Science.gov

Sample records for air velocity air

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Air velocity distribution in a commercial broiler house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing air velocity during tunnel ventilation in commercial broiler production facilities improves production efficiency, and many housing design specifications require a minimum air velocity. Air velocities are typically assessed with a hand-held velocity meter at random locations, rather than ...

  3. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  4. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  5. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  6. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  7. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  8. Flame Velocities over a Wide Composition Range for Pentane-air, Ethylene-air, and Propyne-air Flames

    NASA Technical Reports Server (NTRS)

    Simon, Dorothy M; Wong, Edgar, L

    1951-01-01

    Fundamental flame velocities are reported for pentane air, ethylene-air, and propylene-air mixtures for the concentration range 60 to 130 percent of stoichiometric. A form of the Tanford and Pease equation, which includes a small constant velocity term independent of diffusion, will predict the observed changes in flame velocity.

  9. Simulation of air velocity in a vertical perforated air distributor

    NASA Astrophysics Data System (ADS)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  10. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  11. Unimpeded air velocity profiles of air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...

  12. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  13. Air velocity distributions from air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capability to control both liquid and air flow rates based on tree structures would be one of the advantages of future variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rate functions...

  14. Derivation of vertical air velocity from conventional Radiosonde ascents

    NASA Astrophysics Data System (ADS)

    Manguttathil Gopalakrishnan, Manoj; Mohanakumar, Kesavapillai; Samson, Titu; Kottayil, Ajil; Varadarajan, Rakesh; Rebello, Rejoy

    2016-07-01

    In this work, we devise a method to estimate air vertical velocity from ascending radiosondes similar to that described in published results, but with certain differences in deriving the balloon parameters and the drag coefficient, while not considering explicitly the heat exchange between the balloon and the environment. We basically decompose the observed balloon ascent rate into vertical velocity in still air due to buoyancy force and that due to vertical air motion. The first part is computed from basic hydrodynamical principles and the vertical velocity is derived as the difference between observed ascent rate and the estimated still air vertical velocity. The derived values agree reasonably well (r=0.66) with vertical velocities observed with a collocated wind profiler radar, and the sources of uncertainties are discussed. Since vertical velocity is a difficult quantity to measure directly without expensive methods, derivation of the same from the conventional radiosonde ascents could be of great importance to the meteorological communities.

  15. Minimum detectable air velocity by thermal flow sensors.

    PubMed

    Issa, Safir; Lang, Walter

    2013-08-19

    Miniaturized thermal flow sensors have opened the doors for a large variety of new applications due to their small size, high sensitivity and low power consumption. Theoretically, very small detection limits of air velocity of some micrometers per second are achievable. However, the superimposed free convection is the main obstacle which prevents reaching these expected limits. Furthermore, experimental investigations are an additional challenge since it is difficult to generate very low flows. In this paper, we introduce a physical method, capable of generating very low flow values in the mixed convection region. Additionally, we present the sensor characteristic curves at the zero flow case and in the mixed convection region. Results show that the estimated minimum detectable air velocity by the presented method is 0.8 mm/s. The equivalent air velocity to the noise level of the sensor at the zero flow case is about 0.13 mm/s.

  16. Minimum Detectable Air Velocity by Thermal Flow Sensors

    PubMed Central

    Issa, Safir; Lang, Walter

    2013-01-01

    Miniaturized thermal flow sensors have opened the doors for a large variety of new applications due to their small size, high sensitivity and low power consumption. Theoretically, very small detection limits of air velocity of some micrometers per second are achievable. However, the superimposed free convection is the main obstacle which prevents reaching these expected limits. Furthermore, experimental investigations are an additional challenge since it is difficult to generate very low flows. In this paper, we introduce a physical method, capable of generating very low flow values in the mixed convection region. Additionally, we present the sensor characteristic curves at the zero flow case and in the mixed convection region. Results show that the estimated minimum detectable air velocity by the presented method is 0.8 mm/s. The equivalent air velocity to the noise level of the sensor at the zero flow case is about 0.13 mm/s. PMID:23966190

  17. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  18. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  19. Fume hood performance: Face velocity variability inconsistent air volume systems

    SciTech Connect

    Volin, C.E.; Joao, R.V.; Gershey, E.L.; Reiman, J.S.; Party, E.

    1998-09-01

    A 3-year survey of 366 bench-type fume hoods in working laboratories in conventional, constant air volume settings showed that face velocities varied greatly from unit to unit and over time. Fume hoods with bypasses performed better than those without; however, even newly fabricated bypass hoods exhibited large variations. These variations were due to several factors; however, face velocities at 100 {+-} 10 ft/min at working sash heights in the range of 20 to 40 cm (8 to 16 inches) were attainable. The use of smoke showed poor containment, especially at face velocities below 85 ft/min (0.425 m/s) or above 130 ft/min (0.65 m/s) and when the hoods were obstructed by large items placed on the work surface. Auxiliary/supplemental air created unstable face velocities and poor smoke patterns. The analysis of 3 years of fume hood monitoring showed clearly the need for and importance of a maintenance program where the fume hood lower slots are cleaned and fans, ducts, dampers, and hoods are checked periodically.

  20. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  1. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  2. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  3. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  4. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  5. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  6. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  7. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  8. Effect of High Air Velocities on the Distribution and Penetration of a Fuel Spray

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1931-01-01

    By means of the NACA Spray Photography Equipment high speed moving pictures were taken of the formation and development of fuel sprays from an automatic injection valve. The sprays were injected normal to and counter to air at velocities from 0 to 800 feet per second. The air was at atmosphere temperature and pressure. The results show that high air velocities are an effective means of mixing the fuel spray with the air during injection.

  9. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  10. Egomotion estimation with optic flow and air velocity sensors.

    PubMed

    Rutkowski, Adam J; Miller, Mikel M; Quinn, Roger D; Willis, Mark A

    2011-06-01

    We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.

  11. Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air

    NASA Astrophysics Data System (ADS)

    Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.

    1991-07-01

    Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.

  12. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  13. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  14. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  15. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  16. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  17. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  18. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  19. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  20. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  1. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  2. The Effect of Solid Admixtures on the Velocity of Motion of a Free Dusty Air Jet

    NASA Technical Reports Server (NTRS)

    Chernov, A. P.

    1957-01-01

    In dusty air flows occurring in industrial practice in transport by air pressure of friable materials, in the drying, annealing, and so forth, of a pulverized solid mass in suspension, and in other processes, the concentration of solid particles usually has a magnitude of the order of 1 kg per 1 kg of air. At such a concentration, the ratio of the volume of the particles to the volume of the air is small (less than one-thousandth part). However, regardless of this, the presence of a solid admixture manifests itself in the rules for the velocity distribution of the air in a dusty air flow. As a result, the rules of velocity change are different for clean and for dusty air flows. The estimation of the influence of the admixture on the velocity of the motion of the flow presents a definitive interest. One of the attempts to estimate that influence on the axial velocity of a free axially symmetrical jet with admixtures was made by Abramovich. Abramovich assumed beforehand that the fine particles of the admixture in the jet are subject to the motion of the air (that is, that the velocity of the admixture is approximately equal to the local velocity of the air); he then took as the basis of his considerations, in solving the problem, the condition that the amount of motion of the two-phase jet must be constant.

  3. Effects of air velocity on laying hen production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  4. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  5. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  6. Design of passively aerated compost piles: Vertical air velocities between the pipes

    SciTech Connect

    Lynch, N.J.; Cherry, R.S.

    1996-09-01

    Passively aerated compost piles are built on a base of porous materials, such as straw or wood chips, in which perforated air supply pipes are distributed. The piles are not turned during composting, nor is forced-aeration equipment used, which significantly reduces the operating and capital expenses associated with these piles. Currently, pile configurations and materials are worked out by trial and error. Fundamentally based design procedures are difficult to develop because the natural convection air flow rate is not explicitly known, but rather is closely coupled with the pile temperature. This paper develops a mathematical model to analytically determine the maximum upward air flow velocity over an air supply pipe and the drop in vertical velocity away from the pipe. This model has one dimensionless number, dependent on the pile and base properties, which fully characterizes the velocity profile between the pipes. 9 refs., 4 figs., 1 tab.

  7. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  8. Penetration of Liquid Jets into a High-velocity Air Stream

    NASA Technical Reports Server (NTRS)

    Chelko, Louis J

    1950-01-01

    Data are presented showing the penetration characteristics of liquid jets directed approximately perpendicular to a high-velocity air stream for jet-nozzle-throat diameters from 0.0135 to 0.0625 inch, air stream densities from 0.0805 to 0.1365 pound per cubic foot, liquid jet velocities from 168.1 to 229.0 feet per second and a liquid jet density of approximately 62 pounds per cubic foot. The data were analyzed and a correlation was developed that permitted the determination of the penetration length of the liquid jet for any operation condition within the range of variables investigated.

  9. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  10. Validation of a CFD model by using 3D sonic anemometers to analyse the air velocity generated by an air-assisted sprayer equipped with two axial fans.

    PubMed

    García-Ramos, F Javier; Malón, Hugo; Aguirre, A Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-22

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values.

  11. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  12. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  13. Using eddy covariance to estimate air-sea gas transfer velocity for oxygen

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas; Rutgersson, Anna; Sahlée, Erik

    2016-07-01

    Air-sea gas transfer velocity for O2 is calculated using directly measured fluxes with the eddy covariance technique. It is a direct method and is frequently used to determine fluxes of heat, humidity, and CO2, but has not previously been used to estimate transfer velocities for O2, using atmospheric eddy covariance data. The measured O2 fluxes are upward directed, in agreement with the measured air-sea gradient of the O2 concentration, and opposite to the direction of the simultaneously measured CO2 fluxes. The transfer velocities estimated from measurements are compared with prominent wind speed parameterizations of the transfer velocity for CO2 and O2, previously established from various measurement techniques. Our result indicates stronger wind speed dependence for the transfer velocity of O2 compared to CO2 starting at intermediate wind speeds. This stronger wind speed dependence appears to coincide with the onset of whitecap formation in the flux footprint and the strong curvature of a cubic wind-dependent function for the transfer velocity provides the best fit to the data. Additional data using the measured O2 flux and an indirect method (based on the Photosynthetic Quotient) to estimate oxygen concentration in water, support the stronger wind dependence for the transfer velocity of O2 compared to CO2.

  14. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  15. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  16. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  17. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  18. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  19. ADL ORVIS: an air-delay-leg, line-imaging optically recording velocity interferometer system.

    PubMed

    Trott, Wayne M; Castañeda, Jaime N; Cooper, Marcia A

    2014-04-01

    An interferometry system that enables acquisition of spatially resolved velocity-time profiles with very high velocity sensitivity has been designed and applied to two diverse, instructive experimental problems: (1) measurement of low-amplitude reverberations in laser-driven flyer plates and (2) measurement of ramp-wave profiles in symmetric impact studies of fused silica. The delay leg in this version of a line-imaging optically recording velocity interferometer system (ORVIS) consists of a long air path that includes relay optics to transmit the optical signal through the interferometer cavity. Target image quality from the delay path at the image recombination plane is preserved by means of a compact and flexible optical design utilizing two parabolic reflectors (serving as the relay optics) in a folded path. With an instrument tuned to a velocity per fringe constant of 22.4 m s(-1) fringe(-1), differences of 1-2 m s(-1) across the probe line segment can be readily distinguished. Measurements that capture small spatial variations in flyer velocity are presented and briefly discussed. In the fused silica impact experiments, the ramp-wave profile observed by this air-delay instrument compares favorably to the profile recorded simultaneously by a conventional line-imaging ORVIS.

  20. ADL ORVIS: An air-delay-leg, line-imaging optically recording velocity interferometer system

    NASA Astrophysics Data System (ADS)

    Trott, Wayne M.; Castañeda, Jaime N.; Cooper, Marcia A.

    2014-04-01

    An interferometry system that enables acquisition of spatially resolved velocity-time profiles with very high velocity sensitivity has been designed and applied to two diverse, instructive experimental problems: (1) measurement of low-amplitude reverberations in laser-driven flyer plates and (2) measurement of ramp-wave profiles in symmetric impact studies of fused silica. The delay leg in this version of a line-imaging optically recording velocity interferometer system (ORVIS) consists of a long air path that includes relay optics to transmit the optical signal through the interferometer cavity. Target image quality from the delay path at the image recombination plane is preserved by means of a compact and flexible optical design utilizing two parabolic reflectors (serving as the relay optics) in a folded path. With an instrument tuned to a velocity per fringe constant of 22.4 m s-1 fringe-1, differences of 1-2 m s-1 across the probe line segment can be readily distinguished. Measurements that capture small spatial variations in flyer velocity are presented and briefly discussed. In the fused silica impact experiments, the ramp-wave profile observed by this air-delay instrument compares favorably to the profile recorded simultaneously by a conventional line-imaging ORVIS.

