational fluid dynamics model of a commercial vehicle cabin with a driver was built, the temperature field of the cabin investigated, and the thermal comfort analyzed. Based on the results of the simulations, the temperature around the cold side of the thermoelectric coolers is discussed and optimized by means of the response surface methodology and a multiobjective genetic algorithm. To validate the simulation and optimization results, a bench test was carried out; the results obtained from the simulation showed good agreement with the experimental results.

  8. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    PubMed

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  9. Spatially- and Temporally-Resolved Measurements of Roadway Air Pollution Using a Zero-Emission Electric Vehicle

    EPA Science Inventory

    Vehicle-related air pollution has an intrinsically dynamic nature. Recent field measurements and modeling work have demonstrated that near-road topography may modify levels of air pollutants reaching populations residing and working in close proximity to roadways. However, the ma...

  10. 77 FR 16988 - Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... procedure, Air pollution control, Reporting and recordkeeping requirements, Stratospheric ozone layer. Dated... AGENCY 40 CFR Part 82 RIN 2060-AR20 Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule... substitute for ozone- depleting substances (ODSs) in the motor vehicle air conditioning end- use within...

  11. Structural Sizing of a 25,000-lb Payload, Air-Breathing Launch Vehicle For Single-Stage-To-Orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.; Palac, Don (Technical Monitor)

    2000-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (5 to 10 years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  12. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  13. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Nogar, Stephen Michael

    Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the

  14. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  15. Flexible Wing Base Micro Aerial Vehicles: Vision-Guided Flight Stability and Autonomy for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ettinger, Scott M.; Nechyba, Michael C.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Substantial progress has been made recently towards design building and test-flying remotely piloted Micro Air Vehicle's (MAVs). We seek to complement this progress in overcoming the aerodynamic obstacles to.flight at very small scales with a vision stability and autonomy system. The developed system based on a robust horizon detection algorithm which we discuss in greater detail in a companion paper. In this paper, we first motivate the use of computer vision for MAV autonomy arguing that given current sensor technology, vision may he the only practical approach to the problem. We then briefly review our statistical vision-based horizon detection algorithm, which has been demonstrated at 30Hz with over 99.9% correct horizon identification. Next we develop robust schemes for the detection of extreme MAV attitudes, where no horizon is visible, and for the detection of horizon estimation errors, due to external factors such as video transmission noise. Finally, we discuss our feed-back controller for self-stabilized flight, and report results on vision autonomous flights of duration exceeding ten minutes.

  16. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  17. Model Update of a Micro Air Vehicle (MAV) Flexible Wing Frame with Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.; Waszak, Martin R.; Morgan, Benjamin G.

    2004-01-01

    This paper describes a procedure to update parameters in the finite element model of a Micro Air Vehicle (MAV) to improve displacement predictions under aerodynamics loads. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with Multidisciplinary Design Optimization (MDO) is used to modify key model parameters. Static test data collected using photogrammetry are used to correlate with model predictions. Results show significant improvements in model predictions after parameters are updated; however, computed probabilities values indicate low confidence in updated values and/or model structure errors. Lessons learned in the areas of wing design, test procedures, modeling approaches with geometric nonlinearities, and uncertainties quantification are all documented.

  18. Beam director design report

    SciTech Connect

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  19. Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.

  20. Progress report on Bertelsen research and development of an air cushion crawler all-terrain vehicle

    NASA Astrophysics Data System (ADS)

    Bertelsen, W. R.

    1987-06-01

    The ACV is an exceptional amphibian but it is not, nor is any other existing craft, an all-terrain vehicle (ATV). Using the best elements of the ACV in an air-cushion crawler tractor, a true ATV can be attained. A conventional crawler drive train will propel two tracks as pressurized, propulsive pontoons. The key to a successful ATV is in perfecting efficient, durable, sliding seals to allow the belt to move in its orbit around the track unit and maintain its internal pressure. After deriving the adequate seal, a 12 inch wide x 86 inch long endless rubber belt was fitted bilateral seals and slide plates with internal guide wheels fore and aft with a 21 inch wheel base. From this approximately one-quarter scale model, full-scale air track crawlers, true ATVs, of any size and capacity can be produced.

  1. Urban ozone air quality impact of emissions from vehicles using reformulated gasolines and M85

    NASA Astrophysics Data System (ADS)

    Chock, D. P.; Winkler, S. L.; Chang, T. Y.; Rudy, S. J.; Shen, Z. K.

    The urban ozone air quality impact of exhaust emissions from vehicles using reformulated gasolines and flexible/variable-fuel vehicles using M85 has been studied using emissions data from the Auto/Oil Air Quality Improvement Research Program and a single-cell trajectory air quality model with two different chemical mechanisms (the updated version of Carbon-Bond-IV (CB4) and the LCC mechanism). Peak ozone concentrations are predicted for each fuel for all combinations of the following ambient conditions: low and high atmospheric dilution or mixing height, four NMOG/NO x ratios, two each of the initial NMOG concentration, the vehicular contribution to the ambient air, and the NMOG composition of the initial ambient mixture. The ozone impact of a fuel dependent strongly on the atmospheric dilution and NMOG/NO x ratio of an area. The differences in ozone impact among fuels are limited under the condition of high atmospheric dilution and a high NMOG/NO x ratio. The ozone-forming potentials (OFPs) for the exhaust emissions based on the maximum incremental reactivities (MIRs) for various fuels are generally well correlated with model-calculated peak ozone levels at a low NMOG/NO x ratio. These OFPs can serve to separate out fuels with rather different reactivities, but not fuels with comparable reactivities. Model-calculated ozone levels for various fuels based on CB4 and LCC mechanisms are relatively well correlated at low NMOG/NO x ratios, but much less so at higher ratios. Fuels with a high aromatic content, including high-toluene fuels, tend to be ranked more favorably by CB4 than by LCC. On the other hand, M85 is ranked more favorably by LCC than by CB4. Fuels with a low 90% boiling point and a low content of aromatics and olefins are generally less reactive. M85 would be an attractive fuel if the formaldehyde emissions could be curtailed significantly.

  2. Multi-sensor fusion techniques for state estimation of micro air vehicles

    NASA Astrophysics Data System (ADS)

    Donavanik, Daniel; Hardt-Stremayr, Alexander; Gremillion, Gregory; Weiss, Stephan; Nothwang, William

    2016-05-01

    Aggressive flight of micro air vehicles (MAVs) in unstructured, GPS-denied environments poses unique challenges for estimation of vehicle pose and velocity due to the noise, delay, and drift in individual sensor measurements. Maneuvering flight at speeds in excess of 5 m/s poses additional challenges even for active range sensors; in the case of LIDAR, an assembled scan of the vehicles environment will in most cases be obsolete by the time it is processed. Multi-sensor fusion techniques which combine inertial measurements with passive vision techniques and/or LIDAR have achieved breakthroughs in the ability to maintain accurate state estimates without the use of external positioning sensors. In this paper, we survey algorithmic approaches to exploiting sensors with a wide range of nonlinear dynamics using filter and bundle-adjustment based approaches for state estimation and optimal control. From this foundation, we propose a biologically-inspired framework for incorporating the human operator in the loop as a privileged sensor in a combined human/autonomy paradigm.

  3. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  4. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  5. Air quality impacts of climate mitigation: UK policy and passenger vehicle choice.

    PubMed

    Mazzi, Eric A; Dowlatabadi, Hadi

    2007-01-15

    In 2001-2002 the UK began taxing vehicles according to CO2 emission rates. Since then, there has been a significant increase in consumer choice of small cars and diesel engines. We estimate CO2 reductions and air quality impacts resulting from UK consumers switching from petrol to diesel cars from 2001 to 2020. Annual reductions of 0.4 megatons (Mt) of CO2 and 1 million barrels of oil are estimated from switching to diesels. However, diesels emit higher levels of particulate matter estimated to result in 90 deaths annually (range 20-300). We estimate 570, 460, and 0 additional deaths per Mt of CO2 abated, for Euro III, Euro IV, and post-Euro IV emission class vehicles, respectively. CO2 policies are suspected to have contributed substantially to diesel growth, but the magnitude of impact has yet to be quantified rigorously. To the extent that CO2 policies contribute to diesel growth, coordinating CO2 controls with tightening of emission standards would save lives. This research shows that climate policy, while reducing fuel use and CO2, does not always ensure ancillary health benefits. Lessons from the UK can help inform policies designed elsewhere which strive to balance near-term ambient air quality and health with long-term climate mitigation.

  6. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  7. Impact of multisource VOC emission on in-vehicle air quality: test chamber simulation

    NASA Astrophysics Data System (ADS)

    Brodzik, K.; Faber, J.; Goƚda-Kopek, A.; Łomankiewicz, D.

    2016-09-01

    Air quality inside vehicle may be strongly influenced by the presence of volatile organic compounds (VOC). The sources of these compounds may be different. In case of new vehicles VOC mainly originate from off-gassing of interior materials, while in used cars exterior pollution, like exhaust gases, starts to dominate. The aim of this work was to check the influence of multiple VOC sources on concentration of volatile organic compounds emitted from car interior parts. For this purpose material emission tests were performed in 1 m3 emission testing chamber (WKE 1000, Weiss, Germany) at 65 °C, 5% RH and with air exchange. Three different car parts were studied: sun visor, headlining, and handbrake lever cover. It was stated that volatile organic compounds concentration inside test chamber during the test performed with three different parts inside was significantly lower than those being result of addition of the results obtained for parts tested separately. Presented results indicate interactions between different materials and their emissions as well as prove that some of materials acts like sorbents.

  8. Linear Heave Dynamics of an Air-Cushion Vehicle Bag-and-Finger Skirt

    NASA Astrophysics Data System (ADS)

    Chung, Joon; Sullivan, Phillip A.

    Results from a linear analysis of the heave dynamics of an air-cushion vehicle equipped with a bag-and-finger skirt are described. A two-dimensional section of the cushion is subject to pure heave or long-wave surface motion inputs. The skirt mass is lumped in the fingers, with the bag being modelled as a combination of massless inelastic membranes and links. The airflows from bag to cushion and from cushion to atmosphere are assumed quasisteady, and the bag and cushion volumes are modelled as lumped pneumatic capacitances. For a configuration representative of a 37t vehicle, frequency response characteristics show the effect of skirt geometry and mass changes, and cushion capacitance. The results suggest that changes in skirt geometry cannot be used to radically modify an undesirable heave response, but reducing the skirt mass may be effective. The air compressibility also affects heave response at high frequencies, with the effect becoming more prominent at the low cushion-flow rates now used in practice.

  9. Neighborhood-scale air quality impacts of emissions from motor vehicles and aircraft

    NASA Astrophysics Data System (ADS)

    Choi, Wonsik; Hu, Shishan; He, Meilu; Kozawa, Kathleen; Mara, Steve; Winer, Arthur M.; Paulson, Suzanne E.

    2013-12-01

    A mobile monitoring platform (MMP) was used to measure real-time air pollutant concentrations in different built environments of Boyle Heights (BH, a lower-income community enclosed by several freeways); Downtown Los Angeles (DTLA, adjacent to BH with taller buildings and surrounded by several freeways); and West Los Angeles (WLA, an affluent community traversed by two freeways) in summer afternoons of 2008 and 2011 (only for WLA). Significant inter-community and less significant but observable intra-community differences in traffic-related pollutant concentrations were observed both in the residential neighborhoods studied and on their arterial roadways between BH, DTLA, and WLA, particularly for ultrafine particles (UFP). HEV, defined as vehicles creating plumes with concentrations more than three standard deviations from the adjusted local baseline, were encountered during 6-13% of sampling time, during which they accounted for 17-55% of total UFP concentrations both on arterial roadways and in residential neighborhoods. If instead a single threshold value is used to define HEVs in all areas, HEV's were calculated to make larger contributions to UFP concentrations in BH than other communities by factors of 2-10 or more. Santa Monica Airport located in WLA appears to be a significant source for elevated UFP concentrations in nearby residential neighborhoods 80-400 m downwind. In the WLA area, we also showed, on a neighborhood scale, striking and immediate reductions in particulate pollution (˜70% reductions in both UFP and, somewhat surprisingly, PM2.5), corresponding to dramatic decreases in traffic densities during an I-405 closure event (“Carmageddon”) compared to non-closure Saturday levels. Although pollution reduction due to decreased traffic is not unexpected, this dramatic improvement in particulate pollution provides clear evidence air quality can be improved through strategies such as heavy-duty-diesel vehicle retrofits, earlier retirement of HEV

  10. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  11. Theoretical investigation of heave dynamics of an air cushion vehicle bag and finger skirt

    NASA Astrophysics Data System (ADS)

    Chung, Joon

    This thesis describes a theoretical investigation of the nonlinear and linear heave dynamics of an air cushion vehicle (ACV) equipped with a bag and finger skirt system with the purpose of understanding the skirt's effect on the vehicle heave dynamics. Throughout the course of this work, the pure heave motion of a two dimensional section of the skirt is investigated using several mathematical models. Both the nonlinear and linearized analyses include a detailed model of the skirt geometry, which is modelled as a combination of inelastic membranes and links. Air flow processes from the bag to the cushion and from the cushion to the atmosphere are assumed to be quasisteady, and the bag and cushion volumes are modelled as lumped pneumatic capacitances. The modulation of the escaping cushion air by skirt-ground contact is also included. The nonlinear simulations reveal that characteristically nonlinear dynamical phenomena such as period doubling and chaos can be expected to occur during the normal operation of ACVs. Furthermore, a configuration representative of a 37 tonne vehicle shows a resonance at frequencies in the range for which humans are most sensitive. Although these results thus show that some aspects of the bag and finger skirt heave dynamics can be highly nonlinear, they indicate that under certain circumstances, standard linear techniques can yield useful insights. Results from the linear analysis suggest that changes in skirt geometry cannot be used to radically modify the undesirable heave response of the bag and finger skirt, but reducing the skirt mass is quite effective. The pneumatic capacitance of the bag and cushion volume proves to be an important factor in the heave response. In particular, it contributes to heave instability. The air compressibility also affects heave response at high frequencies, with the effect becoming more prominent as the flow rate is reduced. The importance of unsteady fan effects on ACV dynamics is investigated by the

  12. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  13. Mach 6.5 air induction system design for the Beta 2 two-stage-to-orbit booster vehicle

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.

    1991-01-01

    A preliminary, two-dimensional, mixed compression air induction system is designed for the Beta II Two Stage to Orbit booster vehicle to minimize installation losses and efficiently deliver the required airflow. Design concepts, such as an external isentropic compression ramp and a bypass system were developed and evaluated for performance benefits. The design was optimized by maximizing installed propulsion/vehicle system performance. The resulting system design operating characteristics and performance are presented. The air induction system design has significantly lower transonic drag than similar designs and only requires about 1/3 of the bleed extraction. In addition, the design efficiently provides the integrated system required airflow, while maintaining adequate levels of total pressure recovery. The excellent performance of this highly integrated air induction system is essential for the successful completion of the Beta II booster vehicle mission.

  14. Vehicle Rustproofing,

    DTIC Science & Technology

    1982-03-01

    Corrosion Areas - G.M.) 11. Vehicle Rustproofing Guide for Vehicle Maintenance Managers 12. Chart - Vehicle Buy Program FY 83-87 13. Vehicle ...on the Vehicle Buy Program. k. The impact of a total fleet rustproofing policy on industry. I. Potential problems in Quality Control and Warranty...FY83-87, the Air Force intends to buy $2.5 billion worth of vehicles (Atch 12); thus, a total fleet treatment program for that period could cost as

  15. Status of ERA Vehicle System Integration Technology Demonstrators

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell

    2015-01-01

    The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.

