Science.gov

Sample records for air velocities ranging

  1. Flame Velocities over a Wide Composition Range for Pentane-air, Ethylene-air, and Propyne-air Flames

    NASA Technical Reports Server (NTRS)

    Simon, Dorothy M; Wong, Edgar, L

    1951-01-01

    Fundamental flame velocities are reported for pentane air, ethylene-air, and propylene-air mixtures for the concentration range 60 to 130 percent of stoichiometric. A form of the Tanford and Pease equation, which includes a small constant velocity term independent of diffusion, will predict the observed changes in flame velocity.

  2. Ballistic Range Measurements of Stagnation-Point Heat Transfer in Air and in Carbon Dioxide at Velocities up to 18,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Yee, Layton; Bailey, Harry E.; Woodward, Henry T.

    1961-01-01

    A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.

  3. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  4. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  5. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  6. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  7. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  8. Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air

    NASA Astrophysics Data System (ADS)

    Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.

    1991-07-01

    Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.

  9. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  10. Fume hood performance: Face velocity variability inconsistent air volume systems

    SciTech Connect

    Volin, C.E.; Joao, R.V.; Gershey, E.L.; Reiman, J.S.; Party, E.

    1998-09-01

    A 3-year survey of 366 bench-type fume hoods in working laboratories in conventional, constant air volume settings showed that face velocities varied greatly from unit to unit and over time. Fume hoods with bypasses performed better than those without; however, even newly fabricated bypass hoods exhibited large variations. These variations were due to several factors; however, face velocities at 100 {+-} 10 ft/min at working sash heights in the range of 20 to 40 cm (8 to 16 inches) were attainable. The use of smoke showed poor containment, especially at face velocities below 85 ft/min (0.425 m/s) or above 130 ft/min (0.65 m/s) and when the hoods were obstructed by large items placed on the work surface. Auxiliary/supplemental air created unstable face velocities and poor smoke patterns. The analysis of 3 years of fume hood monitoring showed clearly the need for and importance of a maintenance program where the fume hood lower slots are cleaned and fans, ducts, dampers, and hoods are checked periodically.

  11. Clutter in the GMTI range-velocity map.

    SciTech Connect

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  12. Noise pair velocity and range echo location system

    SciTech Connect

    Erskine, David J.

    1999-01-01

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  13. Noise pair velocity and range echo location system

    DOEpatents

    Erskine, D.J.

    1999-02-16

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  14. Derivation of vertical air velocity from conventional Radiosonde ascents

    NASA Astrophysics Data System (ADS)

    Manguttathil Gopalakrishnan, Manoj; Mohanakumar, Kesavapillai; Samson, Titu; Kottayil, Ajil; Varadarajan, Rakesh; Rebello, Rejoy

    2016-07-01

    In this work, we devise a method to estimate air vertical velocity from ascending radiosondes similar to that described in published results, but with certain differences in deriving the balloon parameters and the drag coefficient, while not considering explicitly the heat exchange between the balloon and the environment. We basically decompose the observed balloon ascent rate into vertical velocity in still air due to buoyancy force and that due to vertical air motion. The first part is computed from basic hydrodynamical principles and the vertical velocity is derived as the difference between observed ascent rate and the estimated still air vertical velocity. The derived values agree reasonably well (r=0.66) with vertical velocities observed with a collocated wind profiler radar, and the sources of uncertainties are discussed. Since vertical velocity is a difficult quantity to measure directly without expensive methods, derivation of the same from the conventional radiosonde ascents could be of great importance to the meteorological communities.

  15. Simulation of air velocity in a vertical perforated air distributor

    NASA Astrophysics Data System (ADS)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  16. Return-to-launch-site variable range-velocity line

    NASA Technical Reports Server (NTRS)

    Bown, R. L.

    1976-01-01

    The effect of moving the return-to-launch-site (RTLS) range-velocity (R-V) line closer to the landing site was studied. Results are presented which show that a five nautical mile shift in R-V line causes the last RTLS abort to occur approximately one second earlier and that the excess range capability to terminal-area-energy-management interface can be dissipated without an excessive roll angle history.

  17. Coherent Laser Instrument Would Measure Range and Velocity

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Cardell, Greg; San Martin, Alejandro; Spiers, Gary

    2005-01-01

    A proposed instrument would project a narrow laser beam that would be frequency-modulated with a pseudorandom noise (PN) code for simultaneous measurement of range and velocity along the beam. The instrument performs these functions in a low mass, power, and volume package using a novel combination of established techniques. Originally intended as a low resource- footprint guidance sensor for descent and landing of small spacecraft onto Mars or small bodies (e.g., asteroids), the basic instrument concept also lends itself well to a similar application guiding aircraft (especially, small unmanned aircraft), and to such other applications as ranging of topographical features and measuring velocities of airborne light-scattering particles as wind indicators. Several key features of the instrument s design contribute to its favorable performance and resource-consumption characteristics. A laser beam is intrinsically much narrower (for the same exit aperture telescope or antenna) than a radar beam, eliminating the need to correct for the effect of sloping terrain over the beam width, as is the case with radar. Furthermore, the use of continuous-wave (CW), erbium-doped fiber lasers with excellent spectral purity (narrow line width) permits greater velocity resolution, while reducing the laser s power requirement compared to a more typical pulsed solid-state laser. The use of CW also takes proper advantage of the increased sensitivity of coherent detection, necessary in the first place for direct measurement of velocity using the Doppler effect. However, measuring range with a CW beam requires modulation to "tag" portions of it for time-of-flight determination; typically, the modulation consists of a PN code. A novel element of the instrument s design is the use of frequency modulation (FM) to accomplish both the PN-modulation and the Doppler-bias frequency shift necessary for signed velocity measurements. This permits the use of a single low-power waveguide electrooptic

  18. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  19. Modeling the exit velocity of a compressed air cannon

    NASA Astrophysics Data System (ADS)

    Rohrbach, Z. J.; Buresh, T. R.; Madsen, M. J.

    2012-01-01

    The use of compressed air cannons in an undergraduate laboratory provides a way to illustrate the connection between diverse physics concepts, such as conservation of momentum, the work-kinetic energy theorem, gas expansion, air drag, and elementary Newtonian mechanics. However, it is not clear whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that neither process accurately predicts the exit velocity of our projectile. We discuss a model based on the flow of air through the valve, which is in much better agreement with our data.

  20. Air sampler performance at Ford's farm range

    SciTech Connect

    Glissmeyer, J.A.; Johnston, J.W.

    1984-07-01

    An air-sampling system for a large-caliber depleted uranium (DU) penetrator firing range was tested. The objectives of the test were: to determine the bias between the monitoring readings and DU concentrations; and to determine if the target bay real-time monitor (RTM) tracks the decaying dust concentration. The test procedure was to operate total and respirable airborne particle samplers adjacent to the target bay monitors. A series of air samples was also taken after the test firings adjacent to the target bay RTM. Exhaust particle samples were analyzed for gross alpha, gross beta and uranium content. The target bay RTM correlated well (0.977) with the sequential samples. Average concentration from the RTM did not correlate with either the long-term total or respirable sampler DU concentrations. The monitor used to confirm a low dust concentration when the door is open correlated well (0.810) with the RTM; the other bay monitor did not. In the ventilation discharge, the long-term average monitor readings did not correlate with DU concentrations, probably due to levels near lower detection limits. Smearable surface-contamination samples showed highest contamination on the equipment, gravel floor and exhaust intake. The location air-intake contamination increased over the first 3 rounds. Contamination was reduced by a low-pressure water spray washdown to about the same concentration as often the second round, then remained at about twice the level. 2 references, 18 figures, 16 tables. (MF)

  1. Definition of water droplets "strain cycles" in air times dependences on their sizes and movement velocities

    NASA Astrophysics Data System (ADS)

    Volkov, Roman; Zhdanova, Alena; Zabelin, Maxim; Kuznetsov, Geniy; Strizhak, Pavel

    2014-08-01

    Experimental investigation of water droplets deformation regularities during their motion in the air by the action of gravitational forces was executed. Characteristic sizes of droplets were varied in the range from 3 mm to 6 mm. Velocities of droplets movement attained to 5 m/s. The cross-correlation system of video registration was used. More than ten characteristic "strain cycles" of droplets during the 1 m distance motion by them thought the air were established. Characteristic of droplets forms, periods, dimensions and ranges were determined for all "strain cycles". "Strain cycle" times dependences on velocity and sizes of droplets were established.

  2. Unimpeded air velocity profiles of air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...

  3. Air velocity distributions from air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capability to control both liquid and air flow rates based on tree structures would be one of the advantages of future variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rate functions...

  4. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  5. Long-range air transmission of bacteria.

    PubMed

    Bovallius, A; Bucht, B; Roffey, R; Anäs, P

    1978-06-01

    Bacterial spores from a sandstorm area north of the Black Sea were transmitted to Sweden by air, giving increased concentrations of viable bacterial spores at two air sampling stations in Sweden. PMID:677884

  6. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  7. Comparison of umbo velocity in air- and bone-conduction.

    PubMed

    Röösli, Christof; Chhan, David; Halpin, Christopher; Rosowski, John J

    2012-08-01

    This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V(U)) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P(EC)) was measured simultaneously. For air conduction, V(U) at standard hearing threshold level was calculated. For BC, ΔV was defined as the difference between V(U) and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). ΔV and P(EC) at BC standard hearing threshold were calculated. ΔV at standard BC threshold was significantly smaller than V(U) at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above. PMID:22609771

  8. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  9. Filtering for unwrapping noisy Doppler optical coherence tomography images for extended microscopic fluid velocity measurement range.

    PubMed

    Xu, Yang; Darga, Donald; Smid, Jason; Zysk, Adam M; Teh, Daniel; Boppart, Stephen A; Scott Carney, P

    2016-09-01

    In this Letter, we report the first application of two phase denoising algorithms to Doppler optical coherence tomography (DOCT) velocity maps. When combined with unwrapping algorithms, significantly extended fluid velocity dynamic range is achieved. Instead of the physical upper bound, the fluid velocity dynamic range is now limited by noise level. We show comparisons between physical simulated ideal velocity maps and the experimental results of both algorithms. We demonstrate unwrapped DOCT velocity maps having a peak velocity nearly 10 times the theoretical measurement range. PMID:27607963

  10. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  11. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  12. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  13. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  14. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  15. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  16. A relation among geology, tectonics, and velocity structure, western to central Nevada Basin and Range

    USGS Publications Warehouse

    Catchings, R.D.

    1992-01-01

    In the northwestern to central Nevada Basin and Range, there are correlations between velocity and specific geologic structures of the crust. Mapped range-bounding faults at the surface can be traced to appreciable (10km) depths based on velocity variations and are consistent with subsurface projections of the faults based on seismic reflection images. Correlations between velocity and the surface geology show that in the upper crust the pre-Cenozoic rocks are underlain by high-velocity rocks, whereas the Tertiary ranges are underlain by lower-velocity rocks to depths as great as 10 km. The regional seismicity pattern is consistent with this interpretation, as earthquakes are largely confined within or near the base of the low-velocity rocks. These low-velocity, highly fractured rocks are laterally distributed in discrete zones, suggesting that extension is not uniformly distributed but occurs in discrete, highly extended zones. -from Author

  17. Measurements of Flat-Flame Velocities of Diethyl Ether in Air

    PubMed Central

    Gillespie, Fiona; Metcalfe, Wayne K.; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Curran, Henry J.

    2013-01-01

    This study presents new adiabatic laminar burning velocities of diethyl ether in air, measured on a flat-flame burner using the heat flux method. The experimental pressure was 1 atm and temperatures of the fresh gas mixture ranged from 298 to 398 K. Flame velocities were recorded at equivalence ratios from 0.55 to 1.60, for which stabilization of the flame was possible. The maximum laminar burning velocity was found at an equivalence ratio of 1.10 or 1.15 at different temperatures. These results are compared with experimental and computational data reported in the literature. The data reported in this study deviate significantly from previous experimental results and are well-predicted by a previously reported chemical kinetic mechanism. PMID:23710107

  18. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  19. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  20. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  1. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  2. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  3. Atmospheric corrosion effects of HNO 3—Influence of concentration and air velocity on laboratory-exposed copper

    NASA Astrophysics Data System (ADS)

    Samie, Farid; Tidblad, Johan; Kucera, Vladimir; Leygraf, Christofer

    A recently developed experimental set-up has been used to explore the atmospheric corrosion effects of nitric acid (HNO 3) on copper, in particular the influence of concentration and air velocity. Characterization and quantification of the corrosion products on exposed samples were performed with Fourier transform infrared (FT-IR) microspectrocscopy, ion chromatography, X-ray diffraction (XRD), micro-balance and microscopy. At low air velocity (0.03 cm s -1) HNO 3 deposition and weight gain of copper increased linearly with concentration up to 400 μg m -3 or 156 ppb. The influence of air velocity on corrosion of copper was tested within the range of 0.03-35.4 cm s -1. Although the air velocity in this study was significantly lower than typical outdoor wind values, a high HNO 3 concentration of the air velocity of 35.4 cm s -1 resulted in a relatively high deposition velocity ( Vd) of 0.9 cm s -1 on the metal surface and 1.2 cm s -1 on an ideal absorbent, which would imply a limiting deposition velocity on the copper surface ( Vd,surf) of 3.6 cm s -1. Results obtained in this study emphasize the importance for future research on the corrosion effects of HNO 3 on materials as very little has so far been done in this field.

  4. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  5. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  6. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  7. Effects of shape, size, and air velocity on entry loss factors of suction hoods.

    PubMed

    McLoone, H E; Guffey, S E; Curran, J P

    1993-03-01

    This study further elucidated the effects of air velocity, aspect ratio (face length to face width), and area ratio (face area to duct area) on entry loss factors of suction hoods. A full scale ventilation system was utilized to determine the entry loss factor attributable to each of 20 square and rectangular hoods with a 90 degrees included angle. Static and velocity pressures were measured using Pitot tubes connected by tubing to piezo-resistive pressure transducers and inclined tube manometers. The entry loss factor, Fh, is the ratio of hood total pressure loss to mean velocity pressure. Values of Fh determined in this study ranged from 0.17-1.85. The values of Fh were a hyperbolic function of area ratio with a region rapidly increasing change for area ratios less than 5. For area ratios greater than 5, the values of Fh approached an asymptote of 0.17. Among hoods with a given area ratio (e.g., 2.5, 5.1, or 10.2), values of Fh were independent of aspect ratio. To a limited extent, Fh values decreased as mean air velocities increased from 319-1770 m/min (1046-5807 feet/min). PMID:8447256

  8. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  9. Orthogonal design on range hood with air curtain and its effects on kitchen environment.

    PubMed

    Liu, Xiaomin; Wang, Xing; Xi, Guang

    2014-01-01

    Conventional range hoods cannot effectively prevent the oil fumes containing cooking-induced harmful material from escaping into the kitchen Air curtains and guide plates have been used in range hoods to reduce the escape of airborne emissions and heat, thereby improving the kitchen environment and the cook's degree of comfort. In this article, numerical simulations are used to study the effects of the jet velocity of an air curtain, the jet angle of the air curtain, the width of the jet slot, the area of the guide plate, and the exhaust rate of the range hood on the perceived temperature, the perceived concentration of oil fumes, the release temperature of oil fumes, and the concentration of escaped oil fumes in a kitchen. The orthogonal experiment results show that the exhaust rate of the range hood is the main factor influencing the fumes concentration and the temperature distribution in the kitchen. For the range hood examined in the present study, the optimum values of the exhaust rate, the jet velocity of the air curtain, the jet angle of the air curtain, the width of the jet slot, and the area of the guide plate are 10.5 m(3)/min, 1.5 m/s, -5°, 4 mm, and 0.22 m(2), respectively, based on the results of the parametric study. In addition, the velocity field, temperature field, and oil fumes concentration field in the kitchen using the proposed range hood with the air curtain and guide plate are analyzed for those parameters. The study's results provide significant information needed for improving the kitchen environment. PMID:24521068

  10. Sound velocity of tantalum under shock compression in the 18-142 GPa range

    NASA Astrophysics Data System (ADS)

    Xi, Feng; Jin, Ke; Cai, Lingcang; Geng, Huayun; Tan, Ye; Li, Jun

    2015-05-01

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18-142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  11. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    SciTech Connect

    Xi, Feng Jin, Ke; Cai, Lingcang Geng, Huayun; Tan, Ye; Li, Jun

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  12. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  13. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  14. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  15. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  16. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  17. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  18. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  19. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  20. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  1. Range and Velocity Estimation of Moving Targets Using Multiple Stepped-frequency Pulse Trains

    PubMed Central

    Li, Gang; Meng, Huadong; Xia, Xiang-Gen; Peng, Ying-Ning

    2008-01-01

    Range and velocity estimation of moving targets using conventional stepped-frequency pulse radar may suffer from the range-Doppler coupling and the phase wrapping. To overcome these problems, this paper presents a new radar waveform named multiple stepped-frequency pulse trains and proposes a new algorithm. It is shown that by using multiple stepped-frequency pulse trains and the robust phase unwrapping theorem (RPUT), both of the range-Doppler coupling and the phase wrapping can be robustly resolved, and accordingly, the range and the velocity of a moving target can be accurately estimated.

  2. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    NASA Astrophysics Data System (ADS)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  3. Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames

    NASA Technical Reports Server (NTRS)

    Lee, John; Goroshin, Samuel; Kolbe, Massimiliano

    2001-01-01

    Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are

  4. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  5. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component. PMID:27075772

  6. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    PubMed Central

    Persoons, Tim; O’Donovan, Tadhg S.

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564

  7. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... regulations in this section shall be enforced by the Commander, Air Proving Ground Center, Eglin AFB, and...

  8. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.

    PubMed

    Sunday, Jennifer M; Pecl, Gretta T; Frusher, Stewart; Hobday, Alistair J; Hill, Nicole; Holbrook, Neil J; Edgar, Graham J; Stuart-Smith, Rick; Barrett, Neville; Wernberg, Thomas; Watson, Reg A; Smale, Dan A; Fulton, Elizabeth A; Slawinski, Dirk; Feng, Ming; Radford, Ben T; Thompson, Peter A; Bates, Amanda E

    2015-09-01

    Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances. PMID:26189556

  9. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  10. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  11. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base,...

  12. Prototype air cleaning system for a firing range

    SciTech Connect

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1985-01-01

    This report recommends air cleaning system components for the US Army Ballistics Research Laboratory's new large-caliber firing range, which is used for testing depleted uranium (DU) penetrators. The new air cleaning system has lower operating costs during the life of the system compared to that anticipated for the existing air cleaning system. The existing system consists of three banks of filters in series; the first two banks are prefilters and the last are high-efficiency particulate air (HEPA) filters. The principal disadvantage of the existing filters is that they are not cleanable and reusable. Pacific Northwest Laboratory focused the search for alternate air cleaning equipment on devices that do not employ liquids as part of the particle collection mechanism. Collected dry particles were assumed preferable to a liquid waste stream. The dry particle collection devices identified included electrostatic precipitators; inertial separators using turning vanes or cyclones; and several devices employing a filter medium such as baghouses, cartridge houses, cleanable filters, and noncleanable filters similar to those in the existing system. The economics of practical air cleaning systems employing the dry particle collection devices were evaluated in 294 different combinations. 7 references, 21 figures, 78 tables.

  13. Dynamics of air temperature, velocity and ammonia emissions in enclosed and conventional pig housing systems.

    PubMed

    Song, J I; Park, K-H; Jeon, J H; Choi, H L; Barroga, A J

    2013-03-01

    This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The NH3 concentration of both housing systems was also investigated in relation to the pig's growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to 29.1°C during summer and 17.9 to 23.1°C during winter whilst the CPH had a wider temperature variance during summer at 24.7 to 32.3°C. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to 18.2°C. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to

  14. Operating manual for Ford's Farm Range air samplers

    SciTech Connect

    Glissmeyer, J.A.; Halverson, M.A.

    1980-10-01

    An air-sampling program was designed for a target enclosure at the Ford's Farm Range, Aberdeen Proving Ground, Maryland, where the Army test-fires tungsten and depleted-uranium armor penetrators. The primary potential particle inhalation hazard is depleted uranium. The sampling program includes workplace and filtered exhaust air sampling. Conventional isokinetic stack sampling was employed for the filtered exhaust air. Because of the need for rapid monitor response to concentration increases and decreases, conventional radioactive particle monitors were not used. Instead, real-time aerosol monitors employing a light-scattering technique were used for monitors requiring a fast response. For other monitoring functions, piezoelectric and beta-attenuation respirable-particle sampling techniques were used. The application of these technologies to the monitoring of airborne radioactive contaminants is addressed. Sampler installation and operation are detailed.

  15. Assessment of air velocity sensors for use in animal produciton facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  16. Effects of air velocity on laying hen production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  17. Rise velocity of an air bubble in porous media: Theoretical studies

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Cihan, Abdullah; Drazenovic, Mirna

    2004-04-01

    The rise velocity of injected air phase from the injection point toward the vadose zone is a critical factor in in-situ air sparging operations. It has been reported in the literature that air injected into saturated gravel rises as discrete air bubbles in bubbly flow of air phase. The objective of this study is to develop a quantitative technique to estimate the rise velocity of an air bubble in coarse porous media. The model is based on the macroscopic balance equation for forces acting on a bubble rising in a porous medium. The governing equation incorporates inertial force, added mass force, buoyant force, surface tension and drag force that results from the momentum transfer between the phases. The momentum transfer terms take into account the viscous as well as the kinetic energy losses at high velocities. Analytical solutions are obtained for steady, quasi-steady, and accelerated bubble rise velocities. Results show that air bubbles moving up through a porous medium equilibrate after a short travel time and very short distances of rise. It is determined that the terminal rise velocity of a single air bubble in an otherwise water saturated porous medium cannot exceed 18.5 cm/s. The theoretical model results compared favorably with the experimental data reported in the literature. A dimensional analysis conducted to study the effect of individual forces indicates that the buoyant force is largely balanced by the drag force for bubbles with an equivalent radius of 0.2-0.5 cm. With increasing bubble radius, the dimensionless number representing the effect of the surface tension force decreases rapidly. Since the total inertial force is quite small, the accelerated bubble rise velocity can be approximated by the terminal velocity.

  18. Effect of air velocity on kinetics of thin layer carrot pomace drying.

    PubMed

    Kumar, N; Sarkar, B C; Sharma, H K

    2011-10-01

    Carrot pomace is a by-product obtained during carrot juice processing. Thin layer carrot pomace drying was performed in a laboratory scale hot air forced convective dryer. The drying experiments were carried out at the air velocity of 0.5, 0.7 and 1.0 m/s at air temperatures from 60 to 75 °C. It was observed that whole drying process of carrot pomace took place in a falling rate period except a very short accelerating period at the beginning. Mathematical models were tested to fit drying data of carrot pomace. The best fit model was observed on the basis of R², Chi-square and RMSE values. R² values for all the selected models were above 0.9783. The average values of effective diffusivity ranged from 2.61 × 10(-9) to 3.64 × 10(-9) m²/s. PMID:21954311

  19. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...

  20. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  1. Design of passively aerated compost piles: Vertical air velocities between the pipes

    SciTech Connect

    Lynch, N.J.; Cherry, R.S.

    1996-09-01

    Passively aerated compost piles are built on a base of porous materials, such as straw or wood chips, in which perforated air supply pipes are distributed. The piles are not turned during composting, nor is forced-aeration equipment used, which significantly reduces the operating and capital expenses associated with these piles. Currently, pile configurations and materials are worked out by trial and error. Fundamentally based design procedures are difficult to develop because the natural convection air flow rate is not explicitly known, but rather is closely coupled with the pile temperature. This paper develops a mathematical model to analytically determine the maximum upward air flow velocity over an air supply pipe and the drop in vertical velocity away from the pipe. This model has one dimensionless number, dependent on the pile and base properties, which fully characterizes the velocity profile between the pipes. 9 refs., 4 figs., 1 tab.

  2. Dramatic velocity range changes in the OH spectra of 19566+3423

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    1999-12-01

    Many color-selected IRAS sources have 1612 MHz masers. That in 19566+3423 was a little unusual, in having the appearance of emanating from a double shell, each with a more or less normal aspect. It was first detected by Galt et al. (AJ 98, 2182), who monitored it for two years as a variable source of circularly polarised emission, though the general morphology of the spectrum was stable. It has mainline masers, and a strong water maser, but no detected SiO or CO. However, new Arecibo 1612, 1665 and 1667 MHz spectra taken in April and September 1999 are dramatically different. The 1612 MHz intensity is about a factor of three larger now. Moreover this is dwarfed by a factor of { }30 increase in its 1665 MHz intensity. But the unprecedented changes are in the velocity range of its emission, which has expanded from 16 to 42 km/s in the 1612 MHz line, and from 28 to 80 km/s in the 1667 MHz. Much of the extra OH emission is reminiscent of the gently rounded morphology seen in the 1667 MHz spectrum of the proto planetary nebula, 18095+2704 (ApJ, 362, 634). But the original range of the 1612 MHz emission is still characterized by 6-10 discrete features, only two of which coincide in velocity with ones from the discovery epoch. These spectra can be found at ftp://www.naic.edu/pub/publications/bml/19566.ps.Z The 1667 MHz velocity range rivals that from the hypergiant, IRC+10420, which has, however, always exhibited the same velocity range throughout the 24 years since it was discovered. 19566+3423 is probably a hypergiant or supergiant too, which may well have lost its present circumstellar shell in a sudden mass ejection event, rather than in a wind.

  3. High-resolution seismic tomography of compressional wave velocity structure at Newberry Volcano, Oregon Cascade Range

    SciTech Connect

    Achauer, U.; Evans, J.R.; Stauber, D.A.

    1988-09-10

    Compressional wave velocity structure is determined for the upper crust beneath Newberry Volcano, central Oregon, using a high-resolution active-source seismic-tomography method. Newberry Volcano is a bimodal shield volcano east of the axis of the Cascade Range. It is associated both with the Cascade Range and with northwest migrating silicic volcanism in southeast Oregon. High-frequency (approx.7 Hz) crustal phases, nominally Pg and a midcrustal reflected phase, travel upward through a target volume beneath Newberry Volcano to a dense array of 120 seismographs. This arrangement is limited by station spacing to 1- to 2-km resolution in the upper 5 to 6 km of the crust beneath the volcano's summit caldera. The experiment tests the hypothesis that Cascade Range volcanoes are underlain only by small magma chambers. A small low-velocity anomaly delineated abosut 3 km below the summit caldera supports this hypothesis for Newberry Volcano and is interpreted as a possible magma chamber of a few to a few tens of km/sup 3/ in volume. A ring-shaped high-velocity anomaly nearer the surface coincides with the inner mapped ring fractures of the caldera. It also coincides with a circular gravity high, and we interpret it as largely subsolidus silicic cone sheets. The presence of this anomaly and of silicic vents along the ring fractures suggests that the fractures are a likely eruption path between the small magma chamber and the surface.

  4. Spatial Characteristics of Water Spray Formed by Two Impinging Jets at Several Jet Velocities in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Foster, Hampton H.; Heidmann, Marcus F.

    1960-01-01

    The spatial characteristics of a spray formed by two impinging water jets in quiescent air were studied over a range of nominal jet velocities of 30 to 74 feet per second. The total included angle between the 0.089-inch jets was 90 deg. The jet velocity, spray velocity, disappearance of the ligaments just before drop formation, mass distribution, and size and position of the largest drops were measured in a circumferential survey around the point of jet impingement. Photographic techniques were used in the evaluations. The distance from the point of jet impingement to ligament breakup into drops was about 4 inches on the spray axis and about 1.3 inches in the radial position +/-90 deg from the axis. The distance tended to increase slightly with increase in jet velocity. The spray velocity varied from about 99 to about 72 percent of the jet velocity for a change in circumferential position from the spray axis to the +/-80 deg positions. The percentages tended to increase slightly with an increase in jet velocity. Fifty percent of the mass was distributed about the spray axis in an included angle of slightly less than 40 deg. The effect of jet velocity was small. The largest observed drops (2260-micron or 0.090-in. diam.) were found on and about the spray axis. The size of the largest drops decreased for an increase in radial angular position, being about 1860 microns (0.074 in.) at the +/-90 deg positions. The largest drop sizes tended to decrease for an increase in jet velocity, although the velocity effect was small. A drop-size distribution analysis indicated a mass mean drop size equal to 54 percent of an extrapolated maximum drop size.

  5. Quasiparticle weight and renormalized Fermi velocity of graphene with long-range Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Tang, Ho-Kin; Leaw, Jia Ning; Rodrigues, J. N. B.; Sengupta, P.; Assaad, F. F.; Adam, S.

    In this work, we study the effects of realistic Coulomb interactions in graphene using a projective quantum Monte Carlo simulation of electrons at half-filing on a honeycomb lattice. We compute the quasiparticle residue, the renormalized Fermi velocity and the antiferromagnetic order parameter as a function of both the long-range and short-range components of the Coulomb potential. We find that the Mott insulator transition is determined mostly by the short-range interaction and is consistent with the Gross-Neveu-Yukawa critical theory. Far from the critical point and in the semi-metallic regime, we find that the Fermi-velocity and quasiparticle residue are influenced by the long-range tail of the Coulomb potential, and for very small interaction strength are consistent with predictions of first order perturbation theory. For experimentally relevant and stronger values of the long-range interaction, our numerical data contradicts prediction from both perturbation theory and the renormalization group approaches. This work was supported by Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM mid-size Centre), Singapore Ministry of Education(Yale-NUS College R-607-265-01312 and MOE2014-T2-2-112), and DFG Grant No. AS120/9-1.

  6. Long-range cortical connections give rise to a robust velocity map of V1.

    PubMed

    Sheridan, Phillip

    2015-11-01

    This paper proposes a two-dimensional velocity model (2DVM) of the primary visual cortex (V1). The model's novel aspect is that it specifies a particular pattern of long-range cortical temporal connections, via the Connection Algorithm, and shows how the addition of these connections to well-known spatial properties of V1 transforms V1 into a velocity map. The map implies a number of organizational properties of V1: (1) the singularity of each orientation pinwheel contributes to the detection of slow-moving spots across the visual field; (2) the speed component of neuronal velocity selectivity decreases monotonically across each joint orientation contour line for parallel motion and increases monotonically for orthogonal motion; (3) the cells that are direction selective to slow-moving objects are situated in the periphery of V1; and (4) neurons in distinct pinwheels tend to be connected to neurons with similar tuning preferences in other pinwheels. The model accounts for various types of known illusionary perceptions of human vision: perceptual filling-in, illusionary orientation and visual crowding. The three distinguishing features of 2DVM are: (1) it unifies the functional properties of the conventional energy model of V1; (2) it directly relates the functional properties to the known structure of the upper layers of V1; and (3) it implies that the spatial selectivity features of V1 are side effects of its more important role as a velocity map of the visual field. PMID:26343820

  7. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  8. Long-range transport of air pollution into the Arctic

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Berg, T.; Breivik, K.; Burkhart, J. F.; Eckhardt, S.; Fjæraa, A.; Forster, C.; Herber, A.; Lunder, C.; McMillan, W. W.; None, N.; Manø, S.; Oltmans, S.; Shiobara, M.; Stebel, K.; Hirdman, D.; Stroem, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.; Andrews, E.; Kowal, D.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stone, R.; Hoch, S.; Wehrli, C.

    2007-12-01

    This paper presents an overview of air pollution transport into the Arctic. The major transport processes will be highlighted, as well as their seasonal, interannual, and spatial variability. The source regions of Arctic air pollution will be discussed, with a focus on black carbon (BC) sources, as BC can produce significant radiative forcing in the Arctic. It is found that Europe is the main source region for BC in winter, whereas boreal forest fires are the strongest source in summer, especially in years of strong burning. Two case studies of recent extreme Arctic air pollution events will be presented. In summer 2004, boreal forest fires in Alaska and Canada caused pan-Arctic enhancements of black carbon. The BC concentrations measured at Barrow (Alaska), Alert (Canada), Summit (Greenland) and Zeppelin (Spitsbergen) were all episodically elevated, as a result of the long-range transport of the biomass burning emissions. Aerosol optical depth was also episodically elevated at these stations, with an almost continuous elevation over more than a month at Summit. During the second episode in spring 2006, new records were set for all measured air pollutant species at the Zeppelin station (Spitsbergen) as well as for ozone in Iceland. At Zeppelin, BC, AOD, aerosol mass, ozone, carbon monoxide and other compounds all reached new record levels, compared to the long-term monitoring record. The episode was caused by transport of polluted air masses from Eastern Europe deep into the Arctic, a consequence of the unusual warmth in the European Arctic during the episode. While fossil fuel combustion sources certainly contributed to this episode, smoke from agricultural fires in Eastern Europe was the dominant pollution component. We also suggest a new revolatilization mechanism for persistent organic pollutants (POPs) stored in soils and vegetation by fires, as POPs were strongly elevated during both episodes. All this suggests a considerable influence of biomass burning on

  9. Computational Fluid Dynamics Investigation of Human Aspiration in Low-Velocity Air: Orientation Effects on Mouth-Breathing Simulations

    PubMed Central

    Anthony, T. Renée

    2013-01-01

    Computational fluid dynamics was used to investigate particle aspiration efficiency in low-moving air typical of occupational settings (0.1–0.4 m s−1). Fluid flow surrounding an inhaling humanoid form and particle trajectories traveling into the mouth were simulated for seven discrete orientations relative to the oncoming wind (0°, 15°, 30°, 60°, 90°, 135° and 180°). Three continuous inhalation velocities (1.81, 4.33, and 12.11 m s−1), representing the mean inhalation velocity associated with sinusoidal at-rest, moderate, and heavy breathing (7.5, 20.8, and 50.3 l min−1, respectively) were simulated. These simulations identified a decrease in aspiration efficiency below the inhalable particulate mass (IPM) criterion of 0.5 for large particles, with no aspiration of particles 100 µm and larger for at-rest breathing and no aspiration of particles 116 µm for moderate breathing, over all freestream velocities and orientations relative to the wind. For particles smaller than 100 µm, orientation-averaged aspiration efficiency exceeded the IPM criterion, with increased aspiration efficiency as freestream velocity decreased. Variability in aspiration efficiencies between velocities was low for small (<22 µm) particles, but increased with increasing particle size over the range of conditions studied. Orientation-averaged simulation estimates of aspiration efficiency agree with the linear form of the proposed linear low-velocity inhalable convention through 100 µm, based on laboratory studies using human mannequins. PMID:23316076

  10. Approach range and velocity determination using laser sensors and retroreflector targets

    NASA Technical Reports Server (NTRS)

    Donovan, William J.

    1991-01-01

    A laser docking sensor study is currently in the third year of development. The design concept is considered to be validated. The concept is based on using standard radar techniques to provide range, velocity, and bearing information. Multiple targets are utilized to provide relative attitude data. The design requirements were to utilize existing space-qualifiable technology and require low system power, weight, and size yet, operate from 0.3 to 150 meters with a range accuracy greater than 3 millimeters and a range rate accuracy greater than 3 mm per second. The field of regard for the system is +/- 20 deg. The transmitter and receiver design features a diode laser, microlens beam steering, and power control as a function of range. The target design consists of five target sets, each having seven 3-inch retroreflectors, arranged around the docking port. The target map is stored in the sensor memory. Phase detection is used for ranging, with the frequency range-optimized. Coarse bearing measurement is provided by the scanning system (one set of binary optics) angle. Fine bearing measurement is provided by a quad detector. A MIL-STD-1750 A/B computer is used for processing. Initial test results indicate a probability of detection greater than 99 percent and a probability of false alarm less than 0.0001. The functional system is currently at the MIT/Lincoln Lab for demonstration.

  11. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and...

  12. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical...

  13. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  14. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  15. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  16. Specific features of modeling of nonequilibrium radiation behind the shock wave in air in the vacuum ultraviolet spectral range

    NASA Astrophysics Data System (ADS)

    Gorelov, V. A.; Kireev, A. Yu.