  1. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  2. An empirical model of human aspiration in low-velocity air using CFD investigations.

    PubMed

    Anthony, T Renée; Anderson, Kimberly R

    2015-01-01

    Computational fluid dynamics (CFD) modeling was performed to investigate the aspiration efficiency of the human head in low velocities to examine whether the current inhaled particulate mass (IPM) sampling criterion matches the aspiration efficiency of an inhaling human in airflows common to worker exposures. Data from both mouth and nose inhalation, averaged to assess omnidirectional aspiration efficiencies, were compiled and used to generate a unifying model to relate particle size to aspiration efficiency of the human head. Multiple linear regression was used to generate an empirical model to estimate human aspiration efficiency and included particle size as well as breathing and freestream velocities as dependent variables. A new set of simulated mouth and nose breathing aspiration efficiencies was generated and used to test the fit of empirical models. Further, empirical relationships between test conditions and CFD estimates of aspiration were compared to experimental data from mannequin studies, including both calm-air and ultra-low velocity experiments. While a linear relationship between particle size and aspiration is reported in calm air studies, the CFD simulations identified a more reasonable fit using the square of particle aerodynamic diameter, which better addressed the shape of the efficiency curve's decline toward zero for large particles. The ultimate goal of this work was to develop an empirical model that incorporates real-world variations in critical factors associated with particle aspiration to inform low-velocity modifications to the inhalable particle sampling criterion.

  3. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  4. Measurements of Flat-Flame Velocities of Diethyl Ether in Air

    PubMed Central

    Gillespie, Fiona; Metcalfe, Wayne K.; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Curran, Henry J.

    2013-01-01

    This study presents new adiabatic laminar burning velocities of diethyl ether in air, measured on a flat-flame burner using the heat flux method. The experimental pressure was 1 atm and temperatures of the fresh gas mixture ranged from 298 to 398 K. Flame velocities were recorded at equivalence ratios from 0.55 to 1.60, for which stabilization of the flame was possible. The maximum laminar burning velocity was found at an equivalence ratio of 1.10 or 1.15 at different temperatures. These results are compared with experimental and computational data reported in the literature. The data reported in this study deviate significantly from previous experimental results and are well-predicted by a previously reported chemical kinetic mechanism. PMID:23710107

  5. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  6. Effect of Wind Tunnel Air Velocity on VOC Flux from Standard Solutions and CAFO Manure/Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used wind tunnels and flux chambers to quantify the flux of volatile organic compounds (VOCs), ammonia, and hydrogen sulfide and estimate emission factors from animal feeding operations (AFOs) without accounting for effects of air velocity or sweep air flow rate. L...

  7. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  8. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  9. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  10. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  11. An Idea of Staged and Large Velocity Differential Secondary Air for Waterwall Erosion Protection and Oxygen Complementarity

    NASA Astrophysics Data System (ADS)

    Liu, B. Q.; Zhang, X. H.

    A successful design of circulating fluidized bed (CFB) boiler should have the highest combustion efficiency, economic operation, and optimum availability. There is a coupled phenomenon of an oxygen lean zone existing in the CFB boiler furnace which depresses combustion efficiency and particle (group) falling down faster and faster when it falls along the waterwall, abrading the tube metal effectively. A new secondary air design for the oxygen lean zone and erosion protection is conceived by using staged and large velocity differential secondary air. For example, a part of concentrate supplied secondary air has been divided into two parts: a low velocity part and a high velocity part. The low velocity part is used for rigid gas layer to reduce the particle falling velocity, and the high velocity part is used for oxygen supply. It is believed that 40˜6Om/s projecting air velocity could send new oxygen to at least half furnace depth in a short projecting lift as shown in calculation. In another view point, operational superficial gas velocity has an obvious effect on waterwall metal erosion, with a lower operation velocity having lower erosion.

  12. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  13. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  14. Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames

    NASA Technical Reports Server (NTRS)

    Lee, John; Goroshin, Samuel; Kolbe, Massimiliano

    2001-01-01

    Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are

  15. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    NASA Astrophysics Data System (ADS)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  16. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  17. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  18. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  19. Rich methane/air flames: Burning velocities, extinction limits, and flammability limit

    SciTech Connect

    Bui-Pham, M.N.; Miller, J.A.

    1994-12-31

    A theoretical investigation has been conducted to establish a reliable chemical kinetic mechanism that can determine the extinction limit of opposed-flow, strained, rich premixed methane-air flames. In the process of developing this kinetic representation for rich methane-air flames, we found that the heat of formation of {sup 1}CH{sub 2}=102.5 kcal/mole, which is 1 kcal/mole higher than the currently available thermochemical data, gives the best agreement with experimental data on burning velocities for equivalence ratios between 0.5 and 1.7. Employing this value for {Delta}H{sub f{sup 1}CH{sub 2}} in our calculations, the extinction stretch rate, K{sub ex}, was found to be K{sub ex}=2250 sec {sup {minus}1} for {phi}=1.0, K{sub ex}=2000 sec{sup {minus}1} for {phi}=1.1, and K{sub ex}=1400 sec{sup {minus}1} for {phi}=1.2. These results agree better with experiments than those using a lower heat of formation of singlet methylene. In comparison with previous calculations made by Kee et al., our predictions are basically the same except that our extinction stretch rate is slightly higher at {phi}=1.0 and that our location of the maximum extinction stretch rate is closer to that found in experiments. In addition, we establish the rich flammability limit using two different criteria to be approximately between {phi}=1.61 and {phi}=1.68, which agrees very well with an experimental value of {phi}=1.67.

  20. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  1. Determination of burst initiation location and tear propagation velocity during air burst testing of latex condoms

    NASA Astrophysics Data System (ADS)

    Davidhazy, Andrew

    1991-04-01

    The stress testing of latex condoms by an air burst procedure has been slow in gaining industry acceptance because questions have been raised regarding the influence of the test apparatus on the likelihood of breakage occurring where the condom is attached to the inflation device. It was desired to locate the areas at which the condoms tend to burst and thus corroborate or disprove these claims. Several factors associated with the bursting condom demanded the use of special instrumentation to detect arid study the burst initiation process. Microsecond duration electronic flashes were used for the initial stages of the investigation. Although the absolute point of initiation of a given burst could not be photographed, these high speed studies tend to indicate that the most likely place for high quality condoms to break is not where they are attached to the inflation device but at an intermediate area between the base and the tip of the condom. In addition, tear propagation characteristics and velocities were determined with a delayed-flash technique, a double-slit strip method and a rotating drum framing camera.

  2. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  3. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  4. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  5. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  6. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  7. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  8. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  9. Urban air

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Air pollution and the risk of potential health effects are not sufficiently convincing reasons for people to stop driving their cars, according to a study by the Population Reference Bureau (PRB) released on November 18.While sufficient levels of suspended particulate matter, carbon monoxide, and lead can present health concerns, the study found that many people surveyed for the study were not convinced of the clear linkage between air pollution and health.

  10. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  11. The effect of air temperature, velocity and visual lean (VL) composition on the tempering times of frozen boneless beef blocks.

    PubMed

    Brown, Tim; James, Stephen J

    2006-08-01

    Beef blocks of two compositions, 100% and 50% visual lean (VL), in standard commercial packaging with nominal dimensions of 510×390×150mm were tempered from -18°C to -3°C using air at temperatures from 3°C to -3°C and velocities of 0.5 and 5ms(-1). These conditions were then modelled using a finite difference mathematical model and the accuracy of the model assessed by comparison with the experimental results. An extended range of conditions (including an intermediate air velocity of 2ms(-1) and an intermediate composition of 75% VL) was then modelled to produce data that can be used to design tempering processes. The results show that single stage air tempering of even single blocks within their cartons needs to be a long process. In air at 3°C and 5ms(-1), blocks of 50% VL rose to deep temperatures of -10°C and -3°C after 4.0 and 22.5h, respectively, while with 100% VL 4.6 and 27.3h were required. Under these conditions, the surface layers of the meat would have spent many hours in a thawed condition that would be detrimental to both drip and optimal processing. Using lower temperatures avoids thawing and at the same time produces an optimum temperature difference for subsequent processing. However, tempering times are substantially extended. For example, times to the above temperatures using air at -1°C and 5ms(-1) were 4.8 and 37.5h for 50% VL and 5.1 and 44.5h for 100% VL.

  12. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  13. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  14. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  15. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    PubMed

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309

  16. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  17. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  18. Computational fluid dynamics investigation of human aspiration in low-velocity air: orientation effects on mouth-breathing simulations.

    PubMed

    Anthony, T Renée; Anderson, Kimberly R

    2013-07-01

    Computational fluid dynamics was used to investigate particle aspiration efficiency in low-moving air typical of occupational settings (0.1-0.4 m s(-1)). Fluid flow surrounding an inhaling humanoid form and particle trajectories traveling into the mouth were simulated for seven discrete orientations relative to the oncoming wind (0°, 15°, 30°, 60°, 90°, 135° and 180°). Three continuous inhalation velocities (1.81, 4.33, and 12.11 m s(-1)), representing the mean inhalation velocity associated with sinusoidal at-rest, moderate, and heavy breathing (7.5, 20.8, and 50.3 l min(-1), respectively) were simulated. These simulations identified a decrease in aspiration efficiency below the inhalable particulate mass (IPM) criterion of 0.5 for large particles, with no aspiration of particles 100 µm and larger for at-rest breathing and no aspiration of particles 116 µm for moderate breathing, over all freestream velocities and orientations relative to the wind. For particles smaller than 100 µm, orientation-averaged aspiration efficiency exceeded the IPM criterion, with increased aspiration efficiency as freestream velocity decreased. Variability in aspiration efficiencies between velocities was low for small (<22 µm) particles, but increased with increasing particle size over the range of conditions studied. Orientation-averaged simulation estimates of aspiration efficiency agree with the linear form of the proposed linear low-velocity inhalable convention through 100 µm, based on laboratory studies using human mannequins.

  19. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  20. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  1. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air

  2. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  3. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  4. Methods of Measurement of High Air Velocities by the Hot-wire Method

    NASA Technical Reports Server (NTRS)

    Weske, John R.

    1943-01-01

    Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.

  5. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity. PMID:20681430

  6. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  7. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  8. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  9. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  10. Experimental determination of the velocity and strain rate field in a laminar H2/Air counter-flow diffusion flame via LDA

    NASA Technical Reports Server (NTRS)

    Yeo, S. H.; Dancey, C. L.

    1991-01-01

    Measurements of the axial and radial components of velocity on the air side of stagnation in an axisymmetric H2/Air laminar counter-flow diffusion flame are reported. Results include the two-dimensional velocity field and computed velocity gradients (strain rates) along the stagnation streamline at two 'characteristic' strain rates, below the extinction limit. The measurements generally verify the modeling assumptions appropriate to the model of Kee et al. (1988). The 'traditional' potential flow model is not consistent with the measured results.

  11. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index. PMID:11282319

  12. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index.

  13. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  14. Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows

    NASA Technical Reports Server (NTRS)

    Philippe, L. C.; Hanson, R. K.

    1991-01-01

    A fast and nonintrusive velocity and temperature diagnostic based on oxygen absorption is presented. The system uses a GaAlAs tunable diode laser, ramped and modulated in wavelength at high frequency. Detection is performed at twice the modulating frequency, leading to second harmonic absorption lineshapes. Velocity is inferred from the wavelength shift of the absorption line center due to the Doppler effect. Temperature is determined by comparing experimental and calculated lineshapes. Capabilities of the technique for studies of transient high-speed flows are demonstrated in shock tube experiments. Good agreement is obtained with predicted temperatures and velocities when pressure-induced shifts are accounted for.

  15. Threshold velocities for input of soil particles into the air by desert soils

    SciTech Connect

    Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R.

    1980-10-20

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: disturbed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavement (alluvial deposits). 21 references, 5 figures, 6 tables.

  16. Measurements of the Air-flow Velocity in the Cylinder of an Airplane Engine

    NASA Technical Reports Server (NTRS)

    Wenger, Hermann

    1939-01-01

    The object of the present investigation is to determine the velocity in the BMW-VI cylinder of an externally driven single-cylinder test engine at high engine speeds using the hot-wire method of Ulsamer.