  16. Experimental Investigation of a Shrouded Rotor Micro Air Vehicle in Hover and in Edgewise Gusts

    NASA Astrophysics Data System (ADS)

    Hrishikeshavan, Vikram

    Due to the hover capability of rotary wing Micro Air Vehicles (MAVs), it is of interest to improve their aerodynamic performance, and hence hover endurance (or payload capability). In this research, a shrouded rotor configuration is studied and implemented, that has the potential to offer two key operational benefits: enhanced system thrust for a given input power, and improved structural rigidity and crashworthiness of an MAV platform. The main challenges involved in realising such a system for a lightweight craft are: design of a lightweight and stiff shroud, and increased sensitivity to external flow disturbances that can affect flight stability. These key aspects are addressed and studied in order to assess the capability of the shrouded rotor as a platform of choice for MAV applications. A fully functional shrouded rotor vehicle (disk loading 60 N/ m2) was designed and constructed with key shroud design variables derived from previous studies on micro shrouded rotors. The vehicle weighed about 280 g (244 mm rotor diameter). The shrouded rotor had a 30% increase in power loading in hover compared to an unshrouded rotor. Due to the stiff, lightweight shroud construction, a net payload benefit of 20-30 g was achieved. The different components such as the rotor, stabilizer bar, yaw control vanes and the shroud were systematically studied for system efficiency and overall aerodynamic improvements. Analysis of the data showed that the chosen shroud dimensions was close to optimum for a design payload of 250 g. Risk reduction prototypes were built to sequentially arrive at the final configuration. In order to prevent periodic oscillations in ight, a hingeless rotor was incorporated in the shroud. The vehicle was successfully ight tested in hover with a proportional-integralderivative feedback controller. A flybarless rotor was incorporated for efficiency and control moment improvements. Time domain system identification of the attitude dynamics of the flybar and

  17. NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2010-01-01

    This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.

  18. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  19. Robust tracking control for an air-breathing hypersonic vehicle with input constraints

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Wang, Jinzhi; Wang, Xianghua

    2014-12-01

    The focus of this paper is on the design and simulation of robust tracking control for an air-breathing hypersonic vehicle (AHV), which is affected by high nonlinearity, uncertain parameters and input constraints. The linearisation method is employed for the longitudinal AHV model about a specific trim condition, and then considering the additive uncertainties of three parameters, the linearised model is just in the form of affine parameter dependence. From this point, the linear parameter-varying method is applied to design the desired controller. The poles for the closed-loop system of the linearised model are placed into a desired vertical strip, and the quadratic stability of the closed-loop system is guaranteed. Input constraints of the AHV are addressed by additional linear matrix inequalities. Finally, the designed controller is evaluated on the nonlinear AHV model and simulation results demonstrate excellent tracking performance with good robustness.

  20. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    PubMed

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies.

  1. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    NASA Astrophysics Data System (ADS)

    Tahmasian, Sevak; Woolsey, Craig A.

    2016-09-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  2. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles.

    PubMed

    Zhang, C; Rossi, C

    2017-02-15

    Flapping-wing micro air vehicles (FWMAVs) are a class of unmanned aircraft that imitate flight characteristics of natural organisms such as birds, bats, and insects, in order to achieve maximum flight efficiency and manoeuvrability. Designing proper mechanisms for flapping transmission is an extremely important aspect for FWMAVs. Compliant transmission mechanisms have been considered as an alternative to rigid transmission systems due to their lower the number of parts, thereby reducing the total weight, lower energy loss thanks to little or practically no friction among parts, and at the same time, being able to store and release mechanical power during the flapping cycle. In this paper, the state-of-the-art research in this field is dealt upon, highlighting open challenges and research topics. An optimization method for designing compliant transmission mechanisms inspired by the thoraxes of insects is also introduced.

  3. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  4. Stereo vision-based obstacle avoidance for micro air vehicles using an egocylindrical image space representation

    NASA Astrophysics Data System (ADS)

    Brockers, R.; Fragoso, A.; Matthies, L.

    2016-05-01

    Micro air vehicles which operate autonomously at low altitude in cluttered environments require a method for onboard obstacle avoidance for safe operation. Previous methods deploy either purely reactive approaches, mapping low-level visual features directly to actuator inputs to maneuver the vehicle around the obstacle, or deliberative methods that use on-board 3-D sensors to create a 3-D, voxel-based world model, which is then used to generate collision free 3-D trajectories. In this paper, we use forward-looking stereo vision with a large horizontal and vertical field of view and project range from stereo into a novel robot-centered, cylindrical, inverse range map we call an egocylinder. With this implementation we reduce the complexity of our world representation from a 3D map to a 2.5D image-space representation, which supports very efficient motion planning and collision checking, and allows to implement configuration space expansion as an image processing function directly on the egocylinder. Deploying a fast reactive motion planner directly on the configuration space expanded egocylinder image, we demonstrate the effectiveness of this new approach experimentally in an indoor environment.

  5. Preliminary development of a VTOL unmanned air vehicle for the close-range mission

    NASA Astrophysics Data System (ADS)

    Kress, Gregory A.

    1992-09-01

    The preliminary development of a full-scale Vertical Takeoff and Landing (VTOL) Unmanned Air Vehicle (UAV) for the Close-Range mission was completed at the Naval Postgraduate School (NPS). The vehicle was based on half-scale ducted-fan investigations performed at the UAV Flight Research Lab. The resulting design is a fixed-duct, tail-sitter UAV with a canard-configured horizontal stabilizer. Major airframe components are used from previous UAV's and include the wings from a U.S. Army Aquila and the ducted fan from the U.S. Marine Corps AROD. Accomplishments include: (1) the design and fabrication of a carry-through spar, and (2) the design and construction of an engine test stand. The through spar was designed using finite element analysis and constructed from composite materials. The purpose of the test stand is to measure torque, horsepower, and thrust of an entire ducted fan or an individual engine. Completion of this thesis will pave the way for future NPS research into the growing interest in VTOL UAV technology.

  6. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  7. A refuelable zinc/air battery for fleet electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Fleming, Dennis; Hargrove, Douglas; Koopman, Ronald; Peterman, Keith

    1995-04-01

    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet's home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

  8. A refuelable zinc/air battery for fleet electric vehicle propulsion

    SciTech Connect

    Cooper, J.F.; Fleming, D.; Hargrove, D.; Koopman, R.; Peterman, K.

    1995-04-20

    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet s home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

  9. The development of an experimental facility and investigation of rapidly maneuvering Micro-Air-Vehicle wings

    NASA Astrophysics Data System (ADS)

    Wilson, Lee Alexander

    Vertical Takeoff-and-Landing (VTOL) Micro Air Vehicles (MAVs) provide a versatile operational platform which combines the capabilities of fixed wing and rotary wing MAVs. In order to improve performance of these vehicles, a better understanding of the rapid transition between horizontal and vertical flight is required. This study examines the flow structures around the Mini-Vertigo VTOL MAV using flow visualization techniques. This will gives an understanding of the flow structures which dominate the flight dynamics of rapid pitching maneuvers. This study consists of three objectives: develop an experimental facility, use flow visualization to investigate the flow around the experimental subject during pitching, and analyze the results. The flow around the Mini-Vertigo VTOL MAV is dominated by the slipstream from its propellers. The slipstream delays LE separation and causes drastic deflection in the flow. While the frequency of the vortices shed from the LE and TE varies with flow speed, the non-dimensional frequency does not. It does, however, vary slightly with the pitching rate. These results are applicable across a wide range of flight conditions. The results correlate to previous research done to examine the aerodynamic forces on the MAV.

  10. Estimation of road vehicle exhaust emissions from 1992 to 2010 and comparison with air quality measurements in Genoa, Italy

    NASA Astrophysics Data System (ADS)

    Zamboni, Giorgio; Capobianco, Massimo; Daminelli, Enrico

    An investigation into road transport exhaust emissions in the Genoa urban area was performed by comparing the quantities of carbon monoxide (CO), nitrogen oxides (NO x), nitrogen dioxide (NO 2) and particulate matter (PM) emitted by different vehicle categories with air quality measurements referred to the same pollutants. Exhaust emissions were evaluated by applying the PROGRESS (computer PROGramme for Road vehicle EmiSSions evaluation) code, developed by the Internal Combustion Engines Group of the University of Genoa, to eight different years (from 1992 to 2010), considering spark ignition and Diesel passenger cars and light duty vehicles, heavy duty vehicles and buses, motorcycles and mopeds. Changes in terms of vehicles number, mileage and total emissions are presented together with relative distributions among the various vehicle categories. By comparing 1992 and 2010 data, calculated trends show a 7% increase in the number of vehicles, with total mileage growing at a faster rate (approx. 22%); total emissions decrease considerably, by approximately 50% for NO x and PM, 70% for HC and 80% for CO, due to improvements in engines and fuels forced by the stricter European legislation and the fleet renewal, while primary NO 2 emission will be very close to 1992 level, after a decrease of about 18% in 2000. Air quality was analysed by selecting traffic and background measuring stations from the monitoring network managed by the Environmental Department of the Province of Genoa: average annual concentrations of considered pollutants from 1994 to 2007 were calculated in order to obtain the relative historical trends and compare them with European public health limits and with road vehicle emissions. Though an important reduction in pollutant concentrations has been achieved as a consequence of cleaner vehicles, some difficulties in complying with present and/or future NO 2 and PM 10 limits are also apparent, thus requiring suitable measures to be taken by the local

  11. The development of aluminum-air batteries for application in electric vehicles

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Lott, S.

    1990-12-01

    The recently concluded program, jointly funded by ELTECH Research Corporation and the Department of Energy, focused upon the development of an aluminum-air battery system for electric vehicle applications. The operation of the aluminum-air battery involves the dissolution of aluminum to produce a current and aluminate. Initially the objectives were to evaluate and optimize the battery design that was developed prior to this program (designated as the B300 cell) and to design and evaluate the components of the auxiliary system. During the program, three additional tasks were undertaken, addressing needs identified by ELTECH and by Sandia National Laboratories. First, the capability to produce aluminum alloys as relatively large ingots (100 to 150 lbs), with the required electrochemical performance, was considered essential to the development of the battery. The second additional task was the adoption of an advanced cell (designated as the AT400 cell), designed by ELTECH in a different program. Finally, it was recognized that a system model would allow evaluation of the interactions of the several unit operations involved in the battery. Therefore, the development of a mathematical model, based upon material and energy balances for the battery, was undertaken. At a systems level, sufficient information was obtained in the completion of this program to support the design, fabrication and operation of a batch or solids-free battery system. For the first time, the components of the auxiliary system, i.e., a heat exchanger, carbon dioxide scrubber and hydrogen disposal technology, have been defined for a vehicle battery. Progress on each component or system is summarized in the following sections.

  12. Aerodynamic experimentation with ducted models as applied to hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Goon'ko, Yu. P.

    A methodology of experimentation in high supersonic wind tunnels for studying aerodynamic characteristics of hypersonic flying vehicles powered by air-breathing engines is discussed. Investigations of such total aerodynamic forces as drag, lift and pitching moment at testing the models are implicit when the air flow through the model ducts is accomplished so that to provide the simulation of the external flow around the airplane and flow over the inlets, but the operating engines and, hence, the exhaust jets are not modeled. The methods used for testing such models are based on the measurement of duct stream parameters alongside with the balance measurement of aerodynamic forces acting on the models. In the tests, aerometric tools are used such as narrow metering nozzles (plugs), pitot and static pressure probes, stagnation temperature probes and pressure orifices in walls of the model duct. The aerometric data serve to determine the flow rate and momentum of the stream at the duct exit. The internal non-simulated forces of the model ducts are also determined using the conservation equations for energy, mass flow and momentum, and these forces are eliminated from the aerodynamic test results. The techniques of the said model testing have been well developed as applied to supersonic aircraft, however their application for hypersonic vehicles whose models are tested at high supersonic speeds, Mach number M∞>4, implies some specific features. In the present paper, the results of experimental and theoretical study of these features are discussed. Some experimental data on aerodynamics of hypersonic aircraft models received in methodological tests are also presented. The tunnel experiments have been carried out in the Mach number range M∞=2-6.

  13. Design of Launch Vehicle Flight Control Augmentors and Resulting Flight Stability and Control (Center Director's Discretionary Fund Project 93-05, Part III)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1997-01-01

    This publication presents the control requirements, the details of the designed Flight Control Augmentor's (FCA's), the static stability and dynamic stability wind tunnel test programs, the static stability and control analyses, the dynamic stability characteristics of the experimental Launch Vehicle (LV) with the designed FCA's, and a consideration of the elastic vehicle. Dramatic improvements in flight stability have been realized with all the FCA designs; these ranged from 41 percent to 72 percent achieved by the blunt TE design. The control analysis showed that control increased 110 percent with only 3 degrees of FCA deflection. The dynamic stability results showed improvements with all FCA designs tested at all Mach numbers tested. The blunt TE FCA's had the best overall dynamic stability results. Since the lowest elastic vehicle frequency must be well separated from that of the control system, the significant frequencies and modes of vibration have been identified, and the response spectra compared for the experimental LV in both the conventional and the aft cg configuration. Although the dynamic response was 150 percent greater in the aft cg configuration, the lowest bending mode frequency decreased by only 2.8 percent.

  14. Air Vehicle Technology Integration Program (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled Control (SEC) Hardware in the Loop Simulation - OCP Hardware Integration

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2006-3075 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled...2001– 05/28/2004 5a. CONTRACT NUMBER F33615-00-D-3052-0015 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM

  15. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean

  16. 77 FR 17344 - Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... control, Incorporation by reference, Reporting and recordkeeping requirements, Stratospheric ozone layer... AGENCY 40 CFR Part 82 RIN-2060-AR20 Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule...-tetrafluoroprop-1-ene), a substitute for ozone-depleting substances (ODSs) in the motor vehicle air...

  17. The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Kurokawa, J.; Takigawa, M.; Mauzerall, D. L.; Horowitz, L. W.; Ohara, T.

    2011-04-01

    The number of vehicles in China has been increasing rapidly. We evaluate the impact of current and possible future vehicle emissions from China on Asian air quality. We modify the Regional Emission Inventory in Asia (REAS) for China's road transport sector in 2000 using updated Chinese data for vehicle numbers, annual mileage and emission factors. We develop two scenarios for 2020: a scenario where emission factors remain the same as they were before any regulation was implemented (business-as-usual, BAU), and a scenario where Euro 3 vehicle emission standards are applied to all vehicles (except motorcycles and rural vehicles). The Euro 3 scenario is an approximation of what may be the case in 2020 as, starting in 2008, all new gasoline and diesel vehicles in China (except motorcycles) were required to meet the Euro 3 emission standards. Using the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem), we examine the regional air quality response to China's vehicle emissions in 2000 and in 2020 for the BAU and Euro 3 scenarios. We evaluate the 2000 model results with observations in Japan, China, Korea, and Russia. Under BAU in 2020, emissions of carbon monoxide (CO), nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOCs), black carbon (BC) and organic carbon (OC) from China's vehicles more than double compared to the 2000 baseline. If all vehicles meet the Euro 3 regulations in 2020, however, these emissions are reduced by more than 50% relative to BAU. The implementation of stringent vehicle emission standards leads to a large, simultaneous reduction of the surface ozone (O3) mixing ratios and particulate matter (PM2.5) concentrations. In the Euro 3 scenario, surface O3 is reduced by more than 10 ppbv and surface PM2.5 is reduced by more than 10 μg m-3 relative to BAU in Northeast China in all seasons. In spring, surface O3 mixing ratios and PM2.5 concentrations in neighboring countries are also reduced by more than 3 ppbv and 1

  18. Potential benefits of oxygen-enriched intake air in a vehicle powered by a spark-ignition engine

    NASA Astrophysics Data System (ADS)

    Ng, H. K.; Sekar, R. R.

    1994-04-01

    A production vehicle powered by a spark-ignition engine (3.1-L Chevrolet Lumina, model year 1990) was tested. The test used oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine (1) if the vehicle would run without difficulties and (2) if emissions benefits would result. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily. Test results of catalytic converter-out emissions (emissions out of the converter) showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle. Test results of engine-out emissions (emissions straight out of the engine, with the converter removed) showed that carbon monoxide was significantly reduced in the cold phase. All emission test results were compared with those for normal air (21% oxygen). The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched-air conditions. Detailed results of hydrocarbon speciation indicated large reductions in 1,3-butadiene, formaldehyde, acetaldehyde, and benzene from the engine with the oxygen-enriched air. Catalytic converter-out ozone was reduced by 60% with 25%-oxygen-content air. Although NO(x) emissions increased significantly, both for engine-out and catalytic converter-out emissions, we anticipate that they can be ameliorated in the near future with new control technologies. The automotive industry currently is developing exhaust-gas control technologies for an oxidizing environment; these technologies should reduce NO(x) emissions more efficiently in vehicles that use oxygen-enriched intake air. On the basis of estimates made from current data, several production vehicles that had low NO(x) emissions could meet the 2004 Tier 2 emissions standards with 25%-oxygen-content air.

  19. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  20. Methods for measuring performance of vehicle cab air cleaning systems against aerosols and vapours.