    2016-01-01

    A physical-chemical model of generation of nonequilibrium molecular radiation in the vacuum ultraviolet (VUV) spectral range behind the shock wave in air for shock wave velocities from 4.5 to 9.5 km/s is developed. Experimental results obtained in a shock tube in investigations of photoionization of air ahead of the shock wave front are used for verification of the numerical model of VUV radiation in the wavelength range from 85 to 105 nm. Model calculations show that nonequilibrium VUV radiation arises in a very thin high-temperature layer behind the shock wave front and is affected by heavy particles and electrons.

  17. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla. 334.700 Section 334.700 Navigation and... Air Force Base, Fla. (a) The danger zones—(1) Aerial gunnery range in west part of Choctawhatchee Bay. The danger zone shall encompass all navigable waters of the United States as defined at 33 CFR...

  18. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla. 334.700 Section 334.700 Navigation and... Air Force Base, Fla. (a) The danger zones—(1) Aerial gunnery range in west part of Choctawhatchee Bay. The danger zone shall encompass all navigable waters of the United States as defined at 33 CFR...

  19. High spatial range velocity measurements in a high Reynolds number turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    de Silva, C. M.; Gnanamanickam, E. P.; Atkinson, C.; Buchmann, N. A.; Hutchins, N.; Soria, J.; Marusic, I.

    2014-02-01

    Here, we detail and analyse a multi-resolution particle image velocity measurement that resolves the wide range of scales prevalent in a zero pressure gradient turbulent boundary layer at high Reynolds numbers (up to Reτ ≈ 20 000). A unique configuration is utilised, where an array of eight high resolution cameras at two magnification levels are used simultaneously to obtain a large field of view, while still resolving the smaller scales prevalent in the flow. Additionally, a highly magnified field of view targeted at the near wall region is employed to capture the viscous sublayer and logarithmic region, with a spatial resolution of a few viscous length scales. Flow statistics from these measurements show good agreement with prior, well resolved hot-wire anemometry measurements. Analysis shows that the instantaneous wall shear stress can be reliably computed, which is historically known to be challenging in boundary layers. A statistical assessment of the wall shear stress shows good agreement with existing correlations, prior experimental and direct numerical simulation data, extending this view to much higher Reynolds numbers. Furthermore, conditional analysis using multiple magnification levels is detailed, to study near-wall events associated with high skin friction fluctuations and their associated overlaying structures in the log region. Results definitively show that the passage of very large-scale positive (or negative) velocity fluctuations are associated with increased (or reduced) small-scale variance in wall shear stress fluctuations.

  20. Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites

    NASA Astrophysics Data System (ADS)

    Lejba, P.; Schillak, S.

    2011-02-01

    The positions and velocities of the four Satellite Laser Ranging (SLR) stations: Yarragadee (7090), Greenbelt (7105), Graz (7839) and Herstmonceux (7840) from 5-year (2001-2005) SLR data of low orbiting satellites (LEO): Ajisai, Starlette and Stella were determined. The orbits of these satellites were computed from the data provided by 20 SLR stations. All orbital computations were performed by means of NASA Goddard’s GEODYN-II program. The geocentric coordinates were transformed to the topocentric North-South, East-West and Vertical components in reference to ITRF2005. The influence of the number of normal points per orbital arc and the empirical acceleration coefficients on the quality of station coordinates was studied. To get standard deviation of the coordinates determination lower than 1 cm, the number of the normal points per site had to be greater than 50. The computed positions and velocities were compared to those derived from LAGEOS-1/LAGEOS-2 data. Three parameters were used for this comparison: station coordinates stability, differences from ITRF2005 positions and velocities. The stability of coordinates of LEO satellites is significantly worse (17.8 mm) than those of LAGEOS (7.6 mm), the better results are for Ajisai (15.4 mm) than for Starlette/Stella (20.4 mm). The difference in positions between the computed values and ITRF2005 were little bit worse for Starlette/Stella (6.6 mm) than for LAGEOS (4.6 mm), the results for Ajisai were five times worse (29.7 mm) probably due to center of mass correction of this satellite. The station velocities with some exceptions were on the same level (≈1 mm/year) for all satellites. The results presented in this work show that results from Starlette/Stella are better than those from Ajisai for station coordinates determination. We can applied the data from LEO satellites, especially Starlette and Stella for determination of the SLR station coordinates but with two times lower accuracy than when using LAGEOS

  1. Estimates of the Range in Flow Velocities Associated with the Circum-Chryse Outflow Channels

    NASA Astrophysics Data System (ADS)

    Craddock, R. A.; Tanaka, K. L.

    1996-03-01

    To know what we're getting out of the Mars Pathfinder "grab bag" landing site it is imperative that the detailed geology and hydraulic history of the circum-Chryse outflow channel complex be understood ahead of time. Crude estimates of the maximum channel flow velocities can be made simply by knowing the depth and slopes of the outflow channels themselves. Although these characteristics have been derived in part by stereophotogrammetry, they are subject to a considerable amount of error. Fortunately some Earth-based radar data exist which are both reasonably accurate and provide the spatial coverage necessary for determining the slopes of some of the channels. Using these data, the bed shear stress of a flow, or the retarding stress at the base of a flow, Tb, can be estimated from the depth-slope formula ~b = pghS where p is the density of the fluid, g is gravitational acceleration, h is the flow (or channel) depth, and S is the slope of the channel. This is equal to the bottom stress created by a flow, tau, where tau = pCf-u2 and Cf is a dimensionless drag coefficient and u is the mean flow velocity. Thus, the mean flow velocity for a channel can be calculated from -u = (ghS/Cf) 1/2. The dimensionless drag coefficient can be adjustment for gravity by the expression Cf = g(n21hll3) where n is the Manning roughness coefficient (units of s/ml/2), which has been derived empirically from terrestrial observations. Application of an appropriate Manning roughness coefficient, n, to Martian outflow channels is uncertain, so a range of reasonable values (0.015 to 0.035) is used. Estimates of the mean flow velocities were calculated from this method, however, at best these represent maximum values. Large-scale geologic mapping indicates that most channels were subjected to multiple episodes of flooding, which suggests that the channels may not have been completely full of water at any one time (i.e., bankfull discharge). This method is also not directly applicable to Simud

  2. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  3. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  4. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  5. An Empirical Model of Human Aspiration in Low-Velocity Air Using CFD Investigations

    PubMed Central

    Anthony, T. Renée; Anderson, Kimberly R.

    2016-01-01

    Computational fluid dynamics (CFD) modeling was performed to investigate the aspiration efficiency of the human head in low velocities to examine whether the current inhaled particulate mass (IPM) sampling criterion matches the aspiration efficiency of an inhaling human in airflows common to worker exposures. Data from both mouth and nose inhalation, averaged to assess omnidirectional aspiration efficiencies, were compiled and used to generate a unifying model to relate particle size to aspiration efficiency of the human head. Multiple linear regression was used to generate an empirical model to estimate human aspiration efficiency and included particle size as well as breathing and freestream velocities as dependent variables. A new set of simulated mouth and nose breathing aspiration efficiencies was generated and used to test the fit of empirical models. Further, empirical relationships between test conditions and CFD estimates of aspiration were compared to experimental data from mannequin studies, including both calm-air and ultra-low velocity experiments. While a linear relationship between particle size and aspiration is reported in calm air studies, the CFD simulations identified a more reasonable fit using the square of particle aerodynamic diameter, which better addressed the shape of the efficiency curve’s decline toward zero for large particles. The ultimate goal of this work was to develop an empirical model that incorporates real-world variations in critical factors associated with particle aspiration to inform low-velocity modifications to the inhalable particle sampling criterion. PMID:25438035

  6. Impact of air velocity on the development and detection of small coal fires

    SciTech Connect

    Egan, M.R.

    1993-12-31

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate, that in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial stage of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine. 9 refs., 3 figs., 10 tabs.

  7. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    PubMed

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309

  8. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  10. Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2011-01-15

    The turbulent burning velocity is defined by the mass rate of burning and this also requires that the associated flame surface area should be defined. Previous measurements of the radial distribution of the mean reaction progress variable in turbulent explosion flames provide a basis for definitions of such surface areas for turbulent burning velocities. These inter-relationships. in general, are different from those for burner flames. Burning velocities are presented for a spherical flame surface, at which the mass of unburned gas inside it is equal to the mass of burned gas outside it. These can readily be transformed to burning velocities based on other surfaces. The measurements of the turbulent burning velocities presented are the mean from five different explosions, all under the same conditions. These cover a wide range of equivalence ratios, pressures and rms turbulent velocities for ethanol-air mixtures. Two techniques are employed, one based on measurements of high speed schlieren images, the other on pressure transducer measurements. There is good agreement between turbulent burning velocities measured by the two techniques. All the measurement are generalised in plots of burning velocity normalised by the effective unburned gas rms velocity as a function of the Karlovitz stretch factor for different strain rate Markstein numbers. For a given value of this stretch factor a decrease in Markstein number increases the normalised burning velocity. Comparisons are made with the findings of other workers. (author)

  11. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  12. Constraining depth range of S wave velocity decrease after large earthquakes near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Wu, Chunquan; Delorey, Andrew; Brenguier, Florent; Hadziioannou, Celine; Daub, Eric G.; Johnson, Paul

    2016-06-01

    We use noise correlation and surface wave inversion to measure the S wave velocity changes at different depths near Parkfield, California, after the 2003 San Simeon and 2004 Parkfield earthquakes. We process continuous seismic recordings from 13 stations to obtain the noise cross-correlation functions and measure the Rayleigh wave phase velocity changes over six frequency bands. We then invert the Rayleigh wave phase velocity changes using a series of sensitivity kernels to obtain the S wave velocity changes at different depths. Our results indicate that the S wave velocity decreases caused by the San Simeon earthquake are relatively small (~0.02%) and access depths of at least 2.3 km. The S wave velocity decreases caused by the Parkfield earthquake are larger (~0.2%), and access depths of at least 1.2 km. Our observations can be best explained by material damage and healing resulting mainly from the dynamic stress perturbations of the two large earthquakes.

  13. Choroidal imaging by one-micrometer dual-beam Doppler optical coherence angiography with adjustable velocity range

    NASA Astrophysics Data System (ADS)

    Jaillon, Franck; Makita, Shuichi; Yasuno, Yoshiaki

    2012-03-01

    Ability of a new version of one-micrometer dual-beam optical coherence angiography (OCA) based on Doppler optical coherence tomography (OCT), is demonstrated for choroidal vasculature imaging. A particular feature of this system is the adjustable time delay between two probe beams. This allows changing the measurable velocity range of moving constituents such as blood without alteration of the scanning protocol. Since choroidal vasculature is made of vessels having blood flows with different velocities, this technique provides a way of discriminating vessels according to the velocity range of their inner flow. An example of choroid imaging of a normal emmetropic eye is here given. It is shown that combining images acquired with different velocity ranges provides an enhanced vasculature representation. This method may be then useful for pathological choroid characterization.

  14. Cytoplasmic dynein binding, run length, and velocity are guided by long-range electrostatic interactions

    PubMed Central

    Li, Lin; Alper, Joshua; Alexov, Emil

    2016-01-01

    Dyneins are important molecular motors involved in many essential biological processes, including cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of microtubule binding and unbinding to a change in the configuration of the linker domain induced by ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein’s microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD’s binding free energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. Lastly, we show that the binding of dynein to the microtubule is associated with conformational changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an otherwise noisy dynein stepping process. PMID:27531742

  15. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  16. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  17. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  18. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air

  19. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  20. Active-passive bistatic surveillance for long range air defense

    NASA Astrophysics Data System (ADS)

    Wardrop, B.; Molyneux-Berry, M. R. B.

    1992-06-01

    A hypothetical mobile support receiver capable of working within existing and future air defense networks as a means to maintain essential surveillance functions is considered. It is shown how multibeam receiver architecture supported by digital signal processing can substantially improve surveillance performance against chaff and jamming threats. A dual-mode support receiver concept is proposed which is based on the state-of-the-art phased-array technology, modular processing in industry standard hardware and existing networks.

  1. Active-passive bistatic surveillance for long range air defense

    SciTech Connect

    Wardrop, B.; Molyneux-Berry, M.R.B. )

    1992-06-01

    A hypothetical mobile support receiver capable of working within existing and future air defense networks as a means to maintain essential surveillance functions is considered. It is shown how multibeam receiver architecture supported by digital signal processing can substantially improve surveillance performance against chaff and jamming threats. A dual-mode support receiver concept is proposed which is based on the state-of-the-art phased-array technology, modular processing in industry standard hardware and existing networks. 20 refs.

  2. Range resolution dependence of VHF radar returns from clear-air turbulence and precipitation

    NASA Astrophysics Data System (ADS)

    Chu, Y.-H. Y.-H.; Su, C.-L.

    1999-06-01

    With employing 1.5 h of the data observed by the Chung-Li VHF radar, the range resolution dependences of the VHF backscatter from refractivity fluctuation and precipitation are investigated in this article. It indicates that the atmospheric layer structure of refractivity seems to play a role in governing the range resolution dependence of clear-air turbulent echoes. Observations shows that the VHF clear-air echo power ratios for 4 to 2 μs pulse lengths are close to 3 dB in the middle or bottom side of the layer, while the ratios are significantly greater than 3 dB in the top side of the layer. The analysis of the precipitation echo power ratio for 4 to 2 ms pulse lengths shows that basically the ratios above 3.0 km are close to 3 dB, but enormously smaller than 3 dB below 3.0 km. The feature of extraordinarily small echo power ratios below 3.0 km is also observed for the radar returns from refractivity turbulence. The radar recovery effect is thought to be a primary factor responsible for the severe diminution of the echo power ratios at the lower altitudes. In addition, statistical analysis reveals that the range resolution effect on the first and second moments of the Doppler spectra for the radar echoes from clear-air turbulence and precipitation is insignificant and negligible. The dependences of the coefficient A and power B in the power-law approximation Vt=APBr to the terminal velocity Vt and range-corrected echo power Pr are examined theoretically and experimentally. The results show that the coefficient A (powers B) is inversely (positively) proportional to the range resolution, in a good agreement with the observations. Because of the strong dependence of coefficient A and power B on the radar pulse width, it suggests that great caution should be taken in comparing the power-law expressions Vt=APBr established from the radar returns obtained with different range resolutions.

  3. The influence of bubble plumes on air-seawater gas transfer velocities

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Karle, L. M.; Higgins, B. J.; Farley, P. J.; Monahan, E. C.; Leifer, I. S.

    1996-05-01

    Laboratory results have demonstrated that bubble plumes are a very efficient air-water gas transfer mechanism. Because breaking waves generate bubble plumes, it could be possible to correlate the air-sea gas transport velocity kL with whitecap coverage. This correlation would then allow kL to be predicted from measurements of apparent microwave brightness temperature through the increase in sea surface microwave emissivity associated with breaking waves. In order to develop this remote-sensing-based method for predicting air-sea gas fluxes, a whitecap simulation tank was used to measure evasive and invasive kL values for air-seawater transfer of carbon dioxide, oxygen, helium, sulfur hexafluoride, and dimethyl sulfide at cleaned and surfactant-influenced water surfaces. An empirical model has been developed that can predict kL from bubble plume coverage, diffusivity, and solubility. The observed dependence of kL on molecular diffusivity and aqueous-phase solubility agrees with the predictions of modeling studies of bubble-driven air-water gas transfer. It has also been shown that soluble surfactants can decrease kL even in the presence of breaking waves.

  4. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions. PMID:21535663

  5. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Callaghan, Adrian H.; Nightingale, Philip D.; Shutler, Jamie D.

    2016-01-01

    Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.

  6. Facile control of long range orientation in mesoporous carbon films with thermal zone annealing velocity

    NASA Astrophysics Data System (ADS)

    Xue, Jiachen; Singh, Gurpreet; Qiang, Zhe; Yager, Kevin G.; Karim, Alamgir; Vogt, Bryan D.

    2013-11-01

    Ordered mesoporous carbons exhibit appealing properties for many applications, but their function and performance can depend critically on their structure. The in-plane orientation of 2D cylinders from the cooperative assembly of Pluronic P123 and resol has been controlled by application of cold zone annealing (CZA). By varying the moving rate, the preferential in-plane orientation of the self-assembled cylinders can be tuned through the entire 180° range possible from φ = 50° to φ = -130° (relative to the moving direction). At a moving rate of 2 μm s-1, this simple and easy CZA process leads to cylinders that are well aligned parallel to the moving direction with a high orientational factor of S = 0.98. Moreover, the in-plane oriented cylinders can be nearly perfectly aligned transverse to the moving direction (S = 0.95) by simply decreasing the moving velocity to 0.5 μm s-1. We attribute the parallel alignment to the flow that develops from the motion of the thermal gradients, while the transverse alignment is related to flow cessation (inertial effect). The preferential orientation is retained through the carbonization process, but there is some degradation in orientation due to insufficient crosslinking of the resol during CZA; this effect is most prominent for the higher moving rates (less time for crosslinking), but can be overcome by post-CZA annealing at uniform elevated temperatures to further crosslink the resol. CZA is a simple and powerful method for fabricating well-aligned and self-assembled mesoporous carbon films over large areas.Ordered mesoporous carbons exhibit appealing properties for many applications, but their function and performance can depend critically on their structure. The in-plane orientation of 2D cylinders from the cooperative assembly of Pluronic P123 and resol has been controlled by application of cold zone annealing (CZA). By varying the moving rate, the preferential in-plane orientation of the self-assembled cylinders can

  7. Thermal stability effects on the structure of the velocity field above an air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1987-01-01

    Mean velocity and turbulence measurements are described for turbulent flows above laboratory water waves, under various wind and thermal stratification conditions. Experimental results, when presented in the framework of Monin-Obukhov (1954) similarity theory, support local scaling based on evaluation of stratification effects at the same nondimensional distance from the mean water surface. Such scaling allows an extension of application of the above theory to the outer region of the boundary layer. Throughout the fully turbulent region, ratios of mean velocity gradients, eddy viscosities, and turbulence intensities under nonneutral and neutral conditions correlate well with the parameter z/Lambda (Lambda being a local Obukhov length and z the vertical coordinate of the mean air flow) and show good agreement with established field correlations. The influence of stratification on the wind-stress coefficient can be estimated from an empirical relationship in terms of its value under neutral conditions and a bulk Richardson number.

  8. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  9. A methodology for long-range prediction of air transportation

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; English, J. M.

    1980-01-01

    A framework and methodology for long term projection of demand for aviation fuels is presented. The approach taken includes two basic components. The first was a new technique for establishing the socio-economic environment within which the future aviation industry is embedded. The concept utilized was a definition of an overall societal objective for the very long run future. Within a framework so defined, a set of scenarios by which the future will unfold are then written. These scenarios provide the determinants of the air transport industry operations and accordingly provide an assessment of future fuel requirements. The second part was the modeling of the industry in terms of an abstracted set of variables to represent the overall industry performance on a macro scale. The model was validated by testing the desired output variables from the model with historical data over the past decades.

  10. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  11. Strategic Long Range Planning for Universities. AIR Forum 1980 Paper.

    ERIC Educational Resources Information Center

    Baker, Michael E.

    The use of strategic long-range planning at Carnegie-Mellon University (CMU) is discussed. A structure for strategic planning analysis that integrates existing techniques is presented, and examples of planning activities at CMU are included. The key concept in strategic planning is competitive advantage: if a university has a competitive…

  12. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  13. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  14. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  15. Effect of Wind Tunnel Air Velocity on VOC Flux from Standard Solutions and CAFO Manure/Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used wind tunnels and flux chambers to quantify the flux of volatile organic compounds (VOCs), ammonia, and hydrogen sulfide and estimate emission factors from animal feeding operations (AFOs) without accounting for effects of air velocity or sweep air flow rate. L...

  16. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air Force. 334.490 Section 334.490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE...

  17. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  18. [Estimates of velocity of the travelling wave in the high-range cochlea of the dolphin].

    PubMed

    Popov, V V; Supin, A Ia

    2014-07-01

    Auditory brainstem responses (ABR) to sound pulses of precisely defined spectrum band of 0.5 oct (from 11.2-16 to 90-128 kHz) were recorded in bottlenose dolphins Tursiops truncatus. At equal stimulus levels, ABR amplitude depended on the stimulus spectrum band: the higher the frequency, the higher the amplitude. ABR waveform little depended on the stimulus spectrum band, however ABR latency did depend: the higher the frequency, the shorter the latency. The latency difference between responses to the lowest-frequency (11.2-16 kHz) and the highest-frequency (90-129 kHz) stimuli was up to 0.3 ms. This latency difference was attributed to the time of the wave travelling along the basilar membrane. Therefore, the data were used to compute the travelling-wave velocity. The obtained estimates were: 38.2 oct/ms at the proximal (high-frequ- ency) end of the basilar membrane to 2.8 oct/ms at the distal (low-frequency) end. Comparison of the travelling-wave velocities in humans and dolphins shows that the travelling-wave velocity is linked to the characteristic frequency, not to the place in the cochlea. PMID:25669111

  19. Investigation of the Low Velocity Zone Beneath the Southern Basin and Range

    NASA Astrophysics Data System (ADS)

    Savage, B.; Helmberger, D. V.

    2003-12-01

    Following the work by Helmberger (1973), we use waveform recordings of P arrivals at distances from 6o to 20o to investigate the structure of the low velocity zone (LVZ) or asthenosphere. In contrast to the previous study, broadband data (TriNet and BDSN) is used at a much smaller station spacing providing higher along path and depth resolution. For this study, a well recorded earthquake in the central Gulf of California (Mw 6.3) produces transitions from PnL to P410 across all of California and western Nevada. The nature of these transitions indicates the thickness and gradients of the LVZ and the lithosphere. Initial findings show large variations of lithosphere and LVZ structure from east to west below California. By varying the lithosphere compressional velocity and depth of the LVZ in 1-D models, a database of synthetics waveforms is created to guide the development of realistic 2-D (along path) and 3-D (against azimuth) description of the lithosphere and asthenosphere. The character of the P arrivals changes dramatically near 9-11o with the emergence of a higher frequencies over-printing the longer-period PnL arrivals. Coastal California stations show these arrivals at the shortest distances, 9o indicating the lithosphere velocity and gradient below the LVZ are high. This is in opposition to those arrivals on the east which do not record the high frequency arrivals until 11o. As the distances reach 13o, a large amplitude, high frequency phase is present 10-15 seconds behind the initial P arrival. The emergence of the large secondary phase occurs at different distances across California with a pattern similar to before. At this distance, a change in the apparent velocity of the first arrival also occurs. Further in distance, the width of the initial P arrival and the energy following, or lack thereof, points to the shape of the underlying LVZ. Coastal stations and those in the central portion of California show larger amplitude arrivals following the initial P

  20. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    SciTech Connect

    Meng, Jianxin; Mei, Deqing Yang, Keji; Fan, Zongwei

    2014-08-14

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.

  1. Entrapped air bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity

    NASA Astrophysics Data System (ADS)

    de Jong, Jos; Jeurissen, Roger; Borel, Huub; van den Berg, Marc; Wijshoff, Herman; Reinten, Hans; Versluis, Michel; Prosperetti, Andrea; Lohse, Detlef

    2006-12-01

    Air bubbles entrapped in the ink channel are a major problem in piezo-driven inkjet printing. They grow by rectified diffusion and eventually counteract the pressure buildup at the nozzle, leading to a breakdown of the jetting process. Experimental results on the droplet velocity udrop as a function of the equilibrium radius R0 of the entrained bubble are presented. Surprisingly, udrop(R0) shows a pronounced maximum around R0=17μm before it sharply drops to zero around R0=19μm. A simple one-dimensional model is introduced to describe this counterintuitive behavior which turns out to be a resonance effect of the entrained bubble.

  2. Developing air quality goals and policies for long-range plans

    SciTech Connect

    Full, D.J.; Mitchell, D.

    1995-12-01

    Air Quality Guidelines for General Plans (Air Quality Guidelines) is a guidance document and resource for cities and counties to use to address air quality in their long-range planning efforts. It includes goals, policies, and programs that when adopted as part of a long-range plan will reduce vehicle trips and miles traveled and improve air quality. Although this is a voluntary program, the San Joaquin Valley Unified Air Pollution Control District (District) has strongly encouraged cities and counties in the San Joaquin Valley to use their land use and transportation planning authority to help achieve air quality goals by adopting the policies and programs suggested by the Air Quality Guidelines. Implementing the goals and policies will result in a win-win situation where cities, counties, and developers save money through more efficient land use and transportation systems and where the public benefits from a more livable community and better air quality. The purpose of the Air Quality Guidelines is threefold: (1) to provide local planning agencies with a comprehensive set of goals and policies that will improve air quality if adopted as part of a long-range plan; (2) to provide a guide to cities and counties for determining which goals and policies are appropriate in their particular community; and (3) to provide justification and rationale for the goals and policies that will convince decision-makers and the public that they are appropriate and necessary.

  3. Contrasting sound velocity and intermediate-range structural order between polymerized and depolymerized silicate glasses under pressure

    NASA Astrophysics Data System (ADS)

    Sakamaki, Tatsuya; Kono, Yoshio; Wang, Yanbin; Park, Changyong; Yu, Tony; Jing, Zhicheng; Shen, Guoyin

    2014-04-01

    X-ray diffraction and ultrasonic velocity measurements of three silicate glasses (in jadeite, albite, and diopside compositions) show a sharp contrast in pressure-induced changes in structure and elasticity. With increasing pressure to around 6 GPa, polymerized glasses (jadeite and albite) display large shift in the first sharp diffraction peak (FSDP) in the structure factor, S(Q), to higher-Q values, indicating rapid shrinkage in the intermediate-range ordered (IRO) structure. Above 6 GPa, the shift of FSDP decelerates, suggesting that shrinkage in the IRO structure has been largely completed and the structure evolution is now dominated by the diminution of the interstitial volume in a more densely packed arrangement. Associated with this structural change, sound velocities increase with pressure above 6 GPa. In contrast, the depolymerized diopside glass exhibits smaller changes in the pressure dependence for both sound velocities and FSDP positions. Compared to the polymerized glasses, the velocities are faster and the positions of FSDP appear at higher-Q under the same experimental conditions. The results suggest that the depolymerized diopside glass has an initially denser IRO structure compared to that of the polymerized glasses, and there are no sufficient interstitial voids to shrink. The different behaviors between polymerized and depolymerized glasses are apparently related to the initial linkage of tetrahedra and the pressure-induced structural reactions. These results suggest that under compression up to 10 GPa, the degree of polymerization is a major factor affecting the IRO network structure and the sound velocity of silicate glasses.

  4. Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2014-06-01

    In this study we present gas exchange measurements conducted in a large scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.8 to 15 m s-1 conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of three) was observed for N2O under a surfactant covered water surface. In contrast, the surfactant affected CH3OH, the high solubility tracer only weakly.

  5. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  6. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  7. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  8. Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-08-01

    The deformation of water, kerosene, and ethyl alcohol drops traveling a distance of up to 1 m in air with different velocities (1-5 m/s) is recorded by high-speed photography (the frame of the cross-correlation camera is less than 1 µs). It is shown that the shape of the drops varies cyclically. Several tens of "deformation cycles" are found, which have characteristic times, drop size variation amplitudes, and number of shapes. It is found that the velocity and size of the drops influence the parameters of their deformation cycles. Experiments with the drops are conducted in air at moderate Weber numbers (We < 10).

  9. Geographical limits to species-range shifts are suggested by climate velocity.

    PubMed

    Burrows, Michael T; Schoeman, David S; Richardson, Anthony J; Molinos, Jorge García; Hoffmann, Ary; Buckley, Lauren B; Moore, Pippa J; Brown, Christopher J; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Sydeman, William J; Ferrier, Simon; Williams, Kristen J; Poloczanska, Elvira S

    2014-03-27

    The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness. PMID:24509712

  10. Model of optical nonlinearity of air in the mid-IR wavelength range

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A

    2014-09-30

    A model of optical nonlinearity of air (atmospheric nitrogen and oxygen) is developed. This model can be used to calculate numerically the propagation of radiation with a wavelength close to 10 μm. It takes into account the electronic Kerr effect, higher order nonlinearities, ionisation of a gas medium by electron impact, and pulse group-velocity dispersion. The applicability limits of the Drude approximation for calculating the impact-ionisation rate are also considered. (nonlinear optical phenomena)

  11. Base deformation of full metal-jacketed rifle bullets as a measure of impact velocity and range of fire.

    PubMed

    Haag, Lucien C

    2015-03-01

    Full metal-jacketed rifle bullets with lead cores and open bases can experience deformation of their cylindrical shapes as they yaw during the penetration of soft tissues. The amount of deformation depends upon the strength of the bullet and the velocity in soft tissue when they go into yaw. The yaw behavior of a bullet in soft tissue depends upon its design (length, ogive shape, ogive length, center of gravity, and pre-impact stability) as it penetrates soft tissue. The yaw characteristics of common spitzer-type military rifle bullets are relatively well known and quite reproducible when fired into suitable soft tissue simulants. This, in turn, results in a relationship between the amount of deformation of the bullet's shank and impact velocity with soft tissue. The specific relationship between impact velocity and bullet deformation must be worked out through empirical testing, but this relationship can be of critical importance in determining impact velocity, which, in turn, relates to range of fire. PMID:25594572

  12. Air-sea Exchange of Dimethylsulfide (DMS) - Separation of the Transfer Velocity to Buoyancy, Turbulence, and Wave Driven Components

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Huebert, B. J.; Fairall, C. W.

    2009-12-01

    In the past several years, we have measured the sea-to-air flux of DMS directly with eddy covariance on five cruises in distinct oceanic environments, including the equatorial Pacific (TAO 2003), Sargasso Sea (Biocomplexity 2004), Northern Atlantic (DOGEE 2007), Southern Ocean (SO-GasEX 2008), and Peruvian/Chilean upwelling region (VOCALS-REx 2008). Normalizing DMS flux by its concurrent air-sea concentration difference gave us the transfer velocity of DMS (kDMS). Our wealth of kDMS measurements (~2000 hourly values) in very different oceans and across a wide range of wind speeds (0.5~20.5 m/s) provides an opportunity to evaluate existing parameterizations of k and quantify the importance of various controlling factors on gas exchange. Gas exchange in different wind speed regimes is driven by distinct physical mechanisms. In low winds (<4 m/s), buoyancy-driven convection results in a finite and positive kDMS. In moderate winds (4~10 m/s), turbulence from wind-stress prevails, as we found a near linear dependence of kDMS on wind speed and on friction velocity (u*). In high winds (>10 m/s), there is additional bubble-mediated exchange from wave-breaking, which depends on gas solubility (a function of temperature and to a lesser degree, salinity). When normalizing kDMS to a reference temperature of 20°C, we found the oft-used Schmidt number correction (for diffusivity) to be inadequate because it does not account for the temperature dependence in solubility. To quantify the solubility effect, we subtract the small buoyancy-driven term computed by the NOAA-COARE model 3.0a from k660 (kDMS corrected to a Schmidt number of 660). A linear fit to the residual k660 in the moderate wind regime allows us to further separate the turbulence-driven and wave-breaking components. A solubility correction is applied to the latter, which is then added back to the buoyancy and turbulence-driven terms to give k660,C. Compared to k660, k660,C shows a significant reduction in scatter

  13. Range and velocity independent classification of humans and animals using a profiling sensor

    NASA Astrophysics Data System (ADS)

    Chari, Srikant; Smith, Forrest; Halford, Carl; Jacobs, Eddie; Brooks, Jason

    2010-04-01

    This paper presents object profile classification results using range and speed independent features from an infrared profiling sensor. The passive infrared profiling sensor was simulated using a LWIR camera. Field data collected near the US-Mexico border to yield profiles of humans and animals is reported. Range and speed independent features based on height and width of the objects were extracted from profiles. The profile features were then used to train and test three classification algorithms to classify objects as humans or animals. The performance of Naïve Bayesian (NB), K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM) are compared based on their classification accuracy. Results indicate that for our data set all three algorithms achieve classification rates of over 98%. The field data is also used to validate our prior data collections from more controlled environments.

  14. Predicting the Velocity and Azimuth of Fragments Generated by the Range Destruction or Random Failure of Rocket Casings and Tankage

    SciTech Connect

    Eck, Marshall B.; Mukunda, Meera

    1988-10-01

    The details of a predictive analytical modeling process as well as the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed in this paper. Methods for applying similar modeling techniques to liquid-tankage-over-pressure failures are also discussed. These methods have been calibrated against observed SRM ascent failures and on-orbit tankage failures. Casing-quadrant sized fragments with velocities exceeding 100 m/s resulted from Titan 34D-SRM range destruct actions at 10 sec mission elapsed time (MET). Casing-quadrant sized fragments with velocities of approximately 200 m/s resulted from STS-SRM range destruct actions at 110 sec MET. Similar sized fragments for Ariane third stage and Delta second stage tankage were predicted to have maximum velocities of 260 m/s and 480 m/s respectively. Good agreement was found between the predictions and observations for five specific events and it was concluded that the methods developed have good potential for use in predicting the fragmentation process of a number of generically similar casing and tankage systems. There are three copies in the file, one of these is loose.

  15. Determining position, velocity and acceleration of free-ranging animals with a low-cost unmanned aerial system.

    PubMed

    Harvey, Richard J; Roskilly, Kyle; Buse, Chris; Evans, Hannah K; Hubel, Tatjana Y; Wilson, Alan M

    2016-09-01

    Unmanned aerial systems (UASs), frequently referred to as 'drones', have become more common and affordable and are a promising tool for collecting data on free-ranging wild animals. We used a Phantom-2 UAS equipped with a gimbal-mounted camera to estimate position, velocity and acceleration of a subject on the ground moving through a grid of GPS surveyed ground control points (area ∼1200 m(2)). We validated the accuracy of the system against a dual frequency survey grade GPS system attached to the subject. When compared with GPS survey data, the estimations of position, velocity and acceleration had a root mean square error of 0.13 m, 0.11 m s(-1) and 2.31 m s(-2), respectively. The system can be used to collect locomotion and localisation data on multiple free-ranging animals simultaneously. It does not require specialist skills to operate, is easily transported to field locations, and is rapidly and easily deployed. It is therefore a useful addition to the range of methods available for field data collection on free-ranging animal locomotion. PMID:27353230

  16. Effective-range signatures in quasi-1D matter waves: sound velocity and solitons

    NASA Astrophysics Data System (ADS)

    Sgarlata, F.; Mazzarella, G.; Salasnich, L.

    2015-06-01

    We investigate ultracold and dilute bosonic atoms under strong transverse harmonic confinement using a 1D modified Gross-Pitaevskii equation (1D MGPE), which accounts for the energy dependence of the two-body scattering amplitude within an effective-range expansion. We study sound waves and solitons of the quasi-1D system, comparing the 1D MGPE results with the 1D GPE ones. We find that when the finite-size nature of the interaction is taken into account, the speed of sound and the density profiles of both dark and bright solitons show relevant quantitative changes with respect to predictions given by the standard 1D GPE.

  17. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  18. Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Marandino, Christa

    2012-08-01

    This study is the first to directly correlate gas transfer velocity, measured at sea using the eddy-correlation (EC) technique, and satellite altimeter backscattering. During eight research cruises in different parts of the world, gas transfer velocity of dimethyl sulfide (DMS) was measured. The sample times and locations were compared with overpass times and locations of remote sensing satellites carrying Ku-band altimeters: ERS-1, ERS-2, TOPEX, POSEIDON, GEOSAT Follow-On, JASON-1, JASON-2 and ENVISAT. The result was 179 pairs of gas transfer velocity measurements and backscattering coefficients. An inter-calibration of the different altimeters significantly reduced data scatter. The inter-calibrated data was best fitted to a quadratic relation between the inverse of the backscattering coefficients and the gas transfer velocity measurements. A gas transfer parameterization based on backscattering, corresponding with sea surface roughness, might be expected to perform better than wind speed-based parameterizations. Our results, however, did not show improvement compared to direct correlation of shipboard wind speeds. The relationship of gas transfer velocity to satellite-derived backscatter, or wind speed, is useful to provide retrieval algorithms. Gas transfer velocity (cm/hr), corrected to a Schmidt number of 660, is proportional to wind speed (m/s). The measured gas transfer velocity is controlled by both the individual water-side and air-side gas transfer velocities. We calculated the latter using a numerical scheme, to derive water-side gas transfer velocity. DMS is sufficiently soluble to neglect bubble-mediated gas transfer, thus, the DMS transfer velocities could be applied to estimate water-side gas transfer velocities through the unbroken surface of any other gas.