  17. Air cell

    NASA Astrophysics Data System (ADS)

    Okamura, Okiyoshi; Wakasa, Masayuki; Tamanoi, Yoshihito

    1991-04-01

    The present invention relates to an air cell. This air cell provides a compact light-weight power source for model aircraft permitting them to fly for an extended period so that they may be used for such practical purposes as crop dusting, surveying, and photographing. The cell is comprised of a current collector so disposed between a magnesium, zinc, or aluminum alloy cathode and a petroleum graphite anode that it is in contact with the anode. The anode is formed by adding polytetrafluoroethylene dispersion liquid in a mixture of active carbon and graphite powder, pouring the mixture into a mold and heating it to form the anode. It is fabricated by a plurality of anode sections and is formed with at least one hole so that it can provide a cell which is compact in size and light in weight yet is capable of generating a high output. The anode, the cathode, and a separator are wetted by an electrolytic liquid. The electrolyte is continuously supplied through the life of the cell.

  18. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  19. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  20. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  1. Influence of Wind Velocity Fluctuation on Air Temperature Difference between the Fan and Ground Levels and the Effect of Frost Protective Fan Operation

    NASA Astrophysics Data System (ADS)

    Araki, Takuya; Matsuo, Kiyoshi; Miyama, Daisuke; Sumikawa, Osamu; Araki, Shinsuke

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition.

  2. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.

    PubMed

    Stainier, C; Destain, M F; Schiffers, B; Lebeau, F

    2006-01-01

    The increased concern about environmental effect of off-target deposits of pesticides use has resulted in the development of numerous spray drift models. Statistical models based on experimental field studies are used to estimate off-target deposits for different sprayers in various environmental conditions. Random-walk and computational fluid dynamics (CFD) models have been used to predict the effect of operational parameters and were extensively validated in wind tunnel. A third group, Gaussian dispersion models have been used for several years for the environmental assessment of the pesticide spray drift, mainly for aerial application. When these models were used for the evaluation of boom sprayer spray drift, their predictions were found unreliable in the short range, were the initial release conditions of the droplets have a significant effect on the spray deposits. For longer ranges, the results were found consistent with the field measurements as the characteristics of the source have a reduced influence on the small droplets drift. Three major parameters must be taken into account in order to define realistic initial conditions of the droplets in a spray drift model: the spray pattern of the nozzle, the boom movements and the effect of entrained air and droplet velocities. To take theses parameters into account in a Gaussian model, the nozzle droplet size distribution measured with a PIV setup to divide the nozzle output into several size classes. The spray deposits of each diameter class was computed for each successive position of the nozzle combining the nozzle spray distribution with drift computed with a Gaussian tilting plume model. The summation of these footprints resulted in the global drift of the nozzle. For increasing droplet size, the release height used in the Gaussian model was decreased from nozzle height to ground level using an experimental law to take into account the effect of entrained air and droplet initial velocity. The experimental

  3. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  4. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  5. Air Force seal activities

    NASA Astrophysics Data System (ADS)

    Mayhew, Ellen R.

    1994-07-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.

  6. The role of loading rate, backwashing, water and air velocities in an up-flow nitrifying tertiary filter.

    PubMed

    Vigne, Emmanuelle; Choubert, Jean-Marc; Canler, Jean-Pierre; Heduit, Alain; Sørensen, Kim Helleshøj; Lessard, Paul

    2011-01-01

    The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-Nm(-3)_mediad(-1) is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h(-1) and 10 to 20 m h(-1) has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m(-3)_mediad(-1). Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.

  7. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R.; Verhelst, S.

    2007-04-15

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  8. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  9. Needed: Clean Air.

    ERIC Educational Resources Information Center

    Schneider, Gerald

    1979-01-01

    Provides information on air pollution for young readers. Discusses damage to substances and sickness from air pollution, air quality, and what to do in a pollution alert. Includes questions with answers, illustrations, and activities for the learner. (MA)

  10. Healthy Air Outdoors

    MedlinePlus

    ... clean up the air are enforced. Learn more Climate Change Climate change threatens the health of millions of people, with ... What Makes Air Unhealthy Fighting for Healthy Air Climate Change Emergencies & Natural Disasters Tobacco Education and Training Ask ...

  11. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  12. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  13. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  14. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Suntz, R.; Bockhorn, H.

    2015-05-01

    The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

  15. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.

    2015-04-01

    On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.

  16. Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2011-01-15

    The turbulent burning velocity is defined by the mass rate of burning and this also requires that the associated flame surface area should be defined. Previous measurements of the radial distribution of the mean reaction progress variable in turbulent explosion flames provide a basis for definitions of such surface areas for turbulent burning velocities. These inter-relationships. in general, are different from those for burner flames. Burning velocities are presented for a spherical flame surface, at which the mass of unburned gas inside it is equal to the mass of burned gas outside it. These can readily be transformed to burning velocities based on other surfaces. The measurements of the turbulent burning velocities presented are the mean from five different explosions, all under the same conditions. These cover a wide range of equivalence ratios, pressures and rms turbulent velocities for ethanol-air mixtures. Two techniques are employed, one based on measurements of high speed schlieren images, the other on pressure transducer measurements. There is good agreement between turbulent burning velocities measured by the two techniques. All the measurement are generalised in plots of burning velocity normalised by the effective unburned gas rms velocity as a function of the Karlovitz stretch factor for different strain rate Markstein numbers. For a given value of this stretch factor a decrease in Markstein number increases the normalised burning velocity. Comparisons are made with the findings of other workers. (author)

  17. The Clean Air Game.

    ERIC Educational Resources Information Center

    Avalone-King, Deborah

    2000-01-01

    Introduces the Clean Air game which teaches about air quality and its vital importance for life. Introduces students to air pollutants, health of people and environment, and possible actions individuals can take to prevent air pollution. Includes directions for the game. (YDS)

  18. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  19. Air traffic coverage

    SciTech Connect

    George, L.L.

    1988-09-16

    The Federal Aviation Administration plans to consolidate several hundred air traffic control centers and TRACONs into area control facilities while maintaining air traffic coverage. This paper defines air traffic coverage, a performance measure of the air traffic control system. Air traffic coverage measures performance without controversy regarding delay and collision probabilities and costs. Coverage measures help evaluate alternative facility architectures and help schedule consolidation. Coverage measures also help evaluate protocols for handling one facility's air traffic to another facility in case of facility failure. Coverage measures help evaluate radar, communications and other air traffic control systems and procedures. 4 refs., 2 figs.,

  20. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  1. Water velocity at water-air interface is not zero: Comment on "Three-dimensional quantification of soil hydraulic properties using X-ray computed tomography and image-based modeling" by Saoirse R. Tracy et al.

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Fan, X. Y.; Li, Z. Y.

    2016-07-01

    Tracy et al. (2015, doi: 10.1002/2014WR016020) assumed in their recent paper that water velocity at the water-air interface is zero in their pore-scale simulations of water flow in 3-D soil images acquired using X-ray computed tomography. We comment that such a treatment is physically wrong, and explain that it is the water-velocity gradient in the direction normal to the water-air interface, rather than the water velocity, that should be assumed to be zero at the water-air interface if one needs to decouple the water flow and the air flow. We analyze the potential errors caused by incorrectly taking water velocity at the water-air interface zero based on two simple examples, and conclude that it is not physically sound to make such a presumption because its associated errors are unpredictable.

  2. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  3. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  4. Aerodynamical sealing by air curtains

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Linden, Paul

    2015-11-01

    Air curtains are artificial high-velocity plane turbulent jets which are installed in a doorway in order to reduce the heat and the mass exchange between two environments. The performance of an air curtain is assessed in terms of the sealing effectiveness E, the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. The main controlling parameter for air curtain dynamics is the deflection modulus Dm representing the ratio of the momentum flux of the air curtain and the transverse forces acting on it due to the stack effect. In this talk, we examine the influence of two factors on the performance of an air curtain: the presence of an additional ventilation pathway in the room, such as a small top opening, and the effects of an opposing buoyancy force which for example arises if a downwards blowing air curtain is heated. Small-scale experiments were conducted to investigate the E (Dm) -curve of an air curtain in both situations. We present both experimental results and theoretical explanations for our observations. We also briefly illustrate how simplified models developed for air curtains can be used for more complex phenomena such as the effects of wind blowing around a model building on the ventilation rates through the openings.

  5. Walk-through survey report: HVLV (high velocity low volume) control technology for aircraft bonded wing and radome maintenance at Air Force Logistics Command, McClellan Air Force Base, Sacramento, California

    SciTech Connect

    Hollett, B.A.

    1983-08-01

    A walk through survey was conducted at the Sacramento Air Logistics Center, McClellan Air Force Base, California, on June 13, 1983, to evaluate the use of High Velocity Low Volume (HVLV) technology in the aircraft-maintenance industry. The HVLV system consisted of 65 ceiling drops in the bonded honeycomb shop where grinding and sanding operations created glass fiber and resin dusts. Preemployment and periodic physical examinations were required. Workers were required to wear disposable coveralls, and disposable dust masks were available. Workers walked through decontamination air jet showers before leaving the area to change clothes. Environmental monitoring revealed no significant dust exposures when the HVLV system was in use. Performance of the exhaust system on the eight-inch-diameter nose cone sanding operation was good, but the three-inch-diameter tools were too large and the shrouds too cumbersome for use on many hand-finishing tasks. The author concludes that the HVLV system is partially successful but requires additional shroud design. Further development of small tool shrouds is recommended.

  6. Study on the effect of the side secondary air velocity on the aerodynamic field in a tangentially fired furnace with HBC-SSA Burner

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Sun, Shaozeng; Wu, Shaohua; Qin, Yukun

    1999-12-01

    The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal Burner with Side Secondary Air (HBC-SSA Burner). Experimental results show that, when the ram pressure ratio of side secondary air (SSA) to primary air (PA) (ρ2sv 2s /2 /ρ1v 1 2 ) is between 1.0 2.4, the furnace aerodynamic field only varies slightly. The relative rotational diameters (φ/L) in the burner domain are moderate and the furnace is in good fullness. When ρ2sv 2s /2 /ρ1v 1 2 is beyond 4, φ/L is so large that the stream sweeps water-cooled wall and rotates strongly in the furnace. Therefore, slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation. This investigation provides the basis for the application of this new type burner. In addition, numerical simulations are conducted, and some defects in the numerical simulation are also pointed out and analyzed in this paper.

  7. Ballistic Range Measurements of Stagnation-Point Heat Transfer in Air and in Carbon Dioxide at Velocities up to 18,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Yee, Layton; Bailey, Harry E.; Woodward, Henry T.

    1961-01-01

    A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.

  8. Bad Air Day

    MedlinePlus

    ... children living near busy roadways—surrounded by particulate air pollution—are more likely to develop asthma and other ... found that genes may affect your response to air pollution. At least one gene seems to protect against ...

  9. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  10. Air stripping industrial wastewater

    SciTech Connect

    Lamarre, B.; Shearouse, D.

    1994-09-01

    Industrial wastewater can be quickly, efficiently and economically treated using air strippers. Air stripping removes a range of volatile and semi-volatile contaminants from water. And the performance of various types and sizes of tray-type air stripper for treating contaminated water now is highly predictable because of laboratory studies. Air stripping can be a fast, efficient and economical approach to treating industrial wastewater. However, since every industrial wastewater stream is unique, each must be evaluated to determine its constituents, its potentially adverse effects on treatability, and any pretreatment steps necessary to ensure desired results. The general principles of air stripping are simple. In an air stripper, the surfaces area of a film of contaminated water is maximized while air is directed across it. Contaminants at the air/water interface volatilize and are discharged to the atmosphere or to an off-gas treatment system.

  11. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  12. Hazardous Air Pollutants

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  13. Nuclear air cleaning

    SciTech Connect

    Bellamy, R.R.

    1994-12-31

    This report briefly describes the history of the use of high- efficiency particulate air filters for air cleaning at nuclear installations in the United States and discusses future uses of such filters.

  14. Transforming air quality management

    SciTech Connect

    Janet McCabe

    2005-04-01

    Earlier this year, the Clean Air Act Advisory Committee submitted to EPA 38 recommendations intended to improve air quality management in the United States. This article summarizes the evaluation process leading up to the Committee's recommendations. 3 refs., 2 figs.

  15. Airing It Out.

    ERIC Educational Resources Information Center

    Fitzemeyer, Ted

    2000-01-01

    Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)

  16. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  17. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  18. Indoor Air Quality Manual.