    PubMed

    Bémer, D; Subra, I; Régnier, R

    2009-06-01

    Vehicle cabs equipped with an effective air cleaning and pressurization system, fitted to agricultural and off-road machineries, isolate drivers from the polluted environment, in which they are likely to work. These cabs provide protection against particulate and gaseous pollutants generated by these types of work activities. Two laboratory methods have been applied to determining the performance characteristics of two cabs of different design, namely, optical counting-based measurement of a potassium chloride (KCl) aerosol and fluorescein aerosol-based tracing. Results of cab confinement efficiency measurements agreed closely for these two methods implemented in the study. Measurements showed that high confinement efficiencies can be achieved with cabs, which are properly designed in ventilation/cleaning/airtightness terms. We also noted the importance of filter mounting airtightness, in which the smallest defect is reflected by significant degradation in cab performance. Determination of clean airflow rate by monitoring the decrease in test aerosol concentration in the test chamber gave excellent results. This method could represent an attractive alternative to methods involving gas tracing or air velocity measurement at blowing inlets.

  1. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the

  2. Control and design of multiple unmanned air vehicles for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Nigam, Nikhil

    Control of multiple autonomous aircraft for search and exploration, is a topic of current research interest for applications such as weather monitoring, geographical surveys, search and rescue, tactical reconnaissance, and extra-terrestrial exploration, and the need to distribute sensing is driven by considerations of efficiency, reliability, cost and scalability. Hence, this problem has been extensively studied in the fields of controls and artificial intelligence. The task of persistent surveillance is different from a coverage/exploration problem, in that all areas need to be continuously searched, minimizing the time between visitations to each region in the target space. This distinction does not allow a straightforward application of most exploration techniques to the problem, although ideas from these methods can still be used. The use of aerial vehicles is motivated by their ability to cover larger spaces and their relative insensitivity to terrain. However, the dynamics of Unmanned Air Vehicles (UAVs) adds complexity to the control problem. Most of the work in the literature decouples the vehicle dynamics and control policies, but their interaction is particularly interesting for a surveillance mission. Stochastic environments and UAV failures further enrich the problem by requiring the control policies to be robust, and this aspect is particularly important for hardware implementations. For a persistent mission, it becomes imperative to consider the range/endurance constraints of the vehicles. The coupling of the control policy with the endurance constraints of the vehicles is an aspect that has not been sufficiently explored. Design of UAVs for desirable mission performance is also an issue of considerable significance. The use of a single monolithic optimization for such a problem has practical limitations, and decomposition-based design is a potential alternative. In this research high-level control policies are devised, that are scalable, reliable

  3. Exposure of Paris taxi drivers to automobile air pollutants within their vehicles

    PubMed Central

    Zagury, E.; Le Moullec, Y.; Momas, I.

    2000-01-01

    OBJECTIVES—To study the exposure of Parisian taxi drivers to automobile air pollutants during their professional activity.
METHODS—A cross sectional study was carried out from 27 January to 27 March 1997, with measurements performed in the vehicles of 29 randomly selected drivers. Carbon monoxide (CO) content was measured over an 8 hour period by a CO portable monitor. The fine suspended particles were measured according to the black smoke index (BS), with a flow controlled portable pump provided with a cellulose filter. The nitrogen oxides, NO and NO2 were measured with a passive sampler.
RESULTS—These drivers are exposed during their professional activity to relatively high concentrations of pollutants (mean, median (SD) 3.8, 2 (1.7) ppm for CO, 168, 164 (53) µg/m3 for BS, 625, 598 (224) µg/m3 for NO, and 139, 131 (43) µg/m3 for NO2.) For CO the concentrations were clearly lower than the threshold values recommended by the World Health Organisation. The situation is less satisfactory for the other pollutants, especially for the BS index. All concentrations of pollutants recorded were noticeably higher than concentrations in air recorded by the ambient Parisian air monitoring network and were close to, or slightly exceeded, the concentrations measured at the fixed stations close to automobile traffic. Pollutant concentrations were also influenced greatly by weather conditions.
CONCLUSION—This first French study conducted in taxi drivers shows that they are highly exposed to automobile pollutants. The results would justify a medical follow up of this occupational group.


Keywords: taxi drivers; exposure assessment PMID:10810130

  4. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    NASA Technical Reports Server (NTRS)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  5. Impact of underestimating the effects of cold temperature on motor vehicle start emissions of air toxics in the United States.

    PubMed

    Cook, Richard; Touma, Jawad S; Fernandez, Antonio; Brzezinski, David; Bailey, Chad; Scarbro, Carl; Thurman, James; Strum, Madeleine; Ensley, Darrell; Baldauf, Richard

    2007-12-01

    Analyses of U.S. Environmental Protection Agency (EPA) certification data, California Air Resources Board surveillance testing data, and EPA research testing data indicated that EPA's MOBILE6.2 emission factor model substantially underestimates emissions of gaseous air toxics occurring during vehicle starts at cold temperatures for light-duty vehicles and trucks meeting EPA Tier 1 and later standards. An unofficial version of the MOBILE6.2 model was created to account for these underestimates. When this unofficial version of the model was used to project emissions into the future, emissions increased by almost 100% by calendar year 2030, and estimated modeled ambient air toxics concentrations increased by 6-84%, depending on the pollutant. To address these elevated emissions, EPA recently finalized standards requiring reductions of emissions when engines start at cold temperatures.

  6. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... gas liquids extraction and fractionation. Industry 325199 2869 Other basic organic chemical... oxides (NO X ) emissions, 20-25 percent of total volatile organic compound (VOC) emissions, and 5-10...-duty vehicle emission standards for exhaust emissions of VOC (specifically, non-methane organic...

  7. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    PubMed

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles.

  8. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

    PubMed

    Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

    2011-12-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  9. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  10. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  11. Attitude estimation and maneuvering for autonomous obstacle avoidance by miniature air vehicles

    NASA Astrophysics Data System (ADS)

    Hall, James K.

    Utilizing the Euler-Rodrigues symmetric parameters (attitude quaternion) to describe vehicle orientation, we develop a multiplicative, nonlinear (extended) variation of the Kalman filter (MEKF) to fuse data from low-cost sensors. The sensor suite is comprised of gyroscopes, accelerometers, and a GPS receiver. In contrast to the common approach of using the complete vehicle attitude as the quantities to be estimated, our filter states consist of the three components of an attitude error vector. In parallel with the time update of the attitude error estimate, we utilize the gyroscope measurements for the time propagation of the attitude quaternion. The accelerometer and the GPS sensors are used independently for the measurement update portion of the Kalman filter. For both sensors, a vector arithmetic approach is used to determine the attitude error vector. Following each measurement update, a multiplicative reset operation moves the attitude error information from the filter state into the attitude estimate. This reset operation utilizes quaternion algebra to implicitly maintain the unity-norm constraint. We demonstrate the effectiveness of our attitude estimation algorithm through flight simulations and flight tests of aggressive maneuvers such as loops and small-radius circles. We implement an approach to acrobatic maneuvering for miniature air vehicles (MAVs) using time-parameterized attitude trajectory generation and an associated attitude tracking control law. We designed two methodologies, polynomial and trigonometric, for creating functions that specify pitch and roll angles as a function of time. For both approaches, the functions are constrained by the maneuver boundary conditions of aircraft position and velocity. We construct a trajectory tracking feedback control law to regulate aircraft orientation throughout the maneuvers. The trajectory generation algorithm was used to construct several maneuvers and trajectory tracking control law successfully

  12. Design of flapping wings for application to single active degree of freedom micro air vehicles

    NASA Astrophysics Data System (ADS)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  13. Measurement of Fine Particles From Mobile and Stationary Sources, and Reducing the Air Conditioner Power Consumption in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Brewer, Eli Henry

    We study the PM2.5and ultrafine exhaust emissions from a new natural gas-fired turbine power facility to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine. These tests included PM2.5 and wet chemical tests for SO2/SO 3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. The turbine exhaust had an average particle number concentration that was 2.3x103 times higher than ambient air. The majority of these particles were nanoparticles; at the 100 nm size, stack particle concentrations were about 20 times higher than ambient, and increased to 3.9x104 times higher on average in the 2.5 - 3 nm particle size range. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. Some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings similar to those previously measured from turbines in the SCAQMD area, however, the turbine exhaust contained far more particles than ambient air. The power consumed by an air conditioner accounts for a significant fraction of the total power used by hybrid and electric vehicles especially during summer. This study examined the effect of recirculation of cabin air on power consumption of mobile air conditioners both in-lab and on-road. Real time power consumption and vehicle mileage were recorded by an On Board Diagnostic monitor and carbon balance method. Vehicle mileage improved with increased cabin air recirculation. The

  14. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    PubMed

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation.

  15. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  16. Dynamic stability test results on an 0.024 scale B-1 air vehicle

    NASA Technical Reports Server (NTRS)

    Beeman, R. R.

    1972-01-01

    Dynamic longitudinal and lateral-directional stability characteristics of the B-1 air vehicle were investigated in three wind tunnels at the Langley Research Center. The main rotary derivatives were obtained for an angle of attack range of -3 degrees to +16 degrees for a Mach number range of 0.2 to 2.16. Damping in roll data could not be obtained at the supersonic Mach numbers. The Langley 7 x 10 foot high speed tunnel, the 8 foot transonic pressure tunnel, and the 4 foot Unitary Plan wind tunnel were the test sites. An 0.024 scale light-weight model was used on a forced oscillation type balance. Test Reynolds number varied from 474,000/ft to 1,550,000/ft. through the Mach number range tested. The results showed that the dynamic stability characteristics of the model in pitch and roll were generally satisfactory up to an angle attack of about +6 degrees. In the wing sweep range from 15 to 25 degrees the positive damping levels in roll deteriorated rapidly above +2 degrees angle of attack. This reduction in roll damping is believed to be due to the onset of separation over the wing as stall is approached.

  17. Impact studies of a 1/3-scale model of an air cushion vehicle

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.

    1985-01-01

    An experimental investigation was conducted to determine the effects of various parameters of the impact performance of a 1/3-scale dynamic model of an air cushion vehicle. Impact response was determined by measuring the maximum values of variables, including sidelobe, front lobe, and cavity pressures, normal acceleration, pitch and roll angles, and vertical displacement during impact, for various combinations of drop height, initial pitch and roll angles, and forward speed. Increasing initial pitch angle increased the maximum values of the front lobe pressure, normal acceleration, nose down pitch angle, and to some extent, vertical displacement, but it inversely affected the maximum cavity pressure. Increasing the drop height of the model increased the potential energy of the system and generally produced larger responses over the entire range of variables measured, except for the roll angle after impact, which remained constant. Forward speed had no effect on the impact performance of the model, except for essentially doubling the maximum nose down pitch angle after impact at the maximum speed tested.

  18. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  19. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications

    NASA Astrophysics Data System (ADS)

    Murphy, Jeffery T.; Hu, Hui

    2010-08-01

    An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C = 58,000-125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.

  20. Relationship between vehicle count and particulate air pollution in Amman, Jordan.

    PubMed

    Alnawaiseh, Nedal Awad; Hashim, Jamal Hisham; Isa, Zaleha Md

    2015-03-01

    The main objective of this cross-sectional comparative study is to observe the relationship between traffic-related air pollutants, particularly particulate matter (PM) of total suspended particulate (TSP) and PM of size 10 µm (PM10), and vehicle traffic in Amman, Jordan. Two study areas were chosen randomly as a high-polluted area (HPA) and low-polluted area (LPA). The findings indicate that TSP and PM10 were still significantly correlated with traffic count even after controlling for confounding factors (temperature, relative humidity, and wind speed): TSP, r = 0.726, P < .001; PM10, r = 0.719, P < .001). There was a significant positive relationship between traffic count and PM level: TSP, P < .001; PM10, P < .001. Moreover, there was a significant negative relationship between temperature and PM10 level (P = .018). Traffic volume contributed greatly to high concentrations of TSP and PM10 in areas with high traffic count, in addition to the effect of temperature.

  1. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.

    PubMed

    Shang, J K; Combes, S A; Finio, B M; Wood, R J

    2009-09-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  2. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  3. Roof Modelling Potential of Unmanned Air Vehicle Point Clouds with Respect to Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Karakis, Serkan; Gunes Sefercik, Umut; Atalay, Can

    2016-07-01

    In parallel with the improvement of laser scanning technologies, dense point clouds which provide the detailed description of terrain and non-terrain objects became indispensable for remotely-sensed data users. Owing to the large demand, besides laser scanning, point clouds were started to achieve using photogrammetric images. Unmanned air vehicle (UAV) images are one of the most preferred data for creating dense point clouds by the advantage of low cost, rapid and periodically gain. In this study, we tried to assess the roof modelling potential of UAV point clouds by comparing three dimensional (3D) roof models produced from UAV and terrestrial laser scanning (TLS) point clouds. In the study, very popular low cost action camera SJ4000 and Faro Laser Scanner Focus3D X 330 were used to provide point clouds and the roof of Bulent Ecevit University Civil Aviation Academy building was utilized. For the validation of horizontal and vertical geolocation accuracies, standard deviation was used as the main indicator. The visual results demonstrated that UAV roof model is almost coherent with TLS roof model after the filtering-based refinement on noisy pixels and systematic bias correction. Moreover, the horizontal geolocation accuracy is approx. |5cm| both in X and Y directions and bias corrected vertical geolocation accuracy is approx. 17cm for zero roof slope.

  4. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  5. Multisensor 3D tracking for counter small unmanned air vehicles (CSUAV)

    NASA Astrophysics Data System (ADS)

    Vasquez, Juan R.; Tarplee, Kyle M.; Case, Ellen E.; Zelnio, Anne M.; Rigling, Brian D.

    2008-04-01

    A variety of unmanned air vehicles (UAVs) have been developed for both military and civilian use. The typical large UAV is typically state owned, whereas small UAVs (SUAVs) may be in the form of remote controlled aircraft that are widely available. The potential threat of these SUAVs to both the military and civilian populace has led to research efforts to counter these assets via track, ID, and attack. Difficulties arise from the small size and low radar cross section when attempting to detect and track these targets with a single sensor such as radar or video cameras. In addition, clutter objects make accurate ID difficult without very high resolution data, leading to the use of an acoustic array to support this function. This paper presents a multi-sensor architecture that exploits sensor modes including EO/IR cameras, an acoustic array, and future inclusion of a radar. A sensor resource management concept is presented along with preliminary results from three of the sensors.

  6. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.

    PubMed

    Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André

    2017-03-06

    Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.

  7. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  8. Air pollutant emissions from vehicles in China under various energy scenarios.

    PubMed

    Zhang, Qingyu; Sun, Guojin; Fang, Simai; Tian, Weili; Li, Xiaoxiao; Wang, Huiyu

    2013-04-15

    Estimations of air pollutant emissions from vehicles in China under different energy and emission abatement policy scenarios are presented in this paper. Three scenarios are designed: (i) "business as usual" (BAU); (ii) "advanced fuel economy" (AFE); and (iii) "alternative energy replacement" (AER). The CO, VOCs, NOx, PM10, and CO2 emissions are predicted to reach 105.8, 5.9, 7.5, 1.1, and 3522.6 million tons, respectively, in the BAU scenario by 2030. In the AFE scenario, the CO, VOCs, NOx, PM10, and CO2 emissions in 2030 will be abated by 23.8%, 18.6%, 25.3%, 18.2%, and 24.5% respectively compared with the BAU scenario. In the AER scenario, the CO and VOCs in 2030 will be further reduced by 15.9% and 6.1% respectively, while NOx, PM10, and CO2 will be increased by 10.7%, 33.3%, and 2.0% compared with AFE. In conclusion, our models indicate that the emission abatement policies introduced by governmental institutions are potentially viable, as long as they are effectively implemented.

  9. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  10. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    NASA Astrophysics Data System (ADS)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  11. Conservation equations and physical models for hypersonic air flows over the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code development and application program for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), with emphasis directed toward support of the Aeroassist Flight Experiment (AFE) in the near term and Aeroassisted Space Transfer Vehicle (ASTV) design in the long term is reviewed. LAURA is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3-D, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. A single relaxation step depends only on information from nearest neighbors. Predictions for pressure distributions, surface heating, and aerodynamic coefficients compare well with experimental data for Mach 10 flow over an AFE wind tunnel model. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium over the full scale AFE configuration obtained on a multi-domain grid are discussed.

  12. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Deaconu, S. I.; Boldea, I.; Popa, G. N.

    2014-03-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper.

  13. Utilization Assessment of Target Electrification Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect

    Schey, Steve

    2015-05-01

    Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.