  19. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  20. Extending the dynamic range of phase contrast magnetic resonance velocity imaging using advanced higher-dimensional phase unwrapping algorithms

    PubMed Central

    Salfity, M.F; Huntley, J.M; Graves, M.J; Marklund, O; Cusack, R; Beauregard, D.A

    2005-01-01

    Phase contrast magnetic resonance velocity imaging is a powerful technique for quantitative in vivo blood flow measurement. Current practice normally involves restricting the sensitivity of the technique so as to avoid the problem of the measured phase being ‘wrapped’ onto the range −π to +π. However, as a result, dynamic range and signal-to-noise ratio are sacrificed. Alternatively, the true phase values can be estimated by a phase unwrapping process which consists of adding integral multiples of 2π to the measured wrapped phase values. In the presence of noise and data undersampling, the phase unwrapping problem becomes non-trivial. In this paper, we investigate the performance of three different phase unwrapping algorithms when applied to three-dimensional (two spatial axes and one time axis) phase contrast datasets. A simple one-dimensional temporal unwrapping algorithm, a more complex and robust three-dimensional unwrapping algorithm and a novel velocity encoding unwrapping algorithm which involves unwrapping along a fourth dimension (the ‘velocity encoding’ direction) are discussed, and results from the three are presented and compared. It is shown that compared to the traditional approach, both dynamic range and signal-to-noise ratio can be increased by a factor of up to five times, which demonstrates considerable promise for a possible eventual clinical implementation. The results are also of direct relevance to users of any other technique delivering time-varying two-dimensional phase images, such as dynamic speckle interferometry and synthetic aperture radar. PMID:16849270

  1. Velocity model calibration as a tool to improve regional wave moment tensors: Application to the Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Ichinose, G. A.

    2006-12-01

    Many scientific issues for the Basin and Range Province (BRP) remain unsettled including structural evolution, strain rates, slip partitioning and earthquake source physics. A catalog of earthquake source parameters including locations and moment tensors is the basis for tectonic and geophysical study. New instrumentation from the Advance National Seismic System, EarthScope Plate Boundary Observatory, Bigfoot and US-Array brings the opportunity for high quality research; therefore, a catalog is an underlying foundation for examining the BRP. We are continuing to generate a moment tensor catalog for the BRP (Mw<3.5) using long-period regional waves spanning back to 1990. Iterative waveform inversion method (e.g., Nolet et al., 1986, Randell, 1994) is used to calibrate the BRP velocity and density structure using two northern and southern BRP earthquakes. The calibrated models generate realistic synthetics for (f<0.5Hz) with ~50-80% variance reduction. We averaged all path specific models to construct a 1-D BRP community background model. The crust is relatively simple between 5-20km (~6.12km/s) and there is a strong velocity gradient in the upper 5- km. There are lower velocities in the upper crust but higher velocities in the mid-crust for the Sierra Nevada paths relative to BRP. There is also a lower crust high-velocity anomaly near Battle Mountain and Elko that is faster by ~5% and may indicate a wider area of under-plating by basaltic magmas. There are significant low velocity zones in the upper and mid crust mainly across the Walker Lane Belt that may indicate the presence of fluids. We are continuing to work on assessing the performance of these newly calibrated models in improving the estimation of moment tensors down to lower magnitudes and mapping out holes in the seismic network which can be filled to improve moment tensor catalog. We also are looking at how these models work at locating earthquakes and comparing synthetics with those computed from models

  2. Predicting the velocity and azimuth of fragments generated by the range destruction or random failure of rocket casings and tankage

    NASA Astrophysics Data System (ADS)

    Eck, M.; Mukunda, M.

    The proliferation of space vehicle launch sites and the projected utilization of these facilities portends an increase in the number of on-pad, ascent, and on-orbit solid-rocket motor (SRM) casings and liquid-rocket tanks which will randomly fail or will fail from range destruct actions. Beyond the obvious safety implications, these failures may have serious resource implications for mission system and facility planners. SRM-casing failures and liquid-rocket tankage failures result in the generation of large, high velocity fragments which may be serious threats to the safety of launch support personnel if proper bunkers and exclusion areas are not provided. In addition, these fragments may be indirect threats to the general public's safety if they encounter hazardous spacecraft payloads which have not been designed to withstand shrapnel of this caliber. They may also become threats to other spacecraft if, by failing on-orbit, they add to the ever increasing space-junk collision cross-section. Most prior attempts to assess the velocity of fragments from failed SRM casings have simply assigned the available chamber impulse to available casing and fuel mass and solved the resulting momentum balance for velocity. This method may predict a fragment velocity which is high or low by a factor of two depending on the ratio of fuel to casing mass extant at the time of failure. Recognizing the limitations of existing methods, the authors devised an analytical approach which properly partitions the available impulse to each major system-mass component. This approach uses the Physics International developed PISCES code to couple the forces generated by an Eulerian modeled gas flow field to a Lagrangian modeled fuel and casing system. The details of a predictive analytical modeling process as well as the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed in this paper. Methods for applying similar modeling

  3. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R.; Verhelst, S.

    2007-04-15

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  4. Validation of zero-order feedback strategies for medium range air-to-air interception in a horizontal plane

    NASA Technical Reports Server (NTRS)

    Shinar, J.

    1982-01-01

    A zero order feedback solution of a variable speed interception game between two aircraft in the horizontal plane, obtained by using the method of forced singular perturbation (FSP), is compared with the exact open loop solution. The comparison indicates that for initial distances of separation larger than eight turning radii of the evader, the accuracy of the feedback approximation is better than one percent. The result validates the zero order FSP approximation for medium range air combat analysis.

  5. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  6. Influence of velocity effects on the shape of N2 (and air) broadened H2O lines revisited with classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Tran, H.; Gamache, R. R.; Bermejo, D.; Domenech, J.-L.

    2012-08-01

    The modeling of the shape of H2O lines perturbed by N2 (and air) using the Keilson-Storer (KS) kernel for collision-induced velocity changes is revisited with classical molecular dynamics simulations (CMDS). The latter have been performed for a large number of molecules starting from intermolecular-potential surfaces. Contrary to the assumption made in a previous study [H. Tran, D. Bermejo, J.-L. Domenech, P. Joubert, R. R. Gamache, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 108, 126 (2007)], 10.1016/j.jqsrt.2007.03.009, the results of these CMDS show that the velocity-orientation and -modulus changes statistically occur at the same time scale. This validates the use of a single memory parameter in the Keilson-Storer kernel to describe both the velocity-orientation and -modulus changes. The CMDS results also show that velocity- and rotational state-changing collisions are statistically partially correlated. A partially correlated speed-dependent Keilson-Storer model has thus been used to describe the line-shape. For this, the velocity changes KS kernel parameters have been directly determined from CMDS, while the speed-dependent broadening and shifting coefficients have been calculated with a semi-classical approach. Comparisons between calculated spectra and measurements of several lines of H2O broadened by N2 (and air) in the ν3 and 2ν1 + ν2 + ν3 bands for a wide range of pressure show very satisfactory agreement. The evolution of non-Voigt effects from Doppler to collisional regimes is also presented and discussed.

  7. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  8. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  9. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  10. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  11. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  12. Impact of air velocity on the development and detection of small coal fires. Report of investigations/1993

    SciTech Connect

    Egan, M.R.

    1993-01-01

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number of smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate that, in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial state of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine.

  13. Threshold velocities for input of soil particles into the air by desert soils

    SciTech Connect

    Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R.

    1980-10-20

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: disturbed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavement (alluvial deposits). 21 references, 5 figures, 6 tables.

  14. Measurements of the Air-flow Velocity in the Cylinder of an Airplane Engine

    NASA Technical Reports Server (NTRS)

    Wenger, Hermann

    1939-01-01

    The object of the present investigation is to determine the velocity in the BMW-VI cylinder of an externally driven single-cylinder test engine at high engine speeds using the hot-wire method of Ulsamer.

  15. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  16. Probability distribution functions for the initial liftoff velocities of saltating sand grains in air

    NASA Astrophysics Data System (ADS)

    Cheng, Hong; Zou, Xue-Yong; Zhang, Chun-Lai

    2006-11-01

    Saltating sand grains are the primary component of airborne sand and account for 75% of all transport flux of sand grains. Although they have been widely studied, the microscopic and macroscopic aspects of blown sand physics have not been united, and this has slowed development of this field. The main reason for this is that the bridge (probability distribution functions for initial liftoff velocities of saltating sand grains) between the macroscopic and microscopic research has not been satisfactorily solved because it is difficult to measure the initial liftoff parameters of saltating sand grains and because the underlying theory is lacking. In this paper, we combined theoretical analyses with wind tunnel experiment data to describe the liftoff parameters of saltating sand grains (the horizontal, vertical, and resultant liftoff velocities and angles). On the basis of these data, the liftoff angles follow a LogNorm4 distribution function, whereas the horizontal, vertical, and resultant liftoff velocities follow a Gamma distribution function. We also demonstrated that it is feasible to colligate initial liftoff velocities of saltating sand grains obtained under different frictional wind velocities by different scholars in wind tunnel experiments and comprehensively analyze their distributions. Therefore the distribution functions of initial liftoff velocities of saltating sand grains presented in this paper do a good job of reflecting the underlying physics.

  17. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  18. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.

    2015-04-01

    On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.

  19. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  20. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  1. Applications of the Zero-Group-Velocity Lamb Mode for Air-Coupled Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Evan, Victoria L.; Chimenti, D. E.

    2005-04-01

    Airborne ultrasound couples particularly well into plates at the zero-group-velocity point of the first order symmetric (S1) Lamb mode. Applications of this mode to ultrasonic imaging of plate-like structures are discussed. The sensitivity and high Q of this mode makes it ideal for imaging. Images from a wide variety of materials and samples, including composites and honeycomb structures are presented. Transmission at the zero-group-velocity frequency is shown to be particularly sensitive to nearby flaws and discontinuities, and is therefore suitable for wide-area scanning for cracks or manufacturing flaws.

  2. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  3. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  4. Spatial Variability in Ozone and CO2 Flux during the Front Range Air Pollution and Photochemistry Experiment

    NASA Astrophysics Data System (ADS)

    Almand-Hunter, B.; Piedrahita, R.; Kaushik, A.; Noone, D. C.; Walker, J. T.; Hannigan, M.

    2014-12-01

    Air quality problems persist in the Northern Front-Range Metropolitan Area (NFRMA) of Colorado despite efforts to reduce emissions, and summertime ozone concentrations frequently exceed the NAAQS. Atmospheric modeling in the NFRMA is challenging due to the complex topography of the area, as well as diversity of pollutant sources (urban NOx and VOCs, power plants, oil and gas, agricultural emissions, biogenic emissions, and wildfires). An improved understanding of the local atmospheric chemistry will enable researchers to advance atmospheric models, which will subsequently be used to develop and test more effective air quality management strategies. The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) investigates this problem through detailed examination of atmospheric chemistry in the NFRMA. Our project specifically explores the spatial variability in ozone (O3) concentration and dry deposition within the FRAPPE study area. One source of uncertainty in atmospheric models is O3 flux, which varies spatially due to local meteorology and variation in ambient concentration and deposition velocity. Model grid cells typically range in size from 10-100 km and 100-500 km, for regional and global models, respectively, and accurate representations of an entire grid cell cannot always be achieved. Large spatial variability within a model grid cell can lead to poor estimates of trace-gas flux and concentration. Our research addresses this issue by measuring spatial variability in O3 flux using low-cost dry-deposition flux chambers. We are measuring O3 and CO2 flux with 5 low-cost flux chambers and one eddy-covariance tower. The eddy-covariance tower is located at the Boulder Atmospheric Observatory in Erie, CO. All 5 chambers are within a 8.3 x 6 km square, with one chamber collocated with the eddy-covariance tower, and the other 4 chambers at distances of 0.33, 1.14, 3.22, and 7.55 km from the tower. The largest distance between any two chambers is 8.5 km. All

  5. The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) - an overview

    NASA Astrophysics Data System (ADS)

    Flocke, F. M.; Science Teams, F A D A

    2015-12-01

    The Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) was designed to quantify the factors controlling surface ozone in the Northern Front Range Metropolitan Area (NFRMA) and determine whether current and planned emission controls are sufficient to reduce ozone levels below standards. The experiment was conducted simultaneously with the 2014 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) intensive, and employed a coordinated set of ground-based, aircraft-based and satellite measurements. The NFRMA is subject to emissions from a wide variety of very diverse sources such as transportation, power generation, agriculture and livestock operations, oil and gas extraction activities, and natural emissions from vegetation. Inflow into the state can contain elevated ozone brought about from emissions originating from other Western states, Canada or Asia. Terrain-induced, complex mountain-valley circulation patterns, can, to some extent, recirculate polluted air and exacerbate high ozone events. This transport also contributes to high ozone, visibility degradation, and deposition of pollution into Rocky Mountain National Park and other pristine areas. Fifteen flights were performed between July 26 and August 17, 2014, on board the NCAR/NSF C-130 research aircraft, which was equipped with a comprehensive gas phase photochemistry and aerosol payload. The C-130 flights covered much of the State of Colorado. Numerous ground sites and mobile labs were taking measurements simultaneously, and the NASA P3, B-200, and Falcon aircraft flight operations were concentrated on the NFRMA itself. This presentation will summarize the FRAPPÉ activities and present first results with respect to emission characterization of the area and comparison with inventories, contributions of emission source types to ozone production and particle composition, transport and chemical evolution of air masses

  6. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  7. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  8. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  9. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  10. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  11. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a)...

  12. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a)...

  13. The range of turbulent pressure fluctuations in plane-parallel flows of varying velocity with a combustion front

    NASA Astrophysics Data System (ADS)

    Abramovich, G. N.; Rutovskii, V. B.

    A method is proposed for calculating turbulent pressure and velocity fluctuations in the cross-sections of a diffusion flame with or without a slipstream. It is shown that the magnitude of pressure fluctuations does not depend on the density distribution in a cross section, whereas in the case of velocity fluctuations, density distribution is of primary importance. When the inner and the outer nozzles are sufficiently close to each other, two maxima of velocity fluctuations can be expected in the main section of the jet. The position of the maxima can be predicted.

  14. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations.

    PubMed

    Anderson, Kimberly R; Anthony, T Renée

    2014-06-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1-0.4 m s(-1)). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  15. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  16. 3D Tomographic Imaging of the Crustal Velocity Structure beneath the Marmara Sea using Air-gun and Earthquake Data

    NASA Astrophysics Data System (ADS)

    Tarancioglu, Adil; Kocaoglu, Argun H.; Ozalaybey, Serdar

    2014-05-01

    The objective of this study is to investigate the local seismicity and obtain a detailed three-dimensional crustal velocity structure beneath the Marmara Sea in an area surrounding the North Anatolian Fault Zone (NAFZ) by tomographic inversion using both controlled-source (air-gun) and earthquake data. The tomographic inversion is carried out by using the local earthquake tomography code SIMUL2000. Two sets of seismological data, collected in 2006 (EOSMARMARA experiment) and 2001 (SEISMARMARA experiment), are re-processed and used in this study. A total of 441 high quality earthquakes and 452 air-gun shots recorded by a total of 53 Ocean Bottom Seismometers (OBS) are selected for the simultaneous inversion for velocity and hypocentral parameters. The OBS location and time-drift errors are identified from air-gun shot records by a grid search method and required corrections are made on the travel time data. The initial (reference) velocity model and earthquake locations required for the three dimensional tomographic inversion are derived from the one-dimensional velocity model obtained by using the VELEST algorithm in which a subset of earthquakes are selected such that phase readings were made by at least five stations and maximum azimuthal gap was 180o. The inversion results are checked for initial model dependence and the effect of damping factor. The reliability of the results is also evaluated in terms of derivative-weighted-sum, resolution-diagonal-elements values and checkerboard tests. The hypocenter locations of the local earthquakes have been remarkably improved by the three-dimensional velocity model obtained from the tomographic inversion. The three-dimensional velocity model shows that the Tekirdag, Central and Cinarcik Basins are characterized generally by lower Vp (3.0 - 3.5 km/s) values and most of the earthquakes across these regions are located at the depths of 10 to 17 km, about 5 km deeper than those obtained from the one-dimensional reference

  17. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  18. Origin of reverse-graded bedding in air-fall pumice, Coso Range, California

    USGS Publications Warehouse

    Duffield, W.A.; Bacon, C.R.; Roquemore, G.R.

    1979-01-01

    The origin of reverse grading in air-fall pyroclastic deposits has been ascribed to: (1) changing conditions at an erupting vent; (2) deposition in water; or (3) rolling of large clasts over smaller clasts on the surface of a steep slope. Structural features in a deposit of air-fall pumice lapilli in the Coso Range, California, indicate that reverse grading there formed by a fourth mechanism during flow of pumice. Reverse-graded beds in this deposit occur where pumice lapilli fell on slopes at or near the angle of repose and formed as parts of the blanket of accumulating pumice became unstable and flowed downslope. The process of size sorting during such flow is probably analogous to that which sorts sand grains in a reverse fashion during avalanching on the slip faces of sand dunes, attributed by Bagnold (1954a) to a grain-dispersive pressure acting on particles subjected to a shear stress. In view of the several ways in which air-fall pyroclastic debris may become reverse graded, caution is advised in interpretation of the origin of this structure both in modern and in ancient deposits. ?? 1979.

  19. An Experiment to Measure Range, Range Straggling, Stopping Power, and Energy Straggling of Alpha Particles in Air

    ERIC Educational Resources Information Center

    Ouseph, P. J.; Mostovych, Andrew

    1978-01-01

    Experiments to measure range, range straggling, stopping power, and energy straggling of alpha particles are discussed in this article. Commercially available equipment with simple modifications is used for these measurements. (Author/GA)

  20. Comparison of two operational long-range transport air pollution forecast models

    NASA Astrophysics Data System (ADS)

    Brandt, J.; Geels, C.; Christensen, J. C.; Frohn, L. M.; Hansen, K. M.; Skjøth, C. A.; Hertel, O.

    2003-04-01

    An operational air pollution forecast system, THOR, covering scales from regional over urban background to urban street scales has been developed. The long-range transport model, The Danish Eulerian Operational Model (DEOM) is presently used in the system to calculate the long-range transported air pollution from European sources to the areas of interest. DEOM is an Eulerian model covering Europe and includes 35 chemical compounds. In order to carry out fast computations in operational mode, the model is applied with three vertical layers (bottom layer representing the mixing height, second layer representing the old advected mixing height from the day before and finally a reservoir top layer). In the last years, computer power has increased to a level where real 3-D calculations are possible for forecasting. Therefore a new comprehensive 3-D model, The Danish Eulerian Hemispheric Model (DEHM), including 62 chemical species and 18 vertical layers has been developed. Both models operate on the same polar stereographic projection with a 50 km x 50 km horizontal resolution and uses the same meteorological data from the Eta model as input. The models have been run for the year of 1999, and comparisons of model results with measurements from the European Monitoring and Evaluation Programme (EMEP) will be shown. The differences in the model characteristics will be described together with an intercomparison of the models, using different statistical tests.

  1. Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Nepf, Heidi

    2016-01-01

    The interaction between flow and vegetation creates feedbacks to deposition that vary with channel velocity. This experimental study describes how channel velocity and stem-generated turbulence influence the deposition within and around an emergent patch of model vegetation, with a particular focus on deposition within the patch. The Reynolds number threshold for stem-scale turbulence generation was determined using velocity spectra and flow visualization. At high channel velocity resuspension occurred in the bare regions of the channel and a nonuniform spatial distribution of net deposition was observed around and within the patch. In contrast, at low channel velocity there was no (or limited) resuspension and a uniform distribution of net deposition was observed around and within the patch. The deposition inside the patch was enhanced, relative to a bare-channel control, only when the following two criteria were met: (1) the absence of stem turbulence, and (2) the presence of sediment resuspension in the bare channel. Comparison to previous lab and field studies further support these criteria.

  2. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2012-12-01

    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind

  3. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  4. CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring.

    PubMed

    Li, Haitao; Boling, C Sam; Mason, Andrew J

    2016-08-01

    Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations. PMID:27352395

  5. Equatorial range limits of an intertidal ectotherm are more linked to water than air temperature.

    PubMed

    Seabra, Rui; Wethey, David S; Santos, António M; Gomes, Filipa; Lima, Fernando P

    2016-10-01

    As climate change is expected to impose increasing thermal stress on intertidal organisms, understanding the mechanisms by which body temperatures translate into major biogeographic patterns is of paramount importance. We exposed individuals of the limpet Patella vulgata Linnaeus, 1758, to realistic experimental treatments aimed at disentangling the contribution of water and air temperature for the buildup of thermal stress. Treatments were designed based on temperature data collected at the microhabitat level, from 15 shores along the Atlantic European coast spanning nearly 20° of latitude. Cardiac activity data indicated that thermal stress levels in P. vulgata are directly linked to elevated water temperature, while high air temperature is only stressful if water temperature is also high. In addition, the analysis of the link between population densities and thermal regimes at the studied locations suggests that the occurrence of elevated water temperature may represent a threshold P. vulgata is unable to tolerate. By combining projected temperatures with the temperature threshold identified, we show that climate change will likely result in the westward expansion of the historical distribution gap in the Bay of Biscay (southwest France), and northward contraction of the southern range limit in south Portugal. These findings suggest that even a minor relaxing of the upwelling off northwest Iberia could lead to a dramatic increase in thermal stress, with major consequences for the structure and functioning of the intertidal communities along Iberian rocky shores. PMID:27109165

  6. The convention on long-range transboundary air pollution`s sulfur protocol

    SciTech Connect

    Leaf, D.

    1995-12-31

    The US is a signatory to the United Nations Economic Commission for Europe`s Convention on Long-Range Transboundary Air pollution (LRTAP). The signatories to the LRTAP Convention include most European countries, as well as the US and Canada. Over the past decade two Sulfur Protocols have been negotiated under the auspices of LRTAP; both were based on acidification concerns. The first, signed in 1985, committed countries to a 30% decrease in sulfur emissions relative to a 1980 baseline. The second, signed in 1994, committed countries to a 50--80% reduction in sulfur emissions. The latest protocol was based on the effects-based concept of critical loads of sulfur for protecting ecosystems from the effects of acidification. The US did not sign either sulfur protocol, but has participated in discussions leading up to both. This paper will present a discussion of the LRTAP Convention, the two sulfur protocols, the NO{sub x} Protocol, the US-Canada relationship on acid rain, the critical loads concept, and US participation in the LRTAP process (including the relationship between the sulfur protocols and Title IV of the Clean Air Act Amendments of 1990). The focus will be on key scientific and policy issues.

  7. Measuring air-sea gas-exchange velocities in a large-scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s-1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weaker.

  8. Long range effect of turbulent pressure pulsations in plane-parallel flows at different velocities with various flame fronts

    NASA Astrophysics Data System (ADS)

    Abramovich, G. N.; Rutovskiy, V. B.

    1985-01-01

    The levels of turbulent velocity and pressure pulsations in a diffusion flare both with and without a slipstream in the flow are calculated. The analytical expressions are derived from a plane model in which the vortices are replaced by rotating cylinders having axes perpendicular to the flow and radii proportional to an integral turbulence scale; the flow originates from two planar nozzles of substantially different size. The resulting formulas for these pulsations and the estimate of the increase in the turbulence in the presence of a flame front are in good agreement with test data. Pressure pulsations are independent of the density distribution at a nozzle section, while this density is the critical factor in determining the pulsation velocity field. When the nozzles are sufficiently close together, two velocity pulsation maxima are to be expected and their position can be computed beforehand. The case when the distance to the boundary of the second nozzle is small and both streams merge rapidly into a common flow is also considered.

  9. Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake Volcano, northern California Cascade Range

    USGS Publications Warehouse

    Evans, J.R.; Zucca, J.J.

    1988-01-01

    Medicine Lake volcano is a basalt through rhyolite shield volcano of the Cascade Range, lying east of the range axis. The Pg wave from eight explosive sources which has traveled upward through the target volume to a dense array of 140 seismographs provides 1- to 2-km resolution in the upper 5 to 7 km of the crust beneath the volcano. The experiment tests the hypothesis that Cascade Range volcanoes of this type are underlain only by small silicic magma chambers. We image a low-velocity low-Q region not larger than a few tens of cubic kilometers in volume beneath the summit caldera, supporting the hypothesis. A shallower high-velocity high-density feature, previously known to be present, is imaged for the first time in full plan view; it is east-west elongate, paralleling a topographic lineament between Medicine Lake volcano and Mount Shasta. Differences between this high-velocity feature and the equivalent feature at Newberry volcano, a volcano in central regon resembling Medicine Lake volcano, may partly explain the scarcity of surface hydrothermal features at Medicine Lake volcano. A major low-velocity low-Q feature beneath the southeast flank of the volcano, in an area with no Holocene vents, is interpreted as tephra, flows, and sediments from the volcano deeply ponded on the downthrown side of the Gillem fault. A high-Q normal-velocity feature beneath the north rim of the summit caldera may be a small, possibly hot, subsolidus intrusion. A high-velocity low-Q region beneath the eastern caldera may be an area of boiling water between the magma chamber and the ponded east flank material. -from Authors

  10. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  11. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  12. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index. PMID:11282319

  13. Air fluorescence measurements in the spectral range 300 420 nm using a 28.5 GeV electron beam

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abu-Zayyad, T.; Belov, K.; Belz, J.; Cao, Z.; Dalton, M.; Fedorova, Y.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C. H.; Loh, E. C.; Manago, N.; Martens, K.; Matthews, J. N.; Maestas, M.; Rodriguez, D.; Smith, J.; Sokolsky, P.; Springer, R. W.; Thomas, J.; Thomas, S.; Chen, P.; Field, C.; Hast, C.; Iverson, R.; Ng, J. S. T.; Odian, A.; Reil, K.; Walz, D.; Bergman, D. R.; Thomson, G.; Zech, A.; Chang, F.-Y.; Chen, C.-C.; Chen, C.-W.; Huang, M. A.; Hwang, W.-Y. P.; Lin, G.-L.

    2008-02-01

    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the total yield is 20.8 ± 1.6 photons per MeV.

  14. Small-scale materials blast testing using gram-range explosives and air-shock loading

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Settles, Gary

    2006-11-01

    Many material properties are unknown under the high strain rates of shock wave impulse from an explosion in air. Actual blast testing is required for this, but full-scale explosive tests are expensive and dangerous, and yield limited data. Here we explore the possibility that gram-range explosive charges can be used for such testing in an ordinary laboratory setting. The explosion is characterized by high-speed digital shadowgraphy and piezoelectric pressure records of shock speed and overpressure duration. These data yield an explosive impulse describing the strength of shock loading at various standoff distances from a material sample (typically 25cm diameter). Simultaneously, twin high-speed digital cameras and surface tracking software provide material displacement and strain rate data during the test. In principle, these data and the measured shock loading provide a means to find dynamic material properties by an inverse computational approach. A scaling analysis also relates the gram-range blast test to a large-scale blast from the same or a different explosive.

  15. A miniaturized piezoelectric turbine with self-regulation for increased air speed range

    NASA Astrophysics Data System (ADS)

    Fu, Hailing; Yeatman, Eric M.

    2015-12-01

    This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic "plucking" of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.

  16. Unmanned platform for long-range remote analysis of volatile compounds in air samples.

    PubMed

    da Costa, Eric T; Neves, Carlos A; Hotta, Guilherme M; Vidal, Denis T R; Barros, Marcelo F; Ayon, Arturo A; Garcia, Carlos D; do Lago, Claudimir Lucio

    2012-09-01

    This paper describes a long-range remotely controlled CE system built on an all-terrain vehicle. A four-stroke engine and a set of 12-V batteries were used to provide power to a series of subsystems that include drivers, communication, computers, and a capillary electrophoresis module. This dedicated instrument allows air sampling using a polypropylene porous tube, coupled to a flow system that transports the sample to the inlet of a fused-silica capillary. A hybrid approach was used for the construction of the analytical subsystem combining a conventional fused-silica capillary (used for separation) and a laser machined microfluidic block, made of PMMA. A solid-state cooling approach was also integrated in the CE module to enable controlling the temperature and therefore increasing the useful range of the robot. Although ultimately intended for detection of chemical warfare agents, the proposed system was used to analyze a series of volatile organic acids. As such, the system allowed the separation and detection of formic, acetic, and propionic acids with signal-to-noise ratios of 414, 150, and 115, respectively, after sampling by only 30 s and performing an electrokinetic injection during 2.0 s at 1.0 kV. PMID:22965708

  17. A miniaturized piezoelectric turbine with self-regulation for increased air speed range

    SciTech Connect

    Fu, Hailing Yeatman, Eric M.

    2015-12-14

    This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic “plucking” of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.

  18. Error estimations of dry deposition velocities of air pollutants using bulk sea surface temperature under common assumptions

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Yao; Tsuang, Ben-Jei; Keenlyside, Noel; Wang, Shu-Lun; Arthur Chen, Chen-Tung; Wang, Bin-Jye; Liu, Tsun-Hsien

    2010-07-01

    It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8-4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m -2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5-2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m -2. Scale analysis shows that for a slightly soluble gas (e.g., NO 2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO 2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O 3 and CO 2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.

  19. Investigation of Slipstream Velocity

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr

    1925-01-01

    These experiments were made at the request of the Bureau of Aeronautics, Navy Department, to investigate the velocity of the air in the slipstream in horizontal and climbing flight to determine the form of expression giving the slipstream velocity in terms of the airspeed of the airplane. The method used consisted in flying the airplane both on a level course and in climb at full throttle and measuring the slipstream velocity at seven points in the slipstream for the whole speed range of the airplane in both conditions. In general the results show that for both condition, horizontal and climbing flights, the slipstream velocity v subscript 3 and airspeed v can be represented by straight lines and consequently the equations are of the form: v subscript s = mv+b where m and b are constant. (author)

  20. Medium to Long Range Kinematic GPS Positioning with Position-Velocity-Acceleration Model Using Multiple Reference Stations

    PubMed Central

    Hong, Chang-Ki; Park, Chi Ho; Han, Joong-hee; Kwon, Jay Hyoun

    2015-01-01

    In order to obtain precise kinematic global positioning systems (GPS) in medium to large scale networks, the atmospheric effects from tropospheric and ionospheric delays need to be properly modeled and estimated. It is also preferable to use multiple reference stations to improve the reliability of the solutions. In this study, GPS kinematic positioning algorithms are developed for the medium to large-scale network based on the position-velocity-acceleration model. Hence, the algorithm can perform even in cases where the near-constant velocity assumption does not hold. In addition, the estimated kinematic accelerations can be used for the airborne gravimetry. The proposed algorithms are implemented using Kalman filter and are applied to the in situ airborne GPS data. The performance of the proposed algorithms is validated by analyzing and comparing the results with those from reference values. The results show that reliable and comparable solutions in both position and kinematic acceleration levels can be obtained using the proposed algorithms. PMID:26184215

  1. Medium to Long Range Kinematic GPS Positioning with Position-Velocity-Acceleration Model Using Multiple Reference Stations.

    PubMed

    Hong, Chang-Ki; Park, Chi Ho; Han, Joong-hee; Kwon, Jay Hyoun

    2015-01-01

    In order to obtain precise kinematic global positioning systems (GPS) in medium to large scale networks, the atmospheric effects from tropospheric and ionospheric delays need to be properly modeled and estimated. It is also preferable to use multiple reference stations to improve the reliability of the solutions. In this study, GPS kinematic positioning algorithms are developed for the medium to large-scale network based on the position-velocity-acceleration model. Hence, the algorithm can perform even in cases where the near-constant velocity assumption does not hold. In addition, the estimated kinematic accelerations can be used for the airborne gravimetry. The proposed algorithms are implemented using Kalman filter and are applied to the in situ airborne GPS data. The performance of the proposed algorithms is validated by analyzing and comparing the results with those from reference values. The results show that reliable and comparable solutions in both position and kinematic acceleration levels can be obtained using the proposed algorithms. PMID:26184215

  2. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  3. Transient and steady-state velocity of domain walls for a complete range of drive fields. [in magnetic material

    NASA Technical Reports Server (NTRS)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain-wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value of the velocity which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by others from a computer solution of the torque equation and those obtained by others with the assumption of a very large anisotropy field.

  4. Groundwater flow and contaminant transport modelling at an air weapons range

    NASA Astrophysics Data System (ADS)

    Bordeleau, Geneviève; Martel, Richard; Schäfer, Dirk; Ampleman, Guy; Thiboutot, Sonia

    2008-07-01

    Numerical modelling was done at the Cold Lake Air Weapons Range, Canada, to test whether the dissolved RDX and nitrate detected in groundwater come from the same sources, and to predict whether contamination poses a threat to the surface water receptors near the site. Military live fire training activities may indeed pose a risk of contamination to groundwater resources, however field investigations on military bases are quite recent, and little information is available on the long-term behaviour of munition residues related contaminants. Very limited information was available about the contaminant source zones, which were assigned based on our knowledge of current training activities. The RDX plume was well represented with the model, but the heterogeneous distribution of nitrate concentrations was more difficult to reproduce. It was nonetheless determined that both contaminants originate from the same areas. According to the model, both contaminants should reach the nearby river, but concentrations in the river should remain very low if the source zone concentration does not change. Finally, the model allowed the recommendation of a new location for the main bombing target, which would offer added protection to the river and the lake into which it flows.

  5. Preliminary development of a VTOL unmanned air vehicle for the close-range mission

    NASA Astrophysics Data System (ADS)

    Kress, Gregory A.

    1992-09-01

    The preliminary development of a full-scale Vertical Takeoff and Landing (VTOL) Unmanned Air Vehicle (UAV) for the Close-Range mission was completed at the Naval Postgraduate School (NPS). The vehicle was based on half-scale ducted-fan investigations performed at the UAV Flight Research Lab. The resulting design is a fixed-duct, tail-sitter UAV with a canard-configured horizontal stabilizer. Major airframe components are used from previous UAV's and include the wings from a U.S. Army Aquila and the ducted fan from the U.S. Marine Corps AROD. Accomplishments include: (1) the design and fabrication of a carry-through spar, and (2) the design and construction of an engine test stand. The through spar was designed using finite element analysis and constructed from composite materials. The purpose of the test stand is to measure torque, horsepower, and thrust of an entire ducted fan or an individual engine. Completion of this thesis will pave the way for future NPS research into the growing interest in VTOL UAV technology.

  6. In situ radiological surveying at the Double Tracks site, Nellis Air Force Range, Tonopah, Nevada

    SciTech Connect

    Riedhauser, S.R.; Tipton, W.J.

    1996-04-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the Double Tracks site on the Nellis Air Force Range just east of Goldfield, Nevada, during the periods of April 10-13 and June 5-9, 1995. The survey team measured the terrestrial gamma radiation at the site to determine the levels of natural and man-made radiation. This site includes the areas covered by previous surveys conducted from 1962 through 1993. The main purpose of the first expedition was to assess several new techniques for characterizing sites with dispersed plutonium. The two purposes of the second expedition were to characterize the distribution of transuranic contamination (primarily plutonium) at the site by measuring the gamma rays from americium-241 and to assess the performance of the two new detector platforms. Both of the new platforms performed well, and the characterization of the americium-241 activity at the site was completed. Several plots compare these ground-based system measurements and the 1993 aerial data. The agreement is good considering the systems are characterized and calibrated through independent means. During the April expedition, several methods for measuring the depth distribution of americium-241 in the field were conducted as a way of quickly and reliably obtaining depth profiles without the need to wait for laboratory analysis. Two of the methods were not very effective, but the results of the third method appear very promising.