    ERIC Educational Resources Information Center

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  19. Into Thin Air.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2001-01-01

    Shows how schools are working to avoid the types of equipment, supplies, and maintenance practices that harm indoor air quality. Simple steps to maintaining a cleaner indoor air environment are highlighted as are steps to reducing the problem air quality and the occurrence of asthma. (GR)

  20. Air Travel Health Tips

    MedlinePlus

    MENU Return to Web version Air Travel Health Tips Air Travel Health Tips How can I improve plane travel? Most people don't have any problems when ... and dosages of all of your medicines. The air in airplanes is dry, so drink nonalcoholic, decaffeinated ...

  1. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  2. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  3. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  4. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  5. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  6. Air Sparging Decision Tool

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  7. Naval Air Station Lighter than Air Hangar, wood construction horizontal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Naval Air Station Lighter than Air Hangar, wood construction horizontal rolling door. Drawing no. 2122 820. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  8. Shelter and indoor air.

    PubMed Central

    Stolwijk, J A

    1990-01-01

    Improvements in outdoor air quality that were achieved through the implementation of the Clean Air Act accentuate the quality of the indoor air as an important, if not dominant, factor in the determination of the total population exposure to air contaminants. A number of developments are adding important new determinants of indoor air quality. Energy conservation strategies require reductions in infiltration of outdoor air into buildings. New materials introduced in the construction and in the maintenance of buildings are contributing new air contaminants into the building atmosphere. Larger buildings require more and more complex ventilation systems that are less and less under the individual control of the occupants. All of these factors contribute to the current reality that indoor air contains more pollutants, and often at higher concentrations, than outdoor air. Especially in the larger buildings, it will be necessary to assure that an adequate quantity of fresh air of acceptable quality is provided to each individual space, and that no new sources of pollutants are added to a space or a whole building without appropriate adjustments in the supply of fresh air. PMID:2401264

  9. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  10. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  11. Bodies Falling with Air Resistance: Computer Simulation.

    ERIC Educational Resources Information Center

    Vest, Floyd

    1982-01-01

    Two models are presented. The first assumes that air resistance is proportional to the velocity of the falling body. The second assumes that air resistance is proportional to the square of the velocity. A program written in BASIC that simulates the second model is presented. (MP)

  12. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  13. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  14. [Pollution of room air].

    PubMed

    Schlatter, J

    1986-01-01

    In the last decade the significance of indoor air pollution to human health has increased because of improved thermal insulation of buildings to save energy: air turnover is reduced and air quality is impaired. The most frequent air pollutants are tobacco smoke, radioactive radon gas emanating from the soil, formaldehyde from furniture and insulation material, nitrogen oxides from gas stoves, as well as solvents from cleaning agents. The most important pollutants leading to health hazards are tobacco smoke and air pollutants which are emitted continuously from building materials and furniture. Such pollutants have to be eliminated by reducing the emission rate. A fresh air supply is necessary to reduce the pollutants resulting from the inhabitants and their activities, the amount depending on the number of inhabitants and the usage of the room. The carbon dioxide level should not exceed 1500 ppm.

  15. Ballistics examination of air rifle.

    PubMed

    Bogiel, G

    2014-01-01

    The aim of this paper is to determine the velocity, energy, maximum range and distance at which pellets fired from an air rifle of kinetic energy below 17 J can pose a threat to unprotected human skin. Doppler radar equipment and exterior ballistics software were used in this examination. PMID:25184422

  16. Maxillary Air Cyst

    PubMed Central

    Doucette-Preville, Stephane; Tamm, Alexander; Khetani, Justin; Wright, Erin; Emery, Derek

    2013-01-01

    Pathologic dilatation of the maxillary sinus by air is a rare condition with unclear etiology. We present a case of a 17 year old male with a maxillary air cyst diagnosed by computed tomography. The CT demonstrated air-filled expansion of the maxillary sinus beyond the normal anatomical limits with associated cortical bone thinning. The case report highlights the pathognomonic computed tomography findings of this rare entity and discusses the perplexing nomenclature, proposed etiologies and various treatment options. PMID:24421932

  17. Olefin metathesis in air.

    PubMed

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  18. Personal continuous air monitor

    DOEpatents

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  19. Applications Using AIRS Data

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Teixeira, J.; Licata, S. J.; Hall, J. R.; Thompson, C. K.

    2015-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS data can play a role in applications that fall under many of the NASA Applied Sciences focus areas. For vector-borne disease, research is underway using AIRS near surface retrievals to assess outbreak risk, mosquito incubation periods and epidemic potential for dengue fever, malaria, and West Nile virus. For drought applications, AIRS temperature and humidity data are being used in the development of new drought indicators and improvement in the understanding of drought development. For volcanic hazards, new algorithms using AIRS data are in development to improve the reporting of sulfur dioxide concentration, the burden and height of volcanic ash and dust, all of which pose a safety threat to aircraft. In addition, anomaly maps of many of AIRS standard products are being produced to help highlight "hot spots" and illustrate trends. To distribute it's applications imagery, AIRS is leveraging existing NASA data frameworks and organizations to facilitate archiving, distribution and participation in the BEDI. This poster will communicate the status of the applications effort for the AIRS Project and provide examples of new maps designed to best communicate the AIRS data.

  20. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI.

  1. Air Pollution Primer.

    ERIC Educational Resources Information Center

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  2. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  3. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  4. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  5. Bad Air For Children

    ERIC Educational Resources Information Center

    Kane, Dorothy Noyes

    1976-01-01

    Children are especially sensitive to air pollution and consequences to them maybe of longer duration than to adults. The effects of low-level pollution on children are the concern of this article. The need for research on the threat of air pollution to childrens' health is emphasized. (BT)

  6. Air Cargo Marketing Development

    NASA Technical Reports Server (NTRS)

    Kersey, J. W.

    1972-01-01

    The factors involved in developing a market for air cargo services are discussed. A comparison is made between the passenger traffic problems and those of cargo traffic. Emphasis is placed on distribution analyses which isolates total distribution cost, including logistical costs such as transportation, inventory, materials handling, packaging, and processing. Specific examples of methods for reducing air cargo costs are presented.

  7. Air-Conditioning Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  8. Linear kinematic air bearing

    NASA Technical Reports Server (NTRS)

    Mayall, S. D.

    1974-01-01

    Bearing provides continuous, smooth movement of the cat's-eye mirror, eliminating wear and deterioration of bearing surface and resulting oscillation effects in servo system. Design features self-aligning configuration; single-point, pivotal pad mounting, having air passage through it; and design of pads that allows for precise control of discharge path of air from pads.

  9. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  10. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  11. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  12. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  13. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  14. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  15. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  16. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. PMID:25462638

  17. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  18. Small Break Air Ingress Experiment

    SciTech Connect

    Chang Oh; Eung Soo Kim

    2011-09-01

    The small break air-ingress experiment, described in this report, is designed to investigate air-ingress phenomena postulated to occur in pipes in a very high temperature gas-cooled reactor (VHTRs). During this experiment, air-ingress rates were measured for various flow and break conditions through small holes drilled into a pipe of the experimental apparatus. The holes were drilled at right angles to the pipe wall such that a direction vector drawn from the pipe centerline to the center of each hole was at right angles with respect to the pipe centerline. Thus the orientation of each hole was obtained by measuring the included angle between the direction vector of each hole with respect to a reference line anchored on the pipe centerline and pointing in the direction of the gravitational force. Using this reference system, the influence of several important parameters on the air ingress flow rate were measured including break orientation, break size, and flow velocity . The approach used to study the influence of these parameters on air ingress is based on measuring the changes in oxygen concentrations at various locations in the helium flow circulation system as a function of time using oxygen sensors (or detectors) to estimate the air-ingress rates through the holes. The test-section is constructed of a stainless steel pipe which had small holes drilled at the desired locations.

  19. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  20. AIRE-Linux

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Xu, Benda; Peng, Chuan; Yang, Yang; Huo, Zhuoxi

    2015-08-01

    AIRE-Linux is a dedicated Linux system for astronomers. Modern astronomy faces two big challenges: massive observed raw data which covers the whole electromagnetic spectrum, and overmuch professional data processing skill which exceeds personal or even a small team's abilities. AIRE-Linux, which is a specially designed Linux and will be distributed to users by Virtual Machine (VM) images in Open Virtualization Format (OVF), is to help astronomers confront the challenges. Most astronomical software packages, such as IRAF, MIDAS, CASA, Heasoft etc., will be integrated into AIRE-Linux. It is easy for astronomers to configure and customize the system and use what they just need. When incorporated into cloud computing platforms, AIRE-Linux will be able to handle data intensive and computing consuming tasks for astronomers. Currently, a Beta version of AIRE-Linux is ready for download and testing.

  1. Evaluation of workplace air monitoring locations

    SciTech Connect

    Stoetzel, G.A.; Cicotte, G.R.; Lynch, T.P. ); Aldrich, L.K. )

    1991-10-01

    Current federal guidance on occupational radiation protection recognizes the importance of conducting air flow studies to assist in the placement of air sampling and monitoring equipment. In support of this, Pacific Northwest Laboratory has provided technical assistance to Westinghouse Hanford Company for the purpose of evaluating the adequacy of air sampling and monitoring locations at selected Hanford facilities. Qualitative air flow studies were performed using smoke aerosols to visually determine air movement. Three examples are provided of how air flow studies results, along with information on the purpose of the air sample being collected, were used as a guide in placing the air samplers and monitors. Preparatory steps in conducting an air flow study should include: (1) identifying type of work performed in the work area including any actual or potential release points; (2) determining the amounts of radioactive material available for release and its chemical and physical form; (3) obtaining accurate work area descriptions and diagrams; (4) identifying the location of existing air samplers and monitors; (5) documenting physical and ventilation configurations; (6) notifying appropriate staff of the test; and (7) obtaining necessary equipment and supplies. The primary steps in conducting an air flow study are measurements of air velocities in the work area, release of the smoke aerosol at selected locations in the work area and the observation of air flow patterns, and finally evaluation and documentation of the results. 2 refs., 3 figs.

  2. Naval Air Station Lighter than Air Hangar, wood construction horizontal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Naval Air Station Lighter than Air Hangar, wood construction horizontal rolling door. Drawing no. 2122 820. - Marine Corps Air Station Tustin, East of Red Hill Avenue between Edinger Avenue & Barranca Parkway, Tustin, Orange County, CA

  3. Air travel and pneumothorax.

    PubMed

    Hu, Xiaowen; Cowl, Clayton T; Baqir, Misbah; Ryu, Jay H

    2014-04-01

    The number of medical emergencies onboard aircraft is increasing as commercial air traffic increases and the general population ages, becomes more mobile, and includes individuals with serious medical conditions. Travelers with respiratory diseases are at particular risk for in-flight events because exposure to lower atmospheric pressure in a pressurized cabin at cruising altitude may result in not only hypoxemia but also pneumothorax due to gas expansion within enclosed pulmonary parenchymal spaces based on Boyle's law. Risks of pneumothorax during air travel pertain particularly to those patients with cystic lung diseases, recent pneumothorax or thoracic surgery, and chronic pneumothorax. Currently available guidelines are admittedly based on sparse data and include recommendations to delay air travel for 1 to 3 weeks after thoracic surgery or resolution of the pneumothorax. One of these guidelines declares existing pneumothorax to be an absolute contraindication to air travel although there are reports of uneventful air travel for those with chronic stable pneumothorax. In this article, we review the available data regarding pneumothorax and air travel that consist mostly of case reports and retrospective surveys. There is clearly a need for additional data that will inform decisions regarding air travel for patients at risk for pneumothorax, including those with recent thoracic surgery and transthoracic needle biopsy. PMID:24687705

  4. Forced air heater

    SciTech Connect

    Livezey, D.J.

    1980-09-23

    An air heating chamber is supported to project into a stove through an opening provided in the rear wall of the stove by a mounting plate mounted to the exterior of the stove rear wall. The mounting plate which forms the exterior end wall of the heating chamber, includes laterally spaced heating chamber inlet and outlet openings. A blower is detachably mounted to the exterior of the mounting plate in registration with the heating chamber inlet opening to deliver cool forced air into the heating chamber. After circulating therethrough, the air exits the heating chamber through the outlet opening and flows into a hot air manifold, which is also detachably mounted to the exterior of the mounting plate. The manifold includes an upwardly extending inlet chamber with a hot air inlet at its lower end aligned with the heating chamber outlet opening. A horizontal outlet chamber is attached to the top end of the inlet chamber to extend laterally along the back of the stove. Hot air outlets are provided at each end of the manifold outlet chamber to discharge the heated air horizontally over the top and towards the front of the stove.