  14. The Australian Air Quality Forecasting System: the use of green scenarios of motor vehicle usage as an educational tool.

    PubMed

    Cope, Martin; Hess, Dale; Lee, Sunhee; Tory, Kevin; Burgers, Manuela; Lilley, Bill

    2008-07-01

    The Australian Air Quality Forecasting System (AAQFS) is one of several newly emerging, high-resolution, numerical air quality forecasting systems. The system is briefly described. A public education application of the air quality impact of motor vehicle usage is explored by computing the concentration and dosage of particulate matter less than 10 microm in aerodynamic diameter (PM10) for a commuter traveling to work between Geelong and Melbourne, Victoria, Australia, under "business-as-usual" and "green" scenarios. This application could be routinely incorporated into systems like AAQFS. Two methodologies for calculating the dosage are described: one for operational use and one for more detailed applications. The Clean Air Research Programme-Personal Exposure Study in Melbourne provides support for this operational methodology. The more detailed methodology is illustrated using a system for predicting concentrations due to near-road emissions of PM10 and applied in Sydney.

  15. Shuttle Era: Launch Directors

    NASA Video Gallery

    A space shuttle launch director is the leader of the complex choreography that goes into a shuttle liftoff. Ten people have served as shuttle launch directors, making the final decision whether the...

  16. Air-breathing hypersonic vehicle guidance and control studies: An integrated trajectory/control analysis methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    An integrated trajectory/control analysis algorithm has been used to generate trajectories and desired control strategies for two different hypersonic air-breathing vehicle models and orbit targets. Both models used cubic spline curve fit tabulated winged-cone accelerator vehicle representations. Near-fuel-optimal, horizontal takeoff trajectories, imposing a dynamic pressure limit of 1000 psf, were developed. The first model analysis case involved a polar orbit and included the dynamic effects of using elevons to maintain longitudinal trim. Analysis results indicated problems with the adequacy of the propulsion model and highlighted dynamic pressure/altitude instabilities when using vehicle angle of attack as a control variable. Also, the magnitude of computed elevon deflections to maintain trim suggested a need for alternative pitch moment management strategies. The second analysis case was reformulated to use vehicle pitch attitude relative to the local vertical as the control variable. A new, more realistic, air-breathing propulsion model was incorporated. Pitch trim calculations were dropped and an equatorial orbit was specified. Changes in flight characteristics due to the new propulsion model have been identified. Flight regimes demanding rapid attitude changes have been noted. Also, some issues that would affect design of closed-loop controllers were ascertained.

  17. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  18. On mathematical modelling of insect flight dynamics in the context of micro air vehicles.

    PubMed

    Zbikowski, Rafał; Ansari, Salman A; Knowles, Kevin

    2006-06-01

    We discuss some aspects of mathematical modelling relevant to the dynamics of insect flight in the context of insect-like flapping-wing micro air vehicles (MAVs). MAVs are small flying vehicles developed to reconnoître in confined spaces. This requires power-efficient, highly-manoeuvrable, low-speed flight with stable hover. All of these attributes are present in insect flight and hence the focus on reproducing the functionality of insect flight by engineering means. Empirical research on insect flight dynamics is limited by experimental difficulties. Force and moment measurements require tethering the animal whose behaviour may then differ from free flight. The measurements are made when the insect actively tries to control its flight, so that its open-loop dynamics cannot be observed. Finally, investigation of the sensory-motor system responsible for flight is even more challenging. Despite these difficulties, much empirical progress has been made recently. Further progress, especially in the context of MAVs, can be achieved by the complementary information derived from appropriate mathematical modelling. The focus here is on a means of computing the data not easily available from experiments and also on making mathematical predictions to suggest new experiments. We consider two aspects of mathematical modelling for insect flight dynamics. The first one is theoretical (computational), as opposed to empirical, generation of the aerodynamic data required for the six-degrees-of-freedom equations of motion. For this purpose we first explain insect wing kinematics and the salient features of the corresponding flow. In this context, we show that aerodynamic modelling is a feasible option for certain flight regimes, focusing on a successful example of modelling hover. Such modelling progresses from the first principles of fluid mechanics, but relies on simplifications justified by the known flow phenomenology and/or geometric and kinematic symmetries. This is relevant

  19. The Director's Link, 2003.

    ERIC Educational Resources Information Center

    Clark, Doug, Ed.

    This document consists of the 2003 issues of a quarterly newsletter for Illinois early childhood program directors, providing information on current issues in early childhood education. Regular features in each issue include: "The Director's Toolbox," delineating practical suggestions for directors related to program policies and staff…

  20. Field test of the Electric Fuel{trademark} zinc-air refuelable battery system for electric vehicles

    SciTech Connect

    Goldstein, J.R.; Koretz, B.; Harats, Y.

    1996-12-31

    The Electric Fuel Limited (EFL) zinc-air refuelable battery system will be tested over the next two years in a number of electric vehicle demonstration projects, the largest of which is an $18-million, 64-vehicle, two-year test sponsored chiefly by Deutsche Post AG (the German Post Corporation). The German field test is the largest-ever EV fleet test of a single advanced-battery technology. It also represents a marked departure from other EV test and demonstration programs, in that it is being sponsored not by government or electric utility interests, but by large fleet operators committed to shifting significant proportions of their vehicles to electric over the next 5--10 years. The Electric Fuel battery has specific energy of 200 Wh/kg, an achievement that allows electric vehicles to go as far on a charge as conventionally fueled vehicles go on a tank of gasoline. Fast, convenient refueling eliminates the need for lengthy electrical recharging, and clean, centralized zinc regeneration plants ensure the most efficient and environment-friendly use of energy resources.

  1. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  2. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  3. Evaluation of some significant issues affecting trajectory and control management for air-breathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.

  4. Fact Sheet: Protection of the Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector under the Significant New Alternatives Policy (SNAP) Program

    EPA Pesticide Factsheets

    Under the Significant New Alternatives Policy (SNAP) program, EPA is listing HFO-1234yf as an acceptable substitute for ozone depleting substances (ODS) in motor vehicle air conditioning (MVAC) systems in new cars and other light duty-vehicles and is speci

  5. Membrane-based air composition control for light-duty diesel vehicles : a benefit and cost assessment.

    SciTech Connect

    Poola, R.; Stork, K.

    1998-11-09

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM2.5). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles. For nearly a decade, Argonne has been evaluating membrane-based methods to control the composition of air used in combustion. Membranes are the only practical method of modifying air composition for on-board use. The applicability of the technique depends strongly on both the technical and economic feasibility of implementing it on a vehicle. Over the past 10 years, significant technical advances have been made in the development of air-separation membranes. Researchers have developed and commercialized novel membrane materials that can efficiently separate

  6. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming

    2016-08-01

    Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities

  7. Air quality impacts of using overnight electricity generation to charge plug-in hybrid electric vehicles for daytime use

    NASA Astrophysics Data System (ADS)

    Thompson, Tammy; Webber, Michael; Allen, David T.

    2009-01-01

    The air quality impacts of replacing 20% of the gasoline powered light duty vehicle miles traveled with plug-in hybrid electric vehicles (PHEVs) in the region served by the Pennsylvania, New Jersey, Maryland classic grid are examined. Unutilized, base-load nighttime electricity generating capacity is assumed to charge PHEVs that would subsequently be used during urban commutes. The net impact of this scenario on the emissions of precursors to the formation of ozone is an increase in nitrogen oxide (NOx), volatile organic compound (VOC) and CO emissions from electricity generating units during nighttime hours, and a greater decrease in NOx, VOC and CO from mobile emissions in urban areas during daytime hours. The changes in maximum daily 8 h ozone concentrations, predicted using a regional photochemical model (CAMx), are decreases in ozone concentrations between 2 and 6 ppb that are widespread across the urban areas, and increases in ozone concentrations of up to 8 ppb in highly localized areas. Air quality indicators beyond maximum daily ozone concentration are also evaluated, and in general indicate air quality improvements associated with the use of PHEVs. However, a limited number of air quality indicators worsened with the use of PHEVs, suggesting that overall impacts of the use of PHEVs will be complex.

  8. A Comparative Analysis of Single-Stage-To-Orbit Rocket and Air-Breathing Vehicles

    DTIC Science & Technology

    2006-06-01

    Weight Ratio TBCC ............................................ Turbine-Based Combined-Cycle TPS...spacecraft and possibly allow for SSTO vehicles with sizable payloads. After substantial design and wind tunnel testing , the Hyper-X program peaked with...the successful testing of two unpiloted vehicles. Powered by NASA-developed hydrogen scramjets, the X-43A craft set the world speed record for

  9. 77 FR 50969 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Low Emission Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ...-in beginning in model year 1994 through model year 2003. California adopted a second generation of CA.... The fleet average non- methane hydrocarbon emission limits become progressively lower each model year... subsequent model year passenger cars, light trucks, and medium-duty vehicles having a gross vehicle...

  10. 77 FR 75388 - Approval and Promulgation of Air Quality Implementation Plans; State of Colorado; Motor Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ...; Motor Vehicle Inspection and Maintenance Program-- Deletion of Final Enhanced Inspection and Maintenance... No. 11, and they have been federally enforceable. \\2\\ A motor vehicle inspection and maintenance (I/M... Regulation No. 11 will not adversely affect the approved maintenance plans for Metro-Denver and Longmont...

  11. Viking entry vehicle aerodynamics at m equals 2 in air and some preliminary test data for flight in CO2

    NASA Technical Reports Server (NTRS)

    Sammonds, R. I.; Kruse, R. L.

    1975-01-01

    The static and dynamic aerodynamic characteristics of the Viking entry vehicle were determined experimentally in free flight in air at a Mach number near 2. Preliminary results were also obtained in CO2 at M infinity = 11. The low speed tests in air confirmed a region of dynamic instability previously observed. The instability was greatest at the smallest pitch amplitudes but decreased with increasing amplitude until a limit cycle was reached at about 8 deg. The tests in CO2 indicated increased drag coefficients of 3 percent with respect to those in air. Errors in the drag coefficient of this magnitude would significantly affect the reconstruction of the Martian atmosphere during entry of the Viking spacecraft.

  12. A Computer Based Data Management System for Air Force War Reserve Materiel (WRM) Vehicle Management

    DTIC Science & Technology

    1988-09-01

    THESIS Robert S. Thomas First Lieutenant, USAF AFIT/GLM/LSM/8RS-70 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright...School of Logistics of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree Master of Science...of Available Technology and Equipment ... 23 Software Identification.........................24 Interface with Existing Systems.................28

  13. Aggregated GPS tracking of vehicles and its use as a proxy of traffic-related air pollution emissions

    NASA Astrophysics Data System (ADS)

    Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.

    2016-10-01

    Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.

  14. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    NASA Astrophysics Data System (ADS)

    Thompson, Tammy M.; King, Carey W.; Allen, David T.; Webber, Michael E.

    2011-04-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NOx emissions from EGUs during times of day when the vehicle is charging, and a decrease in NOx from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NOx emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  15. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Jing, B. Y.; Wu, L.; Mao, H. J.; Gong, S. L.; He, J. J.; Zou, C.; Song, G. H.; Li, X. Y.; Wu, Z.

    2015-10-01

    As the ownership of vehicles and frequency of utilization increase, vehicle emissions have become an important source of air pollution in Chinese cities. An accurate emission inventory for on-road vehicles is necessary for numerical air quality simulation and the assessment of implementation strategies. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near real time (NRT) traffic data on road segments to develop a high temporal-spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg, respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Additionally, the on-road vehicle emission inventory model and control effect assessment system in Beijing, a vehicle emission inventory model, was established based on this study in a companion paper (He et al., 2015).

  16. Control Vane Guidance for A Ducted-Fan Unmanned Air Vehicle

    DTIC Science & Technology

    1993-06-01

    vehicle’s rearbody to a forebody mounted on struts above the vehicle intake. All wiring harnesses and associated bus boards were connected to...INTERCONNECTIONS Wiring harnesses connected the forebody to the chassis and the chassis to the rearbody. Surplus AROD harnesses were used wherever possible...location for the umbilical cord. Most connecting wiring harnesses were derived from existing surplus AROD harnesses. New harnesses and bus boards

  17. Director`s series on proliferation

    SciTech Connect

    Bailey, K.C.; Price, M.E.

    1994-12-27

    The Director`s Series on Proliferation is an occasional publication of essays on the topics of nuclear, chemical, biological, and missile proliferation. The seven papers presented in this issue cover the following topics: Should the Treaty on the Nonproliferation of Nuclear Weapons (NPT) be amended?; NPT extension - Legal and procedural issues; An Indonesian view of NPT review conference issues; The treaty of Tlatelolco and the NPT - Tools for peace and development; Perspectives on cut-off, weapons dismantlement, and security assurances; Belarus and NPT challenges; A perspective on the chemical weapons convention - Lessons learned from the preparatory commission.

  18. Risk of injury associated with the use of seat belts and air bags in motor vehicle crashes.

    PubMed

    Cummins, Justin S; Koval, Kenneth J; Cantu, Robert V; Spratt, Kevin F

    2008-01-01

    Although air bags have been reported to reduce passenger mortality in frontal collisions, they have also been reported as a cause of injury in motor vehicle collisions(MVCs). The purpose of this study was to evaluate a large cohort of patients involved in MVCs to determine mortality and the pattern of injuries associated with seat belt use and air bag deployment. Information on patients involved in MVCs from 1988 to 2004 was obtained from the National Trauma Data Bank (NTDB). The data was evaluated based on four groups of safety devices: seat belt and deployed air bag (SBAB), seat belt only (SBO), deployed air bag only (ABO), and no safety devices (None). A total of 35,333 patients met study inclusion criteria. Air bags and seat belts used in combination decreased the risk of potentially fatal injuries, but increased the risk of lower extremity injuries (odds ratio, 1.35). The use of any type of restraint led to a decrease in the risk of injury or mortality in MVCs. Only half of all individuals in this study used any type of restraint device, which indicates the need for significant improvements in public health and safety seat belt utilization programs.

  19. Vocational Director's Handbook.

    ERIC Educational Resources Information Center

    Weber, Earl, Comp.

    Designed for newly appointed vocational directors in Washington's community colleges, this handbook provides an overview of the functions associated with the administration of vocational education programs. Following a section outlining the role and qualifications of the vocational director, information is presented on the personnel…

  20. Ideas for Directors.

    ERIC Educational Resources Information Center

    Child Care Information Exchange, 1989

    1989-01-01

    Presents a variety of ideas and guidelines for day care directors on such topics as managing a procrastinator; improving annual reports; quality commandments; mini fiestas for children, parents, and teachers; selective reading for directors; morning exercise programs for the staff; and suggestions for successful fundraising. (BB)

  1. Athletic Director's Survival Guide.

    ERIC Educational Resources Information Center

    Koehler, Mike; Giebel, Nancy

    This book examines the duties assigned to athletic directors, offering successful strategies for achieving them and materials to make their jobs easier (e.g., sample memos, letters, forms, and charts for interacting successfully with coaches, students, administrators, and parents). Section 1 discusses the director's work with student athletes and…

  2. Transitioning between Clerkship Directors

    ERIC Educational Resources Information Center

    Soltys, Stephen M.; Pary, Robert J.; Robinson, Stephen W.; Markwell, Stephen J.

    2011-01-01

    Objective: The authors report on succession-planning for mid-level academic positions. Method: The authors describe the process of succession-planning between clerkship directors and the smooth transition resulting in one case. Results: Gradually transitioning allowed a new faculty person to assume the clerkship-director position with minimal…

  3. Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model

    NASA Astrophysics Data System (ADS)

    Horak, Johannes; Schmerold, Ivo; Wimmer, Kurt; Schauberger, Günther

    2016-07-01

    In vehicles that are parked, no ventilation and/or air conditioning takes place. If a vehicle is exposed to direct solar radiation, an immediate temperature rise occurs. The high cabin air temperature can threaten children and animals that are left unattended in vehicles. In the USA, lethal heat strokes cause a mean death rate of 37 children per year. In addition, temperature-sensitive goods (e.g. drugs in ambulances and veterinary vehicles) can be adversely affected by high temperatures. To calculate the rise of the cabin air temperature, a dynamic model was developed that is driven by only three parameters, available at standard meteorological stations: air temperature, global radiation and wind velocity. The transition from the initial temperature to the constant equilibrium temperature depends strongly on the configuration of the vehicle, more specifically on insulation, window area and transmission of the glass, as well as on the meteorological conditions. The comparison of the model with empirical data showed good agreement. The model output can be applied to assess the heat load of children and animals as well as temperature-sensitive goods, which are transported and/or stored in a vehicle.