  7. Treatment of close-range, low-velocity gunshot fractures of tibia and femur diaphysis with consecutive compression-distraction technique: a report of 11 cases.

    PubMed

    Ateşalp, A Sabri; Kömürcü, Mahmut; Demiralp, Bahtiyar; Bek, Dogan; Oğuz, Erbil; Yanmiş, Ibrahim

    2004-01-01

    Lower extremity injuries secondary to close-range, low-velocity gunshot wounds are frequently seen in both civilian and military populations. A close-range, low-velocity injury produces high energy and often results in comminuted and complicated fractures with significant morbidity. In this study, four femoral, four tibial, and three combined tibia and fibular comminuted diaphyseal fractures secondary to close-range, low-velocity gunshot wounds in 11 military personnel were treated with debridement followed by compression-distraction lengthening using a circular external fixator frame. Fracture union was obtained in all without significant major complications. Fracture consolidation occurred at a mean of 3.5 months. At follow-up of 46.8 months, there were no delayed unions, nonunions, or malunions. Minor complications included four pin-tract infections and knee flexion limitation in two femur fractures. Osteomyelitis and deep soft tissue infection were not observed. This technique provided an alternative to casting, open reduction internal fixation, or intermedullary fixation with an acceptable complication rate. PMID:15281409

  8. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  9. Multichannel Ultrasonic Data Communications in Air Using Range-Dependent Modulation Schemes.

    PubMed

    Jiang, Wentao; Wright, William M D

    2016-01-01

    There are several well-developed technologies of wireless communication such as radio frequency (RF) and infrared (IR), but ultrasonic methods can be a good alternative in some situations. A multichannel airborne ultrasonic data communication system is described in this paper. ON-OFF keying (OOK) and binary phase-shift keying (BPSK) modulation schemes were implemented successfully in the system by using a pair of commercially available capacitive ultrasonic transducers in a relatively low multipath indoor laboratory environment. Six channels were used from 50 to 110 kHz with a channel spacing of 12 kHz, allowing multiple 8-bit data packets to be transmitted simultaneously. The system data transfer rate achieved was up to 60 kb/s and ultrasonic wireless synchronization was implemented instead of using a hard-wired link. A model developed in the work could accurately predict ultrasonic signals through the air channels. Signal root mean square (rms) values and system bit error rates (BERs) were analyzed over different distances. Error-free decoding was achieved over ranges up to 5 m using a multichannel OOK modulation scheme. To obtain the highest data transfer rate and the longest error-free transmission distance, a range-dependent multichannel scheme with variable data rates, channel frequencies, and different modulation schemes, was also studied in the work. Within 2 m, error-free transmission was achieved using a five-channel OOK with a data rate of 63 kb/s. Between 2 and 5 m, six-channel OOK with 60 kb/s data transfer rate was error free. Beyond 5 m, the error-free transmission range could be extended up to 10 m using three-channel BPSK with a reduced data rate of 30 kb/s. The situation when two transducers were misaligned using three-channel OOK and BPSK schemes was also investigated in the work. It was concluded that error-free transmission could still be achieved with a lateral displacement of less than 7% and oblique angles of less than 7°, and three

  10. Optical Measurement of the Speed of Sound in Air Over the Temperature Range 300-650 K

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Using laser-induced thermal acoustics (LITA), the speed of sound in room air (1 atm) is measured over the temperature range 300-650 K. Since the LITA apparatus maintains a fixed sound wavelength as temperature is varied, this temperature range simultaneously corresponds to a sound frequency range of 10-15 MHz. The data are compared to a published model and typically agree within 0.1%-0.4% at each of 21 temperatures.

  11. Accuracy of Linear Depolarisation Ratios in Clean Air Ranges Measured with POLIS-6 at 355 and 532 NM

    NASA Astrophysics Data System (ADS)

    Freudenthaler, Volker; Seefeldner, Meinhard; Groß, Silke; Wandinger, Ulla

    2016-06-01

    Linear depolarization ratios in clean air ranges were measured with POLIS-6 at 355 and 532 nm. The mean deviation from the theoretical values, including the rotational Raman lines within the filter bandwidths, amounts to 0.0005 at 355 nm and to 0.0012 at 532 nm. The mean uncertainty of the measured linear depolarization ratio of clean air is about 0.0005 at 355 nm and about 0.0006 at 532 nm.

  12. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. PMID:26777422

  13. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  14. Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons.

    PubMed

    Saam, M; Eckhorn, R

    2000-07-01

    Classical receptive fields (cRF) increase in size from the retina to higher visual centers. The present work shows how temporal properties, in particular lateral spike velocity and spike input correlation, can affect cRF size and position without visual experience. We demonstrate how these properties are related to the spatial range of cortical synchronization if Hebbian learning dominates early development. For this, a largely reduced model of two successive levels of the visual cortex is developed (e.g., areas V1 and V2). It consists of retinotopic networks of spiking neurons with constant spike velocity in lateral connections. Feedforward connections between level 1 and 2 are additive and determine cRF size and shape, while lateral connections within level 1 are modulatory and affect the cortical range of synchronization. Input during development is mimicked by spike trains with spatially homogeneous properties and a confined temporal correlation width. During learning, the homogeneous lateral coupling shrinks to limited coupling structures defining synchronization and related association fields (AF). The size of level-1 synchronization fields determines the lateral coupling range of developing level-1-to-2 connections and, thus, the size of level-2 cRFs, even if the feedforward connections have distance-independent delays. AFs and cRFs increase with spike velocity in the lateral network and temporal correlation width of the input. Our results suggest that AF size of V1 and cRF size of V2 neurons are confined during learning by the temporal width of input correlations and the spike velocity in lateral connections without the need of visual experience. During learning from visual experience, a similar influence of AF size on the cRF size may be operative at successive levels of processing, including other parts of the visual system. PMID:10933233

  15. Stereomotion speed perception: contributions from both changing disparity and interocular velocity difference over a range of relative disparities

    NASA Technical Reports Server (NTRS)

    Brooks, Kevin R.; Stone, Leland S.

    2004-01-01

    The role of two binocular cues to motion in depth-changing disparity (CD) and interocular velocity difference (IOVD)- was investigated by measuring stereomotion speed discrimination and static disparity discrimination performance (stereoacuity). Speed discrimination thresholds were assessed both for random dot stereograms (RDS), and for their temporally uncorrelated equivalents, dynamic random dot stereograms (DRDS), at relative disparity pedestals of -19, 0, and +19 arcmin. While RDS stimuli contain both CD and IOVD cues, DRDS stimuli carry only CD information. On average, thresholds were a factor of 1.7 higher for DRDS than for RDS stimuli with no clear effect of relative disparity pedestal. Results were similar for approaching and receding targets. Variations in stimulus duration had no significant effect on thresholds, and there was no observed correlation between stimulus displacement and perceived speed, confirming that subjects responded to stimulus speed in each condition. Stereoacuity was equally good for our RDS and DRDS stimuli, showing that the difference in stereomotion speed discrimination performance for these stimuli was not due to any difference in the precision of the disparity cue. In addition, when we altered stereomotion stimulus trajectory by independently manipulating the speeds and directions of its monocular half-images, perceived stereomotion speed remained accurate. This finding is inconsistent with response strategies based on properties of either monocular half-image motion, or any ad hoc combination of the monocular speeds. We conclude that although subjects are able to discriminate stereomotion speed reliably on the basis of CD information alone, IOVD provides a precise additional cue to stereomotion speed perception.

  16. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  17. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  18. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  19. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  20. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude...

  1. Power supply with air core transformer and seperated power supplies for high dynamic range

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)

    2001-01-01

    A power supply for a quadrupole mass spectrometer which operates using an RF signal. The RF signal is controllable via a feedback loop. The feedback loop is from the output, through a comparator, and compared to a digital signal. An air core transformer is used to minimize the weight. The air core transformer is driven via two out of phase sawtooth signals which drive opposite ends of the transformer.

  2. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  3. Determination of positions and velocity of Riyadh SLR station using satellite laser ranging observations to Lageos1 and Lageos2 satellites

    NASA Astrophysics Data System (ADS)

    Alothman, A.; Schillak, S.

    2012-04-01

    Riyadh Satellite Laser Ranging (SLR) station (7832) has been established since 1995 and situated in the Arabian plate which is countering a north east motion. Laser ranging observations of about 20 global SLR stations to the LAGEOS-1/LAGEOS-2 for 13-year (1996-2010) have been used to determine station positions and velocity of Riyadh SLR station. The NASA Godard's GEODYN-II orbital software has been used to perform orbit determination of these two satellites. The computations were performed based on 114 monthly arcs of observations with total number of normal points of 33708 and 40168 for LAGEOS-1 and LAGEOS-2 respectively. The geocentric coordinates were computed and then transformed to the topocentric North-South, East-West, and Vertical components in the ITRF2008 reference frame. Effects of normal points for each arc and the empirical acceleration coefficients on estimated station coordinates have been investigated. In order to achieve a lower standard deviation (less than 1 cm) of estimated coordinates, the number of the normal points per SLR station had to be greater than 50. The range biases were 7.5mm and 7.2 mm with long term biases stability 2.5 mm and 2.0 mm for LAGEOS-1 and LAGEOS-2 satellites, respectively. RMS of fit was calculated for all stations and found to be 17.2 mm for the whole period. Time series of positions and velocities have been computed for Riyadh SLR station with stability of ±10.1 mm, ±9.3 mm, and ±9.0 mm for X, Y, and Z coordinates, respectively. The estimated velocity is 29.1 mm/year, 31.6 mm/year, and 1.9 mm/year in North-South, East-West and vertical directions, respectively, with a 3D velocity 42.9 mm/year. 3D deviation from the ITRF2008 was equal 4.5 mm. To recover tectonic motion affecting the station, further analysis of velocity estimates has shown general agreement of Riyadh SLR station in comparison with recent GPS estimates for the Arabian plate motion.

  4. Closure Report for Corrective Action Unit 486: Double Tracks RADSAFE Area Nellis Air Force Range, Nevada

    SciTech Connect

    D. H. Cox

    2000-12-01

    The Double Tracks Radiological Safety Area (DTRSA), Corrective Action Unit (CAU) 486, was clean-closed following the approved Corrective Action Decision Document closure alternative and in accordance with the Federal Facility Agreement and Consent Order. The CAU consists of a single Corrective Action Site, 71-23-001-71DT. The DTRSA was used during May 1963 to decontaminate vehicles, equipment, personnel and animals from the Double Tracks Test. Double Tracks was one of four storage-transportation tests. The Double Tracks test was conducted in Stonewall Flat, approximately 32 kilometers (20 miles) east of Goldfield, Nevada, on the Nellis Air Force Range. The Double Tracks Test used a single device containing plutonium and depleted uranium and was designed to investigate the characteristics of plutonium-bearing particulate material formed by the non-nuclear detonation of a nuclear weapon. All facilities associated with the DTRSA operation were removed. Based on available information, the areas of concern at the DTRSA consisted of a decon facility (vehicle decon pad and decon sump) in the southern half of the DTRSA, and a burial pit and former loading/unloading area located in the northern half of the DTRSA. Based on the results of the Corrective Action Investigation, radiological field screening detected elevated gamma and alpha readings on excavated plastic debris. Swipe surveys taken on the plastic debris detected removable alpha. No contaminants were detected above preliminary action levels in soil samples. The debris excavated during the corrective action investigation was not characterized. The clean-closure corrective action consisted of excavation, disposal, verification sampling, backfilling, and regrading. Field activities began on May 1, 2000, and ended on May 10, 2000. Soil that was associated with the radiologically contaminated man-made debris was placed into B-25 bins, moved to the designated waste management area where it was scanned, and hauled off

  5. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Suntz, R.; Bockhorn, H.

    2015-05-01

    The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

  6. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico south of Apalachee... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a)...

  7. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico south of Apalachee... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a)...

  8. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico south of Apalachee... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a)...

  9. Regulation of stroke pattern and swim speed across a range of current velocities: diving by common eiders wintering in polynyas in the Canadian Arctic.

    PubMed

    Heath, Joel P; Gilchrist, H Grant; Ydenberg, Ronald C

    2006-10-01

    Swim speed during diving has important energetic consequences. Not only do costs increase as drag rises non-linearly with increasing speed, but speed also affects travel time to foraging patches and therefore time and energy budgets over the entire dive cycle. However, diving behaviour has rarely been considered in relation to current velocity. Strong tidal currents around the Belcher Islands, Nunavut, Canada, produce polynyas, persistent areas of open water in the sea ice which are important habitats for wildlife wintering in Hudson Bay. Some populations of common eiders Somateria mollissima sedentaria remain in polynyas through the winter where they dive to forage on benthic invertebrates. Strong tidal currents keep polynyas from freezing, but current velocity can exceed 1.5 m s(-1) and could influence time and energy costs of diving and foraging. Polynyas therefore provide naturally occurring flume tanks allowing investigation of diving strategies of free ranging birds in relation to current velocity. We used a custom designed sub-sea ice camera to non-invasively investigate over 150 dives to a depth of 11.3 m by a population of approximately 100 common eiders at Ulutsatuq polynya during February and March of 2002 and 2003. Current speed during recorded dives ranged from 0 to 1 m s(-1). As currents increased, vertical descent speed of eiders decreased, while descent duration and the number of wing strokes and foot strokes during descent to the bottom increased. However, nearly simultaneous strokes of wings and feet, and swim speed relative to the moving water, were maintained within a narrow range (2.28+/-0.23 Hz; 1.25+/-0.14 m s(-1), respectively). This close regulation of swim speed over a range in current speed of 1.0 m s(-1) might correspond to efficient muscle contraction rates, and probably reduces work rates by avoiding rapidly increasing drag at greater speeds; however, it also increases travel time to benthic foraging patches. Despite regulation of

  10. An extended two-target differential game model for medium-range air combat game analysis

    NASA Technical Reports Server (NTRS)

    Shinar, J.

    1985-01-01

    The first phase of an investigation of a two-target game, representing an air combat with boresight limited all-aspect guided missiles is summarized. The results, obtained by using a line of sight coordinate system, are compared to a similar recently published work. The comparison indicates that improved insight, gained by using line of sight coordinates, allows to discover important new features of the game solution.

  11. Effects of long range transboundary pollutants on air quality in Japan - numerical simulation of a yellow sand event

    SciTech Connect

    Ueda, Hiromasa; Kang, Seuk Jea

    1996-12-31

    Air quality in the East Asia may worsen drastically as a consequence of accelerated development of fossil fuel systems and highest economic and population growth rates of the world. The expansion of these energy systems combined with a major fuel shift to indigenous coal, will result in a significant acid deposition and photochemical oxidant pollution in this region. Frequently, during clean spring days large scale wind systems develop in order to transport pollutants from the East Asian mainland towards the Pacific Ocean. Therefore, in order to evaluate the air quality of the western Pacific Ocean and Japan, the effects of emissions of the adjacent continent must be taken into consideration. The present paper reports on a series of numerical simulations for clear spring time episodes using an Eulerian transport/chemistry/deposition model to obtain the concentration changes of air pollutants over this area. The simulation was done from 9:00 JST of 1 April to midnight of 3 April 1993. On this day a yellow sand event showing good evidence of long range transport from the continent toward the Western Pacific Ocean occurred. At first, the simulation results show a fair agreement with the observed values. Secondly, the numerical simulation showed the formation of a high air pollution belt in East Asia, connecting the eastern area of China, the southern area of Korea and the western area of Japan clearly. In the case of NO{sub x}, the formation of a air pollution belt is weak, but well displayed for sulfate, nitrate and the ozone. Specially, in the region covered by the air pollution belt (Western Pacific Ocean, Japan Sea and Western Japan) emissions are small, but the concentration of ozone, sulfate and nitrate are high. Ozone concentration in Japan, due to long range transport from the continent is already near the environmental standard value of 60 ppb. In this area tropospheric ozone and acid deposition were suggested to be a serious problem in the future.

  12. Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: The Seven Northeastern Cities (SNEC) study

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Wen; Vivian, Elaina; Mohammed, Kahee A.; Jakhar, Shailja; Vaughn, Michael; Huang, Jin; Zelicoff, Alan; Xaverius, Pamela; Bai, Zhipeng; Lin, Shao; Hao, Yuan-Tao; Paul, Gunther; Morawska, Lidia; Wang, Si-Quan; Qian, Zhengmin; Dong, Guang-Hui

    2016-08-01

    Epidemiological studies have reported inconsistent and inconclusive associations between long-term exposure to ambient air pollution and lung function in children from Europe and America, where air pollution levels were typically low. The aim of the present study is to examine the relationship between air pollutants and lung function in children selected from heavily industrialized and polluted cities in northeastern China. During 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities. Portable electronic spirometers were used to measure lung function. Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts. Two-staged regression models were used in the data analysis, controlling for covariates. Overall, for all subjects, the increased odds of lung function impairment associated with exposure to air pollutants, ranged from 5% (adjusted odds ratio [aOR] = 1.05; 95% confidence interval [CI] = 1.01, 1.10) for FVC < 85% predicted per 46.3 μg/m3 for O3 to 81% (aOR = 1.81; 95%CI = 1.44, 2.28) for FEV1 < 85% predicted per 30.6 μg/m3 for PM10. The linear regression models consistently showed a negative relationship between all air pollutants and lung function measures across subjects. There were significant interaction terms indicating gender differences for lung function impairment and pulmonary function from exposure to some pollutants (P < 0.10). In conclusion, long term exposure to high concentrations of ambient air pollution is associated with decreased pulmonary function and lung function impairment, and females appear to be more susceptible than males.

  13. Air oxidation of Zircaloy-4 in the 600-1000 °C temperature range: Modeling for ASTEC code application

    NASA Astrophysics Data System (ADS)

    Coindreau, O.; Duriez, C.; Ederli, S.

    2010-10-01

    Progress in the treatment of air oxidation of zirconium in severe accident (SA) codes are required for a reliable analysis of severe accidents involving air ingress. Air oxidation of zirconium can actually lead to accelerated core degradation and increased fission product release, especially for the highly-radiotoxic ruthenium. This paper presents a model to simulate air oxidation kinetics of Zircaloy-4 in the 600-1000 °C temperature range. It is based on available experimental data, including separate-effect experiments performed at IRSN and at Forschungszentrum Karlsruhe. The kinetic transition, named "breakaway", from a diffusion-controlled regime to an accelerated oxidation is taken into account in the modeling via a critical mass gain parameter. The progressive propagation of the locally initiated breakaway is modeled by a linear increase in oxidation rate with time. Finally, when breakaway propagation is completed, the oxidation rate stabilizes and the kinetics is modeled by a linear law. This new modeling is integrated in the severe accident code ASTEC, jointly developed by IRSN and GRS. Model predictions and experimental data from thermogravimetric results show good agreement for different air flow rates and for slow temperature transient conditions.

  14. Air-coupled seismic waves at long range from Apollo launchings.

    NASA Technical Reports Server (NTRS)

    Donn, W. L.; Dalins, I.; Mccarty, V.; Ewing, M.; Kaschak , G.

    1971-01-01

    Microphones and seismographs were co-located in arrays on Skidaway Island, Georgia, for the launchings of Apollo 13 and 14, 374 km to the south. Simultaneous acoustic and seismic waves were recorded for both events at times appropriate to the arrival of the acoustic waves from the source. The acoustic signal is relatively broadband compared to the nearly monochromatic seismic signal; the seismic signal is much more continuous than the more pulse-like acoustic signal; ground loading from the pressure variations of the acoustic waves is shown to be too small to account for the seismic waves; and the measured phase velocities of both acoustic and seismic waves across the local instrument arrays differ by less than 6 per cent and possibly 3 per cent if experimental error is included. It is concluded that the seismic waves are generated by resonant coupling to the acoustic waves along some 10 km of path on Skidaway Island.

  15. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    NASA Astrophysics Data System (ADS)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  16. High resolution kilometric range optical telemetry in air by radio frequency phase measurement.

    PubMed

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km. PMID:27475593

  17. Complete-velocity-range description of negative-ion conversion of neutral atoms on an alkali-metal-halide surface under grazing geometry

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Zhou, Wang; Zhang, Meixiao; Zhou, Lihua; Ma, Yulong; Wang, Guangyi; Wu, Yong; Li, Bowen; Chen, Ximeng

    2016-06-01

    We propose a simple theoretical approach to consider negative-ion conversion of neutral atoms grazing on alkali-metal-halide crystal surfaces over the complete velocity range. The conversion process is viewed as a series of successive binary collisions between the projectile and the negatively charged sites on the surface along their trajectories due to localization of valence-band electrons at the anionic sites of the crystal. Conversion from F0 to F- via grazing scattering in LiF(100) and KI(100) is demonstrated with this model, which incorporates the key factors of image interaction and Mott-Littleton polarization interaction for electron capture. It also incorporates the decrease in the electron affinity due to Coulomb barrier tunneling of large-velocity negative ions to the vacuum level near surface anion sites. The pronounced differences in the efficiency of F- formation at LiF(100) and KI(100) surfaces are well explained by the proposed model. The relative efficiency and related saturation of the negative-ion formation for LiF and KI crystals compare well with experimental results.

  18. 3D Position and Velocity Vector Computations of Objects Jettisoned from the International Space Station Using Close-Range Photogrammetry Approach

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri; Oshle, Edward; Adamo, Daniel

    2008-01-01

    Measurement of the jettisoned object departure trajectory and velocity vector in the International Space Station (ISS) reference frame is vitally important for prompt evaluation of the object s imminent orbit. We report on the first successful application of photogrammetric analysis of the ISS imagery for the prompt computation of the jettisoned object s position and velocity vectors. As post-EVA analyses examples, we present the Floating Potential Probe (FPP) and the Russian "Orlan" Space Suit jettisons, as well as the near-real-time (provided in several hours after the separation) computations of the Video Stanchion Support Assembly Flight Support Assembly (VSSA-FSA) and Early Ammonia Servicer (EAS) jettisons during the US astronauts space-walk. Standard close-range photogrammetry analysis was used during this EVA to analyze two on-board camera image sequences down-linked from the ISS. In this approach the ISS camera orientations were computed from known coordinates of several reference points on the ISS hardware. Then the position of the jettisoned object for each time-frame was computed from its image in each frame of the video-clips. In another, "quick-look" approach used in near-real time, orientation of the cameras was computed from their position (from the ISS CAD model) and operational data (pan and tilt) then location of the jettisoned object was calculated only for several frames of the two synchronized movies. Keywords: Photogrammetry, International Space Station, jettisons, image analysis.

  19. The Potential Temporal Variations in Crustal Seismic Velocity Correlated with the 2010 Jiasian Earthquake and Non-volcanic Tremors in Southern Central Range of Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, S.; Hung, S.

    2013-12-01

    Different from those found in major plate boundary zones around the Pacific Rim, NVT and low-frequency earthquakes (LFEs) have been discovered in the lower crust beneath the southern segment of the CR, which comprises part of the fold-and-thrust orogenic belt in Taiwan as a product the collision between the Eurasian plate and Luzon arc. The Mw 6.0 Jiasian earthquake occurred at a focal depth of 23 km to the southwest of the identified LFEs on March 4, 2010 and ruptured upward toward the northwest, appearing accompanied by enhanced NVT activity. To investigate potential changes and causes in crustal strains and rock properties associated with the earthquake rupture and energy level of NVT after the Jiasian earthquake, we construct empirical Green's functions (EGFs) from auto- and cross-correlation functions of continuous ambient noise between available station pairs near the epicenter from the short-period Central Weather Bureau Seismic Network (CWBSN) and the Broadband Array in Taiwan for Seismology (BATS) during 2009-2011. The temporal variations in seismic velocity perturbations are estimated by measuring the relative time delay of late-arriving coda waves between short-term and long-term stacked EGFs. The resulting EGFs at 0.1-0.9 Hz show the statistically significant coseismic velocity reduction only at station pairs with the interstation paths traversing through the region exposed to the Jiasian aftershock zone, where the GPS and peak-ground acceleration (PGA) observations and finite-fault rupture model all indicate large slip and ground shaking during the main shock rupture propagation. The measured relative velocity variation is slightly temporally correlated with the daily energy calculated by squares of the velocity amplitudes in 2-7 Hz, the frequency band characteristic of main NVT energy from previously located tremor groups in southern Central Range and northeastern Taiwan. Compared with strain perturbations induced from coseismic slip distribution and

  20. Microcracks induced in granite spheres by projectile impact at velocities ranging from 2.3 to 3.6 km/s

    NASA Astrophysics Data System (ADS)

    Kawakami, S.; Kanaori, Y.; Fujiwara, A.

    1990-01-01

    Projectiles were impacted against granite spheres having a diameter of 15 cm at velocities ranging from 2.3 to 3.6 km/s. One target was fractured into a large core fragment and many shell-like fragments. Major cracks which divide the core fragment and many small shell-like fragments were formed along the caustic surface of the reflected shock waves that originated on the target surface. The shape of the caustic surfaces formed in spherical targets is called a cardioid. The other targets suffered impact cratering. They exhibit planar craters with no consicuous raised rim or depression. Microcrack distributions and microscopic effects of impact loading were observed on these targets. The site of extension fractures corresponds to grain boundaries, cleavage planes of biotite and feldspars, and along pre-existing microcracks. Kink bands of biotite were formed at the restricted regions beneath the center of the craters.

  1. A horizontal range versus depth solution of sound source position under general sound velocity conditions using the Lloyd's mirror interference pattern

    NASA Astrophysics Data System (ADS)

    Hudson, R. F.

    1983-09-01

    An algorithm is developed which enables the computation of horizontal range and/or depth from a submerged sound source, using ray acoustics and the Lloyd's mirror interference effect. The solution is based on Snell's law and involves integrating multipath sound rays to find the difference in length between the direct and surface reflected sound paths from the source to the receiver. This difference in path length is directly related to the observed Lloyd's mirror interference pattern. No assumptions as to the mathematical characteristics of the sound velocity profile (SVP) are made nor are far field approximations used. The solution is as accurate as the SVP data input to the problem. A general computer flow chart and basic language program are provided to allow local commands the capability of premission planning based on specific operating area environmental information.

  2. Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 °C

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Hyland, M.; James, B.

    2004-12-01

    During the deposition of Cr3C2-NiCr coatings, compositional degradation occurs, primarily through the dissolution of the carbide phase into the matrix. Exposure at an elevated temperature leads to transformations in the compositional distribution and microstructure. While these have been investigated in short-term trials, no systematic investigations of the long-term microstructural development have been presented for high-velocity sprayed coatings. In this work, high-velocity air fuel (HVAF) and high-velocity oxygen fuel (HVOF) coatings were treated at 900 °C for up to 60 days. Rapid refinement of the supersaturated matrix phase occurred, with the degree of matrix phase alloying continuing to decrease over the following 20 to 40 days. Carbide nucleation in the HVAF coatings occurred preferentially on the retained carbide grains, while that in the HVOF coatings developed in the regions of greatest carbide dissolution. This difference resulted in a variation in carbide morphologies. Preferential horizontal growth was evident in both coatings over the first 20 to 30 days of exposure, beyond which spheroidization of the microstructure occurred. After 30 days, the carbide morphology of both coatings was comparable, tending toward an expansive structure of coalesced carbide grains. The development of the carbide phase played a significant role in the microhardness variation of these coatings with time.

  3. Detection of regional air pollution episodes utilizing satellite data in the visual range

    NASA Technical Reports Server (NTRS)

    Bowley, C. J.; Burke, H. K.; Barnes, J. C.

    1981-01-01

    A comparative analysis of satellite-observed haze patterns and ground-based aerosol measurements is carried out for July 20-23, 1978. During this period, a significant regional air pollution episode existed across the northeastern United States, accompanied by widespread haze, reduced surface visibility, and elevated sulfate levels measured by the Sulfate Regional Experiment (SURE) network. The results show that the satellite-observed haze patterns correlate closely with the area of reported low surface visibility (less than 4 mi) and high sulfate levels. Quantitative information on total aerosol loading derived from the satellite-digitized data, using an atmospheric radiative transfer model, agrees well with the results obtained from the ground-based measurements.

  4. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  5. Air-suspended TiO2-based HCG reflectors for visible spectral range

    NASA Astrophysics Data System (ADS)

    Hashemi, Ehsan; Bengtsson, Jörgen; Gustavsson, Johan; Carlsson, Stefan; Rossbach, Georg; Haglund, Åsa

    2015-02-01

    For GaN-based microcavity light emitters, such as vertical-cavity surface-emitting lasers (VCSELs) and resonant cavity light emitting diodes (RCLEDs) in the blue-green wavelength regime, achieving a high reflectivity wide bandwidth feedback mirror is truly challenging. The material properties of the III-nitride alloys are hardly compatible with the conventional distributed Bragg reflectors (DBRs) and the newly proposed high-contrast gratings (HCGs). Alternatively, at least for the top outcoupling mirror, dielectric materials offer more suitable material combinations not only for the DBRs but also for the HCGs. HCGs may offer advantages such as transverse mode and polarization control, a broader reflectivity spectrum than epitaxially grown DBRs, and the possibility to set the resonance wavelength after epitaxial growth by the grating parameters. In this work we have realized an air-suspended TiO2 grating with the help of a SiO2 sacrificial layer. The deposition processes for the dielectric layers were fine-tuned to minimize the residual stress. To achieve an accurate control of the grating duty cycle, a newly developed lift-off process, using hydrogen silesquioxan (HSQ) and sacrificial polymethyl-methacrylate (PMMA) resists, was applied to deposit the hard mask, providing sub-10 nm resolution. The finally obtained TiO2/air HCGs were characterized in a micro-reflectance measurement setup. A peak power reflectivity in excess of 95% was achieved for TM polarization at the center wavelength of 435 nm, with a reflectivity stopband width of about 80 nm (FWHM). The measured HCG reflectance spectra were compared to corresponding simulations obtained from rigorous coupled-wave analysis and very good agreement was found.

  6. ASSESSMENT OF CROP LOSS FROM AIR POLLUTANTS: METEOROLOGY-ATMOSPHERIC CHEMISTRY AND LONG RANGE TRANSPORT

    EPA Science Inventory

    Ozone is a secondary pollutant with many distinctive characteristics in respect to its sources and modes of formation within regions of the troposphere and in the stratosphere. The scales of intermediate and longer range transport influencing the atmospheric distribution of O3 wi...

  7. Corrective Action Decision Document for Corrective Action Unit 486: Double Tracks RADSAFE Area, Nellis Air Force Range, Nevada

    SciTech Connect

    ITLV

    1999-07-12

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 486, Double Tracks Radiological Safety (RADSAFE) Area (DTRSA) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996 that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the Nevada Division of Environmental Protection (NDEP); and the U.S Department of Defense (FFACO, 1996). The CADD provides or references the specific information necessary to recommend a preferred corrective action for the single Corrective Action Site (CAS), 71-23-001-71DT, within CAU 486. Corrective Action Unit 486 is located on the Nellis Air Force Range 71 North, west of the Tonopah Test Range (TTR), Nevada. The TTR, located in the Nellis Air Force Range, is approximately 140 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). The DTRSA is located on the west side of the Cactus Range approximately 5 mi southwest of the Cactus Spring gate at the intersection of the Cactus Spring Road and the Double Tracks Control Point Road (Figure 1-2).

  8. a Study of Liquid - of Atomization Droplet Size Velocity and Temperature Distribution via Information Theory Spray Interaction with Ambient Air Motion.

    NASA Astrophysics Data System (ADS)

    Li, Xianguo

    Linear temporal instability analysis of a moving thin viscous liquid sheet of uniform thickness in an inviscid gas medium shows that surface tension always opposes, while surrounding gas and relative velocity between the sheet and gas favour the onset and development of instability. For gas Weber number smaller than the density ratio of gas to liquid, liquid viscosity enhances instability; If gas Weber number is slightly larger, aerodynamic and viscosity -induced instabilities interact with each other, displaying complicated effects of viscosity via Ohnesorge number; For much larger values of gas Weber numbers, aerodynamic instability dominates, liquid viscosity reduces disturbance growth rate and increases the dominant wavelength. Droplet probability distribution function (PDF) in sprays is formulated through information theory without resorting to the details of atomization processes. The derived analytical droplet size PDF is Nukiyama-Tanasawa type if conservation of mass is considered alone. If conservation of mass, momentum and energy is all taken into account, the joint droplet size and velocity PDF depends on Weber number, and compares favourably with measurements. Droplet velocity PDF is truncated Gaussian for any specific droplet size. Mean velocity approaches a constant value and velocity variance decreases as droplet size increases. Mean droplet diameters calculated agree well with observations. The computation indicates that atomization efficiency is very low, usually less than 1%. Droplet size, velocity and temperature PDF in sprays under combusting environment has also been derived. Effects of combustion on PDF occur mainly through the heat transferred into liquid sheet prior to its breakup. Experimental studies identify three modes of spray behaviours due to its interaction with various annular air flows, and show that bluff-body type of combustor has ability and easement to control aerodynamically spray angle, shape and droplet trajectories. It is

  9. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  10. Launch vehicle effluent measurements during the May 12, 1977, Titan 3 launch at Air Force Eastern Test Range

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Bendura, R. J.; Woods, D. C.

    1979-01-01

    Airborne effluent measurements and cloud physical behavior for the May 21, 1977, Titan 3 launch from the Air Force Eastern Test Range, Fla. are presented. The monitoring program included airborne effluent measurements in situ in the launch cloud, visible and infrared photography of cloud growth and physical behavior, and limited surface collection of rain samples. Airborne effluent measurements included concentrations of HCl, NO, NOx, and aerosols as a function of time in the exhaust cloud. For the first time in situ particulate mass concentration and aerosol number density were measured as a function of time and size in the size range of 0.05 to 25 micro meters diameter. Measurement results were similar to those of earlier launch monitorings. Maximum HCl and NOx concentrations ranged from 10 ppm and 500 ppb, respectively, several minutes after launch to about 1 ppm and 100 ppb at 45 minutes after launch.

  11. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    SciTech Connect

    Becker, N.M.; Vanta, E.B.

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  12. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.

    PubMed

    Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton

    2014-06-01

    A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 to 4.8m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. PMID:24656871

  13. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    SciTech Connect

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  14. Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

    SciTech Connect

    Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

    2010-05-18

    During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  15. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188-258 GHz range.