  5. Air travel and pneumothorax.

    PubMed

    Hu, Xiaowen; Cowl, Clayton T; Baqir, Misbah; Ryu, Jay H

    2014-04-01

    The number of medical emergencies onboard aircraft is increasing as commercial air traffic increases and the general population ages, becomes more mobile, and includes individuals with serious medical conditions. Travelers with respiratory diseases are at particular risk for in-flight events because exposure to lower atmospheric pressure in a pressurized cabin at cruising altitude may result in not only hypoxemia but also pneumothorax due to gas expansion within enclosed pulmonary parenchymal spaces based on Boyle's law. Risks of pneumothorax during air travel pertain particularly to those patients with cystic lung diseases, recent pneumothorax or thoracic surgery, and chronic pneumothorax. Currently available guidelines are admittedly based on sparse data and include recommendations to delay air travel for 1 to 3 weeks after thoracic surgery or resolution of the pneumothorax. One of these guidelines declares existing pneumothorax to be an absolute contraindication to air travel although there are reports of uneventful air travel for those with chronic stable pneumothorax. In this article, we review the available data regarding pneumothorax and air travel that consist mostly of case reports and retrospective surveys. There is clearly a need for additional data that will inform decisions regarding air travel for patients at risk for pneumothorax, including those with recent thoracic surgery and transthoracic needle biopsy.

  6. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  7. Air-to-air radar flight testing

    NASA Astrophysics Data System (ADS)

    Scott, Randall E.

    1988-06-01

    This volume in the AGARD Flight Test Techniques Series describes flight test techniques, flight test instrumentation, ground simulation, data reduction and analysis methods used to determine the performance characteristics of a modern air-to-air (a/a) radar system. Following a general coverage of specification requirements, test plans, support requirements, development and operational testing, and management information systems, the report goes into more detailed flight test techniques covering a/a radar capabilities of: detection, manual acquisition, automatic acquisition, tracking a single target, and detection and tracking of multiple targets. There follows a section on additional flight test considerations such as electromagnetic compatibility, electronic countermeasures, displays and controls, degraded and backup modes, radome effects, environmental considerations, and use of testbeds. Other sections cover ground simulation, flight test instrumentation, and data reduction and analysis. The final sections deal with reporting and a discussion of considerations for the future and how they may affect radar flight testing.

  8. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  9. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  10. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  11. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  12. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  13. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  14. Olefin metathesis in air

    PubMed Central

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  15. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  16. Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takeji

    The reduction of intake of outdoor air volume in air conditioned buildings, adopted as the strategy for saving energy, has caused sick building syndrome abroad. Such symptoms of sick building as headache, stimuli of eye and nose and lethargy, appears to result from cigarette smoke, folmaldehyde and volatile organic carbons. On the other hand, in airtight residences not only carbon monoxide and nitrogen oxides from domestic burning appliances but also allergens of mite, fungi, pollen and house dust, have become a subject of discussion. Moreover, asbestos and radon of carcinogen now attract a great deal of attention. Those indoor air pollutants are discussed.

  17. Clean air strategies study

    SciTech Connect

    Quartucy, G.C.; Chrisman, L.J.P. ); Nylander, J.H.; Keller, W.B. )

    1992-01-01

    This paper reports that San Diego Gas and Electric Company (SDG and E) is evaluating emissions control technologies suitable for retrofit to their utility boilers. This effort is being driven by actions undertaken by the San Diego Air Pollution Control District (SDAPCD) in response to the California Clean Air Act. These actions include the development of two Tactic Evaluations, and the preparation of proposed regulatory limits. Tactic Evaluations are proposed methods to achieve compliance with California ambient air quality standards. Emissions of concern include NO{sub x}, CO, ROG, PM and SO{sub 2}. Of these species, it appears that NO{sub x} is the emission species of primary concern.

  18. Design objectives - Air transportation

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1974-01-01

    The mainline of air transportation is expected to continue to be based on the medium to long haul turbine powered subsonic aircraft. With greater emphasis on energy conservation, there will be considerable interest in making additional progress in propulsion system efficiency. Continued improvement in turbofan engines is expected to occur, but there may be a less conventional approach in the background. Opportunities for expanding short haul air services will certainly materialize. The outlook for supersonic air transport is less clear because of complex political and economic factors.

  19. Air Shower Simulations

    SciTech Connect

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  20. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  1. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  2. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  3. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  4. Olefin metathesis in air.

    PubMed

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  5. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  6. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  8. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  9. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  10. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  11. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  12. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  13. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  14. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  15. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  16. Air flow visualization

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Smoke Flow Visualization shows the flow of air around a model airfoil at 100 feet per second. Photograph and caption published in Winds of Change, 75th Anniversary NASA publication (page xi), by James Schultz.

  17. Investigating Air Pollution

    ERIC Educational Resources Information Center

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  18. Natural Air Purifier

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  19. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  20. Process air quality data

    NASA Technical Reports Server (NTRS)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  1. State Air Quality Standards.

    ERIC Educational Resources Information Center

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  2. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  3. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  4. Air Ground Integration Study

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal

    2002-01-01

    A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.

  5. Air bag restraint device

    DOEpatents

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  6. Air bag restraint device

    DOEpatents

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  7. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  8. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  9. Indoor Air Quality

    MedlinePlus

    ... is critical. Learn how to recognize and eliminate pollution sources in and around your home, on the ... especially vulnerable to the harmful effects of air pollution. Cleaning up pollution in their schools will help ...

  10. Air Entraining Flows

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2001-11-01

    Air entraining flows are frequently encountered in Nature (e.g. breaking waves, waterfalls, rain over water bodies) and in technological applications (gas-liquid chemical reactors, water treatment, aquaculture, and others). Superficially, one may distinguish between transient events, such as a breaking wave, and steady situations, e.g. a falling jet. However, when viscosity is not important, the process of air entrainment turns out to be the consequence of local transient events even in steady flows. For example, surface disturbances convected by a nominally steady jet impact the receiving liquid, create a deep depression, which collapses entraining an air pocket. (In practice this basic mechanism is complicated by the presence of waves, vortical flows, and other factors.) This talk will describe several examples of air-entraining flows illustrating the fluid mechanic principles involved with high-speed movies and numerical computations.

  11. Photocatalytic disinfection of indoor air

    SciTech Connect

    Goswami, D.Y.; Trivedi, D.M.; Block, S.S.

    1997-02-01

    The present study demonstrated the antibacterial effect of photocatalytic oxidation in indoor air using titanium dioxide as the catalyst. Through a series of experiments, it was determined that titanium dioxide did enhance the inactivation rate of the microorganisms under certain conditions. In these experiments the air velocity, relative humidity, and UV (350 nm) intensity were varied. It was found that higher velocities retarded the destruction rate due to the low retention time in the reactor. TiO{sub 2} also did not accelerate the reaction at low humidities (30%). At a relative humidity of 50%, there was complete inactivation of the organisms, but at higher humidities (85%), 10% of the organisms were still viable. The experiments showed that at higher UV intensities, most of the activation was done by the UV photons. However, the photons were not able to completely inactivate the microorganisms. In the photocatalysis experiments there was complete inactivation of the bacteria.

  12. Nuclear air cushion vehicles.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    This paper serves several functions. It identifies the 'state-of-the-art' of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant. Using mission studies and cost estimates, the report describes some of the advantages of nuclear power for large air cushion vehicles. The paper also summarizes the technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies that have been performed at NASA Lewis Research Center.

  13. Systematic Errors in an Air Track Experiment.

    ERIC Educational Resources Information Center

    Ramirez, Santos A.; Ham, Joe S.

    1990-01-01

    Errors found in a common physics experiment to measure acceleration resulting from gravity using a linear air track are investigated. Glider position at release and initial velocity are shown to be sources of systematic error. (CW)

  14. Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 °C

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Hyland, M.; James, B.

    2004-12-01

    During the deposition of Cr3C2-NiCr coatings, compositional degradation occurs, primarily through the dissolution of the carbide phase into the matrix. Exposure at an elevated temperature leads to transformations in the compositional distribution and microstructure. While these have been investigated in short-term trials, no systematic investigations of the long-term microstructural development have been presented for high-velocity sprayed coatings. In this work, high-velocity air fuel (HVAF) and high-velocity oxygen fuel (HVOF) coatings were treated at 900 °C for up to 60 days. Rapid refinement of the supersaturated matrix phase occurred, with the degree of matrix phase alloying continuing to decrease over the following 20 to 40 days. Carbide nucleation in the HVAF coatings occurred preferentially on the retained carbide grains, while that in the HVOF coatings developed in the regions of greatest carbide dissolution. This difference resulted in a variation in carbide morphologies. Preferential horizontal growth was evident in both coatings over the first 20 to 30 days of exposure, beyond which spheroidization of the microstructure occurred. After 30 days, the carbide morphology of both coatings was comparable, tending toward an expansive structure of coalesced carbide grains. The development of the carbide phase played a significant role in the microhardness variation of these coatings with time.

  15. Turbulent burning velocities of premixed CH{sub 4}/diluent/air flames in intense isotropic turbulence with consideration of radiation losses

    SciTech Connect

    Shy, S.S.; Yang, S.I.; Lin, W.J.; Su, R.C.

    2005-10-01

    This paper presents turbulent burning velocities, S{sub T}, of several premixed CH{sub 4}/diluent/air flames at the same laminar burning velocity S{sub L}=0.1 m/s for two equivalence ratios f=0.7 and 1.4 near flammability limits with consideration of radiation heat losses from small (N{sub 2} diluted) to large (CO{sub 2} diluted). Experiments are carried out in a cruciform burner, in which the long vertical vessel is used to provide a downward propagating premixed flame and the large horizontal vessel equipped with a pair of counterrotating fans and perforated plates can be used to generate an intense isotropic turbulence in the central region between the two perforated plates. Turbulent flame speeds are measured by four different arrangements of pairs of ion-probe sensors at different positions from the top to the bottom of the central region in the burner. It is found that the effect of gas velocity on S{sub T} measured in the central region can be neglected. Simultaneous measurements using the pressure transducer and ion-probe sensors show that the pressure rise due to turbulent burning has little influence on S{sub T}. These measurements prove the accuracy of the S{sub T} data. At f=0.7, the percentage of [(S{sub T}/S{sub L}){sub CO{sub 2}}-(S{sub T}/S{sub L}){sub N{sub 2}}]/(S{sub T}/S{sub L}){sub N{sub 2}} decreases gradually from -4 to -17% when values of u{sup '}/S{sub L} increase from 4 to 46, while at f=1.4 such decrease is much more abrupt from -19 to -53% when values of u{sup '}/S{sub L} only increase from 4 to 18. The larger the radiation losses, the smaller the values of S{sub T}. This decreasing effect is augmented by increasing u{sup '}/S{sub L} and is particularly pronounced for rich CH{sub 4} flames. When u{sup '}/S{sub L}=18, lean CO{sub 2} and/or N{sub 2}-diluted CH{sub 4} flames have much higher, 3.6 and/or 1.8 times higher, values of S{sub T}/S{sub L} than rich CO{sub 2} and/or N{sub 2}-diluted CH{sub 4} flames, respectively. It is found that

  16. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  17. Automatic air flow control in air conditioning ducts

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1972-01-01

    Device is designed which automatically selects air flow coming from either of two directions and which can be adjusted to desired air volume on either side. Device uses one movable and two fixed scoops which control air flow and air volume.

  18. 77 FR 1513 - Air Show and Air Races; Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... From the Federal Register Online via the Government Publishing Office NATIONAL TRANSPORTATION SAFETY BOARD Air Show and Air Races; Public Hearing TIME AND DATE: 9 a.m., Tuesday, January 10, 2012... hearing is to examine current regulations and oversight practices for air shows and air races,...

  19. Air diverter for supercharger

    SciTech Connect

    Johnson, K.A.

    1986-10-28

    An engine supercharger is described which consists of a turbine housing, a main turbine wheel of the radial-inflow type located within the turbine housing, a compressor housing having an air entrance passageway, and a compressor wheel of the centrifugal type located within the compressor housing. It also includes a main shaft of annular construction interconnecting the turbine wheel and the compressor wheel whereby the two wheels rotate as a unit, an auxiliary turbine wheel of the axial flow type located downstream from the main turbine wheel, and a fan of the axial flow type located upstream from the compressor wheel. An auxiliary shaft extends within the main shaft between the auxiliary turbine and fan whereby the auxiliary turbine and fan rotate as a unit. An annular air collector chamber means is located immediately downstream from the fan in surrounding relation to the aforementioned entrance passageway for diverting some of the fan air from the compressor wheel. The fan comprises a hub and blades radiating outwardly therefrom. The air collector chamber is defined in part by an annular wall having a free edge located within the fan blade axial profile whereby the annular wall intercepts air discharged from outer tip areas of the fan blades to divert same away from the compressor wheel into the collector chamber.