  4. Ascent performance of an air-breathing horizontal-takeoff launch vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Shaughnessy, John D.; Cruz, Christopher I.; Naftel, J. C.

    1991-01-01

    Simulations are conducted to investigate a proposed NASA launch vehicle that is fully reusable, takes off horizontally, and uses airbreathing propulsion in a single stage. The propulsion model is based on a cycle analysis method, and the vehicle is assumed to be a rigid structure with distributed fuel, operating under a range of atmospheric conditions. The program to optimize simulated trajectories (POST) is modified to include a predictor-corrector guidance capability and then used to generate the trajectories. Significant errors are encountered during the unpowered coast phase due to uncertainty in the atmospheric density profile. The amount of ascent propellant needed is shown to be directly related to the thrust-vector angle and the location of the center of gravity of the vehicle because of the importance of aim-drag losses to total ideal velocity.

  5. Numerical modeling of aerodynamics of airfoils of micro air vehicles in gusty environment

    NASA Astrophysics Data System (ADS)

    Gopalan, Harish

    The superior flight characteristics exhibited by birds and insects can be taken as a prototype of the most perfect form of flying machine ever created. The design of Micro Air Vehicles (MAV) which tries mimic the flight of birds and insects has generated a great deal of interest as the MAVs can be utilized for a number of commercial and military operations which is usually not easily accessible by manned motion. The size and speed of operation of a MAV results in low Reynolds number flight, way below the flying conditions of a conventional aircraft. The insensitivity to wind shear and gust is one of the required factors to be considered in the design of airfoil for MAVs. The stability of flight under wind shear is successfully accomplished in the flight of birds and insects, through the flapping motion of their wings. Numerous studies which attempt to model the flapping motion of the birds and insects have neglected the effect of wind gust on the stability of the motion. Also sudden change in flight conditions makes it important to have the ability to have an instantaneous change of the lift force without disturbing the stability of the MAV. In the current study, two dimensional rigid airfoil, undergoing flapping motion is studied numerically using a compressible Navier-Stokes solver discretized using high-order finite difference schemes. The high-order schemes in space and in time are needed to keep the numerical solution economic in terms of computer resources and to prevent vortices from smearing. The numerical grid required for the computations are generated using an inverse panel method for the streamfunction and potential function. This grid generating algorithm allows the creation of single-block orthogonal H-grids with ease of clustering anywhere in the domain and the easy resolution of boundary layers. The developed numerical algorithm has been validated successfully against benchmark problems in computational aeroacoustics (CAA), and unsteady viscous

  6. Special problems and capabilities of high altitude lighter than air vehicles

    NASA Technical Reports Server (NTRS)

    Wessel, P. R.; Petrone, F. J.

    1975-01-01

    Powered LTA vehicles have historically been limited to operations at low altitudes. Conditions exist which may enable a remotely piloted unit to be operated at an altitude near 70,000 feet. Such systems will be launched like high altitude balloons, operate like nonrigid airships, and have mission capabilities comparable to a low altitude stationary satellite. The limited lift available and the stratospheric environment impose special requirements on power systems, hull materials and payloads. Potential nonmilitary uses of the vehicle include communications relay, environmental monitoring and ship traffic control.

  7. Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.

    2004-01-01

    This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.

  8. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    SciTech Connect

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  9. Technical Feasibility of Loitering Lighter-Than-Air Near-Space Maneuvering Vehicles

    DTIC Science & Technology

    2005-03-01

    to loiter an operational payload within this high altitude region using a lighter-than-air maneuvering platform. A parametric analysis was conducted...4. Analysis and Results...requirements to loiter an operational payload in near-space using a lighter-than-air maneuvering platform. A parametric analysis was conducted to

  10. 78 FR 68378 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Amendments to Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ..., Illinois 60604. 5. Hand Delivery: Pamela Blakley, Chief, Control Strategies Section, Air Programs Branch... in hard copy at the Environmental Protection Agency, Region 5, Air and Radiation Division, 77 West... Source Program Manager, at (312)886-6061 before visiting the Region 5 office. FOR FURTHER...

  11. ANALYSIS OF MOTOR VEHICLE EMISSIONS IN A HOUSTON TUNNEL DURING THE TEXAS AIR QUALITY STUDY 2000

    EPA Science Inventory

    Measurements from a Houston tunnel were used to develop fuel consumption based emission factors for CO, NOx, and Non-Methane Organic Compound (NMOC) for on-road gasoline vehicles. The Houston NOx emission factor was at the low range of emission factors reported in previous (pr...

  12. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditioner will be included in the equivalent test weight calculations for emission testing. ... estimated weight of that item must be included in the curb weight computation for each vehicle available... equipment or an option), no weight for that item will be added in computing the curb weight for any...

  13. Onboard Stability Control System for a Flapping Wing Nano Air Vehicle

    DTIC Science & Technology

    2009-04-24

    15 Figure 14. Vehicle response to hover command with nitinol actuators and sensors...with nitinol actuators and sensors modeled. An extended Kalman filter has been implemented to estimate the functional roll rate from sensor...Actuators The wing control actuators subcomponent consists of nitinol wires connected to mechanisms that dictate the wing kinematics. These mechanisms

  14. 77 FR 33315 - Protection of Stratospheric Ozone: Alternative for the Motor Vehicle Air Conditioning Sector...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... AGENCY 40 CFR Part 82 RIN 2060-AM54 Protection of Stratospheric Ozone: Alternative for the Motor Vehicle... MVAC systems designed specifically for the use of CO 2 refrigerant. The substitute is non-ozone-depleting and therefore does not contribute to stratospheric ozone depletion. DATES: This final rule...

  15. Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed.

    PubMed

    Yu, Haofei; Stuart, Amy L

    2017-01-15

    'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NOx), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NOx, butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NOx (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NOx (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive adoption

  16. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  17. 78 FR 57501 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Amendments to Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... at the state level since EPA fully approved the I/M program on August 16, 2001. The submittal also... Environmental Protection Agency, Region 5, Air and Radiation Division, 77 West Jackson Boulevard,...

  18. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  19. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rabbits shall be mechanically sound and provide fresh air by means of windows, doors, vents, or air... temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal... temperature in the cargo space may be below 45 °F (7.2 °C) if the rabbits are accompanied by a certificate...

  20. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rabbits shall be mechanically sound and provide fresh air by means of windows, doors, vents, or air... temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal... temperature in the cargo space may be below 45 °F (7.2 °C) if the rabbits are accompanied by a certificate...

  1. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... rabbits shall be mechanically sound and provide fresh air by means of windows, doors, vents, or air... temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal... temperature in the cargo space may be below 45 °F (7.2 °C) if the rabbits are accompanied by a certificate...

  2. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rabbits shall be mechanically sound and provide fresh air by means of windows, doors, vents, or air... temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal... temperature in the cargo space may be below 45 °F (7.2 °C) if the rabbits are accompanied by a certificate...

  3. Ideas for Directors.

    ERIC Educational Resources Information Center

    Child Care Information Exchange, 1990

    1990-01-01

    Discusses ideas for directors. Topics include the safety of child care; profit sharing in child care; and ways to get audited, fashion a philosophy, ask for money, draw out shy employees, and beat stress. (RJC)

  4. New directors for ILC

    NASA Astrophysics Data System (ADS)

    2017-01-01

    The International Linear Collider Collaboration, which promotes the construction of a new linear collider to complement CERN's Large Hadron Collider, has appointed two new associate directors, who both take the reins this month.

  5. A Model to Determine the Economic Life of Air Force Motor Vehicles.

    DTIC Science & Technology

    1987-09-01

    62 Model Interpretation . . . . . . . . . . . 66 Recommendations for Model Applications 67 Recommendations for Further Study .... 68 Conclusion...process, not the product. Therefore, only one type of vehicle was studied to determine the feasibility of the model itself before spending the time and...followed by the scope and limitations for this study . Chapter one concluded by defining some of the terms used in this thesis. 13 S.AME~a II. Literature

  6. Proceedings of the RAND Project AIR FORCE Workshop on Transatmospheric Vehicles

    DTIC Science & Technology

    1997-01-01

    a design problem associated with using the materials in a multi-functioning capacity. Titanium aluminides are "advanced" metallic compounds...Space Technology, June 17,1996, p. 29. National Aero-Space Plane Materials and Structures Augmentation Program, Titanium Aluminides /Advanced...counterforce capability. Similarly, if a TAV could quickly deliver such weapons against terrestrial targets such as armored vehicles, it could serve

  7. A Feasibility Study on the Control of a Generic Air Vehicle Using Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Moerder, Daniel D.

    2006-01-01

    This paper examines feasibility and performance issues in using Control Moment Gyroscopes (CMGs) to control the attitude of a fixed-wing aircraft. The paper describes a control system structure that permits allocating control authority and bandwidth between a CMG system and conventional aerodynamic control surfaces to stabilize a vehicle with neutral aerodynamic stability. A simulation study explores the interplay between aerodynamic and CMG effects, and indicates desirable physical characteristics for a CMG system to be used for aircraft attitude control.

  8. A Non-Linear Simulation for an Autonomous Unmanned Air Vehicle

    DTIC Science & Technology

    1993-09-01

    translational flight mode, but was not easily adaptable to anything other than the narrow range of conditions planned for AROD. The Sandia Labs papers also...Mechanics Conference, AIAA, Washington, D.C., Aug. 1988, pp. 720-731. [DOD 92] "DoD Unmanned Aerial Vehicle Master Plan ," Department of Defense...34 Master’s Thesis, Department of Electrical Engineering, Instituto Superior Tecnico , Lisbon, Portugal, 1991. [Cra 86] Craig, J.J., Introduction to

  9. Navigation, Guidance and Control For the CICADA Expendable Micro Air Vehicle

    DTIC Science & Technology

    2015-01-01

    the GPS data when the GPS sensor data first becomes valid. The altitude estimate is then propagated using the estimated vertical velocity 3 of 14...design goal for the guidance and control system was to enable the CICADA to recover from a wide range of initial launch conditions and altitudes . Recording...vehicle from a drop of over 29,000 feet in altitude . I. Introduction Unmanned aerial sensors (UAS) have typically been complex assemblies of the airframe

  10. Improving Low Temperature Startability of M113 Vehicles: Hot Air Heating Tests.

    DTIC Science & Technology

    1988-03-01

    920-@@@ .-D I+S’L-AY-VAR-IAf4LF..- 930 940 P DISDEVICES(l) p DISPLAY DEVICE, SCREEN OR FL 0-OTTER 950 @ DISVEH’ R VEHICLE NUMDRER 960 @ DISTEMP (26...8217 11957 IF DIS_TFMP(M’) < -99 GOTO 11977 11958 IF DISTEMP (M’) > 99 GOTO 11977 ----- GOTO118--.-.M’---) I OO 1 11962 PRINT USING: CHAN’ -#’ DISTEFPIM

  11. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.

    PubMed

    Peterson, Scott B; Whitacre, J F; Apt, Jay

    2011-03-01

    Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.

  12. Vehicle Maintenance Manpower Requirements for U.S. Army Installation Directorates of Engineering and Housing Based on Air Force, Navy, and Army Reserves’ Staffing Techniques.

    DTIC Science & Technology

    1986-07-01

    monitors repair cycle asset. 2. Tool Crib. Issues and receives tools upon request; maintains suspense file; inspects and maintains tools; schedules...request; maintains suspense file; inspects and maintains tools; schedules precision measurement equipment (PME); performs tool crib inventory. 13. Workload...SCOOT PK 3-4WHL SCOOTER , MOTOR, PKG DELIVERY, 3-4 WHEEL WITH SIDE CAR 0907 Z SLED SNOWMOBILE SLED, SELF-PROP, GED, SNOWMOB, SKI-STEER 5820 S TRK COMPAC

  13. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Jing, Boyu; Wu, Lin; Mao, Hongjun; Gong, Sunning; He, Jianjun; Zou, Chao; Song, Guohua; Li, Xiaoyu; Wu, Zhong

    2016-03-01

    This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal-spatial resolution (HTSVE) for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016).

  14. Bibliography of the Radio Frequency Radiation Branch, Directed Energy Bioeffects Division, Human Effectiveness Directorate, Air Force Research Laboratory: 1997-2003

    DTIC Science & Technology

    2004-02-01

    frequency electromagnetic fields: Cancer, mutagenesis, and genotoxicity . Bioelectromagnetics Suppl. 6, S74-S100, 2003. D’Andrea, J. A., Chou, C. K...1997-2003. Air Force Research Laboratory, abstracts, bibliography, electromagnetic fields, electromagnetics , microwaves, non-ionizing radiation...J. M. Ziriax, L. R. Johnson, and P. A. Mason. Inter-species extrapolation of skin heating resulting from millimeter wave irradiation: Modeling and

  15. Operation Greenhouse. Scientific Director's report. Annex 1. 6. Blast measurements. Part 2. Free-air peak-pressure measurements. Section 1. Nuclear explosions, 1951

    SciTech Connect

    Moulton, J.F.; Simonds, B.T.

    1984-10-31

    The primary objective of this experiment was to obtain accurate information on the pressure in the shock wave in the free-air region. In particular, it was desired to know the peak pressure as a function of distance in this region. Secondary objectives were to determine the path of the triple point and to determine the peak pressure in the Mach-stem region.

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. Measuring the Return on Investment and Real Option Value of Weather Sensor Bundles for Air Force Unmanned Aerial Vehicles

    DTIC Science & Technology

    2016-04-30

    qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= tÉÇåÉëÇ~ó=pÉëëáçåë= sçäìãÉ=f= = Measuring the Return on Investment and Real Option Value of Weather Sensor ...Maryland Peter Sandborn, Professor, University of Maryland Measuring the Return on Investment and Real Option Value of Weather Sensor Bundles for...35 - Measuring the Return on Investment and Real Option Value of Weather Sensor Bundles for Air Force Unmanned Aerial Vehicles Thomas J. Housel

  18. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy.

  19. The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle

    NASA Astrophysics Data System (ADS)

    Sai, Li; Wei, Zhou; Xueren, Wang

    2017-03-01

    By analyzing the development status of several typical solar powered unmanned aerial vehicles (UAV) at home and abroad, the key technologies involved in the design and manufacture of solar powered UAV and the technical difficulties need to be solved at present are obtained. It is pointed out that with the improvement of energy system efficiency, advanced aerodynamic configuration design, realization of high applicability flight stability and control system, breakthrough of efficient propulsion system, the application prospect of solar powered UAV will be more extensive.

  20. Fatal and Severe Injury Motor Vehicle Crashes Involving Air Force Personnel 1988-1999

    DTIC Science & Technology

    2001-04-01

    stronger than man. –G. K. Chesterton Motor vehicle accidents are the nation‘s most common and costly serious injury producer, and rob the young in...Public Health. 1998;112(5):289-95. 14 Laapotti S, Keskinen E. —Differences in fatal loss-of-control accidents between young male and female drivers... Accident Analysis and Prevention. 1998;30(4):435-42. 15 Doherty ST, Andrey JC, MacGregor C. —The situational risks of young drivers: the influence

  1. HSI Guidelines Outline for the Air Vehicle Control Station. Version 2

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This document provides guidance to the FAA and manufacturers on how to develop UAS Pilot Vehicle Interfaces to safely and effectively integrate UASs into the NAS. Preliminary guidelines are provided for Aviate, Communicate, Navigate and Avoid Hazard functions. The pilot shall have information and control capability so that pilot-UA interactions are not adverse, unfavorable, nor compromise safety. Unfavorable interactions include anomalous aircraft-pilot coupling (APC) interactions (closed loop), pilot-involved oscillations (categories I, II or III), and non-oscillatory APC events (e.g., divergence). - Human Systems Integration Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)

  2. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  3. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  4. Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating: LaRC 20-Inch Mach 6 Air Tunnel Test 6931

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2009-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Langley Research Center 20-Inch Mach 6 Air Tunnel. Data were measured on a approx.3.5% scale model (0.1778-m/7-inch diameter) of the vehicle using coaxial thermocouples at free stream Reynolds numbers of 2.0 10(exp 6)/ft to 7.30 10(exp 6)/ft and computational predictions were generated for all test conditions. The primary goals of this test were to obtain convective heating data for use in assessing the accuracy of the computational technique and to validate test methodology and heating data from a test of the same wind tunnel model in the Arnold Engineering Development Center Tunnel 9. Secondary goals were to determine the extent of transitional/turbulent data which could be produced on a CEV model in this facility, either with or without boundary-layer trips, and to demonstrate continuous pitch-sweep operation in this tunnel for heat transfer testing.