    PubMed

    Serov, E A; Koshelev, M A; Odintsova, T A; Parshin, V V; Tretyakov, M Yu

    2014-12-21

    New experimental results regarding "warm" water dimer spectra under equilibrium conditions are presented. An almost equidistant series of six peaks corresponding to the merged individual lines of the bound dimer with consecutive rotational quantum numbers is studied in the 188-258 GHz frequency range in water vapour over a broad range of pressures and temperatures relevant to the Earth's atmosphere. The series is a continuation of the sequence detected earlier at lower frequencies at room temperature. The signal-to-noise ratio of the observed spectra allowed investigating their evolution, when water vapour was diluted by atmospheric air with partial pressure from 0 up to 540 Torr. Analysis of the obtained spectra permitted determining the dimerization constant as well as the hydrogen bond dissociation energy and the dimer spectral parameters, including the average coefficient of collisional broadening of individual lines by water vapour and air. The manifestation of metastable states of the dimer in the observed spectra is assessed. The contribution of three possible pair states of water molecules to the second virial coefficient is evaluated over the broad range of temperatures. The work supports the significant role of the water dimer in atmospheric absorption and related processes. PMID:25363156

  16. Impacts of the Denver Cyclone on Regional Air Quality and Aerosol Formation in the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014

    NASA Astrophysics Data System (ADS)

    Vu, K. K. T.; Dingle, J. H.; Bahreini, R.; Apel, E. C.; Campos, T. L.; Cantrell, C. A.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Montzka, D. D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    The northern Colorado Front Range continues to face challenges related to air quality, specifically ozone, and has been classified as a marginal non-attainment area by the U.S EPA. The highly complex topography and meteorology in the Colorado Front Range provide flow patterns that are driven by mountain-valley circulation, resulting in formation of the Denver Cyclone, strongly influencing concentrations of ozone and aerosol particles. However, the impact of the Denver Cyclone on aerosol formation has not been previously explored. In this study, airborne measurements were made during July 16 - August 18, 2014 aboard the NSF C-130 aircraft during the 2014 Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) project. We carried out fast time resolved measurements of ambient aerosol chemical constituents (organics, sulfate, nitrate, ammonium, and chloride) of non-refractory sub-micrometer particles using an Aerodyne compact time-of-flight aerosol mass spectrometer (mAMS). Pronounced increased mass concentrations of organics, nitrate, and sulfate in two distinct regions in the Front Range were observed during the cyclone episodes, in contrast to the non-cyclonic days. Organics dominated the mass concentrations on all days evaluated. The average mass concentration of organics during a cyclone event was 5.79 ± 1.48 μg·m-3 and were lower during the two non-cyclonic measurement days, 3.09 ± 1.18 μg·m-3. Average sulfate mass concentrations were 1.25 ± 0.41 μg·m-3 vs. 0.58 ± 0.20 μg·m-3 followed by nitrate with an average of 1.66 ± 0.92 μg·m-3 vs. 0.32 ± 0.41 μg·m-3 on cyclone vs. non-cyclonic days, respectively. Correlations between trace gas markers (carbon monoxide, nitrogen oxides, ozone, ammonia, and ethane), meteorological variables (relative humidity, temperature), and the extent of aerosol aging are evaluated and used to assess the Front Range aerosol formation and air quality impacts in the region during these events.

  17. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and

  18. Characterizing the range of children's air pollutant exposure during school bus commutes.

    PubMed

    Sabin, Lisa D; Behrentz, Eduardo; Winer, Arthur M; Jeong, Seong; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A

    2005-09-01

    Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with

  19. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    SciTech Connect

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, “National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities,” (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  20. Air sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters: Prospects for a long-term global time series

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Frew, Nelson M.; McCue, Scott J.

    2007-06-01

    Estimation of global and regional air-sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air-sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325-331.] for estimating the air-sea gas transfer velocity ( k) from the mean square slope of short wind waves (40-100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The

  1. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  2. Reactive nitrogen in Rocky Mountain National Park during the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ)

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Benedict, K. B.; Evanoski-Cole, A. R.; Zhou, Y.; Sullivan, A.; Day, D.; Sive, B. C.; Zondlo, M. A.; Schichtel, B. A.; Vimont, J.; Collett, J. L., Jr.

    2014-12-01

    The Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) took place in July-August 2014. This collaborative study was aimed at characterizing those processes which control air quality along Colorado's Front Range. Although the study was largely focused on ozone, an additional goal of the study included characterizing contributions from Front Range sources and long-range transport to total reactive nitrogen in Rocky Mountain National Park (ROMO). Import of reactive nitrogen into ROMO and other pristine, high elevation areas has the potential to negatively impact terrestrial and aquatic ecosystems. We present measurements of reactive nitrogen species measured within ROMO during FRAPPÉ, and compare these data to measurements made in the surrounding areas. At our monitoring site in ROMO, co-located with IMPROVE and CASTNet monitoring, measurements of NO, NO2, NOx, NOy, NH3, and total reactive nitrogen (TNx) were made at high time resolution. Additional measurements of NH3, HNO3 and PM2.5 ions were made at hourly resolution using a MARGA and also at 24-hour time resolution using URG denuder-filter pack sampling. Precipitation samples also were collected to quantify wet deposition of ammonium, nitrate, and organic nitrogen. Finally, measurements of organic gases were made using online gas chromatography and proton transfer reaction-mass spectrometry. Preliminary results for ammonia show both a diel pattern, with concentrations increasing each morning, and a strong dependence on wind direction, implicating the importance of transport. Higher concentrations of NOx and NOy also were observed in the daytime, but in general these patterns differed from that of ammonia. Several upslope events were observed during the measurement period during which NOx, NH3, 2-propylnitrate, 2-butylnitrate, ethane, butane, and pentane were observed to increase in concentration along with ozone.

  3. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  4. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  5. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  6. Age of the Dawson Arkose, southwestern Air Force Academy, Colorado, and implications for the uplift history of the Front Range

    SciTech Connect

    Kluth, C.F.; Nelson, S.N. )

    1988-01-01

    An angular unconformity within the synorogenic Dawson Arkose (Late Cretaceous-Eocene) is preserved and exposed in areas south of Denver, Colorado, along the eastern side of the Front Range uplift. In the southwestern part of the Air Force Academy, the basal Dawson is concordant with the underlying Laramie and Fox Hills formations and dips 72-84{degree} eastward. Above an intraformational angular unconformity, younger units of the Dawson dip 24{degree}-46{degree} eastward. Smaller angular unconformities (10{degree}{plus minus}), and beds with gradually decreasing dip occur higher in the Dawson section. Rocks above the largest unconformity contain a rich palynomorph assemblage of Late Maestrichtain age. These data indicate that approximately 30{degree}-40{degree}, and possibly as much as approximately 70{degree}, of tilting of the underlying rocks occurred during the Late Maestrichtian (66-70 Ma). It is also possible that approximately 30{degree}-40{degree} of the tilting of the Late Cretaceous rocks occurred between latest Maestrichtian and Eocene (approximately 45 Ma). These results suggest that the transition from a tectonically quiet marine environment to a non-marine, tectonically active condition took place rapidly, probably within a few million years. When combined with published data, the authors study indicates that the Front Range has different tectonic histories on its eastern and its western side, and that the deformation is diachronous along the strike of the eastern side of the Front Range.

  7. Impact of Emissions and Long-Range Transport on Multi-Decadal Aerosol Trends: Implications for Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2012-01-01

    We present a global model analysis of the impact of long-range transport and anthropogenic emissions on the aerosol trends in the major pollution regions in the northern hemisphere and in the Arctic in the past three decades. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze the multi-spatial and temporal scale data, including observations from Terra, Aqua, and CALIPSO satellites and from the long-term surface monitoring stations. We will analyze the source attribution (SA) and source-receptor (SR) relationships in North America, Europe, East Asia, South Asia, and the Arctic at the surface and free troposphere and establish the quantitative linkages between emissions from different source regions. We will discuss the implications for regional air quality and climate change.

  8. Corrective Action Investigation Plan for Corrective Action Unit 486: Double Tracks RADSAFE Area Nellis Air Force Range, Nevada

    SciTech Connect

    IT Las Vegas

    1998-10-15

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 486, the Double Tracks Radiological Safety (RADSAFE) Area (DTRSA) which is located on the Nellis Air Force Range 71North (N), west of the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range Complex, is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 486 is comprised of CAS 71-23-001-71DT consisting of two areas of concern referred to as the vehicle decontamination area and the animal burial pit. The DTRSA is located on the west side of the Cactus Range approximately 8 km (5 mi) southwest of the Cactus Spring gate at the intersection of the Cactus Spring Road and the Double Tracks Control Point Road (Figure 1-2). The DTRSA was used during May 1963 to decontaminate vehicles, equipment, personnel, and animals from the Double Tracks test. The DTRSA is one of three areas identified as a potential location for the disposal of radioactively contaminated

  9. Dust particle velocity measurement

    NASA Technical Reports Server (NTRS)

    Thielman, L. O.

    1976-01-01

    A laser Doppler velocimeter was used to measure the velocity distributions for particles entering a vacuum chamber from the atmosphere through calibrated leaks. The relative number of particles per velocity interval was obtained for particulates of three size distributions and two densities passing through six different leak geometries. The velocity range 15 to 320 meters per second was investigated. Peak particle velocities were found to occur in the 15 to 150 meters per second range depending upon type of particle and leak geometry. A small fraction of the particles were found to have velocities in the 150 to 320 meters per second range.

  10. The long-range transport of Asian air pollution: Its variability and impacts on western North America

    NASA Astrophysics Data System (ADS)

    Reidmiller, David R.

    This dissertation uses measurements from the Mt. Bachelor Observatory (MBO: 43.98° N, 121.69° W; 2.7 km above sea level) in the Cascade Range of central Oregon and elsewhere to investigate the impacts and causes of variability in the Asian long-range transport of air pollution (ALRT) on multiple spatiotemporal scales. Carbon monoxide (CO) observations from MBO, satellite retrievals, a global chemical transport model (CTM) and a backtrajectory index revealed that significant declines (2-21%) in springtime CO at MBO and elsewhere from spring 2005 to spring 2006 were attributable to: (a) strong wildfires in SE Asia during winter 2004 through spring 2005, and (b) the transport pattern in March and April 2006 which limited the inflow of East Asian industrial pollution to the lower free troposphere (FT) over western North America (NA). Ozone (O3) results from 16 CTMs were compared to Clean Air Status and Trends Network (CASTNet) observations in the U.S. for 2001. While the impact of foreign emissions on surface O3 in the U.S. is not negligible (decline of 0.3-0.9 ppbv for a 20% reduction in anthropogenic emissions abroad) - and is of increasing concern given the recent growth in Asian emissions - the effect of NA emissions reductions (decline of 5-6 ppbv for a 20% reduction in anthropogenic O3 precursors) was found to be substantially greater. Chairlift sounding data from MBO revealed that a boundary layer influence at the summit begins ˜10:00 PDT during spring. Using these data, I isolated FT nitrogen oxide (NOX = NO + NO2) observations from 1 autumn and 3 spring campaigns. Significant interannual variability was detected and attributed to changes in FT synoptic conditions. Substantially lower NO X levels were observed during spring 2009 when there were: (1) higher geopotential heights (Z) and warmer temperatures ( T) over the Gulf of Alaska and (2) much weaker winds throughout the North Pacific. A characterization of the top 20 FT NOX events revealed that half (n=10

  11. Walk-through survey report: HVLV (high velocity low volume) control technology for aircraft bonded wing and radome maintenance at Air Force Logistics Command, McClellan Air Force Base, Sacramento, California

    SciTech Connect

    Hollett, B.A.

    1983-08-01

    A walk through survey was conducted at the Sacramento Air Logistics Center, McClellan Air Force Base, California, on June 13, 1983, to evaluate the use of High Velocity Low Volume (HVLV) technology in the aircraft-maintenance industry. The HVLV system consisted of 65 ceiling drops in the bonded honeycomb shop where grinding and sanding operations created glass fiber and resin dusts. Preemployment and periodic physical examinations were required. Workers were required to wear disposable coveralls, and disposable dust masks were available. Workers walked through decontamination air jet showers before leaving the area to change clothes. Environmental monitoring revealed no significant dust exposures when the HVLV system was in use. Performance of the exhaust system on the eight-inch-diameter nose cone sanding operation was good, but the three-inch-diameter tools were too large and the shrouds too cumbersome for use on many hand-finishing tasks. The author concludes that the HVLV system is partially successful but requires additional shroud design. Further development of small tool shrouds is recommended.

  12. Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach

    NASA Astrophysics Data System (ADS)

    Bordeleau, Geneviève; Savard, Martine M.; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia

    2008-06-01

    Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NO x. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO 3- produced a trend of high δ18O-low δ15N to low δ18O-high δ15N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.

  13. Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach.

    PubMed

    Bordeleau, Geneviève; Savard, Martine M; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia

    2008-06-01

    Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX. PMID:18499297

  14. New particle formation under the influence of the long-range transport of air pollutants in East Asia

    NASA Astrophysics Data System (ADS)

    Chandra, Indra; Kim, Seyoung; Seto, Takafumi; Otani, Yoshio; Takami, Akinori; Yoshino, Ayako; Irei, Satoshi; Park, Kihong; Takamura, Tamio; Kaneyasu, Naoki; Hatakeyama, Shiro

    2016-09-01

    Field observations to investigate the correlation between New Particle Formation (NPF) and the long-range transport of air pollutants in the East Asia region were carried out on a rural Island of Japan in the East-China Sea (Fukue Island, 32.8°N, 128.7°E) over three periods (February 23 to March 7, 2013; November 7 to 20, 2013; and November 2 to 24, 2014). Frequent NPF events were identified (16 events in 50 days), typically in association with sudden increases in particle number concentrations and the successive growth of particles to mobility diameters of several tens of nanometers. The NPF events were classified into two types (A and B) according to the initially detected particle sizes (onset diameters). Type-A consisted of strong NPF events with onset diameters as small as 5 nm. Type-B consisted of NPF events whose onset (<10 nm) was not clearly identifiable. The correlations of SO2 concentrations, solar radiation, PM2.5 concentrations, and chemical composition were analyzed based on the types of NPF events.

  15. Measurement of Gas and Liquid Velocities in an Air-Water Two-Phase Flow using Cross-Correlation of Signals from a Double Senor Hot-Film Probe

    SciTech Connect

    B. Gurau; P. Vassalo; K. Keller

    2002-02-19

    Local gas and liquid velocities are measured by cross-correlating signals from a double sensor hot-film anemometer probe in pure water flow and air water two-phase flow. The gas phase velocity measured in two-phase flow agrees with velocity data obtained using high-speed video to within +/-5%. A turbulent structure, present in the liquid phase, allows a correlation to be taken, which is consistent with the expected velocity profiles in pure liquid flow. This turbulent structure is also present in the liquid phase of a two-phase flow system. Therefore, a similar technique can be applied to measure the local liquid velocity in a two-phase system, when conditions permit.

  16. Long range transport and air quality impacts of SO2 emissions from Holuhraun (Bárdarbunga, Iceland)

    NASA Astrophysics Data System (ADS)

    Schmidt, Anja; Witham, Claire; Leadbetter, Susan; Theys, Nicholas; Hort, Matthew; Thordarson, Thorvaldur; Stevenson, John; Shepherd, Janet; Sinnott, Richard; Kenny, Patrick; Barsotti, Sara

    2015-04-01

    Gas emissions from the Holuhraun eruption site in Iceland resulted in increases in observed ground level concentrations of sulphur dioxide (SO2) in the UK and Ireland during two occasions in September 2014. We present data from the Irish and UK monitoring networks along with satellite imagery which describes the temporal and spatial evolution of these pollution episodes. During both events increases in concentration were significant compared to ambient levels. The peaks were short lived, 6-12 hours, and below the World Health Organisation's 10-minute air quality standard for SO2 of 500 µg/m3, but these events show that gas from relatively low altitude volcanic emissions in Iceland can pose a hazard to north west Europe. The two pollution events serve as excellent case studies and observations from the events provide us with a unique dataset for the verification of atmospheric dispersion models. We use the atmospheric dispersion model NAME to simulate the long-range transport, removal and chemical conversion of the volcanic SO2 during September 2014. We evaluate a range of model simulations, using varying model input and physical parameters, against ground based measurements and satellite retrievals of SO2. Simulations demonstrate that the long-range ground concentrations are strongly dependent on the emission flux and the height of emission at source. This relationship is well known from similar studies of other pollution events. However this work also demonstrates a dependence on the model's vertical turbulence parameterisation and the height of the boundary layer determined from the input Numerical Weather Prediction meteorological data. For the pollution events in September 2014, we find that using a mass flux of 40 kilotons per day of SO2 gives best agreement with vertical column retrievals of SO2 from the Ozone Monitoring Instrument, which is in good agreement with initial estimates made by the Icelandic Meteorological Office. "This work is distributed under

  17. Effect of gas-transfer-velocity parameterization choice on CO2 air-sea fluxes in the North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, I.; Piskozub, J.

    2015-11-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air-sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.

  18. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  19. Clonal Variants of Plasmodium falciparum Exhibit a Narrow Range of Rolling Velocities to Host Receptor CD36 under Dynamic Flow Conditions

    PubMed Central

    Herricks, Thurston; Avril, Marion; Janes, Joel; Smith, Joseph D.

    2013-01-01

    Cytoadhesion of Plasmodium falciparum parasitized red blood cells (pRBCs) has been implicated in the virulence of malaria infection. Cytoadhesive interactions are mediated by the protein family of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). The PfEMP1 family is under strong antibody and binding selection, resulting in extensive sequence and size variation of the extracellular domains. Here, we investigated cytoadhesion of pRBCs to CD36, a common receptor of P. falciparum field isolates, under dynamic flow conditions. Isogeneic parasites, predominantly expressing single PfEMP1 variants, were evaluated for binding to recombinant CD36 under dynamic flow conditions using microfluidic devices. We tested if PfEMP1 size (number of extracellular domains) or sequence variation affected the pRBC-CD36 interaction. Our analysis showed that clonal parasite variants varied ∼5-fold in CD36 rolling velocity despite extensive PfEMP1 sequence polymorphism. In addition, adherent pRBCs exhibited a characteristic hysteresis in rolling velocity at microvascular flow rates, which was accompanied by changes in pRBC shape and may represent important adaptations that favor stable binding. PMID:24014767

  20. Concerning the flow about ring-shaped cowlings Part IX : the influence of oblique oncoming flow on the incremental velocities and air forces at the front part of circular cowls

    NASA Technical Reports Server (NTRS)

    Kuchemann, Dietrich; Weber, Johanna

    1952-01-01

    The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.

  1. Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants

    SciTech Connect

    Ueda, H.; Mitsumoto, S.; Kurita, H.

    1988-02-01

    Flow mechanism causing nightttime smog was investigated by analyzing 1) continuous records of meteorological data and concentration of oxidants (Ox) for 15 days and 2) aircraft data along the transportation route of a polluted air mass.

  2. Representing the Effects of Long-Range Transport and Lateral Boundary Conditions in Regional Air Pollution Models

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system was applied to a domain covering the northern hemisphere; meteorological information was derived from the Weather Research and Forecasting (WRF) model run on identical grid and projection configuration, while the emissio...

  3. Investigation of the emissions and profiles of a wide range of VOCs during the Clean air for London project

    NASA Astrophysics Data System (ADS)

    Holmes, Rachel; Lidster, Richard; Hamilton, Jacqueline; Lee, James; Hopkins, James; Whalley, Lisa; Lewis, Alistair

    2014-05-01

    The majority of the World's population live in polluted urbanized areas. Poor air quality is shortening life expectancy of people in the UK by an average 7-8 months and costs society around £20 billion per year.[1] Despite this, our understanding of atmospheric processing in urban environments and its effect on air quality is incomplete. Air quality models are used to predict how air quality changes given different concentrations of pollution precursors, such as volatile organic compounds (VOCs). The urban environment of megacities pose a unique challenge for air quality measurements and modelling, due to high population densities, pollution levels and complex infrastructure. For over 60 years the air quality in London has been monitored, however the existing measurements are limited to a small group of compounds. In order to fully understand the chemical and physical processes that occur in London, more intensive and comprehensive measurements should be made. The Clean air for London (ClearfLo) project was conducted to investigate the air quality, in particular the boundary layer pollution, of London. A relatively new technique, comprehensive two dimensional gas chromatography (GC×GC) [2] was combined with a well-established dual channel GC (DC-GC) [3] system to provide a more comprehensive measurement of VOCs. A total of 78 individual VOCs (36 aliphatics, 19 monoaromatics, 21 oxygenated and 2 halogenated) and 10 groups of VOCs (8 aliphatic, 1 monoaromatic and 1 monoterpene) from C1-C13+ were quantified. Seasonal and diurnal profiles of these VOCs have been found which show the influence of emission source and chemical processing. Including these extra VOCs should enhance the prediction capability of air quality models thus informing policy makers on how to potentially improve air quality in megacities. References 1. House of Commons Environmental Audit Committee, Air Quality: A follow-up report, Ninth Report of session 2012-12. 2. Lidster, R.T., J.F. Hamilton

  4. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... navigable waters of the United States, as defined at 33 CFR part 329, within the Banana River contiguous to... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing,...

  5. System performance characteristics of a helical rotary screw air-cooled chiller operating over a range of refrigerant charge conditions

    SciTech Connect

    Bailey, M.B.

    1998-12-31

    This paper presents a study involving the operation of a 70-ton helical rotary, dual-circuit, air-cooled chiller while three independent variables are experimentally altered. The independent variables included in the study are refrigerant charge level within the chiller plant, outdoor air temperature, and percentage nominal chiller load. This paper examines the effects of the three independent variables on superheat and subcooling temperatures, chiller kW per ton, chilled water set-point temperature control, and compressor suction and discharge pressures. After analyzing the significance of refrigerant charge, outdoor air temperature, and percentage nominal chiller load on the operation of a chiller plant the consequences of refrigerant undercharge or overcharge are fully investigated and documented. All experimental testing was conducted in a full-scale heating, ventilation, and air-conditioning (HVAC) laboratory using a realistic load profile and actual outdoor air temperature conditions. Experimental testing began with an evacuation, recycle, and recharge of R-22 from both circuits of the chiller. The charge tests included holding the refrigerant charge in circuit No. 2 constant at the manufacturer`s recommended level. The notation adopted for the manufacturer`s recommended charge or nominal charge level was 0% charge. Circuit No. 1`s refrigerant charge was varied from {minus}60% to +15% of nominal charge in 5% increments.

  6. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  7. Velocity-modulation atomization of liquid jets

    NASA Technical Reports Server (NTRS)

    Dressler, John L.

    1994-01-01

    A novel atomizer based on high-amplitude velocity atomization has been developed. Presently, the most common methods of atomization can use only the Rayleigh instability of a liquid cylinder and the Kelvin-Helmholtz instability of a liquid sheet. Our atomizer is capable of atomizing liquid jets by the excitation and destabilization of many other higher-order modes of surface deformation. The potential benefits of this sprayer are more uniform fuel air mixtures, faster fuel-air mixing, extended flow ranges for commercial nozzles, and the reduction of nozzle plugging by producing small drops from large nozzles.

  8. Experimental study of the structure of isotropic turbulence with intermediate range of Reynolds number. [sea-air interaction

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Saad, A.

    1977-01-01

    The energetic isotropic turbulence generated by a waterfall of low head was found to be developed in part through the unstable two-phase flow of entrained air bubbles. The resulting turbulent field had a turbulent Reynolds number in excess of 20,000 and maintained a self-similar structure throughout the decay period studied. The present study may provide some insight into the structure of turbulence produced by breaking waves over the ocean.

  9. Air and silica core Bragg fibers for radiation delivery in the wavelength range 0.6-1.5 μ m

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Kašík, Ivan; Podrazký, Ondřej; Matějec, Vlastimil

    2016-09-01

    This paper presents fundamental characteristics of laboratory designed and fabricated Bragg fibers with air and silica cores at wavelengths of 632, 975, 1064 and 1550 nm. Fibers with the 26- μ m-silica core and 5- or 73- μ m-air cores in diameters and claddings of 3 pairs of Bragg layers were prepared from one preform. The overall transmittance, attenuation coefficients, coupling losses, bending losses, and damage-intensity thresholds were determined using four continuous-wave laser sources with the maximum output power of 300 mW and a pulsed 9 ns laser with the maximum output energy up to 1 mJ. The lowest attenuation coefficient of about 70 dB/km was determined at 1064 nm with the 73- μ m-air-core Bragg fiber. All fibers have been found to exhibit negligible bending losses down to the bending diameters of 5 cm. In comparison with the conventional gradient optical fiber, all the prepared Bragg fibers have approximately six times higher damage intensity threshold of about 30 GWcm-2 and therefore they are very suitable for high power laser radiation delivery.

  10. Interpolation Correlations for Fluid Properties of Humid Air in the Temperature Range 100 °C to 200 °C

    NASA Astrophysics Data System (ADS)

    Melling, Adrian; Noppenberger, Stefan; Still, Martin; Venzke, Holger

    1997-07-01

    This paper provides simple analytical correlations for selected thermodynamic and fluid transport properties for the mixture dry air and water vapor. These correlations are derived from theory as well as from numerical fitting procedures and give expressions for density ϱ, viscosity μ, thermal conductivity k, specific heat cp, and Prandtl number Pr at a working pressure of p=1 bar and for a temperature range from 100 °C to 200 °C. The main purpose is to present a comparatively simple set of equations, as the correlations do not reflect in every case the underlying physical background. Since experimental data are scarce for the properties under investigation, it was in some cases necessary to extrapolate the available correlations to temperatures or water vapor contents where no experimental data could be found. The derived equations are compared with the pure component values for dry air and water vapor and, as far as possible, also for air-water vapor mixtures.

  11. Record of Technical Change No.2 for ``Corrective Action Investigation Plan for CAU 486: Double Tracks RADSAFE Area, Nellis Air Force Range,'' Rev. 0, DOE/NV--523

    SciTech Connect

    1998-11-18

    This Record of Technical Change provides technical updates to the information provided in ``Corrective Action Investigation Plan for CAU 486: Double Tracks RADSAFE Area, Nellis Air Force Range, Nevada,'' Revision 0, DOE/NV--523. Changes are specified for Section 4.2, Par. 3 and 8; Section 5.3, Par.1; and Section 7.0 (added reference) found on pages 25, 27, 34, 35, and 41.

  12. Effects of ankle joint mobilization with movement and weight-bearing exercise on knee strength, ankle range of motion, and gait velocity in patients with stroke: a pilot study

    PubMed Central

    An, Chang-Man; Won, Jong-Im

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of ankle joint mobilization with movement on knee strength, ankle range of motion, and gait velocity, compared with weight-bearing exercise in stroke patients. [Subjects and Methods] Thirty subjects with chronic stroke were divided into three groups: MWM (n = 12), WBE (n = 8), and control (n = 10). All groups attended physical therapy sessions 3 times a week for 5 weeks. Subjects in the MWM group performed mobilization with movement exercises, whilst participants in the WBE group performed weight-bearing exercises. Knee peak torque, ankle range of motion, and spatiotemporal gait parameters were evaluated before and after the interventions. [Results] Knee extensor peak torque increased significantly in both MWM and WBE groups. However, only the MWM group showed significant improvement in passive and active ankle range of motion and gait velocity, among the three groups. [Conclusion] Ankle joint mobilization with movement intervention is more effective than simple weight-bearing intervention in improving gait speed in stroke patients with limited ankle motion. PMID:27065565

  13. Modelling the Contribution of Long-range Transport of Ammonium Nitrates to Urban Air Pollution and Human Exposure in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Reis, S.; Vieno, M.; Beck, R.; Ots, R.; Moring, A.; Steinle, S.; Heal, M. R.; Doherty, R. M.

    2014-12-01

    Urban air pollution and its effects on human health remain to be a challenge in spite of substantial reductions in the emissions of air pollutants (e.g. sulphur dioxide, nitrogen oxides) over the past decades in Europe. While primary pollutants play a vital role in urban air pollution, recent model studies highlight and quantify the relevance of long-range transport of secondary pollution (e.g. secondary inorganic aerosols such as ammonium sulphates and nitrates, or ground level ozone) for the exceedance of local air quality limit values in urban areas across Europe. This contribution can be seen in recurring episodes, for instance in spring 2014, with very high levels of fine particulate matter (PM2.5) in Paris, London and other European cities, as well as in elevated background levels throughout the year. While we will focus on the contribution to exceedances of PM2.5 limit values here, this transboundary transport has wider implications for the deposition of reactive nitrogen far from the source as well. As local authorities are tasked with ensuring the attainment of air quality limit values, exceedances caused by long-range transport, with emissions originating from sources outside of their jurisdiction present substantial challenges. Furthermore, while policy measures have successfully addressed emissions from large point sources in the past, and made progress towards reducing pollution from road vehicles, emissions of ammonia from agricultural sources - a key component for the long-range transport of secondary inorganic aerosols - have remained relatively stable in Europe. Using the example of Europe and the UK, we demonstrate in our presentation how atmospheric chemistry transport modelling across different scales (from regional to local) can provide vital insight in the mechanisms of and relative contributions to the formation of secondary inorganic aerosols. In addition, we illustrate how this modelling capability can inform the design of efficient control

  14. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.

  15. Long-Range Financial Planning in Minnesota: Exploring State Level Issues, Problems and Alternatives. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Monical, David G.

    A long-range financial planning model was developed by the staff of the Minnesota Higher Education Coordinating Board to explore the issues and problems facing the financing of Minnesota postsecondary education. The model was designed to determine the extent to which alternative general financing policies and specific funding formulas affect…

  16. Long-range transport of Siberian wildfire smoke to British Columbia: Lidar observations and air quality impacts

    NASA Astrophysics Data System (ADS)

    Cottle, Paul; Strawbridge, Kevin; McKendry, Ian

    2014-06-01

    In July and August 2012, a combination of dry weather and record-breaking temperatures led to an unusually intense wildfire season in Boreal Asia. Based on model results and satellite observations it is thought that a portion of the smoke output from these fires was carried across the Pacific to North America in quantities sufficient to adversely affect air quality in southwestern British Columbia. CORALNet lidar observations taken in Vancouver during these months revealed aerosol layers in the free troposphere followed by relative increases in backscatter ratio within the boundary layer peaking on July 7-10 and again on August 9-15. Depolarization ratios in the boundary layer and for layers in the free troposphere during this period were consistent with high concentrations of smoke. Throughout July and August, Total Suspended Particulate (TSP) monitors throughout the lower Fraser Valley of British Columbia revealed several days with a significant increase in PM2.5 concentrations and nine of the twenty highest daily average PM2.5 concentrations of 2012 coincide with increases in backscatter in the lidar observations indicating that these events were accompanied by a substantial increase in particulate concentrations near the surface.

  17. Launch vehicle effluent measurements during the August 20, 1977, Titan 3 launch at Air Force Eastern Test Range

    NASA Technical Reports Server (NTRS)

    Woods, D. C.; Bendura, R. J.; Wornom, D. E.

    1979-01-01

    Airborne effluent measurements within the launch cloud and visible and infrared measurements of cloud physical behavior are discussed. Airborne effluent measurements include concentrations of HCl, Cl2, NO, NOX, and particulates as a function of time during each sampling pass through the exhaust cloud. The particle size distribution was measured for each pass through the cloud. Mass concentration as a function of particle diameter was measured over the size range of 0.05- to 25 micron diameter, and particle number density was measured as a function of diameter over a size range of 0.5 to 7.5 micron. Effluent concentrations in the cloud ranged from about 30 ppm several minutes after launch to about 1 to 2 ppm at 100 minutes. Maximum Cl2 concentrations were about 40 to 55 ppb and by 20 minutes were less than 1.0 ppb. A tabulated listing of the airborne data is given in the appendix. Usable cloud imaging data were limited to the first 16 minutes after launch.

  18. Air quality at a snowmobile staging area and snow chemistry on and off trail in a Rocky Mountain subalpine forest, Snowy Range, Wyoming.

    PubMed

    Musselman, Robert C; Korfmacher, John L

    2007-10-01

    A study was begun in the winter of 2000-2001 and continued through the winter of 2001-2002 to examine air quality at the Green Rock snowmobile staging area at 2,985 m elevation in the Snowy Range of Wyoming. The study was designed to evaluate the effects of winter recreation snowmobile activity on air quality at this high elevation site by measuring levels of nitrogen oxides (NO( x ), NO), carbon monoxide (CO), ozone (O(3)) and particulate matter (PM(10) mass). Snowmobile numbers were higher weekends than weekdays, but numbers were difficult to quantify with an infrared sensor. Nitrogen oxides and carbon monoxide were significantly higher weekends than weekdays. Ozone and particulate matter were not significantly different during the weekend compared to weekdays. Air quality data during the summer was also compared to the winter data. Carbon monoxide levels at the site were significantly higher during the winter than during the summer. Nitrogen oxides and particulates were significantly higher during the summer compared to winter. Nevertheless, air pollutants were well dispersed and diluted by strong winds common at the site, and it appears that snowmobile emissions did not have a significant impact on air quality at this high elevation ecosystem. Pollutant concentrations were generally low both winter and summer. In a separate study, water chemistry and snow density were measured from snow samples collected on and adjacent to a snowmobile trail. Snow on the trail was significantly denser and significantly more acidic with significantly higher concentrations of sodium, ammonium, calcium, magnesium, fluoride, and sulfate than in snow off the trail. Snowmobile activity had no effect on nitrate levels in snow. PMID:17286173

  19. Aerosol Optical Extinction during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) 2014 Summertime Field Campaign, Colorado U.S.A.

    NASA Astrophysics Data System (ADS)

    Dingle, J. H.; Vu, K. K. T.; Bahreini, R.; Apel, E. C.; Campos, T. L.; Cantrell, C. A.; Cohen, R. C.; Ebben, C. J.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Montzka, D. D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    Aerosol optical extinction (βext) was measured in the Colorado Front Range Denver Metropolitan Area as part of the summertime air quality airborne field campaign to characterize the influence of sources, photochemical processing, and transport of pollution on local air quality. An Aerodyne Cavity Attenuated Phase Shift particle light extinction monitor (CAPS-PMex) was deployed to measure dry βext at λ=632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret the βext under various categories of aged air masses and sources. Extinction enhancement ratios of Δβext/ΔCO were evaluated under 3 differently aged air mass categories (fresh, intermediately aged, and aged) to investigate impacts of photochemistry on βext. Δβext/ΔCO was significantly increased in heavily aged air masses compared to fresh air masses (0.17 Mm-1/ppbv and 0.094 Mm-1/ppbv respectively). The resulting increase in Δβext/ΔCO under heavily aged air masses was represented by secondary organic aerosols (SOA) formation. Aerosol composition and sources from urban, natural oil and gas wells (OG), and agriculture and livestock operations were also evaluated for their impacts on βext. Linear regression fits to βext vs. organic aerosol mass showed higher correlation coefficients under the urban and OG plumes (r=0.55 and r=0.71 respectively) and weakest under agricultural and livestock plumes (r=0.28). The correlation between βext and nitrate aerosol mass however was best under the agriculture and livestock plumes (r=0.81), followed by OG plumes (r=0.74), suggesting co-location of aerosol nitrate precursor sources with OG emissions. Finally, non-refractory mass extinction efficiency (MEE) was analyzed. MEE was observed to be 1.37 g/m2 and 1.30 g/m2 in OG and urban+OG plumes, respectively.

  20. Velocity and mass flux distribution measurements of spherical glass beads in air flow in a 90-deg vertical-to-horizontal bend

    NASA Astrophysics Data System (ADS)

    Kliafas, Yannis

    The fluid mechanics of a mixture of gas and glass beads in a 90-deg bend was studied, and the resulting mean streamwise and radial velocities and the associated Reynolds stresses are reported. Higher negative slip velocities were observed for 100-micron beads than for 50-micron beads. At angular displacements of 0 deg the radial velocity was directed toward the inner wall for both sizes of beads. Most of the bead-wall collisions occurred between the 30- and 60-deg stations. Bead-wall interaction was the controlling factor influencing the behavior of the beads. The inner wall was generally erosion-free, and no erosion was observed on the side walls, which were made of glass. A 2.5-m-long deposition-free area was observed for both bead sizes used. The results are significant for coal gasification technology.

  1. Assessment of concentrations of trace elements in ground water and soil at the Small-Arms Firing Range, Shaw Air Force Base, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.

    1994-01-01

    Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.

  2. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    NASA Astrophysics Data System (ADS)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  3. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions.

    PubMed

    Giffin, Paxton K; Parsons, Michael S; Unz, Ronald J; Waggoner, Charles A

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m(3)/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome. PMID:22667655

  4. Determination of a wide range of volatile organic compounds in ambient air using multisorbent adsorption/thermal desorption and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Pankow, J.F.; Luo, W.; Isabelle, L.M.; Bender, D.A.; Baker, R.J.