  20. Fireplace having outside air supply

    SciTech Connect

    Hempel, R.A.

    1981-07-28

    An outside air system and combustion chamber closure assembly for use with a fireplace which provides means for supplying sufficient amounts of cooling air between the burning fuel and the closure assembly is disclosed. The closure assembly includes a frame surrounding the combustion chamber opening and at least one door operably mounted thereto. A grille is formed in the bottom rail of the frame for introduction of air into the combustion chamber. The outside air system includes an outside air duct which is coupled to a chamber defining an air plenum formed below the hearth of the fireplace and air cap assembly. The air cap assembly is positioned against the bottom rail of the frame and extends across the combustion chamber opening. The assembly includes a duct which communicates with the chamber defining the air plenum formed below the hearth and an air discharge housing positioned adjacent the bottom rail. A damper means is operably mounted in the air discharge housing and is adjustable between an outside air mode or a room air mode so that when said at least one door is closed, only outside air or room air will pass into the combustion chamber at hearth level in sufficient volume for fuel combustion as well as providing an excess of air to prevent overheating of the fireplace assembly and said at least one door.

  1. Infants Can Study Air Science.

    ERIC Educational Resources Information Center

    Ward, Alan

    1983-01-01

    Provided are activities and demonstrations which can be used to teach infants about the nature of air, uses of air, and objects that fly in the air. The latter include airships, hot-air balloons, kites, parachutes, airplanes, and Hovercraft. (JN)

  2. Myxovirus Dissemination by Air

    PubMed Central

    McLean, D. M.; Bannatyne, R. M.; Givan, Kathleen F.

    1967-01-01

    Myxoviruses including 150 strains of parainfluenza 1, 15 of parainfluenza 3 and five of influenza B virus were isolated from nasopharyngeal secretions obtained from 300 children less than 3 years of age who developed acute laryngotracheobronchitis during the preceding 48 hours. The patients were examined between October 1966 and January 1967, the peak monthly rate of virus isolation (67%) occurring during January. Parainfluenza 1 virus was isolated from air obtained in the vicinity of one of 30 children whose nasopharyngeal secretions yielded this agent. Samples comprising 150 litres of air were collected for virus assay by placing an Andersen sampler about 60 cm. from the child's face inside an oxygen tent which surrounded the patient. These findings confirm previous observations that parainfluenza 1 virus is the dominant agent associated with acute laryngotracheobronchitis in children in Toronto, and they show that this virus is disseminated in the air. PMID:4290621

  3. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  4. Air encapsulation during infiltration

    USGS Publications Warehouse

    Constantz, J.; Herkelrath, W.N.; Murphy, F.

    1988-01-01

    A series of field and laboratory experiments were performed to measure the effects of air encapsulation within the soil's transmission zone upon several infiltration properties. In the field, infiltration rates were measured using a double-cap infiltrometer and soil-water contents were measured using time-domain reflectometry (TDR). In the laboratory, infiltration experiments were peformed using repacked soil columns using TDR and CO 2 flooding. Results suggest that a significant portion of the total encapsulated air resided in interconnected pores within the soil's transmission zone. For the time scale considered, this residual air caused the effective hydraulic conductivity of the transmission zone to remain at a level no greater than 20% of the saturated hydraulic conductivity of the soil. -from Authors

  5. Concerning the flow about ring-shaped cowlings Part IX : the influence of oblique oncoming flow on the incremental velocities and air forces at the front part of circular cowls

    NASA Technical Reports Server (NTRS)

    Kuchemann, Dietrich; Weber, Johanna

    1952-01-01

    The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.

  6. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  7. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  9. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  10. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  11. Space Derived Air Monitor

    NASA Technical Reports Server (NTRS)

    1983-01-01

    COPAMS, Commonwealth of Pennsylvania Air Monitoring System, derives from technology involved in building unmanned spacecraft. The Nimbus spacecraft carried experimental sensors to measure temperature, pressure, ozone, and water vapor, and instruments for studying solar radiation and telemetry. The process which relayed these findings to Earth formed the basis for COPAMS. The COPAMS system consists of data acquisition units which measure and record pollution level, and sense wind speed and direction, etc. The findings are relayed to a central station where the information is computerized. The system is automatic and supplemented by PAQSS, PA Air Quality Surveillance System.

  12. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  13. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  14. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  15. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  16. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  17. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  18. Walking On Air

    NASA Video Gallery

    This video features a series of time lapse sequences photographed by the Expedition 30 crew aboard the International Space Station. Set to the song “Walking in the Air,” by Howard Blake, the v...

  19. The Air up There

    ERIC Educational Resources Information Center

    Thomas, Jeffrey

    2010-01-01

    To engage students in a real-world issue (Bransford, Brown, and Cocking 2000) that affects their communities, the author designed an entire unit to investigate air pollution in their home state, Connecticut. The unit's goal is to understand how the use of resources, such as fossil fuels, might affect their quality of life. Through this unit,…

  20. Testing for Air Pollution.

    ERIC Educational Resources Information Center

    Dunbar, Artice

    Three experiments are presented in this Science Study Aid to provide the teacher with some fundamental air pollution activities. The first experiment involved particulates, the second deals with microorganisms, and the third looks at gases in the atmosphere. Each activity outlines introductory information, objectives, materials required, procedure…

  1. Vascular air embolism

    PubMed Central

    Gordy, Stephanie; Rowell, Susan

    2013-01-01

    Vascular air embolism is a rare but potentially fatal event. It may occur in a variety of procedures and surgeries but is most often associated as an iatrogenic complication of central line catheter insertion. This article reviews the incidence, pathophysiology, diagnosis, treatment, and prevention of this phenomenon. PMID:23724390

  2. Clean Air by Design.

    ERIC Educational Resources Information Center

    Crawford, Gary N.

    1995-01-01

    Planning new construction is an opportunity to recognize indoor environmental quality (IEQ) issues. Provides an overview of some common IEQ issues associated with construction projects. A building's heating, ventilating, and air-conditioning (HVAC) system is by far the single most common cause of IEQ problems and complaints. (MLF)

  3. An Air of Concern.

    ERIC Educational Resources Information Center

    Gembala, Walter W.

    1999-01-01

    Examines the signs of school indoor air quality (IAQ) problems, why the problems exist, and control methods to use. Human physical symptoms to look for when an IAQ problem is present are highlighted and IAQ management planning techniques are discussed. (GR)

  4. An Air of Concern.

    ERIC Educational Resources Information Center

    Singer, Terry E.; Shonkwiler, Tonja; Birr, David

    1998-01-01

    Examines how indoor air quality (IAQ) problems can create difficulties for a school both administratively, and legally. Discusses how to identify the IAQ symptoms and the Occupational Safety and Health Administration's industry standards for IAQ, as well as tips for reducing liability risk. (GR)

  5. Tribal Air Quality Monitoring.

    ERIC Educational Resources Information Center

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  6. Regulation of air traffic

    NASA Technical Reports Server (NTRS)

    DEVALUEZ

    1922-01-01

    The ways in which the international and internal French air traffic accords interact with each other is outlined in this report. The principal questions covered by the present legislation are as follows: 1) Conditions of safety which must be fulfilled by aircraft; 2) Licenses for members of the crew; 3) Traffic rules to be observed by French and foreign aircraft.

  7. AIR POLLUTION AND HUMMINGBIRDS

    EPA Science Inventory

    A multidisciplinary team of EPA-RTP ORD pulmonary toxicologists, engineers, ecologists, and statisticians have designed a study of how ground-level ozone and other air pollutants may influence feeding activity of the ruby-throated hummingbird (Archilochus colubris). Be...

  8. Air Proportional Counter

    DOEpatents

    Simpson, Jr, J A

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  9. Images in the Air

    ERIC Educational Resources Information Center

    Riveros, H. G.; Rosenberger, Franz

    2012-01-01

    This article discusses two "magic tricks" in terms of underlying optical principles. The first trick is new and produces a "ghost" in the air, and the second is the classical real image produced with two parabolic mirrors. (Contains 2 figure and 6 photos.)

  10. Ames Air Revitalization

    NASA Technical Reports Server (NTRS)

    Huang, Roger Z.

    2015-01-01

    This is an informal presentation presented to the University of Colorado, Boulder Bioastronautics group seminar. It highlights the key focal areas of the Air Revitalization Group research over the past year, including progress on the CO2 Removal and Compression System, testing of CDRA drying bed configurations, and adsorption research.

  11. International Air Transport Policy

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1972-01-01

    The actions of the Civil Aviation Board in providing assistance and advice to the State Department regarding international air transport policy are discussed. The policies and guidelines of the Civil Aviation Board are defined. The relationship with the policies of the Executive Branch of the Government and the interpretations of the Department of Transportation are reported.

  12. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  13. Air on the Move.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides (1) background information on global winds, air masses, fronts, and pressure systems; (2) five activities on this topic; and (3) a ready-to-copy coloring page and worksheet. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  14. Air-cleaning apparatus

    SciTech Connect

    Howard, A.G.

    1981-08-18

    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces.

  15. The air afterglow revisited

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1972-01-01

    The air afterglow, 0 + NO2 chemiluminescence, is discussed in terms of fluorescence, photodissociation, and quantum theoretical calculations of NO2. The experimental results presented include pressure dependence, M-dependence, spectral dependence of P and M, temperature dependence, and infrared measurements. The NO2 energy transfer model is also discussed.

  16. Understanding Our Environment: Air.

    ERIC Educational Resources Information Center

    DiSpezio, Michael

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit uses the contemporary dilemma of acid rain as a vehicle for teaching weather and the characteristics of air and atmosphere. The project involves a…

  17. Air Structures: Inflatable Alternatives

    ERIC Educational Resources Information Center

    Valerio, Joseph M.; And Others

    1973-01-01

    Describes and evaluates several avant garde'' examples of air structures. Included are a soft'' child's playpen, a pneudome that employs a water ballast for anchoring, a one-acre enclosed campus, an instant city'' constructed for an industrial design conference, and the Fuji Pavilion, at Expo '70 in Osaka, Japan, that was large enough to cover…

  18. AIRS Level 2 Status

    NASA Technical Reports Server (NTRS)

    Lee, Sung-Yung; Manning, Evan; Olsen, Edward

    2003-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument onboard EOS Aqua. Major level 2 products are highlighted including temperature profile; water vapor profile; surface skin temperature and other surface parameters; and, cloud friction and top cloud pressure. Level 2 files and data availability are discussed.

  19. Air weapon fatalities.

    PubMed Central

    Milroy, C M; Clark, J C; Carter, N; Rutty, G; Rooney, N

    1998-01-01

    AIMS: To describe characteristics of a series of people accidentally and deliberately killed by air powered weapons. METHODS: Five cases of fatal airgun injury were identified by forensic pathologists and histopathologists. The circumstances surrounding the case, radiological examination, and pathological findings are described. The weapon characteristics are also reported. RESULTS: Three of the victims were adult men, one was a 16 year old boy, and one an eight year old child. Four of the airguns were .22 air rifles, the other a .177 air rifle. Two committed suicide, one person shooting himself in the head, the other in the chest. In both cases the guns were fired at contact range. Three of the cases were classified as accidents: in two the pellet penetrated into the head and in one the chest. CONCLUSIONS: One person each year dies from an air powered weapon injury in the United Kingdom. In addition there is considerable morbidity from airgun injuries. Fatalities and injuries are most commonly accidents, but deliberately inflicted injuries occur. Airguns are dangerous weapons when inappropriately handled and should not be considered as toys. Children should not play with airguns unsupervised. Images PMID:9797730

  20. Comparing toxic air pollutant programs

    SciTech Connect

    Hawkins, S.C.

    1997-05-01

    This article compares state and federal toxic air pollutant programs. The Clean Air Act Ammendments created a program for the control of Hazardous Air Pollutants based on the establishment of control technology standards. State toxic programs can be classified into two categories: control technology-based and ambient concentration-based. Many states have opened to implement the MACT standards while enforcing their own state air toxics programs. Specific topics discussed include the following: the Federal air toxics program; existing state regulations; New Jersey Air Toxic Program; New York Toxics program.