  5. Micro air vehicle-motivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Nakata, Toshiyuki; Gao, Na; Maeda, Masateru; Aono, Hikaru; Shyy, Wei

    2010-12-01

    Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles (MAVs) design, we propose a comprehensive computational framework, which integrates aerodynamics, flight dynamics, vehicle stability and maneuverability. This framework consists of (1) a Navier-Stokes unsteady aerodynamic model; (2) a linear finite element model for structural dynamics; (3) a fluid-structure interaction (FSI) model for coupled flexible wing aerodynamics aeroelasticity; (4) a free-flying rigid body dynamic (RBD) model utilizing the Newtonian-Euler equations of 6DoF motion; and (5) flight simulator accounting for realistic wing-body morphology, flapping-wing and body kinematics, and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight. Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly. The present approach can support systematic analyses of bio- and bio-inspired flight.

  6. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  7. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  8. STS-28 crew egresses Columbia, OV-102, at Edwards Air Force Base, California

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-28 crewmembers are greeted by NASA Associate Administrator for Space Flight William B. Lenoir, NASA Administrator Richard H. Truly, and Flight Operations Directorate (FCOD) Director Donald R. Puddy as they egress Columbia, Orbiter Vehicle (OV) 102, at Edwards Air Force Base (EAFB), California. The crew spent five days in Earth orbit for a Department of Defense (DOD) dedicated mission. The astronauts, wearing navy blue flight coveralls (jumpsuits) are, from left to right, Mission Specialist (MS) Mark N. Brown, Pilot Richard N. Richards, MS David C. Leestma, MS James C. Adamson, and Commander Brewster H. Shaw. Visible in the background are OV-102's wing and tail section and ground servicing vehicles.

  9. TARDEC Ground Vehicle Robotics

    DTIC Science & Technology

    2013-05-30

    TARDEC Ground Vehicle Robotics Mr. Jim Parker, Associate Director Dr. Greg Hudas, Chief Engineer UNCLASSIFIED: Distribution Statement A (OPSEC...TARDEC Ground Vehicle Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jim Parker; Greg Hudas 5d. PROJECT...Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned Ground Vehicles

  10. Ground Vehicle Robotics

    DTIC Science & Technology

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  11. Mitigating the Effects of Atmospheric Turbulence: Towards More Useful Micro Air Vehicles

    DTIC Science & Technology

    2010-07-18

    outdoor turbulent environment. 25 REFERENCES AND BIBLIOGRAPHY Abdulrahim M., Watkins S., Segal R . and Sheridan J., “Dynamic Sensitivity to...Shortis M., Loxton B., Segal R . and Bil C., “Turbulence in the Atmospheric Wind: A Limiting Factor in MAV Operations”, 24th Bristol Unmanned Air

  12. 75 FR 51521 - Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ...; Technical Report on the Effectiveness of Antilock Braking Systems in Heavy Truck Tractors and Trailers...: Request for comments on technical report. SUMMARY: This notice announces NHTSA's publication of a Technical Report its existing Safety Standard 121, Air Brake Systems. The report's title is:...

  13. 77 FR 1892 - Approval and Promulgation of Air Quality Implementation Plans; State of Colorado; Motor Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... control measure that is sometimes used in SIPs to reduce emissions of certain air pollutants. Today's cars are dependent on properly functioning emission control systems to keep pollution levels low. I/M programs can identify problem cars and ensure that cars are properly maintained. Through Regulation No....

  14. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to transport guinea pigs or hamsters shall be mechanically sound and provide fresh air by means of... containing live guinea pigs or hamsters when the ambient temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal cargo space shall not exceed 85 °F (29.5...

  15. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to transport guinea pigs or hamsters shall be mechanically sound and provide fresh air by means of... containing live guinea pigs or hamsters when the ambient temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal cargo space shall not exceed 85 °F (29.5...

  16. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to transport guinea pigs or hamsters shall be mechanically sound and provide fresh air by means of... containing live guinea pigs or hamsters when the ambient temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal cargo space shall not exceed 85 °F (29.5...

  17. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to transport guinea pigs or hamsters shall be mechanically sound and provide fresh air by means of... containing live guinea pigs or hamsters when the ambient temperature in the animal cargo space is 75 °F (23.9 °C) or higher. The ambient temperature within the animal cargo space shall not exceed 85 °F (29.5...

  18. Case Management Directors

    PubMed Central

    Bankston-White, Cheri; Birmingham, Jackie

    2015-01-01

    Purpose and Objectives: Case management directors are in a dynamic position to affect the transition of care for patients across the continuum, work with all levels of providers, and support the financial well-being of a hospital. Most importantly, they can drive good patient outcomes. Although the position is critical on many different levels, there is little to help guide a new director in attending to all the “moving parts” of such a complex role. The purpose of this two-part article is to provide case management directors, particularly new ones, with a framework for understanding and fulfilling their role. We have divided the guide into seven tracks of responsibility. Part 1 discusses the first four tracks: (1) staffing and human resources, (2) compliance and accreditation, (3) discharge planning, and (4) utilization review and revenue cycle. Part 2 addresses (5) internal departmental relationships (organizational), (6) external relationships (Community agency), and (7) quality and program outcomes. Primary Practice Setting: The information is most meaningful to those case management directors who work in either stand-alone hospitals or integrated health systems, and have frontline case managers reporting to them. Findings/Conclusions: Case management directors would benefit from further research and documentation of “best practices” related to their role, particularly in the areas of leadership and management. New directors would benefit from mentoring and networking with one another. Implications for Case Management: As new regulations and models of care bring increased emphasis and focus to transitions of care, the role of the case management director continues to evolve, growing in importance and complexity. The growing financial impact of readmissions also brings added scrutiny and increased pressure to get the transitions of care right the first time. To operate most effectively, case management directors must understand the full range of their

  19. Experimental Investigation of Pitch Control Enhancement to the Flapping Wing Micro Air Vehicle

    DTIC Science & Technology

    2006-12-01

    17 1. Hot-Wire Anemometer ........................................................... 17 2. Test Grid Air...allow for test load to be applied. Weight was added at one end of fixture where the other end was connected to the model’s support located near the...characterized with a constant temperature anemometer and thrust generation measured by a load cell at various neutral angles, flapping frequencies and free

  20. Lighter-Than-Air and Pressurized Structures Technology for Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2010-01-01

    Cuben Fiber is a form of ultra-high molecular weight polyethylene ( UHMWPE ) and is produced by Cubic Tech Corp. While very light and very strong... UHMWPE -based fabrics require special techniques to form air-tight, if not helium-tight, seals. In addition, there are some proposed designs that may...length, the combined characteristics of weight and strength in UHMWPE -based fabrics are required to have high percentages of buoyancy. Cubic Tech

  1. The Last Manned Fighter: Replacing Manned Fighters with Unmanned Combat Air Vehicles

    DTIC Science & Technology

    2008-05-01

    effects on aircraft design , particularly for stealth. Human pilots require space—space for an ejection seat , space for a control panel, space for...include no cockpit interface (which is signifi- cant for design , ergonomics , glass multifunction displays, etc.), no life-support equipment or...Looney, Prepress Production Daniel Armstrong, Cover Design Please send inquiries or comments to Editor The Wright Flyer Papers Air Command and Staff

  2. Trends in on-road vehicle emissions and ambient air quality in Atlanta, Georgia, USA, from the late 1990s through 2009

    PubMed Central

    Vijayaraghavan, Krish; DenBleyker, Allison; Ma, Lan; Lindhjem, Chris; Yarwood, Greg

    2014-01-01

    On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic compounds (VOCs) during 1995–2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NOx, and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995–2009 period despite an increase in total vehicle distance traveled. The CO and NOx emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NOx in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001– 2009. Although this trend coexists with the declining trends in on-road NOx, VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications: Large reductions in on-road vehicle emissions of CO and NOx in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NOx during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the

  3. Extracting micro air vehicles aerodynamic forces and coefficients in free flight using visual motion tracking techniques

    NASA Astrophysics Data System (ADS)

    Mettler, B. F.

    2010-09-01

    This paper describes a methodology to extract aerial vehicles’ aerodynamic characteristics from visually tracked trajectory data. The technique is being developed to study the aerodynamics of centimeter-scale aircraft and develop flight simulation models. Centimeter-scale aircraft remains a largely unstudied domain of aerodynamics, for which traditional techniques like wind tunnels and computational fluid dynamics have not yet been fully adapted and validated. The methodology takes advantage of recent progress in commercial, vision-based, motion-tracking systems. This system dispenses from on-board navigation sensors and enables indoor flight testing under controlled atmospheric conditions. Given the configuration of retro-reflective markers affixed onto the aerial vehicle, the vehicle’s six degrees-of-freedom motion can be determined in real time. Under disturbance-free conditions, the aerodynamic forces and moments can be determined from the vehicle’s inertial acceleration, and furthermore, for a fixed-wing vehicle, the aerodynamic angles can be plotted from the vehicle’s kinematics. By combining this information, we can determine the temporal evolution of the aerodynamic coefficients, as they change throughout a trajectory. An attractive feature of this technique is that trajectories are not limited to equilibrium conditions but can include non-equilibrium, maneuvering flight. Whereas in traditional wind-tunnel experiments, the operating conditions are set by the experimenter, here, the aerodynamic conditions are driven by the vehicle’s own dynamics. As a result, this methodology could be useful for characterizing the unsteady aerodynamics effects and their coupling with the aircraft flight dynamics, providing insight into aerodynamic phenomena taking place at centimeter scale flight.

  4. Air pollutant emissions from on-road vehicles in China, 1999-2011.

    PubMed

    Lang, Jianlei; Cheng, Shuiyuan; Zhou, Ying; Zhang, Yonglin; Wang, Gang

    2014-10-15

    The on-road vehicular emission in China from 1999 to 2011 was estimated, based on the emission factors of vehicles with different emission standards calculated by the COPERT model. The CO, NMVOC, NOX, BC and OC emissions changed from 19.7 Tg, 4.4 Tg, 2.3 Tg, 47.1 Gg and 74.4 Gg in 1999 to 32.7 Tg, 4.1 Tg, 7.6 Tg, 177.6 Gg and 101.5 Gg in 2011, respectively. The general trend for CO, NOX and BC was increasing, while the tendency for NMVOC and OC was firstly increase before 2002 and then decrease from 2003. The spatial analysis results showed that high emissions occurred in developed provinces (Guangdong, Shandong, Hebei, Jiangsu and Henan). The correlation between vehicular emissions and GDP were further investigated and good linear correlation was found. The not-obvious change of the inter-annual (1999-2011) fitted straight line slope and the sustained increasing emissions for NOX and BC suggested that the challenge of mitigating vehicular NOX and BC emissions is severe in China. The contribution from different vehicle types was also analyzed. Passenger car (PC) and motorcycle (MC) was the main contributor to the CO and NMVOC emissions. However, the contribution ratio of MC was decreasing from 36.6% and 68.8% in 1999 to 15.7% and 25.7% in 2011. Heavy duty truck (HDT) was the dominant contributor to NOX, BC and OC, with proportions of 58.9%, 57.6% and 52.8% in 2011, respectively. In addition, the uncertainty of the estimated emissions was also assessed based on the Monte Carlo simulation.

  5. Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles.

    PubMed

    Lee, Eon S; Zhu, Yifang

    2014-02-18

    Modern passenger vehicles are commonly equipped with cabin air filters but their filtration efficiency for ultrafine particle (UFP) is rather low. Although setting the vehicle ventilation system to recirculation (RC) mode can reduce in-cabin UFPs by ∼ 90%, passenger-exhaled carbon dioxide (CO2) can quickly accumulate inside the cabin. Using outdoor air (OA) mode instead can provide sufficient air exchange to prevent CO2 buildup, but in-cabin UFP concentrations would increase. To overcome this dilemma, we developed a simultaneous mitigation method for UFP and CO2 using high-efficiency cabin air (HECA) filtration in OA mode. Concentrations of UFP and other air pollutants were simultaneously monitored in and out of 12 different vehicles under 3 driving conditions: stationary, on local roadways, and on freeways. Under each experimental condition, data were collected with no filter, in-use original equipment manufacturer (OEM) filter, and two types of HECA filters. The HECA filters offered an average in-cabin UFP reduction of 93%, much higher than the OEM filters (∼ 50% on average). Throughout the measurements, the in-cabin CO2 concentration remained in the range of 620-930 ppm, significantly lower than the typical level of 2500-4000 ppm observed in the RC mode.

  6. [Current status of air pollution in Sao Paulo, Brazil: effects and problems associated with the introduction of ethanol-fueled motor vehicles].

    PubMed

    Kabuto, M; Tsugane, S; Hamada, G S

    1990-05-01

    Recently suggestions have been advanced that alternative fuels including ethanol, methanol or methane instead of so called "fossil fuels" may help improve the current conditions of air pollution. According to results of general survey in Sao Paulo, since their introduction in 1978, ethanol-fueled cars have increased their share to almost 50% of all light vehicles in 1983. The current status of air pollution in Sao Paulo metropolitan area (SPMA) is described in relation to the use of such alternative fuel. The average concentrations in air of SO2 and lead have been decreasing drastically during the period of 1982-88, whereas non-methane hydrocarbon, NO2 and O3 levels have been increasing to attain the worst levels in the world as indicated in Fig. 2. The use of ethanol-fuel, which contains less sulphate and lead, is thought to have contributed more or less to the above reductions of SO2 and lead in the air. However, the pollutants that have increased may derive mainly from diesel and gasoline exhausts of heavy vehicles. The general state of air pollutions appears not to have been improved, suggesting the difficulty in resolving air pollution issues. On the other hand, a current problem specific to ethanol-fuel is the aldehydes or other carcinogenic components in exhaust. Peak formaldehyde concentration, for example, have been reported to have reached 159 ppb in SPMA, which may be one of the highest levels shown in ambient air.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Ideas for Directors.

    ERIC Educational Resources Information Center

    Child Care Information Exchange, 1987

    1987-01-01

    Presents child care center directors with a variety of relevant management ideas from business and the child care field. They include translating employee body language; leadership myths; on-the-job teacher training; undesirable bosses; wasting employee talent; voicing disagreement; employee anger; encouraging creativity; and coping with late…

  8. ICTP appoints new director

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2009-11-01

    Fernando Quevedo of the University of Cambridge in the UK has been appointed as the new director of the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy. Quevedo will officially begin his new role this month and replaces Katepalli Sreenivasan, the India-born physicist who has led the institute since 2003.

  9. Director's discretionary fund

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This technical memorandum contains brief technical papers describing research and technology development programs sponsored by the ARC Director's Discretionary Fund during fiscal year 1992 (Oct. 1991 through Sep. 1992). An appendix provides administrative information for each of the 45 sponsored research programs.

  10. Time Management for Directors

    ERIC Educational Resources Information Center

    Jaffe, Ellen Hofstetter

    2005-01-01

    Time management is a skill. Like any new skill, it takes time and commitment to develop. A frequent complaint of center directors is not having enough time. Most work extremely long hours and still feel they are not getting enough done. This article presents ideas on how to manage time and work smarter, not harder. These ideas are the following:…

  11. The Director's View.

    ERIC Educational Resources Information Center

    Fothergill, Richard

    1987-01-01

    Reviews the Microelectronics Education Programme (MEP) from the director's point of view, including the origins and basic structure of the program which ran for six years. The collaboration of teachers, advisers, and trainers is emphasized, research and evaluation procedures are discussed, and learning processes, computer studies, and distribution…

  12. ATA beam director experiment

    SciTech Connect

    Lee, E.P.; Younger, F.C.; Cruz, G.E.; Nolting, E.

    1986-06-23

    This report describes beam director elements for an experiment at the Advanced Test Accelerator. The elements described include a vernier magnet for beam aiming, an achromat magnet, and an isolation system for the beam interface. These components are built at small scale for concept testing. (JDH)

  13. A multimodal micro air vehicle for autonomous flight in near-earth environments

    NASA Astrophysics Data System (ADS)

    Green, William Edward

    Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.

  14. Inertial attitude control of a bat-like morphing-wing air vehicle.

    PubMed

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  15. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  16. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  17. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  18. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect

    Schey, Steve; Francfort, Jim

    2015-07-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.