    1998-01-01

    Adsorption/thermal desorption with multisorbent air-sampling cartridges was developed for the determination of 87 method analytes including halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. The volatilities of the compounds ranged from that of dichlorofluoromethane (CFC12) to that of 1,2,3- trichlorobenzene. The eight most volatile compounds were determined using a 1.5-L air sample and a sample cartridge containing 50 mg of Carbotrap B and 280 mg of Carboxen 1000; the remaining 79 compounds were determined using a 5-L air sample and a cartridge containing 180 mg of Carbotrap B and 70 mg of Carboxen 1000. Analysis and detection were by gas chromatography/mass spectrometry. The minimum detectable level (MDL) concentration values ranged from 0.01 parts per billion by volume (ppbv) for chlorobenzene to 0.4 ppbv for bromomethane; most of the MDL values were in the range 0.02-0.06 ppbv. No breakthrough was detected with the prescribed sample volumes. Analyte stability on the cartridges was very good. Excellent recoveries were obtained with independent check standards. Travel spike recoveries ranged from 90 to 110% for 72 of the 87 compounds. The recoveries were less than 70% for bromomethane and chloroethene and for a few compounds such as methyl acetate that are subject to losses by hydrolysis; the lowest travel spike recovery was obtained for bromomethane (62%). Blank values for all compounds were either below detection or very low. Ambient atmospheric sampling was conducted in New Jersey from April to December, 1997. Three sites characterized by low, moderate, and high densities of urbanization/traffic were sampled. The median detected concentrations of the compounds were either similar at all three sites (as with the chlorofluorocarbon compounds) or increased with the density of urbanization/traffic (as with dichloromethane, MTBE, benzene, and toluene). For toluene, the median detected

  5. Fall velocity of multi-shaped clasts

    NASA Astrophysics Data System (ADS)

    Le Roux, Jacobus P.

    2014-12-01

    Accurate settling velocity predictions of differently shaped micro- or macroclasts are required in many branches of science and engineering. Here, a single, dimensionally correct equation is presented that yields a significant improvement on previous settling formulas for a wide range of clast shapes. For smooth or irregular clasts with known axial dimensions, a partially polynomial equation based on the logarithmic values of dimensionless sizes and settling velocities is presented, in which the values of only one coefficient and one exponent need to be adapted for different shapes, irrespective of the Reynolds number. For irregular, natural clasts with unknown axial dimensions, a polynomial equation of the same form is applied, but with different coefficients. Comparison of the predicted and measured settling velocities of 8 different shape classes as well as natural grains with unknown axial dimensions in liquids, representing a total of 390 experimental data points, shows a mean percentage error of - 0.83% and a combined R2 value of 0.998. The settling data of 169 differently shaped particles of pumice, glass and feldspar falling in air were also analyzed, which demonstrates that the proposed equation is also valid for these conditions. Two additional shape classes were identified in the latter data set, although the resultant equations are less accurate than for liquids. An Excel spreadsheet is provided to facilitate the calculation of fall velocities for grains settling individually and in groups, or alternatively to determine the equivalent sieve size from the settling velocity, which can be used to calibrate settling tubes.

  6. Superior Performance of High-Velocity Oxyfuel-Sprayed Nanostructured TiO2 in Comparison to Air Plasma-Sprayed Conventional Al2O3-13TiO2

    NASA Astrophysics Data System (ADS)

    Lima, R. S.; Marple, B. R.

    2005-09-01

    Air plasma-sprayed conventional alumina-titania (Al2O3-13wt.%TiO2) coatings have been used for many years in the thermal spray industry for antiwear applications, mainly in the paper, printing, and textile industries. This work proposes an alternative to the traditional air plasma spraying of conventional aluminatitania by high-velocity oxyfuel (HVOF) spraying of nanostructured titania (TiO2). The microstructure, porosity, hardness (HV 300 g), crack propagation resistance, abrasion behavior (ASTM G65), and wear scar characteristics of these two types of coatings were analyzed and compared. The HVOF-sprayed nanostructured titania coating is nearly pore-free and exhibits higher wear resistance when compared with the air plasma-sprayed conventional alumina-titania coating. The nanozones in the nanostructured coating act as crack arresters, enhancing its toughness. By comparing the wear scar of both coatings (via SEM, stereoscope microscopy, and roughness measurements), it is observed that the wear scar of the HVOF-sprayed nanostructured titania is very smooth, indicating plastic deformation characteristics, whereas the wear scar of the air plasma-sprayed alumina-titania coating is very rough and fractured. This is considered to be an indication of a superior machinability of the nanostructured coating.

  7. CHARACTERIZATION OF AN AQUITARD AND DIRECT DETECTION OF LNAPL AT HILL AIR FORCE BASE USING GPR AVO AND MIGRATION VELOCITY ANALYSES

    EPA Science Inventory

    Large quantities of non-aqueous phase liquids (NAPL) contaminate the near surface sediments at Operable Unit 1 (OU1), Hill Air Force Base (HAFB), Utah. In October 2000, a 3D, multi-offset GPR survey was acquired at OU1 with two objectives: 1) to i...

  8. Direct quantification of PM{sub 2.5} fossil and biomass carbon within the Northern Front Range Air Quality Study's domain

    SciTech Connect

    Klinedinst, D.B.; Currie, L.A.

    1999-12-01

    Radiocarbon ({sup 14}C) analyses of PM{sub 2.5} (particulate matter with an aerodynamic diameter of 2.5 {micro}m or less) of both ambient and source samples from the Northern Front Range Air Quality Study (NFRAQS) in Colorado were performed. The {sup 14}C analyses were undertaken to provide direct fossil vs modern (biomass) carbon source discrimination data for a subset of summer and winter 1996--1997 samples collected within the Denver metropolitan area. Samples were prepared for {sup 14}C accelerator mass spectrometry measurements using techniques specially developed for small samples, i.e., {lt}100 {mu}g C. For the days and sampling periods analyzed the median and interquartile range of the winter blank corrected fraction of modern carbon was 23% (16--34%) at Welby and 27% (25--37%) at Brighton. The summer samples exhibited a more mixed signature with a median and interquartile range of 47% (9--70%). Source samples yielded {sup 14}C signatures consistent with expectation. The authors conclude fossil-derived sources contribute substantially in both seasons and at both locations; however, the biomass carbon component dominates episodically in the summer.

  9. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    NASA's Space Shuttle utilizes atmospheric thermodynamic properties to evaluate structural dynamics and vehicle flight performance impacts by the atmosphere during ascent. Statistical characteristics of atmospheric thermodynamic properties at Kennedy Space Center (KSC) used in Space. Shuttle Vehicle assessments are contained in the Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) Database. Database contains tabulations for monthly and annual means (mu), standard deviations (sigma) and skewness of wind and thermodynamic variables. Wind, Thermodynamic, Humidity and Hydrostatic parameters 1 km resolution interval from 0-30 km 2 km resolution interval 30-70 km Multiple revisions of the CCAFS RRA database have been developed since initial RRA published in 1963. 1971, 1983, 2006 Space Shuttle program utilized 1983 version for use in deriving "hot" and "cold" atmospheres, atmospheric density dispersions for use in vehicle certification analyses and selection of atmospheric thermodynamic profiles for use in vehicle ascent design and certification analyses. During STS-114 launch preparations in July 2005 atmospheric density observations between 50-80 kft exceeded density limits used for aerodynamic ascent heating constraints in vehicle certification analyses. Mission specific analyses were conducted and concluded that the density bias resulted in small changes to heating rates and integrated heat loading on the vehicle. In 2001, the Air Force Combat Climatology Center began developing an updated RRA for CCAFS.

  10. Numerical and Physical Simulation of the Low-Velocity Air Flow in a Diffuser with a Circular Cavity in the Case of Suction of the Air from the Central Cylindrical Body Positioned in the Cavity

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Guvernyuk, S. V.; Zubin, M. A.; Baranov, P. A.; Ermakov, A. M.

    2015-01-01

    Comparative analysis of the results of solution of the steady-state Reynolds equations closed with the use of the shear-stress transfer model for the air fl ow in a divergent channel with suction of the air from the surface of the cylindrical central body positioned in the circular vortex cavity built in the lower wall of the channel with the corresponding experimental data has been performed.

  11. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burns, Lee; Merry, Carl; Decker, Ryan; Harrington, Brian

    2008-01-01

    The 2006 Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) is a statistical model summarizing the wind and thermodynamic atmospheric variability from surface to 70 kin. Launches of the National Aeronautics and Space Administration's (NASA) Space Shuttle from Kennedy Space Center utilize CCAFS RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the CCAFS RRA was recently completed. As part of the update, a validation study on the 2006 version was conducted as well as a comparison analysis of the 2006 version to the existing CCAFS RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  12. Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range

    NASA Astrophysics Data System (ADS)

    Blin-Simiand, N.; Pasquiers, S.; Magne, L.

    2016-05-01

    The influence of the gas mixture temperature, from 20 °C up to 300 °C, on the removal of formaldehyde, diluted at low concentration (less than 800 ppm) in dry air at atmospheric pressure, by a pulsed dielectric barrier discharge (DBD) is studied by means of Fourier transform infrared spectroscopy and micro gas chromatography. Efficient removal of CH2O is obtained and it is found that the characteristic energy, less than 200 J l‑1, is a decreasing function of the temperature over the whole range of concentration values under consideration. Byproducts issued from the removal are identified and quantified (CO, CO2, HCOOH, HNO3). Experimental results are analysed using a zero-dimensional simplified DBD-reactor model in order to gain insights on the chemical processes involved. It is shown that the dissociation of the molecule competes with oxidation reactions at low temperature, whereas at high temperature oxidation processes dominate.

  13. Comparison of Near-field and Far-field Air Monitoring of Plutonium-contaminated Soils from the Tonopah Test Range, Nevada

    SciTech Connect

    John L. Bowen; David S. Shafer

    2001-05-01

    Operation Roller Coaster, a series of nuclear material dispersal experiments, resulted in three areas (Clean Slates 1, 2, and 3) of widespread surface soil plutonium (Pu) contamination on the Tonopah Test Range (TTR), located 225 miles northwest of Las Vegas, Nevada. The State's Division of Environmental Protection raised concerns that dispersal of airborne Pu particles from the sites could result in undetected deposition further downwind that the background monitoring stations. Air monitoring data from different distances from the Clean Slate sites but during the same period of time were compared. From the available data, there is no indication that airborne PM10 particles are being transported to the farther distance,however, the data are statistically insufficient to conclude whether there is a difference in transport of respirable Pu particles to the closer verses the farther sites from the Clean Slate sites.

  14. Air pollution effects on yield, quality and ecology of range and forage grasses. Final report 18 May 79-28 Feb 81

    SciTech Connect

    Youngner, V.B.; Shropshire, F.M.; Taylor, O.C.; Flagler, R.B.

    1981-12-01

    In order to determine the effects of chronic exposure to ozone and sulfur dioxide on yield and forage quality, seven forage and seven range grasses were exposed to various levels of the pollutants in closed fumigation chambers. Ozone levels were 100, 67, 33, and 0 percent of ambient. Sulfur dioxide was supplied at 10 ppm. Yield parameters studied were total forage dry weight, tiller production and dry weight per tiller. The quality parameters were forage content of nonstructural carbohydrates, crude protein, crude fiber, calcium, magnesium and phosphorus. Chronic ozone exposure affected yield in varying degrees in all of the forage grasses. Effects were also observed on all quality parameters but species differed in their responses. The most pronounced response was in soluble carbohydrate levels. Because species differed in their growth responses to the pollutants, possible changes in species composition of natural grasslands subjected to air pollution must be considered.

  15. Comparison of the NIST and BIPM Air-Kerma Standards for Measurements in the Low-Energy X-Ray Range

    PubMed Central

    Burns, D. T.; Lamperti, P.; O’Brien, M.

    1999-01-01

    A direct comparison was made between the air-kerma standards used for the measurement of low-energy x rays at the National Institute of Standards and Technology (NIST) and the Bureau International des Poids et Mesures (BIPM). The comparison was carried out at the BIPM using the BIPM reference beam qualities in the range from 10 kV to 100 kV. The results show the standards to be in agreement to around 0.5 % at reference beam qualities up to 50 kV and at 100 kV. The result at the 80 kV beam quality is less favorable, with agreement at the 1 % level.

  16. Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States

    USGS Publications Warehouse

    Naftz, D.L.; Susong, D.D.; Schuster, P.F.; Cecil, L.D.; Dettinger, M.D.; Michel, R.L.; Kendall, C.

    2002-01-01

    Site-specific transfer functions relating delta oxygen 18 (??18O) values in snow to the average air temperature (TA) during storms on Upper Fremont Glacier (UFG) were used in conjunction with ??18O records from UFG ice cores to reconstruct long-term trends in air temperature from alpine areas in the Wind River Range, Wyoming. Transfer functions were determined by using data collected from four seasonal snowpacks (1989-1990, 1997-1998, 1998-1999, and 1999-2000). The timing and amount of each storm was determined from an automated snowpack telemetry (SNOTEL) site, 22 km northeast of UFG, and ???1060 m in elevation below UFG. Statistically significant and positive correlations between ??18O values in the snow and TA were consistently found in three of the four seasonal snowpacks. The snowpack with the poor correlation was deposited in 1997-1998 during the 1997-1998 El Nin??o Southern Oscillation (ENSO). An ultrasonic snow-depth sensor installed on UFG provided valuable insights into site-specific storms and postdepositional processes that occur on UFG. The timing of storms recorded at the UFG and Cold Springs SNOTEL sites were similar; however, selected storms did not correlate. Snow from storms occurring after mid-October and followed by high winds was most susceptible to redeposition of snow. This removal of lower temperature snowfall could potentially bias the ??18O values preserved in ice core records to environmental conditions reflecting higher air temperatures and lower wind speeds. Transfer functions derived from seasonal snow cover on UFG were used to reconstruct TA values from ??18O values determined from two ice cores collected from UFG. Reconstructed air temperatures from the ice core data indicate an increase in TA of ???3.5??C from the mid-1960s to the early 1990s in the alpine areas of northwestern Wyoming. Reconstructed TA from the ice core records between the end of the Little Ice Age (LIA), mid-1800s, and the early 1990s indicate a TA increase of

  17. An overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J.; Brioude, J.; Cooper, O. R.; Holloway, J. S.; Lin, M. Y.; Marchbanks, R. D.; Pierce, R. B.; Sandberg, S. P.; Weickmann, A. M.; Williams, E. J.

    2015-05-01

    The 2013 Las Vegas Ozone Study (LVOS) was conducted in the late spring and early summer of 2013 to assess the seasonal contribution of stratosphere-to-troposphere transport (STT) and long-range transport to surface ozone in Clark County, Nevada and determine if these processes directly contribute to exceedances of the National Ambient Air Quality Standard (NAAQS) in this area. Secondary goals included the characterization of local ozone production, regional transport from the Los Angeles Basin, and impacts from wildfires. The LVOS measurement campaign took place at a former U.S. Air Force radar station ∼45 km northwest of Las Vegas on Angel Peak (∼2.7 km above mean sea level, asl) in the Spring Mountains. The study consisted of two extended periods (May 19-June 4 and June 22-28, 2013) with near daily 5-min averaged lidar measurements of ozone and backscatter profiles from the surface to ∼2.5 km above ground level (∼5.2 km asl), and continuous in situ measurements (May 20-June 28) of O3, CO, (1-min) and meteorological parameters (5-min) at the surface. These activities were guided by forecasts and analyses from the FLEXPART (FLEXible PARTticle) dispersion model and the Real Time Air Quality Modeling System (RAQMS), and the NOAA Geophysical Research Laboratory (NOAA GFDL) AM3 chemistry-climate model. In this paper, we describe the LVOS measurements and present an overview of the results. The combined measurements and model analyses show that STT directly contributed to each of the three O3 exceedances that occurred in Clark County during LVOS, with contributions to 8-h surface concentrations in excess of 30 ppbv on each of these days. The analyses show that long-range transport from Asia made smaller contributions (<10 ppbv) to surface O3 during two of those exceedances. The contribution of regional wildfires to surface O3 during the three LVOS exceedance events was found to be negligible, but wildfires were found to be a major factor during exceedance events

  18. Questions Students Ask: About Terminal Velocity.

    ERIC Educational Resources Information Center

    Meyer, Earl R.; Nelson, Jim

    1984-01-01

    If a ball were given an initial velocity in excess of its terminal velocity, would the upward force of air resistance (a function of velocity) be greater than the downward force of gravity and thus push the ball back upwards? An answer to this question is provided. (JN)

  19. Elastic wave velocities and thermal diffusivities of Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Fujii, N.; Hamano, Y.; Osako, M.

    1972-01-01

    The compressional- and shear-wave velocities of Apollo 14 lunar rocks 14311,50 and 14313,27 as functions of pressure up to 10 kb and the thermal diffusivity of sample 14311,50 over the temperature range 100 to 550 K have been measured. Both samples 14311 and 14313 are polymict fragmental rocks. The overall elastic and anelastic behavior of the Apollo 14 samples are similar to those of Apollo 11 and 12 samples; low velocity and low Q at pressures below 1 kb and rapid increase of velocity and Q with pressure are also typical of the Apollo 14 rocks. The available data of P- and S-wave velocities of lunar rocks show that Birch's law holds for the lunar rocks. The thermal diffusivity of a lunar rock in vacuum is found to be significantly lower than that in air at one atmospheric pressure.

  20. The Contribution of Trans-Pacific Submicron Aerosols and Local Particle Nucleation Bursts to California's Air Quality as Seen from the Pacific Coast Mountain Range

    NASA Astrophysics Data System (ADS)

    Asher, E. C. C.; Christensen, J. N.; Post, A.; Faloona, I. C.

    2015-12-01

    The long-range transport of dust and anthropogenic aerosols to the Western US has received considerable attention due to the growing disparity between North American and Asian air quality. Using MODIS and space-borne LIDAR measurements some have argued that the transcontinental transport of dust from Asia, Africa, and Europe outweighs that of locally produced combustion aerosols (Yu et al. 2012). This study seeks to compare the aerosol composition, number, and size distribution of locally derived submicron aerosols (including particle nucleation events) vs. long-range transported aerosols observed at a remote mountain site near the Pacific Coast. Toward this aim, rotating drum impactor (RDI) and scanning mobility particle size (SMPS) measurements of size-segregated elemental compositions and size spectra were collected from February to November of 2012 at Chews Ridge (elevation 1450 m) in Monterey County, California. This mountaintop site experiences two main wind modes. The main mode is ohshore-directed winds from the southwest, which are most likely to bring trans-Pacific aerosols to the site; and offshore-directed, northeasterly winds that bring continental aerosols to the site from the interior of California. Elemental ratios (normalized to Al), matrix factorization, and a k-cluster analysis of these data suggest distinct crustal, combustion, and marine sources with considerable seasonal as well as short-term variability. HYSPLIT model back trajectories support the hypothesized sources of these submicron aerosols. Locally, SMPS data reveal consistent nucleation bursts and subsequent growth in the 20-60 nm range during the afternoons. A distinct but weaker diel cycle was observed in the 70 - 100 nm range, corresponding to the smallest RDI impactor stage. Finally, the Pb isotopic composition (206Pb/207Pb and 208Pb/207Pb) of aerosol samples from selected dates will be measured by MC-ICPMS to further identify aerosol origins (e.g. Ewing et al. 2010).

  1. Penetration of Air Jets Issuing from Circular, Square, and Elliptical Orifices Directed Perpendicularly to an Air Stream

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; Callaghan, Edmund E.; Bowden, Dean T.

    1950-01-01

    An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.

  2. GMTI radar minimum detectable velocity.

    SciTech Connect

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  3. [Growth and polysaccharide formation in Sinorhizobium meliloti strains in an air-lift-type fermentor. Effect on nodulation velocity in alfalfa plants].

    PubMed

    Lorda, G S; Castaño, R C; Pordomingo, A B; Pastor, M D; Balatti, A P

    2003-01-01

    In this paper the influence of the exopolysaccharides produced by Sinorhizobium meliloti strains on the nodulation rates in alfalfa plants has been considered. The experiments were performed in a rotary shaker and in an air-lift type fermentor. Different Sinorhizobium meliloti strains were used. Bacterial growth rates were determined by viable cell counts. Exopolysaccharide concentration was determined by precipitation with ethanol. It was observed that maximum cell concentration was in the order of 1 x 10(10) cell/ml and exopolysaccharide content was approximately 11 g/l. The experiments performed with alfalfa plants in a controlled environment chamber showed that, when inoculation was carried out with diluted suspensions (1/10), nodulation time was reduced from 10 to 4 days, while the strains retained their symbiotic properties. PMID:12920984

  4. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques. PMID:25901845

  5. Burning velocity measurements of nitrogen-containing compounds.

    PubMed

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity. PMID:18207640

  6. Study and parametrization of the night sky background radiation spectrum in the range 3000-6000 Å, for use with air fluorescence detectors of UHECR

    NASA Astrophysics Data System (ADS)

    Moyssides, P. G.; Maltezos, S.; Fokitis, E.

    2005-01-01

    The fluorescence light, induced by showers of the extremely high energy cosmic rays, is produced through the excitation of, mainly, nitrogen molecules, atoms, and ions, in the atmosphere. The fluorescence telescopes of the Auger Project record this nitrogen radiation under the variable night sky optical noise (background radiation) and, therefore, the study of the latter is crucial. In this paper we present a parametrization of an experimental night sky background radiation spectrum that, to our knowledge, is being carried out for the first time, recorded in the range 3000-6000 Å. Although the parametrization described here refers to a particular spectrum, our results are generally applicable, and could be adapted to those prevailing in particular locations, where EAS fluorescence telescopes are operating if, in addition, the gradual time variations of the spectrum are taken into account. They could be useful in data analysis for the event reconstruction, during the operation of the fluorescence detector of the Auger Observatory, since they could be used for the experimental emulation of the optical noise. In addition, they could be used in the designing of air fluorescence observatory components, such as photomultipliers and their spectral sensitivity, as well as in the corresponding optical filters.

  7. Statistical Short-Range Guidance for Peak Wind Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2010-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  8. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator

    SciTech Connect

    Haque, Shah M.E.; Deev, A.V.; Subaschandar, N.; Rasul, M.G.; Khan, M.M.K.

    2009-01-15

    The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

  9. Velocity correlations of galaxy clusters

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Bahcall, Neta A.; Gramann, Mirt

    1994-01-01

    We determine the velocity correlation function, pairwise peculiar velocity difference, and rms pairwise peculiar velocity dispersion of rich clusters of galaxies, as a function of pair separation, for three cosmological models: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models (all flat and Cosmic Background Explorer (COBE)-normalized). We find that close cluster pairs, with separation r is less than or equal to 10/h Mpc, exhibit strong attractive peculiar velocities in all models; the cluster pairwise velocities depend sensitively on the model. The mean pairwise attractive velocity of clusters on 5/h Mpc scale ranges from approximately 1700 km/s for Omega = 1 CDM to approximately 1000 km/s for PBI to approximately 700 km/s for Omega = 0.3 CDM. The small-scale pairwise velocities depend also on cluster mass: richer, more massive clusters exhibit stronger attractive velocities than less massive clusters. On large scales, from approximately 20 to 200/h Mpc, the cluster peculiar velocities are increasingly dominated by bulk and random motions; they are independent of cluster mass. The cluster velocity correlation function is negative on small scales for Omega = 1 and Omega = 0.3 CDM, indicating strong pairwise motion relative to bulk motion on small scales; PBI exhibits relatively larger bulk motions. The cluster velocity correlation function is positive on very large scales, from r approximately 10/h Mpc to r approximately 200/h Mpc, for all models. These positive correlations, which decrease monotonically with scale, indicate significant bulk motions of clusters up to approximately 200/h Mpc. The strong dependence of the cluster velocity functions on models, especially at small separations, makes them useful tools in constraining cosmological models when compared with observations.

  10. Horizontal Velocity Structure in Waterspouts.

    NASA Astrophysics Data System (ADS)

    Schwiesow, R. L.

    1981-04-01

    We have measured the spatial variation of a single horizontal component of the velocity in a number of waterspouts using an airborne infrared Doppler lidar. In 21 data sets, maximum velocities range from 4.2 to 33.6 m s1 and visible funnel diameters from 6.6 to 90 m. Data were taken at altitudes between 675 m, near cloud base, and 95 m above the surface. The sequences show time development of the velocity as a function of radius at a fixed altitude and the velocity structure at different altitudes and sequential times with a horizontal resolution of 0.75 m between data points. The variation in velocity structure between waterspouts is large, with some showing marked azimuthal asymmetry and mixing with the ambient flow, and others showing multiple concentric vortex shells.

  11. Air-Velocity Sensor For Helicopter

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas; Hellbaum, Richard F.

    1990-01-01

    New airspeed sensor conceived for accurate measurement of both airspeed and direction of flight of helicopter. Direction of motion of helicopter displayed by lighting of one of series of lamps encircling digital display of airspeed. Pressure transducer measures difference between impact and static pressures at tip of rotor blade by use of conventional pitot-static-tube assembly.

  12. Effects of air velocity on broiler production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent improvements in poultry genetics have resulted in increased growth rates (Havenstein et al., 2003) and total heat production (Chepete and Xin, 2001; Xin et al., 2001). In addition, market weights have also increased with white the meat demand of the U.S. resulting in birds being marketed at ...

  13. Velocity distribution of fragments of catastrophic impacts

    NASA Technical Reports Server (NTRS)

    Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi

    1992-01-01

    Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.

  14. Velocity field of isolated turbulent puffs

    NASA Astrophysics Data System (ADS)

    Ghaem-Maghami, E.; Johari, H.

    2010-11-01

    The velocity field of isolated turbulent puffs was measured using the particle image velocimetry technique and was compared with the steady jet flow field. Puffs were generated by injecting air through a 5 mm diameter nozzle into a flow chamber with a weak coflow. Isolated puffs with a Reynolds number of 5000 were examined in the range of 40-75 diameters downstream of the nozzle. The injection time was varied in order to assess the effects of injection volume and equivalent stroke ratio on the puff structure. The results from phase-locked measurements indicate that as the injection volume increased, puffs elongated in the axial direction and became similar to starting jets in the range considered. The largest scaled fluctuating velocities and turbulent shear stress within the puffs were twice the steady jet values. Inspection of the vorticity field revealed the presence of vorticity throughout the puff volume. Entrainment takes place on the portion of the puff closest to the nozzle and the entrainment rate is greater for the puffs with the smaller injection volume. This is consistent with the observations of rapid mixing and combustion of puffs in previous studies.

  15. Laboratory host range testing of Lilioceris sp. near impressa (Coleoptera: Chrysomelidae) – a potential biological control agent of air potato, Dioscorea bulbifera (Dioscoreaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air potato, Dioscorea bulbifera, is an invasive, herbaceous, climbing vine, which dominates invaded native vegetation in Florida. The fortuitous discovery of Lilioceris sp. near impressa defoliating D. bulbifera vines and feeding on the bulbils (aerial tubers) in the Katmandu Valley of Nepal initiat...

  16. Evaluation of conversion coefficients relating air-kerma to H*(10) using primary and transmitted x-ray spectra in the diagnostic radiology energy range.

    PubMed

    Santos, J C; Mariano, L; Tomal, A; Costa, P R

    2016-03-01

    According to the International Commission on Radiation Units and Measurements (ICRU), the relationship between effective dose and incident air-kerma is complex and depends on the attenuation of x-rays in the body. Therefore, it is not practical to use this quantity for shielding design purposes. This correlation is adopted in practical situations by using conversion coefficients calculated using validated mathematical models by the ICRU. The ambient dose equivalent, H*(10), is a quantity adopted by the IAEA for monitoring external exposure. Dose constraint levels are established in terms of H*(10), while the radiation levels in radiometric surveys are calculated by means of the measurements of air-kerma with ion chambers. The resulting measurements are converted into ambient dose equivalents by conversion factors. In the present work, an experimental study of the relationship between the air-kerma and the operational quantity ambient dose equivalent was conducted using different experimental scenarios. This study was done by measuring the primary x-ray spectra and x-ray spectra transmitted through materials used in dedicated chest radiographic facilities, using a CdTe detector. The air-kerma to ambient dose equivalent conversion coefficients were calculated from these measured spectra. The resulting values of the quantity ambient dose equivalent using these conversion coefficients are more realistic than those available in the literature, because they consider the real energy distribution of primary and transmitted x-ray beams. The maximum difference between the obtained conversion coefficients and the constant value recommended in national and international radiation protection standards is 53.4%. The conclusion based on these results is that a constant coefficient may not be adequate for deriving the ambient dose equivalent. PMID:26835613

  17. NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evaluated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, air velocity, and inlet size. This technique uses the model output to determine how well the supply air mixes with the room air. Thermal comfort is evaluated by monitoring air temperature and velocity in more than 600,000 control volumes that make up the occupied zone of a single room. The room has an acceptable comfort level when more than 70% of the control volumes meet the comfort criteria on both air temperature and velocity. The study shows that high sidewall supply air jets achieve uniform mixing in a room, which is essential for providing acceptable comfort levels. The study also provides information required to optimize overall space conditioning system design in both heating and cooling modes.

  18. The separation velocity of emerging magnetic flux

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Wang, Haimin

    1987-01-01

    The separation velocities and magnetic fluxes of 24 emerging bipoles on the sun are measured in order to provide data on the emerging mechanism. Velocities are shown to range from about 0.2-1 km/s, bipole fluxes to range over more than two orders of magnitude, and the mean field strength and the sizes to range over one order of magnitude. No correlation is noted between measured separation velocities and either the flux or the mean field strength of the bipole. Predicted separation velocities are found be about one order of magnitude greater than measured values.

  19. Nonintrusive, multipoint velocity measurements in high-pressure combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.

    1993-01-01

    A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.

  20. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigable waters of the United States, as defined at 33 CFR part 329, within the Banana River contiguous to... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River at the Eastern Range... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing,...

  1. The terminal rise velocity of 10-100 microm diameter bubbles in water.

    PubMed

    Parkinson, Luke; Sedev, Rossen; Fornasiero, Daniel; Ralston, John

    2008-06-01

    Single bubbles of very pure N2, He, air and CO2 were formed in a quiescent environment in ultra-clean water, with diameters ranging from 10 to 100 mum. Their terminal rise velocities were measured by high-speed video microscopy. For N2, He and air, excellent agreement with the Hadamard-Rybczynski (H-R) equation was observed, indicating that slip was occurring at the liquid-vapor interface. For CO2 bubbles with diameters less than 60 microm, the terminal rise velocities exceeded those predicted by the H-R equation. This effect was ascribed to the enhanced solubility of CO2 compared with the other gases examined. The presence of a diffusion boundary layer may be responsible for the increased terminal velocity of very small CO2 bubbles. PMID:18405911

  2. Demonstration of zinc/air fuel battery to enhance the range and mission of fleet electric vehicles: Preliminary results in the refueling of a multicell module

    SciTech Connect

    Cooper, J.F.; Fleming, D.; Keene, L.; Maimoni, A.; Peterman, K.; Koopman, R.

    1994-08-08

    We report progress in an effort to develop and demonstrate a refuelable zinc/air battery for fleet electric vehicle applications. A refuelable module consisting of twelve bipolar cells with internal flow system has been refueled at rates of nearly 4 cells per minute refueling time of 10 minutes for a 15 kW, 55 kWh battery. The module is refueled by entrainment of 0.5-mm particles in rapidly flowing electrolyte, which delivers the particles into hoppers above each cell in a parallel-flow hydraulic circuit. The concept of user-recovery is presented as an alternative to centralized service infrastructure during market entry.

  3. Demonstration of zinc/air fuel battery to enhance the range and mission of fleet electric vehicles: Preliminary results in the refueling of a multicell module

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Fleming, D.; Keene, L.; Maimoni, A.; Peterman, K.; Koopman, R.

    1994-08-01

    We report progress in an effort to develop and demonstrate a refuelable zinc/air battery for fleet electric vehicle applications. A refuelable module consisting of twelve bipolar cells with internal flow system has been refueled at rates of nearly 4 cells per minute, indicating a refueling time of 10 minutes for a 15 kW, 55 kWh battery. The module is refueled by entrainment of 0.5-mm particles in rapidly flowing electrolyte, which delivers the particles into hoppers above each cell in a parallel-flow hydraulic circuit. The concept of user-recovery is presented as an alternative to centralized service infrastructure during market entry.

  4. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  5. Pore Velocity Estimation Uncertainties

    NASA Astrophysics Data System (ADS)

    Devary, J. L.; Doctor, P. G.

    1982-08-01

    Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.

  6. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  7. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  8. Range of fire determination from the pseudostippling of skin by shotshell buffer material.

    PubMed

    Haag, Lucien C

    2013-03-01

    The plastic buffer material in certain American shotgun shells emerges from the muzzle with the same velocity as the pellets that it was intended to protect from deformation during the very high accelerative forces associated with the discharge process. These small plastic particles spread out quickly over distance in a predictable, reproducible, and uniform manner as they lose velocity because of air resistance. If these plastic particles strike skin with sufficient velocity and energy, they will produce stipple marks whose distribution and density can be used to establish range of fire. This can be of critical importance in the reconstruction of a shooting involving this type of ammunition. PMID:23361073

  9. Velocity Field of Isolated Turbulent Puffs

    NASA Astrophysics Data System (ADS)

    Ghaem-Maghami, Elham; Johari, Hamid

    2006-11-01

    The velocity field of isolated turbulent puffs was investigated by the PIV technique. Particular attention was paid to the entrainment pattern of isolated puffs. Puffs were generated by injecting seeded air through a 5 mm diameter nozzle into a flow chamber with a weak co-flow. Puffs with a Reynolds number of 5,000 were examined in the range of 35 -- 75 diameters downstream of the nozzle. The injection time was varied in order to assess the effect of injection volume and impulse on the puff structure. The results indicate that as the injection volume increased, puffs elongated in the axial direction. The largest mean and fluctuating velocities were within the central portion of the puff. The maximum turbulent shear stress within the puff was as much as 2.5 times the steady jet value. The vorticity field showed the presence of vorticity throughout the puff volume. The ratio of volume flow rate at the puff center to the steady jet volume flux at the same location was largest for the smallest injection volume. The majority of entrainment into the puff occurs below the puff center while the puff cap pushes out into surrounding fluid.

  10. Microionization chamber air-kerma calibration coefficients as a function of photon energy for x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co

    SciTech Connect

    Snow, J. R.; Micka, J. A.; DeWerd, L. A.

    2013-04-15

    Purpose: To investigate the applicability of a wide range of microionization chambers for reference dosimetry measurements in low- and medium-energy x-ray beams. Methods: Measurements were performed with six cylindrical microchamber models, as well as one scanning chamber and two Farmer-type chambers for comparison purposes. Air-kerma calibration coefficients were determined at the University of Wisconsin Accredited Dosimetry Calibration Laboratory for each chamber for a range of low- and medium-energy x-ray beams (20-250 kVp), with effective energies ranging from 11.5 keV to 145 keV, and a {sup 60}Co beam. A low-Z proof-of-concept microchamber was developed and calibrated with and without a high-Z silver epoxy on the collecting electrode. Results: All chambers composed of low-Z materials (Z{<=} 13), including the Farmer-type chambers, the scanning chamber, and the PTW TN31014 and the proof-of-concept microchambers, exhibited air-kerma calibration coefficients with little dependence on the quality of the beam. These chambers typically exhibited variations in calibration coefficients of less than 3% with the beam quality, for medium energy beams. However, variations in air-kerma calibration coefficients of greater than 50% were measured over the range of medium-energy x-ray beams for each of the microchambers containing high-Z collecting electrodes (Z > 13). For these high-Z chambers, which include the Exradin A14SL and A16 chambers, the PTW TN31006 chamber, the IBA CC01 chamber, and the proof-of-concept chamber containing silver, the average variation in air-kerma calibration coefficients between any two calibration beams was nearly 25% over the entire range of beam qualities investigated. Conclusions: Due to the strong energy dependence observed with microchambers containing high-Z components, these chambers may not be suitable dosimeters for kilovoltage x-ray applications, as they do not meet the TG-61 requirements. It is recommended that only microchambers

  11. New GNSS velocity field and preliminary velocity model for Ecuador

    NASA Astrophysics Data System (ADS)

    Luna-Ludeña, Marco P.; Staller, Alejandra; Gaspar-Escribano, Jorge M.; Belén Benito, M.