  1. Air quality management in Mexico.

    PubMed

    Fernández-Bremauntz, Adrián

    2008-01-01

    Several significant program and policy measures have been implemented in Mexico over the past 15 yr to improve air quality. This article provides an overview of air quality management strategies in Mexico, including (1) policy initiatives such as vehicle use restrictions, air quality standards, vehicle emissions, and fuel quality standards, and (2) supporting programs including establishment of a national emission inventory, an air pollution episodes program, and the implementation of exposure and health effects studies. Trends in air pollution episodes and ambient air pollutant concentrations are described.

  2. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, D.A.; Rubin, J.

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. -from Authors

  3. 26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED TEST TRACK." Drawing No. 10-259. One inch to 400 feet plan of original 10,000-foot sled track. No date. No D.O. series number. No headings as above. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  4. 17. VIEW OF AIR LOCK ENTRY DOOR. BANKS OF AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF AIR LOCK ENTRY DOOR. BANKS OF AIR FILTERS ARE VISIBLE TO THE SIDES OF THE DOORS. THE BUILDING WAS DIVIDED INTO ZONES BY AIRLOCK DOORS AND AIR FILTERS. AIR PRESSURE DIFFERENTIALS WERE MAINTAINED IN THE ZONES, SUCH THAT AIRFLOW WAS PROGRESSIVELY TOWARD AREAS WITH THE HIGHEST POTENTIAL FOR CONTAMINATION. (9/24/91) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  5. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  6. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  7. Something in the Air: Air Pollution in Schools.

    ERIC Educational Resources Information Center

    Villaire, Ted

    2002-01-01

    Discusses the danger of unhealthy air in the school environment, describing common problems and how parents and schools can respond. The article focuses on the dangers of mold, pesticides, diesel exhaust, and radon. The three sidebars describe how to promote indoor air quality at school, note how to determine whether the school's air is making…

  8. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  9. Indoor Air Quality in Schools: Clean Air Is Good Business.

    ERIC Educational Resources Information Center

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  10. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  11. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  12. Aeromicrobiology/air quality

    USGS Publications Warehouse

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  13. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  14. FLUIDIC: Metal Air Recharged

    ScienceCinema

    Friesen, Cody

    2016-07-12

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  15. Energy and air quality

    NASA Astrophysics Data System (ADS)

    Orgill, M. M.; Thorp, J. M.

    Many coal, oil shale, and geothermal energy sources are located in areas where atmospheric transport and dispersion processes are dominated by the complexity of the terrain. The U.S. Department of Energy (DOE), responsible for developing new energy technologies that meet air-quality regulations, developed a program aimed specifically at Atmospheric Studies in Complex Terrain (ASCOT) in 1978. The program uses theoretical atmospheric physics research, mathematical models, field experiments, and physical models. The goal is to develop a modeling and measurement methodology to (1) improve fundamental knowledge of transport and dispersion processes in complex terrain and (2) build on this improvement to provide a methodology for performing air quality assessments. The ASCOT team, managed by Marvin Dickerson and Paul Gudiksen of Lawrence Livermore Laboratory, Livermore, Calif., is composed of scientists from DOE supported research laboratories and university programs.

  16. FLUIDIC: Metal Air Recharged

    SciTech Connect

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  17. Air Pollution over the States

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1972

    1972-01-01

    State plans for implementing air quality standards are evaluated together with problems in modeling procedures and enforcement. Monitoring networks, standards, air quality regions, and industrial problems are also discussed. (BL)

  18. Introduction to Indoor Air Quality

    MedlinePlus

    ... as conditions caused by outdoor impacts (such as climate change). Many reports and studies indicate that the following ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup Home Remodel Indoor airPLUS Mold Radon ...

  19. Ozone - Current Air Quality Index

    MedlinePlus

    ... reducing exposure to extremely high levels of particle pollution is available here . Fires: Current Conditions Click to ... Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke from fires | What You Can Do Health ...

  20. Urban air quality

    NASA Astrophysics Data System (ADS)

    Fenger, Jes

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  1. Air-gap heterostructures

    SciTech Connect

    Heyn, Ch.; Schmidt, M.; Schwaiger, S.; Stemmann, A.; Mendach, S.; Hansen, W.

    2011-01-17

    We demonstrate the fabrication of thin GaAs layers which quasi hover above the underlying GaAs substrate. The hovering layers have a perfect epitaxial relationship to the substrate crystal lattice and are connected to the substrate surface only by lattice matched nanopillars of low density. These air-gap heterostructures are created by combining in situ molecular beam epitaxy compatible self-assembled droplet-etching and ex situ selective wet-chemical etching.

  2. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  3. The AIRES Optical Design

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    AIRES (Airborne InfraRed Echelle Spectrometer) is the facility spectrometer for SOFIA (Stratospheric Observatory For Infrared Astronomy). AIRES is a long-slit (approximately 160 in) spectrometer designed to cover the 17 to 210-micron range with good sensitivity using three spectroscopic arrays. Initially, only the 30-130 micron, mid-wavelength array will be available. The instrument has a cryogenic K-mirror to perform field rotation and a slit-viewing camera (lambda < 28 microns, FOV = 160 in diameter) to image source morphology and verify telescope pointing. AIRES employs a large echelle grating to achieve a spectral resolving power (lambda/delta lambda) of approximately 1.0 x 10(exp 6)/lambda (sub mu), where lambda (sub mu) is the wavelength in microns. Hyperfine, Inc. has ruled and tested the AIRES' echelle; its wave-front error is 0.028 waves RMS (root mean square) at 10.6 microns. The instrument is housed in a liquid-helium cryostat which is constrained in diameter (approximately 1 m) and length (approximately 2 m) by the observatory. Hence, the length of the echelle (approximately 1.1 m) and the focal length of its collimator (approximately 5.2 m) severely drive the optical design and packaging. The final design uses diamond-turned aluminum optics and has up to 19 reflections inside the cryostat, depending on the optical path. This design was generated, optimized, and toleranced using Code V. The predicted performance is nearly diffraction-limited at 17 microns; the error budget is dominated by design residuals. Light loss due to slit rotation and slit curvature has been minimized. A thorough diffraction analysis with GLAD (G-Level Analysis Drawer) was used to size the mirrors and baffles; the internal light loss is shown to be a strong function of slit width.

  4. Clearing the air

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Thanks to the Environmental Protection Agency's (EPA) acid rain control program and serious efforts by industry, Americans breathed a little easier last year. Sulfur dioxide emissions from the 445 largest and dirtiest electric boilers in the United States (making up about 60% of all utility emissions) have been reduced by more than 50% below 1980 levels, EPA estimates. The reduction is 40% beyond that called for in the Clean Air Act.

  5. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  6. Effect of gas-transfer velocity parameterization choice on air-sea CO2 fluxes in the North Atlantic Ocean and the European Arctic

    NASA Astrophysics Data System (ADS)

    Wrobel, Iwona; Piskozub, Jacek

    2016-09-01

    The oceanic sink of carbon dioxide (CO2) is an important part of the global carbon budget. Understanding uncertainties in the calculation of this net flux into the ocean is crucial for climate research. One of the sources of the uncertainty within this calculation is the parameterization chosen for the CO2 gas-transfer velocity. We used a recently developed software toolbox, called the FluxEngine (Shutler et al., 2016), to estimate the monthly air-sea CO2 fluxes for the extratropical North Atlantic Ocean, including the European Arctic, and for the global ocean using several published quadratic and cubic wind speed parameterizations of the gas-transfer velocity. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic Ocean. This region is a large oceanic sink of CO2, and it is also a region characterized by strong winds, especially in winter but with good in situ data coverage. We show that the uncertainty in the parameterization is smaller in the North Atlantic Ocean and the Arctic than in the global ocean. It is as little as 5 % in the North Atlantic and 4 % in the European Arctic, in comparison to 9 % for the global ocean when restricted to parameterizations with quadratic wind dependence. This uncertainty becomes 46, 44, and 65 %, respectively, when all parameterizations are considered. We suggest that this smaller uncertainty (5 and 4 %) is caused by a combination of higher than global average wind speeds in the North Atlantic (> 7 ms-1) and lack of any seasonal changes in the direction of the flux direction within most of the region. We also compare the impact of using two different in situ pCO2 data sets (Takahashi et al. (2009) and Surface Ocean CO2 Atlas (SOCAT) v1.5 and v2.0, for the flux calculation. The annual fluxes using the two data sets differ by 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal fluxes in the Arctic computed from the two data sets disagree with each

  7. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  8. Air transparent soundproof window

    SciTech Connect

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  9. Wind driven air pump

    SciTech Connect

    Beisel, V.A.

    1983-05-31

    An improved pump for lifting water from an underground source utilizes a wind motor for driving an oil-less air compressor eliminating oil contamination of ground water which is forced to the surface. The wind motor is movable to face the wind by means of a novel swivel assembly which also eliminates the formation and freezing of condensate within the airline from the compressor. The propeller blades of the wind motor and the tail section are formed from a pair of opposed convex air foil shaped surfaces which provide the propeller blades and the tail section with fast sensitivity to slight changes in wind direction and speed. A novel well tower for supporting the wind motor and compressor and for lifting the water from the underground source is an optional modification which requires no welding and eliminates the problem of condensate freezing in the airline going to the well. The wind driven air pump disclosed is lightweight, can be easily installed, is relatively inexpensive to produce and is virtually maintenance-free and capable of operating in winds exceeding 100 miles per hour.

  10. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  11. Metal-air battery assessment

    SciTech Connect

    Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

    1988-05-01

    The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

  12. Adsorption air cleaning from ozone.

    PubMed

    Baltrenas, Pranas; Paliulis, Dainius; Vasarevicius, Saulius; Simaitis, Ramutis

    2003-01-01

    Not much has been written about air cleaning from ozone. The aim of this paper was to demonstrate the possibility of adsorption air cleaning from ozone. The second aim was to investigate the dependence of the efficiency of ozone removal from the air on the height of the adsorber layer and on concentrations of ozone, and to obtain empirical formulas for calculating the efficiency of ozone treatment. Equipment for air cleaning from ozone and nitrogen and sulphur dioxides is suggested.

  13. Toxic effects of air freshener emissions.

    PubMed

    Anderson, R C; Anderson, J H

    1997-01-01

    To evaluate whether emissions of a commercial air freshener produced acute toxic effects in a mammalian species, the authors allowed male Swiss-Webster mice to breathe the emissions of one commercial-brand solid air freshener for 1 h. Sensory irritation and pulmonary irritation were evaluated with the ASTM-E-981 test. A computerized version of this test measured the duration of the break at the end of inspiration and the duration of the pause at the end of expiration--two parameters subject to alteration via respiratory effects of airborne toxins. Measurements of expiratory flow velocity indicated changes in airflow limitation. The authors then subjected mice to a functional observational battery, the purpose of which was to probe for changes in nervous system function. Emissions of this air freshener at several concentrations (including concentrations to which many individuals are actually exposed) caused increases in sensory and pulmonary irritation, decreases in airflow velocity, and abnormalities of behavior measured by the functional observational battery score. The test atmosphere was subjected to gas chromatography/mass spectroscopy, and the authors noted the presence of chemicals with known irritant and neurotoxic properties. The Material Safety Data Sheet for the air freshener indicated that there was a potential for toxic effects in humans. The air freshener used in the study did not diminish the effect of other pollutants tested in combination. The results demonstrated that the air freshener may have actually exacerbated indoor air pollution via addition of toxic chemicals to the atmosphere.

  14. Air Pollution Primer. Revised Education.

    ERIC Educational Resources Information Center

    Corman, Rena

    This revised and updated book is written to inform the citizens on the nature, causes, and effects of air pollution. It is written in terms familiar to the layman with the purpose of providing knowledge and motivation to spur community action on clean air policies. Numerous charts and drawings are provided to support discussion of air pollution…

  15. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils' knowledge of air…

  16. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  17. Shock-swallowing air sensor

    NASA Technical Reports Server (NTRS)

    Nugent, J.; Sakamoto, G. M.; Webb, L. D.; Couch, L. M.

    1979-01-01

    An air-data probe allows air to flow through it so that supersonic and hypersonic shock waves form behind pressure measuring orifices and tube instead of directly on them. Measured pressures are close to those in free-flowing air and are used to determine mach numbers of flying aircraft.

  18. Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  19. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  20. Transpired Air Collectors - Ventilation Preheating

    SciTech Connect

    Christensen, C.