  19. Air toxics exposure from vehicle emissions at a U.S. border crossing: Buffalo Peace Bridge Study.

    PubMed

    Spengler, John; Lwebuga-Mukasa, Jamson; Vallarino, Jose; Melly, Steve; Chillrud, Steve; Baker, Joel; Minegishi, Taeko

    2011-07-01

    is upwind of the plaza with dominant winds, were used to characterize contaminants in regional air masses. On-site meteorologic measurements and hourly truck and car counts were used to assess the role of traffic on UFP counts and pPAH concentrations. The array of parallel and perpendicular residential streets adjacent to the plaza provided a grid on which to plot the spatial patterns of UFP counts and pPAH concentrations to determine the extent to which traffic emissions from the Peace Bridge plaza might extend into the neighboring community. For lake-wind conditions (southwest to northwest) 12-hour integrated daytime samples showed clear evidence that vehicle-related emissions at the Peace Bridge plaza were responsible for elevated downwind concentrations of PM2.5, EC, and benzene, toluene, ethylbenzene, and xylenes (BTEX), as well as 1,3-butadiene and styrene. The chlorinated VOCs and aldehydes were not differentially higher at the downwind site. Several metals (aluminum, calcium, iron, copper, and antimony) were two times higher at the site adjacent to the plaza as they were at the upwind GLC site on lake-wind sampling days. Other metals (beryllium, sodium, magnesium, potassium, titanium, manganese, cobalt, strontium, tin, cesium, and lanthanum) showed significant increases downwind as well. Sulfur, arsenic, selenium, and a few other elements appeared to be markers for regional transport as their upwind and downwind concentrations were correlated, with ratios near unity. Using positive matrix factorization (PMF), we identified the sources for PAHs at the three fixed sampling sites as regional, diesel, general vehicle, and asphalt volatilization. Diesel exhaust at the Peace Bridge plaza accounted for approximately 30% of the PAHs. The NPAH sources were identified as nitrate (NO3) radical reactions, diesel, and mixed sources. Diesel exhaust at the Peace Bridge plaza accounted for 18% of the NPAHs. Further evidence for the impact of the Peace Bridge plaza on local

  20. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated

  1. Aerodynamic characteristics of the ventilated design for flapping wing micro air vehicle.

    PubMed

    Zhang, G Q; Yu, S C M

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the "ventilation" in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds.

  2. Aerodynamic Characteristics of the Ventilated Design for Flapping Wing Micro Air Vehicle

    PubMed Central

    Zhang, G. Q.; Yu, S. C. M.

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339

  3. BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2008-03-01

    The overall objective of the BATMAV project is the development of a biologically inspired bat-like Micro-Aerial Vehicle (MAV) with flexible and foldable wings, capable of flapping flight. This first phase of the project focuses particularly on the kinematical analysis of the wing motion in order to build an artificial-muscle-driven actuation system in the future. While flapping flight in MAV has been previously studied and a number of models were realized using light-weight nature-inspired rigid wings, this paper presents a first model for a platform that features bat-inspired wings with a number of flexible joints which allows mimicking the kinematics of the real flyer. The bat was chosen after an extensive analysis of the flight physics of small birds, bats and large insects characterized by superior gust rejection and obstacle avoidance. Typical engineering parameters such as wing loading, wing beat frequency etc. were studied and it was concluded that bats are a suitable platform that can be actuated efficiently using artificial muscles. Also, due to their wing camber variation, they can operate effectively at a large range of speeds and allow remarkably maneuverable flight. In order to understand how to implement the artificial muscles on a bat-like platform, the analysis was followed by a study of bat flight kinematics. Due to their obvious complexity, only a limited number of degrees of freedom (DOF) were selected to characterize the flexible wing's stroke pattern. An extended analysis of flight styles in bats based on the data collected by Norberg and the engineering theory of robotic manipulators resulted in a 2 and 4-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The results of the kinematical model can be used to optimize the lengths and the attachment locations of the wires such that enough lift, thrust and wing stroke are obtained.

  4. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    NASA Astrophysics Data System (ADS)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  5. High resolution modeling of the effects of alternative fuels use on urban air quality: introduction of natural gas vehicles in Barcelona and Madrid Greater Areas (Spain).

    PubMed

    Gonçalves, María; Jiménez-Guerrero, Pedro; Baldasano, José M

    2009-01-01

    The mitigation of the effects of on-road traffic emissions on urban air pollution is currently an environmental challenge. Air quality modeling has become a powerful tool to design environment-related strategies. A wide range of options is being proposed; such as the introduction of natural gas vehicles (NGV), biofuels or hydrogen vehicles. The impacts on air quality of introducing specific NGV fleets in Barcelona and Madrid (Spain) are assessed by means of the WRF-ARW/HERMES/CMAQ modeling system with high spatial-temporal resolution (1 km(2), 1 h). Seven emissions scenarios are defined taking into account the year 2004 vehicle fleet composition of the study areas and groups of vehicles susceptible of change under a realistic perspective. O(3) average concentration rises up to 1.3% in Barcelona and up to 2.5% in Madrid when introducing the emissions scenarios, due to the NO(x) reduction in VOC-controlled areas. Nevertheless, NO(2), PM10 and SO(2) average concentrations decrease, up to 6.1%, 1.5% and 6.6% in Barcelona and up to 20.6%, 8.7% and 14.9% in Madrid, respectively. Concerning SO(2) and PM10 reductions the most effective single scenario is the introduction of 50% of NGV instead of the oldest commercial vehicles; it also reduces NO(2) concentrations in Barcelona, however in Madrid lower levels are attained when substituting 10% of the private cars. This work introduces the WRF-ARW/HERMES/CMAQ modeling system as a useful management tool and proves that the air quality improvement plans must be designed considering the local characteristics.

  6. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  8. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  9. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  10. Overestimation of on-road air quality surveying data measured with a mobile laboratory caused by exhaust plumes of a vehicle ahead in dense traffic areas.

    PubMed

    Woo, Sang-Hee; Kwak, Kyung-Hwan; Bae, Gwi-Nam; Kim, Kyung Hwan; Kim, Chang Hyeok; Yook, Se-Jin; Jeon, Sangzin; Kwon, Sangil; Kim, Jeongsoo; Lee, Seung-Bok

    2016-11-01

    The unintended influence of exhaust plumes emitted from a vehicle ahead to on-road air quality surveying data measured with a mobile laboratory (ML) at 20-40 km h(-1) in dense traffic areas was investigated by experiment and life-sized computational fluidic dynamics (CFD) simulation. The ML equipped with variable sampling inlets of five columns by four rows was used to measure the spatial distribution of CO2 and NOx concentrations when following 5-20 m behind a sport utility vehicle (SUV) as an emitter vehicle equipped with a portable emission monitoring system (PEMS). The PEMS measured exhaust gases at the tailpipe for input data of the CFD simulations. After the CFD method was verified with experimental results of the SUV, dispersion of exhaust plumes emitted from a bus and a sedan was numerically analyzed. More dilution of the exhaust plume was observed at higher vehicle speeds, probably because of eddy diffusion that was proportional to turbulent kinetic energy and vehicle speed. The CO2 and NOx concentrations behind the emitter vehicle showed less overestimation as both the distance between the two vehicles and their background concentrations increased. If the height of the ML inlet is lower than 2 m and the ML travels within 20 m behind a SUV and a sedan ahead at 20 km h(-1), the overestimation should be considered by as much as 200 ppb in NOx and 80 ppm in CO2. Following a bus should be avoided if possible, because effect of exhaust plumes from a bus ahead could not be negligible even when the distance between the bus and the ML with the inlet height of 2 m, was more than 40 m. Recommendations are provided to avoid the unintended influence of exhaust plumes from vehicles ahead of the ML during on-road measurement in urban dense traffic conditions.

  11. Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen

    2017-03-01

    As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.

  12. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S.

    NASA Astrophysics Data System (ADS)

    Huo, Hong; Cai, Hao; Zhang, Qiang; Liu, Fei; He, Kebin

    2015-05-01

    We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.

  13. Federal certification test results for 1992 model year. Control of air pollution from new motor vehicles and new motor vehicle engines

    SciTech Connect

    Not Available

    1992-01-01

    Each manufacturer of a passenger car, (light-duty-vehicle), light-duty truck, motorcycle, heavy-duty gasoline engine, and heavy-duty diesel engine is required to demonstrate compliance with the applicable exhaust emission standard. This report contains all of the individual tests that were required by the certification-procedures found in Title 40 of the Code of Federal Regulations in Part 86. These data were submitted to the Environmental Protection Agency's Certification Division at the National Vehicle and Fuel Emissions Laboratory.

  14. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0003: Condition-Based Maintenance Plus Structural Integrity (CBM+SI) Demonstration (September 2011 to March 2012)

    DTIC Science & Technology

    2012-03-01

    to speed up the import of RBDMS results through the use of Visual Basic for Applications ( VBA ) macros . These macros are inessential to the...AFRL-RQ-WP-TR- 2013 -0219 AIR VEHICLE INTEGRATION AND TECHNOLOGY RESEARCH (AVIATR) Task Order 0003: Condition-Based Maintenance Plus...nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil). AFRL-RQ-WP-TR- 2013 -0219 HAS BEEN

  15. Ground Vehicle Robotics Presentation

    DTIC Science & Technology

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  16. Trends in on-road vehicle emissions and ambient air quality in Atlanta, Georgia, USA, from the late 1990s through 2009.

    PubMed

    Vijayaraghavan, Krish; DenBleyker, Allison; Ma, Lan; Lindhjem, Chris; Yarwood, Greg

    2014-07-01

    On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO(x)), and volatile organic compounds (VOCs) during 1995-2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO(x), and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995-2009 period despite an increase in total vehicle distance traveled. The CO and NO(x) emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NO(x) in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001-2009. Although this trend coexists with the declining trends in on-road NO(x), VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications: Large reductions in on-road vehicle emissions of CO and NO(x) in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NO(x) during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of

  17. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle

    PubMed Central

    Phan, Hoang Vu; Au, Thi Kim Loan

    2016-01-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the

  18. Magnetic heat pump flow director

    NASA Technical Reports Server (NTRS)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  19. Proposed Rule and Related Materials for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Regulations Requiring Onboard Diagnostic Systems on 2010 and Later Heavy-Duty Engines Used in Highway Applications Over 14,000 Pounds

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Regulations Requiring Onboard Diagnostic Systems on 2010 and Later Heavy-Duty Engines Used in Highway Applications Over 14,000 Pounds

  20. Air Vehicle Path Planning

    DTIC Science & Technology

    2007-11-02

    me a much needed creative outlet. Thanks also to Maj Jon Anderson, Maj Jim Rogers, Capt John Erickson , Capt Dave Laird, Capt Kevin LaRochelle, Capt...Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Ninth Edition) edited by Milton Abramowitz and Irene A. Stegun, Washington DC: U.S...Handbook of Mathematical Func- tions with Formulas, Graphs, and Mathematical Tables, (Ninth Edition) edited by BIB-2 Milton Abramowitz and Irene A. Stegun

  1. Beam director design report: Volume 1

    SciTech Connect

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and a prototype vernier steering magnet were designed and built. In volume I, the design requirements are stated, the design is summarized and illustrated, and detailed analysis and computations are provided. Also, a summary of materials used, a description of the manufacturing process, and a summary of project funding are provided. (LEW)

  2. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect

    Santini, D.J.; Saricks, C.L.

    1998-08-04

    Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous

  3. Ethical and economic issues in the use of zero-emission vehicles as a component of an air-pollution mitigation strategy.

    PubMed

    Duvall, Tim; Englander, Fred; Englander, Valerie; Hodson, Thomas J; Marpet, Mark

    2002-10-01

    The air pollution generated by motor vehicles and by static sources is, in certain geographic areas, a very serious problem, a problem that exists because of a failure of the marketplace. To address this marketplace failure, the State of California has mandated that by 2003, 10% of the Light-Duty Vehicle Fleet (LDV) be composed of Zero-Emission Vehicles (ZEVs). However, the policy-making process that was utilized to generate the ZEV mandate was problematic and the resulting ZEV mandate is economically unsound. Moreover, an ethical analysis, based primarily upon the work of John Rawls, suggests that implementation of the California ZEV mandate is--in spite of the wide latitude that ought to be given to policy decision makers--unethical. A more ethical and economically efficient approach to the pollution caused by marketplace failure is one that relies on market incentives and thereby achieves the desired improvement in air quality by appealing both to the self-interest of motorists and to those businesses that are directly or indirectly involved with the automobile industry. Such an approach would take better advantage of the creative forces of the market and improvements in technology over time and avoid the infringements on individual liberty and fairness embodied in the ZEV mandate.

  4. EPA honors Sonoma County for protecting air quality, fighting climate change with one of nations largest hybrid vehicle fleets

    EPA Pesticide Factsheets

    SAN FRANCISCO - This week, the U.S. Environmental Protection Agency is honoring Sonoma County Fleet Operations and six other projects across the country for their work on clean air and climate initiatives. The 2015 Clean Air Excellence Awards recogn

  5. The TV Director/Interpreter.

    ERIC Educational Resources Information Center

    Lewis, Colby

    The television director's job is to convey the meaning of the action which passes before his camera so that it is clear, its content is engrossing, and its presentation achieves the desired result. This textbook concentrates on the pictures and flow of action which are the director's tools for achieving his effect. The emphasis is on pictorial…

  6. When Directors Lose Their Way

    ERIC Educational Resources Information Center

    Carter, Margie

    2011-01-01

    Directors of early childhood programs are an amazing lot! There's so much dedication, such hard work and creative problem solving. But then that inevitable undertow of deadlines, crises, and illness begins to suck directors down. With crisis management becoming a way of life, they don't even recognize their vital signs slipping away. The author…

  7. Demonstration of zinc/air fuel battery to enhance the range and mission of fleet electric vehicles: Preliminary results in the refueling of a multicell module

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Fleming, D.; Keene, L.; Maimoni, A.; Peterman, K.; Koopman, R.

    1994-08-01

    We report progress in an effort to develop and demonstrate a refuelable zinc/air battery for fleet electric vehicle applications. A refuelable module consisting of twelve bipolar cells with internal flow system has been refueled at rates of nearly 4 cells per minute, indicating a refueling time of 10 minutes for a 15 kW, 55 kWh battery. The module is refueled by entrainment of 0.5-mm particles in rapidly flowing electrolyte, which delivers the particles into hoppers above each cell in a parallel-flow hydraulic circuit. The concept of user-recovery is presented as an alternative to centralized service infrastructure during market entry.

  8. Demonstration of zinc/air fuel battery to enhance the range and mission of fleet electric vehicles: Preliminary results in the refueling of a multicell module

    SciTech Connect

    Cooper, J.F.; Fleming, D.; Keene, L.; Maimoni, A.; Peterman, K.; Koopman, R.

    1994-08-08

    We report progress in an effort to develop and demonstrate a refuelable zinc/air battery for fleet electric vehicle applications. A refuelable module consisting of twelve bipolar cells with internal flow system has been refueled at rates of nearly 4 cells per minute refueling time of 10 minutes for a 15 kW, 55 kWh battery. The module is refueled by entrainment of 0.5-mm particles in rapidly flowing electrolyte, which delivers the particles into hoppers above each cell in a parallel-flow hydraulic circuit. The concept of user-recovery is presented as an alternative to centralized service infrastructure during market entry.

  9. ICU Director Data

    PubMed Central

    Ogbu, Ogbonna C.; Coopersmith, Craig M.

    2015-01-01

    Improving value within critical care remains a priority because it represents a significant portion of health-care spending, faces high rates of adverse events, and inconsistently delivers evidence-based practices. ICU directors are increasingly required to understand all aspects of the value provided by their units to inform local improvement efforts and relate effectively to external parties. A clear understanding of the overall process of measuring quality and value as well as the strengths, limitations, and potential application of individual metrics is critical to supporting this charge. In this review, we provide a conceptual framework for understanding value metrics, describe an approach to developing a value measurement program, and summarize common metrics to characterize ICU value. We first summarize how ICU value can be represented as a function of outcomes and costs. We expand this equation and relate it to both the classic structure-process-outcome framework for quality assessment and the Institute of Medicine’s six aims of health care. We then describe how ICU leaders can develop their own value measurement process by identifying target areas, selecting appropriate measures, acquiring the necessary data, analyzing the data, and disseminating the findings. Within this measurement process, we summarize common metrics that can be used to characterize ICU value. As health care, in general, and critical care, in particular, changes and data become more available, it is increasingly important for ICU leaders to understand how to effectively acquire, evaluate, and apply data to improve the value of care provided to patients. PMID:25846533

  10. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles.