    2016-04-01

    In this work, we present a new preliminary velocity model of Ecuador based on the GNSS data of the REGME network (continuous monitoring GNSS network). To date, there is no velocity model available for the country. The only existing model in the zone is the regional model VEMOS2009 for South America and Caribbean (Drewes and Heidbach, 2012). This model was developed from the SIRGAS station positions, the velocities of the SIRGAS-CON stations, and several geodynamics projects performed in the region. Just two continuous GNSS (cGNSS) stations of Ecuador were taking into account in the VEMOS2009 model. The first continuous station of the REGME network was established in 2008. At present, it is composed by 32 continuous GNSS stations, covering the country. All the stations provided data during at least two years. We processed the data of the 32 GNSS stations of REGME for the 2008-2014 period, as well as 20 IGS stations in order to link to the global reference frame IGb08 (ITRF2008). GPS data were processed using Bernese 5.0 software (Dach et al., 2007). We obtained and analyzed the GNSS coordinate time series of the 32 REGME stations and we calculated the GPS-derived horizontal velocity field of the country. Velocities in ITRF2008 were transformed into a South American fixed reference frame, using the Euler pole calculated from 8 cGNSS stations throughout this plate. Our velocity field is consistent with the tectonics of the country and contributes to a better understanding of it. From the horizontal velocity field, we determined a preliminary model using the kriging geostatistical technique. To check the results we use the cross-validation method. The differences between the observed and estimated values range from ± 5 mm. This is a new velocity model obtained from GNSS data for Ecuador.

  12. Measurement of uniform flame movement in carbon monoxide - air mixtures containing either added D2O or H2O

    NASA Technical Reports Server (NTRS)

    Mcdonald, Glen E

    1950-01-01

    Relative velocities of the flame in a carbon monoxide - air mixture containing either added heavy water or light water were measured in a glass tube. Throughout the range of carbon monoxide - air composition, the flame containing added light water had a faster speed than the flame containing heavy water.

  13. Flight Tests of the Drag and Torque of the Propeller in Terminal-Velocity Dives

    NASA Technical Reports Server (NTRS)

    Rhode, Ricahrd V; Pearson, Henry A

    1937-01-01

    The drag and torque of a controllable propeller at various blade-angle settings, and under various diving conditions, were measured by indirect method on F6C-4 airplane in flight. The object of these tests were (1) to provide data on which calculations of the terminal velocity with a throttled engine and the accompanying engine speed could be based and (2) to determine the possibility of utilizing the propeller as an air brake to reduce the terminal velocity. The data obtained were used in the establishment of propeller charts, on the basis of which the terminal velocity and engine speed could be calculated for airplanes whose characteristics fall within the range of these tests. A method is given for the calculation of the terminal velocity with throttled engine and the engine speed.

  14. 76 FR 70695 - Taking and Importing Marine Mammals: U.S. Navy Training in 12 Range Complexes and U.S. Air Force...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... language of this nature to increase operational flexibility in those range complexes (76 FR 6699, February 8, 2011, and 76 FR 30552, May 26, 2011). However, this language has not been adopted in the... that allow for LOAs to be issued on an annual or biennial basis (76 FR 25480, May 4, 2011)....

  15. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  16. Method for determining individual deposition velocities of radon progeny.

    PubMed

    Angell, C T; Pedretti, M; Norman, E B

    2015-04-01

    The deposition velocity of radon progeny is used to model the removal of progeny from the air by surfaces in assessing indoor air quality. It can also be used to assess radon-induced background in sensitive, low-background experiments. A single value of the deposition velocity is typically used for all radon progeny for modeling purposes. This paper presents a method for uniquely determining the individual deposition velocities of radon progeny. Measurements demonstrating the method were carried out. PMID:25618737

  17. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  18. High geocentric velocity meteor ablation

    NASA Astrophysics Data System (ADS)

    Hill, K. A.; Rogers, L. A.; Hawkes, R. L.

    2005-12-01

    Interstellar origin meteoroids have now been detected using radar, image intensified video, large aperture radar and space dust impact techniques. Dynamical and radiation production mechanisms will eject some meteoroids from other planetary systems into orbits which will impact Earth with high geocentric velocities. In this paper we numerically model the ablation of high geocentric velocity (71 to 500~km s-1) meteors in order to predict the heights, light curves and trail lengths to be expected. We modeled three compositions and structures: asteroidal, cometary and porous cometary. Meteoroid masses ranging from 10-6 to 10-13~kg were used in the model. As expected, these high geocentric velocity meteors, when compared to other meteors, ablate higher in the atmosphere. For example a 300~km s-1 cometary structure meteor of mass 10-9~kg will have a peak luminosity at about 190 km. They will also have significantly longer trail lengths. The same 300~km s-1, 10-9~kg cometary meteor would be within 2 mag of its peak brightness for a vertical displacement of 60 km if incident at a zenith angle of 45°. The peak light intensity of these high geocentric velocity meteors changes only slowly with velocity. Although the incident kinetic energy per unit time increases dramatically, this is largely offset by a decrease in the optical luminous efficiency in this velocity regime according to our luminous efficiency model. The 300~km s-1, 10-9~kg cometary meteor would have an absolute meteor magnitude at peak luminosity of about +8.5 mag. Our results suggest that at least those high geocentric velocity meteors larger than about 10-8~kg should be observable with current meteor electro-optical technology although there may be observational biases against their detection. The results of this paper can be used to help optimize a search strategy for these very high geocentric velocity meteors.

  19. Nerve conduction velocity

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see how ...

  20. Flow in Smooth Straight Pipes at Velocities Above and Below Sound Velocity

    NASA Technical Reports Server (NTRS)

    Frossel, W

    1938-01-01

    To investigate the laws of flow of compressible fluids in pipes, tests were carried out with air flowing at velocities below and above that of sound in straight smooth pipes. Air was chosen as the flow medium. In order that the effect of compressibility may be brought out most effectively, the velocity should lie between 100 and 500 m/s (200 and 1,000 mph); that is, be of the order of magnitude of the velocity of sound in air. The behavior of the compression shock in a smooth cylindrical pipe was also investigated. The compression shock can occur at any position in the pipe, depending on the throttling downstream, and travels upstream with increasing throttling up to the pipe entrance, so that only subsonic velocities occur in the pipe.

  1. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  2. Meteor velocity determination with plasma physics

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Denney, K.; Close, S.; Oppenheim, M.; Ray, L.; Chau, J.

    2004-02-01

    Understanding the global meteor flux at Earth requires the measurement of meteor velocities. While several radar methods exist for measuring meteor velocity, they may be biased by plasma reflection mechanisms. This paper presents a new method for deriving meteoroid velocity from the altitudinal extent of non-specular trails. This method employs our recent discoveries on meteor trail plasma instability. Dyrud et al. (2002) demonstrated that meteor trails are unstable over a limited altitude range, and that the precise altitudes of instability are dependent on the meteoroid velocity that generated the trail. Since meteor trail instability results in field aligned irregularities (FAI) that allow for radar reflection, non-specular trail observations may be used to derive velocity. We use ALTAIR radar data of combined head echos and non-specular trails to test non-specular trail derived velocity against head echo velocities. Meteor velocities derived from non-specular trail altitudinal width match to within 5 km/s when compared with head echo range rates from the same meteor. We apply this technique to Piura radar observations of hundreds of non-specular trails to produce histograms of occurrence of meteor velocity based solely on this non-specular trails width criterion. The results from this study show that the most probable velocity of meteors seen by the Piura radar is near 50 km/s which is comparable with modern head echo studies.

  3. Prediction of flame velocities of hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Simon, Dorothy M

    1954-01-01

    The laminar-flame-velocity data previously reported by the Lewis Laboratory are surveyed with respect to the correspondence between experimental flame velocities and values predicted by semitheoretical and empirical methods. The combustible mixture variables covered are hydrocarbon structure (56 hydrocarbons), equivalence ratio of fuel-air mixture, mole fraction of oxygen in the primary oxygen-nitrogen mixture (0.17 to 0.50), and initial mixture temperature (200 degrees to 615 degrees k). The semitheoretical method of prediction considered are based on three approximate theoretical equations for flame velocity: the Semenov equation, the Tanford-Pease equation, and the Manson equation.

  4. Low-Velocity Measurement in Water

    NASA Astrophysics Data System (ADS)

    Ellis, Christopher; Stefan, Heinz G.

    1986-09-01

    Water velocities in the centimeter per second range or less are measurable by only a few instruments. Experimental laboratory studies frequently require such measurements. A review of low water velocity measurement methods is presented. An inexpensive optical hydrogen bubble-tracing technique is described for velocity measurements in the range 0.5 to 8 cm/s. Modification to a thymol blue (pH) tracer method extends its applicability to the range 0.1 to 1.0 cm/s. Design and operational characteristics of the hydrogen bubble/thymol blue current meter are described.

  5. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  6. Energy analysis on use of air and superheated steam as drying media

    SciTech Connect

    Tarnawski, W.Z.; Mitera, J.; Borowski, P.; Klepaczka, A.

    1996-10-01

    The physical properties of air and superheated steam were analyzed in a range of temperatures applied in paper and paperboard drying processes. On the basis of tests carried out on a pilot stand the values of energy indices for air and steam drying processes are compared. With the drying media temperature as T{sub M} = 300 C, nozzle velocity {nu} = 60 m/s and using the Huang and Mujumdar model as well as relationships given by Chance a comparative analysis of the results has been carried out. Variation of several indices in the range of temperatures 100--600 C and various nozzle velocities was studied.

  7. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  8. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  9. High velocity gas in external galaxies

    NASA Technical Reports Server (NTRS)

    Kamphuis, J.; Vanderhulst, J. M.; Sancisi, R.

    1990-01-01

    Two nearby, nearly face-on spiral galaxies, M 101 and NGC 6946, observed in the HI with the Westerbork Synthesis Radio Telescope (WSRT) as part of a program to search for high velocity gas in other galaxies, are used to illustrate the range of properties of high velocity gas in other galaxies found thusfar.

  10. The All-Particle Spectrum of Primary Cosmic Rays in the Wide Energy Range from 10{sup 14} to 10{sup 17} eV Observed with the Tibet-III Air-Shower Array

    SciTech Connect

    Amenomori, M.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, X. H.; Guo, H. W.; Hu, Haibing; Fan, C.; Feng, C. F.; He, M.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Hibino, K.; Hotta, N.

    2008-05-10

    We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10{sup 14} to 10{sup 17} eV using 5.5 x 10{sup 7} events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m above sea level (an atmospheric depth of 606 g cm{sup -2}). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in the final result, assuming interaction models QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure proton and pure iron primary models are also examined as extreme cases. A detector simulation was also performed to improve our accuracy in determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components, leading to a weak dependence on the interaction model or the primary mass. This is the highest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.

  11. Meteor velocity determination with plasma physics

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Denney, K.; Close, S.; Oppenheim, M.; Chau, J.; Ray, L.

    2004-06-01

    Understanding the global meteor flux at Earth requires the measurement of meteor velocities. While several radar methods exist for measuring meteor velocity, they may be biased by plasma reflection mechanisms. This paper presents a new method for deriving meteoroid velocity from the altitudinal extent of non-specular trails. This method employs our recent discoveries on meteor trail plasma instability. Dyrud et al. (2002) demonstrated that meteor trails are unstable over a limited altitude range, and that the precise altitudes of instability are dependent on the meteoroid that generated the trail. Since meteor trail instability results in field aligned irregularities (FAI) that allow for radar reflection, non-specular trail observations may be used to derive velocity. We use ALTAIR radar data of combined head echos and non-specular trails to test non-specular trail derived velocity against head echo velocities. Meteor velocities derived from non-specular trail altitudinal width match to within 5 km/s when compared with head echo range rates from the same meteor. We apply this technique to Piura radar observations of hundreds of non-specular trails to produce histograms of occurrence of meteor velocity based solely on this non-specular trails width criterion. The results from this study show that the most probable velocity of meteors seen by the Piura radar is near 50 km/s, which is comparable with modern head echo studies.

  12. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  13. Some Improvements in the Design of a CA/CV Moessbauer Velocity Drive

    SciTech Connect

    Seberini, Milan

    2008-10-28

    A constant velocity Moessbauer drive was built with velocity range {+-}15 mm/s and velocity resolution 0.005 mm/s. Based on good experience with its performance, a new universal CA/CV drive was designed. The new drive is supposed to have velocity range of {+-}80 mm/s with a velocity resolution below 0.002 mm/s.

  14. About measuring velocity dispersions

    NASA Astrophysics Data System (ADS)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  15. Analysis of the Air Flow Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans Using a 3D Sonic Anemometer

    PubMed Central

    García-Ramos, F. Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans. PMID:22969363

  16. Steel Spheres and Skydiver--Terminal Velocity

    ERIC Educational Resources Information Center

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.

  17. Cooling Characteristics of a Pratt and Whitney R-2800 Engine Installed in an NACA Short-nose High-inlet-velocity Cowling

    NASA Technical Reports Server (NTRS)

    Corson, Blake W.; McLellan, Charles H.

    1944-01-01

    An investigation was made of the cooling characteristics of a P and W R-2800 engine with NACA short-nose high inlet-velocity cowling. The internal aerodynamics of the cowling were studied for ranges of propeller-advance ratio and inlet-velocity ratio obtained by deflection of cowling flaps. Tests included variations of engine power, fuel/air ratio and cooling-air pressure drop. Engine cooling data are presented in the form of cooling correlation curves, and an example for calculation of cooling requirements in flight is included.

  18. Variation in ejecta size with ejection velocity

    NASA Technical Reports Server (NTRS)

    Vickery, Ann M.

    1987-01-01

    The sizes and ranges of over 25,000 secondary craters around twelve large primaries on three different planets were measured and used to infer the size-velocity distribution of that portion of the primary crater ejecta that produced the secondaries. The ballistic equation for spherical bodies was used to convert the ranges to velocities, and the velocities and crater sizes were used in the appropriate Schmidt-Holsapple scaling relation of estimate ejecta sizes, and the velocity exponent was determined. The latter are generally between -1 and -13, with an average value of about -1.9. Problems with data collection made it impossible to determine a simple, unique relation between size and velocity.

  19. Metallic glass velocity sensor

    SciTech Connect

    Butler, J.L.; Butler, S.C.; Massa, D.P.; Cavanagh, G.H.

    1996-04-01

    A metallic glass accelerometer has been developed for use as an underwater sound velocity sensor. The device uses the metallic glass material Metglas 2605SC which has been processed to achieve a virgin coupling coefficient of 0.96. The mechanical to electrical conversion is based on the detection of the change in the inductance of the device as a result of bending motion. The detection method uses a carrier frequency signal which is amplitude modulated by the received signal. This scheme was originally described by Wun-Fogle, Savage and Clark [{open_quote}{open_quote}Sensitive wide frequency range magnetostrictive strain gauge,{close_quote}{close_quote} Sensors and Actuators, 1{underscore}2{underscore}, 323{endash}331 (1987)]. The bender is in the form of a three layered laminate with a closed magnetic path window frame structure. The theory of operation along with measured and calculated results are presented for a prototype element with approximate dimensions 1.5{times}1.0{times}0.1 inches. Calculated and measured results agree for a reduced effective coupling coefficient of 0.72 and operation with a carrier field intensity of 0.87 Oe and carrier frequency of 20 kHz. {copyright} {ital 1996 American Institute of Physics.}

  20. Detailed Comparison of Blast Effects in Air and Vacuum

    SciTech Connect

    Tringe, J W; Molitoris, J D; Garza, R G; Andreski, H G; Batteux, J D; Lauderbach, L M; Vincent, E R; Wong, B M

    2007-07-26

    Although blast mitigation is most often achieved with solid shielding, ambient gas pressure can also affect the coupling of shock waves to solid targets. In this work the role of air as an energy transfer medium was examined experimentally by subjecting identical large-area rectangular witness plates to short-range blast effects in air and vacuum ({approx}50 mtorr) at 25 C. The expanding reactant front of 3 kg C4 charges was observed by fast camera to be cylindrically symmetric in both air and vacuum. The horizontal component of the reactant cloud velocity (perpendicular to the witness plates) was constant in both cases, with values of 3.0 and 5.9 km/s for air and vacuum, respectively. As a result of the blast, witness plates were plastically deformed into a shallow dish geometry, with local maxima 30 and 20 mm deep for air and vacuum, respectively. The average plate deflection from the air blast was 11 mm, {approx}10% deeper than the average vacuum plate deflection. Shock pressure estimates were made with a simple impedance-matching model, and indicate peak values in the 30-50 MPa range are consistent with the reactant cloud density and velocity. However, more detailed analysis is necessary to definitely establish the mechanisms by which air couples shock energy to the plates.

  1. Measurements of Shaped Charge Jet Velocity

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2013-06-01

    Penetration depth is an important requirement in oil/gas well perforating jobs. The depth determines how far the wellbore can directly communicate with reservoir fluids. Deep perforation charges are widely used in oilfield industry and most of those are powder metal liner charge for no carrot-like slug left as solid liner does. Comprehensive measurements for the powder metal liner shaped charge jet characteristics, namely, the jet density and velocity, are needed to predict the shaped charge performance and to plan the perforating job. This paper focuses on an experimental work of jet velocity measurements. A medium size of powder metal liner charges (27 grams HMX) is used in the tests. The powder jet shoots through a stack of limestone blocks with shorting switch set in between. Half inch air-gap between two blocks is design to provide space for jet traveling in air to record free fly velocity, meanwhile the jet penetration velocity in the limestone is measured. Aluminum foil switches are used to record the jet Time of Arrival (TOA). The charged switch shorted by the metal jet when it arrives. The shorting signal is recorded. The two velocities can be used to estimate the jet penetration effectiveness. A series of TOA tests show that jet velocity along its length linearly decreases from jet tip to tail until the stagnation points referring to which jet material moves in opposite direction.

  2. Ice crystal terminal velocities.

    NASA Technical Reports Server (NTRS)

    Heymsfield, A.

    1972-01-01

    Terminal velocities of different ice crystal forms were calculated, using the most recent ice crystal drag coefficients, aspect ratios, and densities. The equations derived were primarily for use in calculating precipitation rates by sampling particles with an aircraft in cirrus clouds, and determining particle size in cirrus clouds by Doppler radar. However, the equations are sufficiently general for determining particle terminal velocity at any altitude, and almost any crystal type. Two sets of equations were derived. The 'general' equations provide a good estimate of terminal velocities at any altitude. The 'specific' equations are a set of equations for ice crystal terminal velocities at 1000 mb. The calculations are in good agreement with terminal velocity measurements. The results from the present study were also compared to prior calculations by others and seem to give more reasonable results, particularly at higher altitudes.

  3. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  4. Vertical Velocity Measurements in Warm Stratiform Clouds

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Kollias, P.

    2013-12-01

    Measurements of vertical air motion in warm boundary layer clouds are key for quantitatively describing cloud-scale turbulence and for improving our understanding of cloud and drizzle microphysical processes. Recently, a new technique that produces seamless measurements of vertical air velocity in the cloud and sub-cloud layers for both drizzling and non-drizzling stratocumulus clouds has been developed. The technique combines radar Doppler spectra-based retrievals of vertical air motion in cloud and light drizzle conditions with a novel neural network analysis during heavily drizzling periods. Observations from Doppler lidars are used to characterize sub-cloud velocities and to evaluate the performance of the technique near the cloud base. The technique is applied to several cases of stratiform clouds observed by the ARM Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign in Cape Cod. The observations clearly illustrate coupling of the sub-cloud and cloud layer turbulent structures.

  5. Sex-specific difference of the association between ambient air pollution and the prevalence of obesity in Chinese adults from a high pollution range area: 33 Communities Chinese Health Study

    NASA Astrophysics Data System (ADS)

    Li, Meng; Qian, Zhengmin; Vaughn, Michael; Boutwell, Brian; Ward, Patrick; Lu, Tao; Lin, Shao; Zhao, Yang; Zeng, Xiao-Wen; Liu, Ru-Qing; Qin, Xiao-Di; Zhu, Yu; Chen, Wen; Dong, Guang-Hui

    2015-09-01

    Experimental data suggests that exposure to airborne fine particulate matter is associated with obesity. There is little supporting epidemiologic evidence of this, however. To evaluate the effects of ambient air pollution on the prevalence of obesity among adults living in a primarily industrial province of northeast China, 24,845 Chinese adults between the ages of 18 and 74 were randomly recruited from 33 communities in 11 districts of three northeastern Chinese cities during 2009. The participants' weight and height were measured. Three-year (2006-2008) average concentrations of particles with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were calculated from monitoring stations in each of the 11 districts. Two-level logistic regressions models were used to examine the effects of pollutants exposure. Overall, 35.3% (8764) were overweight and 5.8% (1435) were obese. After adjusting for confounding factors, significant associations between concentrations of air pollutants and prevalence of obesity were found. When the analysis was stratified by sex, the associations were significant only in women. Among women, an increased prevalence of obesity was associated with an interquartile range increase in PM10 (19 μg/m3; odds ratio [ORs] = 1.18; 95% confidence interval [CI]:1.06-1.32), NO2 (9 μg/m3; ORs = 1.24; 95% CI: 1.09-1.41), and O3 (22 μg/m3; ORs = 1.14; 95% CI: 1.01-1.30). Associations were stronger among older participants. In conclusion, this study reveals a positive association between the long-term exposure to ambient air pollution and increased prevalence of obesity, and that these associations were more apparent in women than in men.

  6. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    NASA Astrophysics Data System (ADS)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  7. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  8. Vortex shedding flow meter performance at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1986-01-01

    In some of the ducts of the Space Shuttle Main Engine (SSME), the maximum liquid oxygen flow velocities approach 10 times those at which liquid flow measurements are normally made. The hydrogen gas flow velocities in other ducts exceed the maximum for gas flow measurement by more than a factor of 3. The results presented here show from water flow tests that vortex shedding flow meters of the appropriate design can measure water flow to velocities in excess of 55 m/s, which is a Reynolds number of about 2 million. Air flow tests have shown that the same meter can measure flow to a Reynolds number of at least 22 million. Vortex shedding meters were installed in two of the SSME ducts and tested with water flow. Narrow spectrum lines were obtained and the meter output frequencies were proportional to flow to + or - 0.5% or better over the test range with no flow conditioning, even though the ducts had multiple bends preceeding the meter location. Meters with the shedding elements only partially spanning the pipe and some meters with ring shaped shedding elements were also tested.

  9. Measurement of velocities in gas-liquid two-phase flow using Laser Doppler Velocimetry

    SciTech Connect

    Vassallo, P.F.; Trabold, T.A.; Moore, W.E.; Kirouac, G.J.

    1992-09-01

    Measurements of bubble and liquid velocities in two-phase flow have been made using a new forward/backward scattering Laser Doppler Velocimetry (LDV) technique. This work was performed in a 6.4 by 11.1 mm vertical duct using known air/water mixtures. A standard LDV fiber optic probe was used to measure the bubble velocity, using direct backscattered light. A novel retro-reflector and lens assembly permitted the same probe to measure the liquid velocity with direct forward-scattered light. The bubble velocity was confirmed by independent measurements with a high-speed video system. The liquid velocity was confirmed by demonstrating the dominance of the liquid seed data rate in the forward-scatter measurement. Experimental data are presented to demonstrate the accuracy of the technique for a wide range of flow conditions, from bubbles as small as 0.75-mm-diam to slugs as large as 10-mm wide by 30-mm long. In the slug regime, the LDV technique performed velocity measurements for both phases, for void fractions up to 50%, which was the upper limit of our experimental investigation.

  10. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality

    PubMed Central

    Milojevic, Ai; Wilkinson, Paul; Armstrong, Ben; Bhaskaran, Krishnan; Smeeth, Liam; Hajat, Shakoor

    2014-01-01

    Objective To inform potential pathophysiological mechanisms of air pollution effects on cardiovascular disease (CVD), we investigated short-term associations between ambient air pollution and a range of cardiovascular events from three national databases in England and Wales. Methods Using a time-stratified case-crossover design, over 400 000 myocardial infarction (MI) events from the Myocardial Ischaemia National Audit Project (MINAP) database, over 2 million CVD emergency hospital admissions and over 600 000 CVD deaths were linked with daily mean concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter less than 10 μm in aerodynamic diameter (PM10), particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) and sulfur dioxide (SO2), and daily maximum of 8-hourly running mean of O3 measured at the nearest air pollution monitoring site to the place of residence. Pollutant effects were modelled using lags up to 4 days and adjusted for ambient temperature and day of week. Results For mortality, no CVD outcome analysed was clearly associated with any pollutant, except for PM2.5 with arrhythmias, atrial fibrillation and pulmonary embolism. With hospital admissions, only NO2 was associated with a raised risk: CVD 1.7% (95% CI 0.9 to 2.6), non-MI CVD 2.0% (1.1 to 2.9), arrhythmias 2.9% (0.6 to 5.2), atrial fibrillation 2.8% (0.3 to 5.4) and heart failure 4.4% (2.0 to 6.8) for a 10th–90th centile increase. With MINAP, only NO2 was associated with an increased risk of MI, which was specific to non-ST-elevation myocardial infarction (non-STEMIs): 3.6% (95% CI 0.4 to 6.9). Conclusions This study found no clear evidence for pollution effects on STEMIs and stroke, which ultimately represent thrombogenic processes, though it did for pulmonary embolism. The strongest associations with air pollution were observed with selected non-MI outcomes. PMID:24952943

  11. FAME Radial Velocity Survey

    NASA Astrophysics Data System (ADS)

    Salim, S.; Gould, A.

    2000-12-01

    Full-Sky Astrometric Mapping Explorer (FAME) belongs to a new generation of astrometry satellites and will probe the surrounding space some 20 times deeper than its predecessor Hipparcos. As a result we will acquire precise knowledge of 5 out of 6 components of phase-space for millions of stars. The remaining coordinate, radial velocity, will remain unknown. In this study, we look at how the knowledge of radial velocity affects the determination of the structure of the Galaxy, and its gravitational potential. We therefore propose a radial velocity survey of FAME stars, and discuss its feasibility and technical requirements.

  12. The velocity of climate change.

    PubMed

    Loarie, Scott R; Duffy, Philip B; Hamilton, Healy; Asner, Gregory P; Field, Christopher B; Ackerly, David D

    2009-12-24

    The ranges of plants and animals are moving in response to recent changes in climate. As temperatures rise, ecosystems with 'nowhere to go', such as mountains, are considered to be more threatened. However, species survival may depend as much on keeping pace with moving climates as the climate's ultimate persistence. Here we present a new index of the velocity of temperature change (km yr(-1)), derived from spatial gradients ( degrees C km(-1)) and multimodel ensemble forecasts of rates of temperature increase ( degrees C yr(-1)) in the twenty-first century. This index represents the instantaneous local velocity along Earth's surface needed to maintain constant temperatures, and has a global mean of 0.42 km yr(-1) (A1B emission scenario). Owing to topographic effects, the velocity of temperature change is lowest in mountainous biomes such as tropical and subtropical coniferous forests (0.08 km yr(-1)), temperate coniferous forest, and montane grasslands. Velocities are highest in flooded grasslands (1.26 km yr(-1)), mangroves and deserts. High velocities suggest that the climates of only 8% of global protected areas have residence times exceeding 100 years. Small protected areas exacerbate the problem in Mediterranean-type and temperate coniferous forest biomes. Large protected areas may mitigate the problem in desert biomes. These results indicate management strategies for minimizing biodiversity loss from climate change. Montane landscapes may effectively shelter many species into the next century. Elsewhere, reduced emissions, a much expanded network of protected areas, or efforts to increase species movement may be necessary. PMID:20033047

  13. Computing discharge using the index velocity method

    USGS Publications Warehouse

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  14. The range scheduling aid

    NASA Technical Reports Server (NTRS)

    Halbfinger, Eliezer M.; Smith, Barry D.

    1991-01-01

    The Air Force Space Command schedules telemetry, tracking and control activities across the Air Force Satellite Control network. The Range Scheduling Aid (RSA) is a rapid prototype combining a user-friendly, portable, graphical interface with a sophisticated object-oriented database. The RSA has been a rapid prototyping effort whose purpose is to elucidate and define suitable technology for enhancing the performance of the range schedulers. Designing a system to assist schedulers in their task and using their current techniques as well as enhancements enabled by an electronic environment, has created a continuously developing model that will serve as a standard for future range scheduling systems. The RSA system is easy to use, easily ported between platforms, fast, and provides a set of tools for the scheduler that substantially increases his productivity.

  15. Radar range measurements in the atmosphere.

    SciTech Connect

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  16. Multilogarithmic velocity renormalization in graphene

    NASA Astrophysics Data System (ADS)

    Sharma, Anand; Kopietz, Peter

    2016-06-01

    We reexamine the effect of long-range Coulomb interactions on the quasiparticle velocity in graphene. Using a nonperturbative functional renormalization group approach with partial bosonization in the forward scattering channel and momentum transfer cutoff scheme, we calculate the quasiparticle velocity, v (k ) , and the quasiparticle residue, Z , with frequency-dependent polarization. One of our most striking results is that v (k ) ∝ln[Ck(α ) /k ] where the momentum- and interaction-dependent cutoff scale Ck(α ) vanishes logarithmically for k →0 . Here k is measured with respect to one of the charge neutrality (Dirac) points and α =2.2 is the strength of dimensionless bare interaction. Moreover, we also demonstrate that the so-obtained multilogarithmic singularity is reconcilable with the perturbative expansion of v (k ) in powers of the bare interaction.

  17. Gas cooking range

    SciTech Connect

    Narang, R.K.; Narang, K.

    1984-02-14

    An energy-efficient gas cooking range features an oven section with improved heat circulation and air preheat, a compact oven/broiler burner, a smoke-free drip pan, an efficient piloted ignition, flame-containing rangetop burner rings, and a small, portable oven that can be supported on the burner rings. Panels spaced away from the oven walls and circulation fans provide very effective air flow within the oven. A gas shutoff valve automatically controls the discharge of heated gases from the oven so that they are discharged only when combustion is occurring.

  18. Nerve conduction velocity

    MedlinePlus

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... normal body temperature. Being too cold slows nerve conduction. Tell your doctor if you have a cardiac ...

  19. High Velocity Gas Gun

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  20. Velocity of Sound

    ERIC Educational Resources Information Center

    Gillespie, A.

    1975-01-01

    Describes a method for the determination of the velocity of sound using a dual oscilloscope on which is displayed the sinusoidal input into a loudspeaker and the signal picked up by a microphone. (GS)

  1. Velocity profile development for a poultry facility acid scrubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of the air velocity profile for 12 experimental configurations (ECs) of an acid scrubber was carried out using an equal area traverse method with a vane axial anemometer. Four velocity profile plots were created for each configuration to determine the four optimal ECs. ECs were selecte...

  2. Range Safety Flight Elevation Limit Calculation Software

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J

    2014-01-01

    inputs of vehicle characteristics (e.g., thrust and aerodynamic data), nor does it require reams of turn data after the traditional fashion of the Air Force ranges. The program requires a nominal trajectory table (time, altitude, range, velocity, and flight elevation) and makes heavy use of it to initialize and model a failure turn.

  3. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  4. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  5. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  6. Monte Carlo simulations for deriving the precision in GPR velocity estimates

    NASA Astrophysics Data System (ADS)

    Clark, R. A.; Booth, A.; Murray, T.

    2010-12-01

    Models of ground penetrating radar (GPR) propagation velocity are often used to quantify physical subsurface properties (e.g., layer thickness, porosity, water content). A common approach is to conduct semblance analysis on common midpoint (CMP) gathers, in which successive pairs of stacking velocity and travel-time are input to Dix’s Equation, to obtain a velocity estimate, termed interval stacking velocity. However, the precision in interval stacking velocity is seldom reported since it is cumbersome to obtain an analytic expression for precision particularly since Dix’s Equation has four independently resolved degrees of freedom. We present Monte Carlo simulations as a means of expressing interval stacking velocities, and its derivative quantities, as a probability density functions (PDFs). These are built using Gaussian distributions of pseudo-random samples from within the 50% contour around successive coherence responses; precision is summarised using the median and inter-quartile range of each PDF. To verify this method’s accuracy, we simulate CMP data in which travel-times are computed for reflections from two horizontal horizons at depths of 5 and 10 m, with isotropic interval velocity of 0.1 m/ns, for source-receiver offsets from 0 to 30 m. The Monte Carlo simulation produces 107 manifestations of interval stacking velocity and layer thickness, and yields estimates of 0.1±0.003 m/ns and 4.99±0.16 m, respectively. The simulation is repeated for real CMP data, acquired with 50 MHz antennas, for establishing the precision in interval stacking velocity and speculative estimates (in the absence of extensive borehole logs) of layer thickness and fractional porosity (via the complex refractive index method, CRIM). The site comprises Quaternary sediment, in which the water table is observed at ~2 m depth, overlying Cambrian basement at 10-15 m depth. The resolution of stacking velocity in semblance analysis decreases with depth, as reflected in PDFs of

  7. Velocity Based Modulus Calculations

    NASA Astrophysics Data System (ADS)

    Dickson, W. C.

    2007-12-01

    A new set of equations are derived for the modulus of elasticity E and the bulk modulus K which are dependent only upon the seismic wave propagation velocities Vp, Vs and the density ρ. The three elastic moduli, E (Young's modulus), the shear modulus μ (Lamé's second parameter) and the bulk modulus K are found to be simple functions of the density and wave propagation velocities within the material. The shear and elastic moduli are found to equal the density of the material multiplied by the square of their respective wave propagation-velocities. The bulk modulus may be calculated from the elastic modulus using Poisson's ratio. These equations and resultant values are consistent with published literature and values in both magnitude and dimension (N/m2) and are applicable to the solid, liquid and gaseous phases. A 3D modulus of elasticity model for the Parkfield segment of the San Andreas Fault is presented using data from the wavespeed model of Thurber et al. [2006]. A sharp modulus gradient is observed across the fault at seismic depths, confirming that "variation in material properties play a key role in fault segmentation and deformation style" [Eberhart-Phillips et al., 1993] [EPM93]. The three elastic moduli E, μ and K may now be calculated directly from seismic pressure and shear wave propagation velocities. These velocities may be determined using conventional seismic reflection, refraction or transmission data and techniques. These velocities may be used in turn to estimate the density. This allows velocity based modulus calculations to be used as a tool for geophysical analysis, modeling, engineering and prospecting.

  8. Range Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After more than two hundred years, grazing remains California’s most extensive land use. The ‘Range Ecosystems’ chapter in the ‘Ecosystems of California’ sourcebook provides an integrated picture of the biophysical, social, and economic aspects of lands grazed by livestock in the state. Grazing mana...

  9. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  10. A new instrumentation for particle velocity and velocity related measurements under water

    NASA Astrophysics Data System (ADS)

    Zhu, Weijia

    This dissertation investigates the capability of a new instrument for small particle velocity measurement and velocity related signal analysis in an underwater environment. This research started from the laser beam quality test, which was performed in air. It was conducted mainly by means of an optical fiber sensor combined with a computer controlled stepping motor as well as two other methods, edge detection and needle-tip scattering. The stepping motor offers a constant velocity to the fiber sensor, so that the beam separation can be accurately measured by using the constant velocity value and the transit time determined by the cross correlation function of two digital signals. Meanwhile, information of the beam intensity profile, the parallelism of the two beams and the in-air beam widths can also be obtained in the test. By using the calibrated beam separation of the ribbon pair in the beam quality test, particle velocity measurements are carried out based on the relation between velocity, displacement and time in a 500-liter open water tank. The time delay for a particle crossing over the two ribbons in sequence is obtained by computing the cross correlation of the two signals. In fact, the time delay is actually a statistical mean value of many particles that cross over the ribbons in a short time. So is the measured velocity. The third part of this research is the practical study on pulse shape analysis based on the data sets of the velocity measurement. Several computer programs are developed to explore the pulse height distribution in a data set, to study the pulse degeneration, the relationship between the pulse width and the velocity, and the in-water beam width information. Some important reference materials are displayed in the appendices such as the fundamentals of the cross correlation and auto correlation, three main MATLAB programs developed for this research, the theoretical analysis of particle diffraction.

  11. Gunshot residue particle velocity and deceleration.

    PubMed

    De Forest, Peter R; Martir, Kirby; Pizzola, Peter A

    2004-11-01

    The velocity of over 800 gunshot residue particles from eight different sources was determined using high speed stroboscopic photography (spark gap light source). These particles were found to have an average velocity of 500 to 600 ft per second. Many particles acquired considerably higher velocities. Thus, the particles have sufficient energy to embed themselves within certain nearby targets like skin or fabric. The relatively high velocity that the particles acquire explain the formation of stippling on skin in close proximity to a muzzle discharge. These findings also indicate little influence of air currents on particle behavior near the muzzle. The deceleration of less than 100 particles during a 100-microsecond interval was also calculated. The particles experienced rapid rates of deceleration which would explain why few particles are found in test firings beyond 3 ft from the muzzle of a discharged firearm. Because of their relatively high velocity, normal wind velocity would not be expected to significantly influence their motion near the muzzle. PMID:15568695

  12. Spall velocity measurements from laboratory impact craters

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1986-01-01

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  13. Visualization and velocity measurement of unsteady flow in a gas generator using cold-flow technique

    NASA Astrophysics Data System (ADS)

    Kuppa, Subrahmanyam

    1990-08-01

    Modeling of internal flow fields with hot, compressible fluids and sometimes combustion using cold flow techniques is discussed. The flow in a gas generator was modeled using cold air. The experimental set up was designed and fabricated to simulate the unsteady flow with different configurations of inlet tubes. Tests were run for flow visualization and measurement of axial velocity at different frequencies ranging from 5 to 12 Hz. Flow visualization showed that the incoming flow was a complex jet flow confined to a cylindrical enclosure, while the outgoing flow resembled the venting of a pressurized vessel. The pictures show a complex flow pattern due to the angling of the jet towards the wall for the bent tube configurations and straightened flows with straight tube and other configurations with straighteners. Velocity measurements were made at an inlet Re of 8.1 x 10(exp 4) based on maximum velocity and inlet diameter. Phase averaged mean velocities were observed to be well defined during charging and diminished during venting inside the cylinder. For the straight tube inlet comparison with a steady flow measurement of sudden expansion flow showed a qualitative similarity of the mean axial velocity distribution and centerline velocity decay during the charging phases. For the bent tube inlet case the contour plots showed the flow tendency towards the wall. Two cells were seen in the contours for the 8 and 12 Hz cases. The deviation of the point of occurrence of maximum velocity in a radial profile was found to be about 6.5 degrees. Entrance velocity profiles showed symmetry for the straight tube inlet but were skewed for the bent tube inlet. Contour plots of the phase averaged axial turbulence intensity for bent tube cases showed higher values in the core and near the wall in the region of impingement. Axial turbulence intensity measured for the straight tube case showed features as observed in an axisymmetric sudden expansion flow.

  14. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  15. Quantitative velocity modulation spectroscopy.

    PubMed

    Hodges, James N; McCall, Benjamin J

    2016-05-14

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined. PMID:27179476

  16. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  17. Quantitative velocity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  18. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  19. Three-component planar velocity measurements using Mach-Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV)

    NASA Astrophysics Data System (ADS)

    Lu, Z.-H.; Charrett, T. O. H.; Tatam, R. P.

    2009-03-01

    Interferometric filter-based planar Doppler velocimetry is used in conjunction with imaging fibre bundles to make time-averaged three-component velocity measurements using a single imaging head. The Doppler frequency shifts of light scattered by particles entrained into the flow to be measured are transduced to intensity variations using a Mach-Zehnder interferometer. The free spectral range of the filter can be selected by adjusting the optical path difference of the interferometer. This allows the velocity measurement range, sensitivity and resolution to be varied. Three-component measurements are made possible by porting different views of the measurement plane to a single imaging head using the imaging fibre bundles. A comparison of three different image-processing techniques is presented and analysed with the aid of modelled images. Results are presented here for time-averaged measurements of a rotating disc with maximum velocities of ~ ±34 m s-1 in the field of view with the computed measurement error in the orthogonal velocity components being (0.89, 0.68, 1.42) m s-1 for the measurement geometry used. Three-component velocity measurements were also made on a seeded air jet with a nozzle diameter of 20 mm and an exit velocity of ~85 m s-1.

  20. MSE velocity survey

    NASA Astrophysics Data System (ADS)

    Schimd, C.; Courtois, H.; Koda, J.

    2015-12-01

    A huge velocity survey based on the Maunakea Spectroscopic Explorer facility (MSE) is proposed, aiming at investigating the structure and dynamics of the cosmic web over 3π steradians up to ˜1 Gpc and at unprecedented spatial resolution, its relationship with the galaxy formation process, and the bias between galaxies and dark matter during the last three billions years. The cross-correlation of velocity and density fields will further allow the probe any deviation from General Relativity by measuring the the linear-growth rate of cosmic structures at precision competitive with high-redshift spectroscopic redshift surveys.

  1. DVL Angular Velocity Recorder

    NASA Technical Reports Server (NTRS)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  2. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  3. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  4. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  5. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,

  6. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  7. Effect of Velocity in Icing Scaling Tests

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Bond, Thomas H. (Technical Monitor)

    2003-01-01

    This paper presents additional results of a study first published in 1999 to determine the effect of scale velocity on scaled icing test results. Reference tests were made with a 53.3-cm-chord NACA 0012 airfoil model in the NASA Glenn Icing Research Tunnel at an airspeed of 67 m/s, an MVD of 40 microns, and an LWC of 0.6 g/cu m. Temperature was varied to provide nominal freezing fractions of 0.8, 0.6, and 0.5. Scale tests used both 35.6- and 27.7-cm-chord 0012 models for 2/3- and 1/2-size scaling. Scale test conditions were found using the modified Ruff (AEDC) scaling method with the scale velocity determined in five ways. Four of the scale velocities were found by matching the scale and reference values of water-film thickness, velocity, Weber number, and Reynolds number. The fifth scale velocity was simply the average of those found by matching the Weber and Reynolds numbers. The resulting scale velocities ranged from 85 to 220 percent of the reference velocity. For a freezing fraction of 0.8, the value of the scale velocity had no effect on how well the scale ice shape simulated the reference shape. For nominal freezing fractions of 0.5 and 0.6, the best simulation of the reference shape was achieved when the scale velocity was the average of the constant-Weber-number and the constant-Reynolds-number velocities.

  8. Numerical Simulation of the Convective Heat Exchange in the Separation air and Oil Flows in a Staggered Bank of Round Tubes in a Wide Range of Change in the Reynolds Number

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Zhukova, Yu. V.; Malyshkin, D. A.

    2015-07-01

    An analysis of the convective heat exchange in the separation air and oil flows in banks of heated round tubes and their hydraulic losses at Reynolds numbers changing in a wide range from 100 to 400 for the laminar flow and from 103 to 8·103 for the turbulent fl ow has been performed. For solving the Navier-Stokes and energy equations, multiblock computational technologies realized in the VP2/3 package and original procedures for correction of the pressure gradient in a fl ow and its mean-mass temperature were used. The Reynolds-averaged Navier-Stokes equations were closed using the Menter shear-stress transfer model modified with account for the curvature of streamlines within the framework of the Leshtsiner-Rody approach with an Isaev-Kharchenko-Usachov constant equal to 0.2. The results of numerical simulation were compared with the corresponding experimental data of A. Zhukaukas. The dependence of the local and integral characteristics of a fl ow of a heat-transfer agent in a staggered bank of round tubes on the properties of this agent was determined.

  9. Modeling Terminal Velocity

    ERIC Educational Resources Information Center

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  10. Time-of-flight measurement techniques for airborne ultrasonic ranging.

    PubMed

    Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon

    2013-02-01

    Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908

  11. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  12. Drainage of the air film during drop impact on flowing liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Matar, Omar

    2015-11-01

    Immediately upon the impact of a droplet on a liquid or a solid, a thin air cushion is formed by trapping air beneath the droplet. The drainage of the air film is critical in determining the eventual outcome of the impact. Here we propose a model to study the drainage of the gas film between a droplet and a flowing liquid film. The effects of a wide range of parameters influencing the drainage process are studied, such as the fluid viscosities, the surface tension, the velocity of the droplet, the velocity of the liquid film. The results show that the tangential movement of the liquid film can delay the drainage of the air film and promote the bouncing of droplets. This confirms our previous experimental results, which show that during the impact of droplets on flow liquid films, the probability of bouncing increases with the Reynolds number of the liquid film. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  13. Coaxial twin-fluid atomization with pattern air gas streams

    NASA Astrophysics Data System (ADS)

    Hei Ng, Chin; Aliseda, Alberto

    2010-11-01

    Coaxial twin-fluid atomization has numerous industrial applications, most notably fuel injection and spray coating. In the coating process of pharmaceutical tablets, the coaxial atomizing air stream is accompanied by two diametrically opposed side jets that impinge on the liquid/gas coaxial jets at an angle to produce an elliptical shape of the spray's cross section. Our study focuses on the influence of these side jets on the break up process and on the droplet velocity and diameter distribution along the cross section. The ultimate goal is to predict the size distribution and volume flux per unit area in the spray. With this predictive model, an optimal atomizing air/pattern air ratio can be found to achieve the desired coating result. This model is also crucial in scaling up the laboratory setup to production level. We have performed experiments with different atomized liquids, such as water and glycerine-water mixtures, that allow us to establish the effect of liquid viscosity, through the Ohnesorge number, in the spray characteristics. The gas Reynolds number of our experiments ranges from 9000 to 18000 and the Weber number ranges from 400 to 1600. We will present the effect of pattern air in terms of the resulting droplets size, droplet number density and velocity at various distances downstream of the nozzle where the effect of pattern air is significant.

  14. High velocity pulsed plasma thermal spray

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Massey, D. W.; Kincaid, R. W.; Whichard, G. C.; Mozhi, T. A.

    2002-03-01

    The quality and durability of coatings produced by many thermal spray techniques could be improved by increasing the velocity with which coating particles impact the substrate. Additionally, better control of the chemical and thermal environment seen by the particles during flight is crucial to the quality of the coating. A high velocity thermal spray device is under development through a Ballistic Missile Defense Organization Small Business Innovation Research (SBIR) project, which provides significantly higher impact velocity for accelerated particles than is currently available with existing thermal spray devices. This device utilizes a pulsed plasma as the accelerative medium for powders introduced into the barrel. Recent experiments using a particle imaging diagnostic system showed that the device can accelerate stainless steel and WC-Co powders to velocities ranging from 1500 to 2200 m/s. These high velocities are accomplished without the use of combustible gases and without the need of a vacuum chamber, while maintaining an inert atmosphere for the particles during acceleration. The high velocities corresponded well to modeling predictions, and these same models suggest that velocities as high as 3000 m/s or higher are possible.

  15. Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hye-Ryun; Ho, Chang-Hoi; Kim, Jinwon; Chen, Deliang; Lee, Seungmin; Choi, Yong-Sang; Chang, Lim-Seok; Song, Chang-Keun

    2015-05-01

    Massive air pollutants originating in China and their trans-boundary transports are an international concern in East Asia. Despite its importance, details in the trans-boundary transport of air pollutants over East Asia and its impact on regional air quality remain to be clarified. This study presents an evidence which strong support that aerosols emitting in China play a major role in the occurrence of multi-day (≥4 days) severe air pollution episodes in cold seasons (October through March) for 2001-2013 in Seoul, Korea, where the concentration of PM10 (particulates with diameters ≤ 10 μm) exceeds 100 μg m-3. Observations show that these multi-day severe air pollution episodes occur when a strong high-pressure system resides over the eastern China-Korea region. In such weather conditions, air pollutants emitted in eastern China/southwestern Manchuria are trapped within the atmospheric boundary layer, and gradually spread into neighboring countries by weak lower tropospheric westerlies. Understanding of trans-boundary transports of air pollutants will advance the predictability of local air quality, and will encourage the development of international measures to improve air quality.

  16. Latitudinal Variation of Solar Wind Velocity

    NASA Astrophysics Data System (ADS)

    Ananthakrishnan, S.; Balasubramanian, V.; Janardhan, P.

    1995-04-01

    Single station solar wind velocity measurements using the Ooty Radio Telescope (ORT) in India (operating at 327 MHz) are reported for the period August 1992 to August 1993. Interplanetary scintillation (IPS) observations on a large number of compact radio sources covering a latitudinal range of ±80° were used to derive solar wind velocities using the method of fitting a power law model to the observed IPS spectra. The data shows a velocity versus heliographic latitude pattern which is similar to that reported by Rickett and Coles (1991) for the 1981 1982 period. However, the average of the measured equatorial velocities are higher, being about 470 km s-1 compared to their value of 400 km s-1. The distribution of electron density variations (ΔN e ) between 50R⊙ and 90R⊙ was also determined and it was found that ΔN e was about 30% less at the poles as compared to the equator.

  17. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving. PMID:14727304

  18. Instantaneous velocity field imaging instrument for supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Legner, H. H.; Mcmanus, K. R.; Mulhall, P. A.; Parker, T. E.; Sonnenfroh, D. M.

    1993-01-01

    potential implications for many other LIF measurement techniques. Our results indicated the need to modify the commercially available laser cavity in order to accommodate the constraints imposed by typical SCRAMJET combustion characteristics as well as to increase the instrument's velocity dynamic range to span an intra-image range in excess of 2 km/s. The various technical efforts were brought together in a series of experiments demonstrating the applicability of the technique in a high pressure, high temperature H2-air combustion system. The resultant images were compared with 2-D flow simulations in order to determine the accuracy of the instrument. Mean velocity imaging in flows with an axis of symmetry was demonstrated with an accuracy of +/- 50 m/s out of an intra-image dynamic range of 1600 m/s, including reversed flow. A more complex configuration amenable to single-shot imaging in flows without an axis of symmetry was also demonstrated. Limitations imposed by available equipment resulted in an accuracy of about +/- 200 m/s out of 1750 m/s in these demonstrations. Minor modifications to the present configuration were suggested to improve this performance. Each technical task is described in detail, along with significance of the results for the overall imaging velocimeter configuration. This report should allow the user community to integrate this new measurement capability in their existing instrumentation platforms.

  19. Range and range rate system

    NASA Technical Reports Server (NTRS)

    Graham, Olin L. (Inventor); Russell, Jim K. (Inventor); Epperly, Walter L. (Inventor)

    1988-01-01

    A video controlled solid state range finding system which requires no radar, high power laser, or sophisticated laser target is disclosed. The effective range of the system is from 1 to about 200 ft. The system includes an opto-electric camera such as a lens CCD array device. A helium neon laser produces a source beam of coherent light which is applied to a beam splitter. The beam splitter applies a reference beam to the camera and produces an outgoing beam applied to a first angularly variable reflector which directs the outgoing beam to the distant object. An incoming beam is reflected from the object to a second angularly variable reflector which reflects the incoming beam to the opto-electric camera via the beam splitter. The first reflector and the second reflector are configured so that the distance travelled by the outgoing beam from the beam splitter and the first reflector is the same as the distance travelled by the incoming beam from the second reflector to the beam splitter. The reference beam produces a reference signal in the geometric center of the camera. The incoming beam produces an object signal at the camera.

  20. Western Aeronautical Test Range

    NASA Technical Reports Server (NTRS)

    Sakahara, Robert D.

    2008-01-01

    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety.

  1. Kinematic and diabatic vertical velocity climatologies from a chemistry climate model

    NASA Astrophysics Data System (ADS)

    Marinke Hoppe, Charlotte; Ploeger, Felix; Konopka, Paul; Müller, Rolf

    2016-05-01

    The representation of vertical velocity in chemistry climate models is a key element for the representation of the large-scale Brewer-Dobson circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10-year simulation are provided for both kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely, upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities and analyze the impact of residual circulation and mixing processes on the age of air. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows a younger mean age of air in the

  2. [Study on determination of plume velocity by passive differential optical absorption spectroscopy].

    PubMed

    Li, Ang; Xie, Pin-hua; Liu, Wen-qing; Liu, Jian-guo; Dou, Ke; Lin, Yi-hui

    2008-10-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure various trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range. Passive DOAS using the zenith scattered sunlight as the light source can obtain the continuous column density distribution of air pollutants (such as SO2 and NO2) by scanning the plume emitted from sources on a mobile platform, then with the plume velocity information the total emission value can be ultimately estimated. In practice it is hard to calculate the total emission because there is no efficient way to accurately get the plume velocity which is the most important parameter. Usually the wind speed near ground is used as the actual plume speed, which constitutes the greatest source of uncertainty in the passive DOAS measurements for the total emission calculation. A passive DOAS method for the determination of plume velocity of pollution source was studied in the present paper. Two passive DOAS systems were placed under the plume along the plume transmission direction to observed the scattered sunlight at one fixed sepasation angle, and then the plume velocity was derived from the time delay resulting from the plume moving a certain distance, and also the plume height needed in the plume velocity calculation was measured by the same two passive DOAS systems. Measurement of the plume emitted from a certain power plant was carried out by the two passive DOAS systems and the plume velocities of 3.6 and 5.4 m x s(-1) at two separate moments were derived. The comparison with the wind speed measured at the same time by the single theodolite wind observation method indicates that this optical remote sensing method based on passive DOAS can be used to determine the plume velocity by monitoring the total emission from sources. PMID:19123375

  3. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  4. Reliable Diameter Control of Carbon Nanotube Nanobundles Using Withdrawal Velocity.

    PubMed

    Shin, Jung Hwal; Kim, Kanghyun; An, Taechang; Choi, WooSeok; Lim, Geunbae

    2016-12-01

    Carbon nanotube (CNT) nanobundles are widely used in nanoscale imaging, fabrication, and electrochemical and biological sensing. The diameter of CNT nanobundles should be controlled precisely, because it is an important factor in determining electrode performance. Here, we fabricated CNT nanobundles on tungsten tips using dielectrophoresis (DEP) force and controlled their diameters by varying the withdrawal velocity of the tungsten tips. Withdrawal velocity pulling away from the liquid-air interface could be an important, reliable parameter to control the diameter of CNT nanobundles. The withdrawal velocity was controlled automatically and precisely with a one-dimensional motorized stage. The effect of the withdrawal velocity on the diameter of CNT nanobundles was analyzed theoretically and compared with the experimental results. Based on the attachment efficiency, the withdrawal velocity is inversely proportional to the diameter of the CNT nanobundles; this has been demonstrated experimentally. Control of the withdrawal velocity will play an important role in fabricating CNT nanobundles using DEP phenomena. PMID:27581602

  5. Lead exposure at uncovered outdoor firing ranges

    SciTech Connect

    Goldberg, R.L.; Hicks, A.M.; O'Leary, L.M.; London, S. )

    1991-06-01

    Excessive lead exposure in shooting instructors at indoor firing ranges and covered outdoor firing ranges has been documented. The City of Los Angeles assessed exposure of its full-time shooting instructors at uncovered outdoor ranges via air monitoring and blood lead-level measurements. Results of these tests revealed that significant lead exposure and absorption can occur at outdoor firing ranges. The use of copper-jacketed ammunition may decrease air lead levels and decrease lead absorption by range instructors.

  6. Uncertainties in the measurement of the atmospheric velocity due to balloon-gondola pendulum-like motions

    NASA Astrophysics Data System (ADS)

    Alexander, P.; de la Torre, A.

    2011-02-01

    Balloons lead to the highest vertical resolution of air velocity data actually attainable from atmospheric soundings. However, the pendulum-like motion of the balloon-gondola system may significantly affect these measurements if the distance between balloon and gondola is large. This may prevent the study of the highest vertical resolution range obtained. Also, if not appropriately discriminated, these fluctuations could be confused with small scale or turbulent oscillations of the atmosphere. It is shown from simple energy considerations that horizontal and vertical wind velocity perturbations introduced in the observations by the pendulum motion may usually be comparable to typical measurements. Vertical velocity data that were obtained with an instrumented gondola in a zero pressure balloon, which typically reach the lower stratosphere, are analyzed and found to be in agreement with the above statements. The pendulum-like behavior in this sounding seems to be stimulated by the buoyant oscillation of the atmosphere.

  7. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  8. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  9. Accurate measurement of the position and velocity of a falling object

    NASA Astrophysics Data System (ADS)

    Garg, Madhur; Kalimullah, Arun, P.; Lima, F. M. S.

    2007-03-01

    An object accelerates while it falls under the influence of the gravitational force. By using two sensors a precise and automated measurement of the velocity can be obtained. The analysis of these measurements may be insufficient if air resistance is important. We discuss how by increasing the number of sensors we can determine the velocity, terminal velocity, and acceleration due to gravity.

  10. Sensitivity to Auditory Velocity Contrast.

    PubMed

    Locke, Shannon M; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  11. Sensitivity to Auditory Velocity Contrast

    PubMed Central

    Locke, Shannon M.; Leung, Johahn; Carlile, Simon

    2016-01-01

    A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static “snapshot” model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488

  12. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  13. Inhibition of premixed methane-air flames by fluoromethanes

    SciTech Connect

    Linteris, G.T.; Truett, L.

    1996-04-01

    This paper presents the first calculations and measurements of the burning velocity of premixed hydrocarbon flames inhibited by the three one-carbon fluorinated species CH{sub 2}F{sub 2}, CF{sub 3}H, and CF{sub 4}. Studying their behavior in methane flames provides an important first step towards understanding the suppression mechanism of hydrocarbon fires by fluorinated compounds. The burning velocity of premixed methane-air flames is determined using the total area method from a schlieren image of the flame. The inhibitors are tested over a range of concentration and fuel-air equivalence ratio, {phi}. The measured burning velocity reduction caused by addition of the inhibitor is compared with that predicted by numerical solution of the species and energy conservation equations employing a detailed chemical kinetic mechanism recently developed at NIST. Even in this first test of the kinetic mechanism on inhibited hydrocarbon flames, the numerically predicted burning velocity reductions for methane-air flames with values of {phi} of 0.9, 1.0, and 1.1 and inhibitor mole fractions in the unburned gases up to 0.08, are in excellent agreement for CH{sub 2}F{sub 2} and CF{sub 4} and within 35% for CF{sub 3}H. The numerical results indicate that the agents CF{sub 3}H and CH{sub 2}F{sub 2} are totally consumed in the flame and the burning velocity is reduced primarily by a reduction in the H-atom concentration through reactions leading to HF formation. In contrast, only about 10% of the CF{sub 4} is consumed and it reduces the burning velocity primarily by lowering the final temperature of the burned gases.

  14. Thermal creep-assisted dust lifting on Mars: Wind tunnel experiments for the entrainment threshold velocity

    NASA Astrophysics Data System (ADS)

    Küpper, Markus; Wurm, Gerhard

    2015-07-01

    In this work we present laboratory measurements on the reduction of the threshold friction velocity necessary for lifting dust if the dust bed is illuminated. Insolation of a porous soil establishes a temperature gradient. At low ambient pressure this gradient leads to thermal creep gas flow within the soil. This flow leads to a subsurface overpressure which supports lift imposed by wind. The wind tunnel was run with Mojave Mars Simulant and air at 3, 6, and 9mbar, to cover most of the pressure range at Martian surface levels. Our first measurements imply that the insolation of the Martian surface can reduce the entrainment threshold velocity between 4% and 19% for the conditions sampled with our experiments. An insolation activated soil might therefore provide additional support for aeolian particle transport at low wind speeds.

  15. Air Sparging Decision Tool

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  16. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    NASA Astrophysics Data System (ADS)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  17. Acoustic method for measuring air temperature and humidity in rooms

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2014-05-01

    A method is proposed to determine air temperature and humidity in rooms with a system of sound sources and receivers, making it possible to find the sound velocity and reverberation time. Nomograms for determining the air temperature and relative air humidity are constructed from the found sound velocity and time reverberation values. The required accuracy of measuring these parameters is estimated.

  18. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  19. Mapping Yangtze coastal surface velocities from ASAR

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhou, Y.; Ge, J.

    2013-12-01

    The routine sea surface current velocity measurement is principal and essential for assimilation in ocean circulation models, further for resolving coastal ocean dynamics. The obvious and unique advantages of Synthetic Aperture Radar (SAR) systems have been successfully demonstrated over variously routine ocean surface phenomena. In this paper, the detailed procedures to derive the sea surface range Doppler velocities are presented from ASAR Wide Swath Mode (WSM) products. Doppler anomaly and Doppler range velocity are analyzed in measurements by three different WSM scenes over Yangtze Estuary. At the meantime, this Doppler centroid method is validated with simulated current fields from the numerical circulation model Finite-Volume Coastal Ocean Model (FVCOM) and the results are promising. Comparisons to FVCOM data show that ASAR are capable to retrieve large gradient variation of surface velocities and capture quantitative information of strong surface currents, which are immensely attractive for the routine quantitative observation of sea surface currents from the radial Doppler anomaly. Surface Doppler velocity (V_D) from ASAR WSM scene on 31 Jan 2005 with the corresponding simulated surface currents based on FVCOM superimposed. Doppler anomaly RMS bias over land of the scenes

  20. Dark Matter Velocity Spectroscopy.

    PubMed

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications. PMID:26849582

  1. Dark Matter Velocity Spectroscopy

    NASA Astrophysics Data System (ADS)

    Speckhard, Eric G.; Ng, Kenny C. Y.; Beacom, John F.; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy—the measurement of energy shifts induced by relative motion of source and observer—can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  2. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  3. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  4. Kinematic and diabatic vertical velocity climatologies from a chemistry climate model

    NASA Astrophysics Data System (ADS)

    Hoppe, C. M.; Ploeger, F.; Konopka, P.; Müller, R.

    2015-11-01

    The representation of vertical velocity in chemistry climate models is a key element for the representation of the large scale Brewer-Dobson-Circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Messy Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10 year simulation are provided for both, kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows younger mean age of air in the inner tropical upwelling branch and older mean age in the extratopical tropopause region.

  5. Influence of pellet seating on the external ballistic parameters of spring-piston air guns.

    PubMed

    Werner, Ronald; Schultz, Benno; Frank, Matthias

    2016-09-01

    In firearm examiners' and forensic specialists' casework as well as in air gun proof testing, reliable measurement of the weapon's muzzle velocity is indispensable. While there are standardized and generally accepted procedures for testing the performance of air guns, the method of seating the diabolo pellets deeper into the breech of break barrel spring-piston air guns has not found its way into standardized test procedures. The influence of pellet seating on the external ballistic parameters was investigated using ten different break barrel spring-piston air guns. Test shots were performed with the diabolo pellets seated 2 mm deeper into the breech using a pellet seater. The results were then compared to reference shots with conventionally loaded diabolo pellets. Projectile velocity was measured with a high-precision redundant ballistic speed measurement system. In eight out of ten weapons, the muzzle energy increased significantly when the pellet seater was used. The average increase in kinetic energy was 31 % (range 9-96 %). To conclude, seating the pellet even slightly deeper into the breech of spring-piston air guns might significantly alter the muzzle energy. Therefore, it is strongly recommended that this effect is taken into account when accurate and reliable measurements of air gun muzzle velocity are necessary. PMID:27448569

  6. Synthetic RR Lyrae velocity curves

    SciTech Connect

    Liu, Tianxing Boston Univ., MA )

    1991-02-01

    An amplitude correlation between the pulsation velocity curves and visual light curves of ab-type RR Lyrae stars is derived from a large number of RR Lyrae that have high-precision radial-velocity and photometric data. Based on the determined AVp, AV ralation, a synthetic radial-velocity curve for a typical ab-type RR Lyrae star is constructed. This would be of particular use in determining the systemic velocities of RR Lyrae. 17 refs.

  7. Optimisation of the mean boat velocity in rowing.

    PubMed

    Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P

    2012-01-01

    In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement. PMID:21491254

  8. The velocity distribution of cometary hydrogen - Evidence for high velocities?

    NASA Technical Reports Server (NTRS)

    Brown, Michael E.; Spinrad, Hyron

    1993-01-01

    The Hamilton Echelle spectrograph on the 3-m Shane telescope at Lick Observatory was used to obtain high-velocity and spatial resolution 2D spectra of H-alpha 6563-A emission in Comets Austin and Levy. The presence of the components expected from water dissociation and collisional thermalization in the inner coma is confirmed by the hydrogen velocity distribution. In Comet Austin, the potential high-velocity hydrogen includes velocities of up to about 40 km/s and is spatially symmetric with respect to the nucleus. In Comet Levy, the high-velocity hydrogen reaches velocities of up to 50 km/s and is situated exclusively on the sunward side of the nucleus. The two distinct signatures of high-velocity hydrogen imply two distinct sources.

  9. Magnetic induction system for two-stage gun projectile velocity measurements

    SciTech Connect

    Moody, R L; Konrad, C H

    1984-05-01

    A magnetic induction technique for measuring projectile velocities has been implemented on Sandia's two-stage light gas gun. The system has been designed to allow for projectile velocity measurements to an accuracy of approx. 0.2 percent. The velocity system has been successfully tested in a velocity range of 3.5 km/s to 6.5 km/s.

  10. Measurements of the bulk and interfacial velocity profiles in oscillating Newtonian and Maxwellian fluids.

    PubMed

    Torralba, M; Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; del Río, J A; Ortín, J

    2005-07-01

    We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid--pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries. PMID:16090087

  11. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOEpatents

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  12. Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion

    NASA Astrophysics Data System (ADS)

    Anggono, Willyanto; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, Slamet; Hamidi, Nurkholis; Hayakawa, Akihiro

    2013-04-01

    Spherically expanding flames propagating at constant pressure were employed to determine the laminar burning velocity and flammability characteristics of biogas-air mixtures in premixed combustion to uncover the fundamental flame propagation characteristics of a new alternative and renewable fuel. The results are compared with those from a methane-air flame. Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (phi) using a photographic technique in a high pressure fan-stirred bomb, the initial condition being at room temperature and atmospheric pressure. The flame for methane-air mixtures propagates from phi=0.6 till phi=1.3. The flame at phi >= 1.4 does not propagate because the combustion reaction is quenched by the larger mass of fuel. At phi<=0.5, it does not propagate as well since the heat of reaction is insufficient to burn the mixtures. The flame for biogas-air mixtures propagates in a narrower range, that is from phi=0.6 to phi=1.2. Different from the methane flame, the biogas flame does not propagate at phi>=1.3 because the heat absorbed by inhibitors strengthens the quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at phi<=0.5 does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. Compared to a methane-air mixture, the flammability characteristic (flammable region) of biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases work more effectively at rich mixtures because the rich biogas-air mixtures have a higher fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures.

  13. Phobos: Low Velocity Impacts

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Lee, Pascal; Hamilton, Douglas

    2014-11-01

    Mars’s inner moon, Phobos, is located deep in the planet’s gravity well and orbits far below the planet’s synchronous orbit. Images of the surface of Phobos, in particular from Viking Orbiter 1, MGS, MRO, and MEX, reveal a rich collisional history, including fresh-looking impact craters and subdued older ones, very large impact structures (compared to the size of Phobos), such as Stickney, and much smaller ones.Sources of impactors colliding with Phobos include a priori: A) Impactors from outside the martian system (asteroids, comets, and fragments thereof); B) Impactors from Mars itself (ejecta from large impacts on Mars); and C) Impactors from Mars orbit, including impact ejecta launched from Deimos and ejecta launched from, and reintercepted by, Phobos. In addition to individual craters on Phobos, the networks of grooves on this moon have also been attributed in part or in whole to impactors from some of these sources, particularly B. We report the preliminary results of a systematic survey of the distribution, morphology, albedo, and color characteristics of fresh impact craters and associated ejecta deposits on Phobos. Considering that the different potential impactor sources listed above are expected to display distinct dominant compositions and different characteristic impact velocity regimes, we identify specific craters on Phobos that are more likely the result of low velocity impacts by impactors derived from Mars orbit than from any alternative sources. Our finding supports the hypothesis that the spectrally “Redder Unit” on Phobos may be a superficial veneer of accreted ejecta from Deimos, and that Phobos’s bulk might be distinct in composition from Deimos.

  14. Semiconductor structures for repeated velocity overshoot

    NASA Astrophysics Data System (ADS)

    Cooper, J. A., Jr.; Capasso, F.; Thornber, K. K.

    1982-12-01

    The conditions required for obtaining repeated velocity overshoot in semiconductors are discussed. Two classes of structures that provide these conditions are considered. The structures are seen as holding promise for achieving average drift velocities well in excess of the maximum steady-state velocity over distances ranging from submicron to tens of microns. In structures of the first class, the stairstep in potential is achieved by using a graded bandgap that is similar to the avalanche photodetector described by Williams et al. (1982), where the composition is graded from GaAs to Al(0.2)Ga(0.8)As. The second class of structures uses alternating planar doped charge sheets, as described by Malik et al. (1980).

  15. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  16. Tracking moving radar targets with parallel, velocity-tuned filters

    DOEpatents

    Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana

    2013-04-30

    Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.

  17. Velocity and velocity bounds in static spherically symmetric metrics

    NASA Astrophysics Data System (ADS)

    Arraut, Ivan; Batic, Davide; Nowakowski, Marek

    2011-08-01

    We find simple expressions for velocity of massless particles with dependence on the distance, r, in Schwarzschild coordinates. For massive particles these expressions give an upper bound for the velocity. Our results apply to static spherically symmetric metrics. We use these results to calculate the velocity for different cases: Schwarzschild, Schwarzschild-de Sitter and Reissner-Nordström with and without the cosmological constant. We emphasize the differences between the behavior of the velocity in the different metrics and find that in cases with naked singularity there always exists a region where the massless particle moves with a velocity greater than the velocity of light in vacuum. In the case of Reissner-Nordström-de Sitter we completely characterize the velocity and the metric in an algebraic way. We contrast the case of classical naked singularities with naked singularities emerging from metric inspired by noncommutative geometry where the radial velocity never exceeds one. Furthermore, we solve the Einstein equations for a constant and polytropic density profile and calculate the radial velocity of a photon moving in spaces with interior metric. The polytropic case of radial velocity displays an unexpected variation bounded by a local minimum and maximum.

  18. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  19. Velocity dependence of serpentinite friction promotes aseismic slip on faults

    SciTech Connect

    Reinen, L.A.; Weeks, J.D.; Tullis, T.E. . Dept. of Geological Sciences)

    1992-01-01

    Serpentinite is common on many crustal faults and it has been suggested that the presence of serpentine on these faults may promote aseismic slip. Consequently, the authors have experimentally measured the frictional constitutive response of both antigorite and lizardite polymorphs of serpentine to step changes in velocity. This was done at room temperature in rotary direct shear; normal stress was 25 MPa, and velocities ranged from 32 mm/yr to 3.2 [times] 10[sup 5] mm/yr. The frictional behavior of both serpentine polymorphs indicates that the presence of either one on a fault would result in aseismic creep in the shallow crust at typical plate motion rates. In contrast to other rock types, such as granite, both serpentinites display velocity-strengthening behavior at slow sliding velocities: below some transitional velocity, the frictional resistance increases with velocity, thus promoting stable aseismic slip. At faster velocities, however, frictional strength has a negative dependence on velocity (velocity weakening), which provides the potential for unstable sliding, leading to earthquakes. The coefficient of friction of the antigorite serpentinite is similar to that of other silicates, while that of the lizardite is much lower. The low frictional strength of lizardite may help explain some geologic observations that serpentine appears quite mobile during deformation in the crust. However, it is the velocity-strengthening behavior observed in both serpentinites at low sliding velocities, and not the frictional strength, that will promote aseismic slip on serpentine-bearing faults at typical rates of plate motion.

  20. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...