    PubMed

    Schauer, James J; Kleeman, Michael J; Cass, Glen R; Simoneit, Bernd R T

    2002-03-15

    Gas- and particle-phase organic compounds present in the tailpipe emissions from an in-use fleet of gasoline-powered automobiles and light-duty trucks were quantified using a two-stage dilution source sampling system. The vehicles were driven through the cold-start Federal Test Procedure (FTP) urban driving cycle on a transient dynamometer. Emission rates of 66 volatile hydrocarbons, 96 semi-volatile and particle-phase organic compounds, 27 carbonyls, and fine particle mass and chemical composition were quantified. Six isoprenoids and two tricyclic terpanes, which are quantified using new source sampling techniques for semi-volatile organic compounds, have been identified as potential tracers for gasoline-powered motor vehicle emissions. A composite of the commercially distributed California Phase II Reformulated Gasoline used in these tests was analyzed by several analytical methods to quantify the gasoline composition, including some organic compounds that are found in the atmosphere as semi-volatile and particle-phase organic compounds. These results allow a direct comparison of the semi-volatile and particle-phase organic compound emissions from gasoline-powered motor vehicles to the gasoline burned by these vehicles. The distribution of n-alkanes and isoprenoids emitted from the catalyst-equipped gasoline-powered vehicles is the same as the distribution of these compounds found in the gasoline used, whereas the distribution of these compounds in the emissions from the noncatalyst vehicles is very different from the distribution in the fuel. In contrast, the distribution of the polycyclic aromatic hydrocarbons and their methylated homologues in the gasoline is significantly different from the distribution of the PAH in the tailpipe emissions from both types of vehicles.

  11. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment

    SciTech Connect

    K. Stork; R. Poola

    1998-10-01

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

  12. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    NASA Astrophysics Data System (ADS)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different

  13. 7 CFR 29.17 - Director.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Regulations Definitions § 29.17 Director. Director or Acting Director, Tobacco Division, Agricultural Marketing Service, U.S. Department of Agriculture....

  14. Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame

    DTIC Science & Technology

    2012-01-01

    Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame by Matthew S. Kurman, John M. Densmore, Chol -Bum M. Kweon, and...Oak Ridge Associated Universities John M. Densmore Lawrence Livermore National Laboratory Chol -Bum M. Kweon Vehicle Technology Directorate... Chol -Bum M. Kweon, and Kevin L. McNesby 5d. PROJECT NUMBER 1VP2J1 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  15. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  16. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi

    NASA Astrophysics Data System (ADS)

    Nagpure, Ajay Singh; Gurjar, B. R.; Kumar, Vivek; Kumar, Prashant

    2016-02-01

    Analysis of emissions from on-road vehicles in an Indian megacity, Delhi, have been performed by comparing exhaust emissions of gaseous, particulate matter and mobile source air toxics (MSATs), together with volatile organic compound (VOCs) and PM10 (particulate matter ≤10 μm) from non-exhaust vehicular sources, during the past (1991-2011) and future (2011-2020) scenarios. Results indicate that emissions of most of the pollutants from private vehicles (two wheelers and cars) have increased by 2- to 18-times in 2020 over the 1991 levels. Two wheelers found to be dominating the emissions of carbon monoxide (CO, 29-51%), hydrocarbons (HC, 45-73%), acetaldehyde (46-51%) and total poly aromatic hydrocarbons (PAHs, 37-42%). Conversely, private cars were found to be responsible for the majority of the carbon dioxide (CO2, 24-42%), 1,3-butadiene (72-89%), benzene (60-82%), formaldehyde (23-44%) and total aldehyde (27-52%) between 1991 and 2011. The heavy-duty commercial vehicles (HCVs) shows their accountability for most of the nitrogen oxide (NOx, 18-41%) and PM10 (33-43%) emissions during the years 1991-2011. In terms of PM10 emissions, vehicular exhaust contributed by 21-55%, followed by road dust (42-73%) and brake wear (3-5%) between 1991 and 2011. After 2002, non-exhaust emissions (e.g. road dust, brake wear and tyre wear) together indicate higher accountability (66-86%) for PM10 emission than the exhaust emissions (14-34%). The temporal trend of emissions of NOx and CO show reasonable agreement with available ambient air concentrations that were monitored at locations, significantly influenced by vehicular activity. Encouraging results were emerged, showing a good correlation coefficient for CO (0.94) and NOx (0.68).

  17. UPDATED PHOTOCHEMICAL MODELING FOR CALIFORNIA'S SOUTH COAST AIR BASIN: COMPARISON OF CHEMICAL MECHANISMS AND MOTOR VEHICLE EMISSION INVENTORIES. (R824792)

    EPA Science Inventory

    Large uncertainties remain in photochemical models used
    to relate emissions of VOC and NOx to ambient
    O3
    concentrations. Bias in motor vehicle emission
    estimates
    for VOC has been a long-standing concern. An improved
    Eul...

  18. Are You a Codependent Director?

    ERIC Educational Resources Information Center

    Broussard, Anne M.

    1992-01-01

    Codependency and its effect on the professional lives of directors of early childhood programs is described. Characteristics of codependent administrators, the need for confrontation of codependent behaviors, and suggested sources of help for codependency are discussed. (LB)

  19. The Centaur Director kicks off Environment and Energy Awareness Week

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Center Director Roy Bridges (right) gets ready to drive an electric car, provided by Florida Power & Light, to the opening of Environmental and Energy Awareness Week at the Kennedy Space Center Visitor Complex. Exhibits and displays by KSC and 45th Space Wing organizations detail accomplishments in minimizing environmental impacts and conserving resources. They are on view April 19 - 22 at various sites at KSC, Cape Canaveral Air Station and Patrick Air Force Base.

  20. The Centaur Director kicks off Environment and Energy Awareness Week

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The opening of Environmental and Energy Awareness Week at the Kennedy Space Center Visitor Complex kicked off with a visit by Center Director Roy Bridges and the Awareness team, who presented him with a t-shirt. Exhibits and displays by KSC and 45th Space Wing organizations detail accomplishments in minimizing environmental impacts and conserving resources. They are on view April 19 - 22 at various sites at KSC, Cape Canaveral Air Station and Patrick Air Force Base.

  1. The Centaur Director kicks off Environment and Energy Awareness Week

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the opening of Environmental and Energy Awareness Week at the Kennedy Space Center Visitor Complex, Center Director Roy Bridges talks to members of the Awareness team inside the United Space Alliance exhibit. The exhibits and displays by KSC and 45th Space Wing organizations detail accomplishments in minimizing environmental impacts and conserving resources. They are on view April 19 - 22 at various sites at KSC, Cape Canaveral Air Station and Patrick Air Force Base.

  2. 9. "SANTA FE RAILWAY SPUR TO OPERATIONAL AREA, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "SANTA FE RAILWAY SPUR TO OPERATIONAL AREA, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB"; Photo no. "11,381 57; G-AFFTC 18 SEPT 57". Test Area 1-115. Photo shows engine no. 712 pulling one car. The superstructure of Test Stand 1-4 is prominent in the background. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  3. 7. "AERIAL VIEW OF THE TEST AREA, DIRECTORATE OF MISSILE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. "AERIAL VIEW OF THE TEST AREA, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB. 8 AUG 57." In upper left corner, photo no. "8462 57" cropped out: "A-AFFTC 8 AUG 57, RETL TEST AREA" This photo is a high oblique view, showing the wing of the photo plane and Test Area 1-115. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  4. Remote Operated Vehicle geophysical surveys on land (underground), air and submarine archaeology: General peculiarities of processing and interpretation

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2016-04-01

    The last Remote Operation Vehicles (ROV) generation - small and maneuvering vehicles with different geophysical sensors - can fly at levels of a few meters (and even tens of centimeters) over the earth's surface, to move on the earth's surface and in the inaccessible underground areas and to explore in underwater investigations (e.g., Mindel and Bingham, 2001; Rowlands and Sarris, 2006; Wilson et al., 2006; Rigaud, 2007; Eppelbaum, 2008; Patterson and Brescia, 2008; Sarris, 2008; Wang et al., 2009; Wu and Tian, 2010; Stall, 2011; Tezkan et al., 2011; Winn et al., 2012; El-Nahhas, 2013; Hadjimitsis et al., 2013; Hajiyev and Vural, 2013; Hugenholtz et al., 2013; Petzke et al., 2013; Pourier et al., 2013; Casana et al., 2014; Silverberg and Bieber, 2014). Such geophysical investigations should have an extremely low exploitation cost and can observe surface practically inaccessible archaeological sites (swampy areas, dense vegetation, rugged relief, over the areas of world recognized religious and cultural artifacts (Eppelbaum, 2010), etc.). Finally, measurements of geophysical fields at different observation levels could provide a new unique geological-geophysical information (Eppelbaum and Mishne, 2011). Let's consider ROV airborne magnetic measurements as example. The modern magnetometric equipment enables to carry out magnetic measurements with a frequency of 50 times per second (and more) that taking into account the low ROV flight speed provides a necessary density of observations. For instance, frequency of observation of 50 times per second by ROV velocity of 40 km/hour gives density of observation about 0.2 m. It is obvious that the calculated step between observation points is more than sufficient one. Such observations will allow not only reduce the influence of some small artificial sources of noise, but also to obtain some additional data necessary for quantitative analysis (some interpretation methodologies need to have observations at two levels; upward

  5. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0033: Advanced Sol-Gel Adhesion Processes - Transition Support

    DTIC Science & Technology

    2005-07-01

    or without an additional acid desmut. The use of an open air plasma process may improve the surface cleanliness, but the results were not conclusive...from PlasmaTreat -North America was used to clean and activate the surface of the aluminum alloy. This process blasts the surface of an object on the...conditioner with or without an additional acid desmut. The use of an open air plasma process may improve the surface cleanliness, but the results

  6. Influence of mobile air-conditioning on vehicle emissions and fuel consumption: a model approach for modern gasoline cars used in Europe.

    PubMed

    Weilenmann, Martin F; Vasic, Ana-Marija; Stettler, Peter; Novak, Philippe

    2005-12-15

    The influence of air-conditioning activity on the emissions and fuel consumption of passenger cars is an important issue, since fleet penetration and use of these systems have reached a high level. Apart from the MOBILE6 study in the United States, little data is available on the impact of air-conditioning devices (A/Cs). Since weather conditions and A/C technologies both differ from those in the U. S., a test series was designed for the European setting. A fleet of six modern gasoline passenger cars was tested in different weather conditions. Separate test series were carried out for the initial cooldown and for the stationary situation of keeping the interior of the vehicle cool. As assumed, CO2 emissions and fuel consumption rise with the thermal load. This also causes a notable rise in CO and hydrocarbons (HCs). Moreover, A/Cs do not stop automatically at low ambient temperatures; if necessary, they produce dry air to demist the windscreen. A model is proposed that shows a constant load for lower temperatures and a linear trend for higher temperatures. The initial cooldown tests highlight significant differences among cars but show that A/C operation for the initial cooling of an overheated passenger compartment does not result in any extra emissions for the fleet as a whole.

  7. Bob Meyer (right), acting deputy director of NASA Dryden, shakes hands with Les Bordelon, executive

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Bob Meyer (on the right), acting deputy director of NASA's Dryden Flight Research Center, Edwards, California, shakes hands with Les Bordelon, executive director of Edwards Air Force Base. The handshake represents Dryden's acceptance of an Air Force C-20A delivered from Ramstein Air Base, Germany. The aircraft will be modified to carry equipment and experiments in support of both NASA and U.S. Air Force projects. The joint use of this aircraft is a result of the NASA Dryden/Edwards Air Force Base Alliance which shares some resources as cost-cutting measures.

  8. Flapping Wing Micro Air Vehicles: An Analysis of the Importance of the Mass of the Wings to Flight Dynamics, Stability, and Control

    NASA Astrophysics Data System (ADS)

    Orlowski, Christopher T.

    The flight dynamics, stability, and control of a model flapping wing micro air vehicle are analyzed with a focus on the inertial and mass effects of the wings on the position and Orientation of the body. A multi-body, flight dynamics model is derived from first principles. The multi-body model predicts significant differences in the position and orientation of the flapping wing micro air vehicle, when compared to a flight dynamics model based on the standard aircraft, or six degree of freedom, equations of motion. The strongly coupled, multi-body equations of motion are transformed into first order form using an approximate inverse and appropriate assumptions. Local (naive) averaging of the first order system does not produce an accurate result and a new approximation technique named 'quarter-cycle' averaging is proposed. The technique is effective in reducing the error by at least an order of magnitude for three reference flight conditions. A stability analysis of the local averaged equations of motions, in the vicinity of a hover condition, produces a modal structure consist with the most common vertical takeoff or landing structure and independent stability analyses of the linearized flight dynamics of insect models. The inclusion of the wing effects produces a non-negligible change in the linear stability of a hawkmoth-sized model. The hovering solution is shown, under proper control, to produce a limit cycle. The control input to achieve a limit cycle is different if the flight dynamics model includes the wing effects or does not include the wing effects. Improper control input application will not produce the desired limit cycle effects. A scaling analysis is used to analyze the relative importance of the mass of the wings, based on the quarter-cycle approximation. The conclusion of the scaling analysis is that the linear momentum effects of the wings are always important in terms of the inertial position of the flapping wing micro air vehicle. Above a

  9. 50 CFR 1.4 - Director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Director. 1.4 Section 1.4 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.4 Director. Director means the Director, U.S. Fish and Wildlife Service or the...

  10. From Teacher to Day Care Center Director!

    ERIC Educational Resources Information Center

    De Viteri, Jorge Saenz

    This paper addresses the roles and responsibilities of a day care center director, based on the author's personal experience as an interim director during his junior year at college and a survey of other directors. The paper aims to provide insight into the reality of being a day care center director, particularly the acquisition of knowledge,…

  11. 40 CFR 792.33 - Study director.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Study director. 792.33 Section 792.33...) GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 792.33 Study director. For each study... thereof, shall be identified as the study director. The study director has overall responsibility for...

  12. 40 CFR 792.33 - Study director.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Study director. 792.33 Section 792.33...) GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 792.33 Study director. For each study... thereof, shall be identified as the study director. The study director has overall responsibility for...

  13. 40 CFR 792.33 - Study director.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Study director. 792.33 Section 792.33...) GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 792.33 Study director. For each study... thereof, shall be identified as the study director. The study director has overall responsibility for...

  14. 40 CFR 792.33 - Study director.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Study director. 792.33 Section 792.33...) GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 792.33 Study director. For each study... thereof, shall be identified as the study director. The study director has overall responsibility for...

  15. 40 CFR 792.33 - Study director.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Study director. 792.33 Section 792.33...) GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 792.33 Study director. For each study... thereof, shall be identified as the study director. The study director has overall responsibility for...

  16. 12 CFR 612.2145 - Director reporting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the director's household, business partner, or any entity controlled by the director or such... transacts business with the institution or any institution supervised by the director's institution; and (2) The name and the nature of the business of any entity in which the director has a material...

  17. 12 CFR 612.2145 - Director reporting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in the director's household, business partner, or any entity controlled by the director or such... transacts business with the institution or any institution supervised by the director's institution; and (2) The name and the nature of the business of any entity in which the director has a material...

  18. 45 CFR 1700.5 - Executive Director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INFORMATION SCIENCE ORGANIZATION AND FUNCTIONS § 1700.5 Executive Director. (a) The Executive Director serves... 45 Public Welfare 4 2011-10-01 2011-10-01 false Executive Director. 1700.5 Section 1700.5 Public... laws. (b) The Executive Director is directly responsible to the Commission, works under the...

  19. 45 CFR 1700.5 - Executive Director.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INFORMATION SCIENCE ORGANIZATION AND FUNCTIONS § 1700.5 Executive Director. (a) The Executive Director serves... 45 Public Welfare 4 2013-10-01 2013-10-01 false Executive Director. 1700.5 Section 1700.5 Public... laws. (b) The Executive Director is directly responsible to the Commission, works under the...

  20. 5 CFR 2638.504 - Director's finding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Director's finding. 2638.504 Section 2638... Individual Executive Agency Employees § 2638.504 Director's finding. (a) In general. If the Director has reason to believe that an employee is violating or has violated an ethics provision, the Director...