    2006-06-22

    Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

  1. Overview of Emerging Air Sensors

    EPA Science Inventory

    These slides will be presented at the 2014 National Ambient Air Monitoring Conference in Atlanta, GA during August 11-15, 2014. The goal is to provide an overview of air sensor technology and the audience will be primarily state air monitoring agencies and EPA Regions.

  2. Improving IAQ Via Air Filtration.

    ERIC Educational Resources Information Center

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  3. AIR STRUCTURES FOR SCHOOL SPORTS.

    ERIC Educational Resources Information Center

    ROBERTSON, NAN

    AIR STRUCTURES ARE FABRIC BUILDINGS BLOWN UP AND HELD UP BY AIR PRESSURE. EXPERIMENTS WITH SUCH STRUCTURES WERE CONDUCTED AS EARLY AS 1917. IN 1948 THE UNITED STATES AIR FORCE SOUGHT A NEW WAY OF HOUSING LARGE RADAR ANTENNAE PLANNED FOR THE ARCTIC. AS AN OUTCOME OF THEIR SEARCH, BIRDAIR STRUCTURES, INC., WHICH IS NOW ONE OF SEVERAL COMPANIES…

  4. Air Structures for School Sports.

    ERIC Educational Resources Information Center

    Robertson, Nan

    Air structures are fabric buildings blown up and held up by air pressure. Experiments with such structures were conducted as early as 1917. In 1948 the United States Air Force sought a new way of housing large radar antennae planned for the arctic. As an outcome of their search, Birdair Structures, Inc., which is now one of several companies…

  5. Evolution of injected air stream in granular bed

    NASA Astrophysics Data System (ADS)

    Maiti, Ritwik; Das, Gargi; Das, Prasanta

    2015-11-01

    An air stream injected through an orifice into a granular bed creates intriguing but aesthetically exotic patterns. The interaction of air with an aggregate of cohesionless granules presents evolution of patterns from stationary bubble to meandering filament and finally to a floating canopy with the increase of air velocity.

  6. The New Interpretation of the Laws of Air Resistance

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1923-01-01

    A closer examination of Newton's formula for air resistance shows that it is well to consider the air as an ordinary fluid, and, indeed for most of the velocities considered, as a non-compressible fluid, so long as the dimensions of the moving body are large in comparison with the mean free path of the particles of air.

  7. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  8. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  9. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  10. Air-Plasma Bullets Propagating Inside Microcapillaries and in Ambient Air

    NASA Astrophysics Data System (ADS)

    Lacoste, Deanna A.; Bourdon, Anne; Kuribara, Koichi; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2014-10-01

    We report on the characterization of air-plasma bullets formed inside microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets are produced by nanosecond discharges, applied at 1 kHz in a dielectric barrier discharge configuration. The anode consists of a tungsten wire with a 50- μm diameter, centered in the microcapillary, while the cathode is a silver ring, fixed on the outer surface of the fused silica tube. The gap distance is kept constant at 1.35 mm. The microcapillary is fed with a 4-sccm flow of air at atmospheric pressure. In the tubes and in ambient air, the propagation of air plasma bullets is observed. The temporal evolution of the bullet propagation has been studied with the aid of an ICCD camera. The effect of the applied voltage (from 5.2 to 8.2 kV) and the inner diameter of the microcapillaries (from 100 to 500 μm) on the discharge dynamics are investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity (on the order of 1 to 5 ×105 ms-1) is only a function of the applied voltage. In ambient air, the air-plasma bullets propagate at a velocity of 1 . 25 ×105 ms-1. Possible mechanisms for the propagation of air-plasma bullets in ambient air are discussed.

  11. Fuel-air control device

    SciTech Connect

    Norman, J.

    1981-12-15

    The invention concerns a device for controlling the vehicles fuel-air mixture by regulating the air in the ventilation passage leading to the engine air intake from the crankcase. In a vehicle provided with a PCV valve, the device is located in the ventilation passage leading from the crankcase to the engine air intake and the device is downstream of the PCV valve. The device admits outside air to the ventilation passage to lean the gas mixture when the engine creates a vacuum less than 8 psi in the ventilation passage.

  12. Air Risk Information Support Center

    SciTech Connect

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  13. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  14. Piston reciprocating compressed air engine

    SciTech Connect

    Cestero, L.G.

    1987-03-24

    A compressed air engine is described comprising: (a). a reservoir of compressed air, (b). two power cylinders each containing a reciprocating piston connected to a crankshaft and flywheel, (c). a transfer cylinder which communicates with each power cylinder and the reservoir, and contains a reciprocating piston connected to the crankshaft, (d). valve means controlled by rotation of the crankshaft for supplying compressed air from the reservoir to each power cylinder and for exhausting compressed air from each power cylinder to the transfer cylinder, (e). valve means controlled by rotation of the crankshaft for supplying from the transfer cylinder to the reservoir compressed air supplied to the transfer cylinder on the exhaust strokes of the pistons of the power cylinders, and (f). an externally powered fan for assisting the exhaust of compressed air from each power cylinder to the transfer cylinder and from there to the compressed air reservoir.

  15. Fundamentals of air quality systems

    SciTech Connect

    Noll, K.E.

    1999-08-01

    The book uses numerous examples to demonstrate how basic design concepts can be applied to the control of air emissions from industrial sources. It focuses on the design of air pollution control devices for the removal of gases and particles from industrial sources, and provides detailed, specific design methods for each major air pollution control system. Individual chapters provide design methods that include both theory and practice with emphasis on the practical aspect by providing numerous examples that demonstrate how air pollution control devices are designed. Contents include air pollution laws, air pollution control devices; physical properties of air, gas laws, energy concepts, pressure; motion of airborne particles, filter and water drop collection efficiency; fundamentals of particulate emission control; cyclones; fabric filters; wet scrubbers; electrostatic precipitators; control of volatile organic compounds; adsorption; incineration; absorption; control of gaseous emissions from motor vehicles; practice problems (with solutions) for the P.E. examination in environmental engineering. Design applications are featured throughout.

  16. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  17. Safeguarding indoor air quality

    SciTech Connect

    Sexton, K.; Wesolowski, J.J.

    1985-01-01

    California has created and implemented the first state program devoted exclusively to the investigation of nonindustrial indoor air quality. The program is responsible for promoting and conducting research on the determining factors of healthful indoor environments and is structured to obtain information about emission sources, ventilation effects, indoor concentrations, human activity patterns, exposures, health risks, control measures and public policy options. Data are gathered by a variety of methods, including research conducted by staff members, review of the available scientific literature, participation in technical meetings, contractual agreements with outside agencies, cooperative research projects with other groups and consultation with experts. 23 references, 1 figure, 1 table.

  18. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  19. Clean Air Action

    NASA Astrophysics Data System (ADS)

    Carlowicz, Mike

    According to the Environmental Protection Agency, American electrical utility companies are ahead of schedule in reducing emissions of sulfur dioxide—a major contributor to acid rain—into the atmosphere. By the end of 1995, the 445 boilers with the highest emission levels had cut emissions from 10.9 million tons of SO2 to 5.3 million tons, 39% less emissions than were mandated by the Clean Air Act. Electric utilities account for more than 70% of sulfur dioxide emissions in the United States.

  20. Solid sorbent air sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J. (Inventor)

    1986-01-01

    A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.

  1. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  2. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  3. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  4. Experimental studies on an air-air jet exhaust pump

    SciTech Connect

    Chou, S.K.

    1986-01-01

    Industrial ventilation employing an air-air jet exhaust pump connected to a compressed-air line was investigated. The motive air supply pressure was maintained between 2 and 3 bar. A unique ejector housing was constructed to receive both the convergent-divergent primary nozzle and the mixing chamber. The entire unit adapts readily to any existing compressed-air system. The mixing chamber was so constructed that the length of its cylindrical section may be changed. Pressure variations along the mixing chamber were recorded, and this offered a valuable appreciation of the effects of the length-to-diameter ratios. Results indicate the influence of the supply air pressure and pressure ratio on the jet entrainment capacity and efficiency. It has also been shown that the present design is capable of achieving the maximum reported jet-pump efficiency of around 25% corresponding to a nozzle-to-mixing chamber area ratio of 0.15.

  5. Air gun wounding and current UK laws controlling air weapons.

    PubMed

    Bruce-Chwatt, Robert Michael

    2010-04-01

    Air weapons whether rifles or pistols are, potentially, lethal weapons. The UK legislation is complex and yet little known to the public. Hunting with air weapons and the laws controlling those animals that are permitted to be shot with air weapons is even more labyrinthine due to the legal power limitations on the possession of air weapons. Still relatively freely available by mail order or on the Internet, an increasing number of deaths have been reported from the misuse of air weapons or accidental discharges. Ammunition for air weapons has become increasingly sophisticated, effective and therefore increasingly dangerous if misused, though freely available being a mere projectile without a concomitant cartridge containing a propellant and an initiator.

  6. Baltimore Air Toxics Study (BATS)

    SciTech Connect

    Sullivan, D.A.

    1996-12-31

    The Baltimore Air Toxics Study is one of the three urban air toxics initiatives funded by EPA to support the development of the national air toxics strategy. As part of this project, the Air Quality Integrated Management System (AIMS) is under development. AIMS is designed to bring together the key components of urban air quality management into an integrated system, including emissions assessment, air quality modeling, and air quality monitoring. Urban area source emissions are computed for a wide range of pollutants and source categories, and are joined with existing point source emissions data. Measured air quality data are used to evaluate the adequacy of the emissions data and model treatments as a function of season, meteorological parameters, and daytime/nighttime conditions. Based on tested model performance, AIMS provides the potential to improve the ability to predict air quality benefits of alternative control options for criteria and toxic air pollutants. This paper describes the methods used to develop AIMS, and provides examples from its application in the Baltimore metropolitan area. The use of AIMS in the future to enhance environmental management of major industrial facilities also will be addressed in the paper.

  7. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  8. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  9. Sights from the air

    NASA Astrophysics Data System (ADS)

    Tartara, P.

    2009-04-01

    The first aerial shots were taken by aerostat balloon during the second half of the nineteen century for military purpose and subsequently utilized for civilian, archaeological and town planning uses (Roman Forum 1900, Pompei 1910, Venezia 1913, etc.). Sights from the air have given the most objective representation of the landscape and traces progressively left by human activities. After the First World War the use of airplanes for photogrammetric shots suitable to create cartography (territorial map making) has permitted to realize a good basic documentation; successively it has been increased by aerial reconnaissance during the Second World War. Aerial shots by RAF, USAF and Luftwaffe brought to the establishment of rich aerial photograph Archives, particularly in Europe, which have had a very low utilization for the historical restoration of landscape. From the fifties, aerial documentation becomes systematic for different scale analysis and territorial planning. The use of satellite imagery and multispectral bands integrates the historical and recent aerial photographs; the former is particularly helpful for cartography updating, for large scale environmental analysis, for study and research of territories with not available air photographs or lacking in aerial shots. The amount and density of archaeological buried evidences, unknown at the most, is very substantial in Italy and in the whole Mediterranean area; here air-photo interpretation is being applied at advanced levels, but not systematically, since several decades. Some archaeological research teams, working for the knowledge of territorial cultural heritage, utilize historical and recent aerial photographs intensively (aerial photographs previous the II WW, just before the intensive and extensive use of mechanical means to till the land, preserve a large amount of traces or cropmarks of buried evidences; recent shots taken on different conditions of climate and crops, allow to see and read important

  10. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  11. Measuring Air Resistance in a Computerized Laboratory.

    ERIC Educational Resources Information Center

    Takahashi, Ken; Thompson, D.

    1999-01-01

    Presents an activity that involves dropping spherical party balloons onto a sonic motion sensor to show that the force associated with the air resistance is proportional to both the square of the velocity and the cross-sectional area of the balloon. (Author/WRM)

  12. Unmanned Air Vehicle -Version 1.0

    SciTech Connect

    Fred Oppel, SNL 06134

    2013-04-17

    This package contains modules that model the mobility of systems such as helicopters and fixed wing flying in the air. This package currently models first order physics - basically a velocity integrator. UAV mobility uses an internal clock to maintain stable, high-fidelity simulations over large time steps This package depends on interface that reside in the Mobility package.

  13. Air friction and rolling resistance during cycling.

    PubMed

    de Groot, G; Sargeant, A; Geysel, J

    1995-07-01

    To calculate the power output during actual cycling, the air friction force Fa and rolling resistance Fr have to be known. Instead of wind tunnel experiments or towing experiments at steady speed, in this study these friction forces were measured by coasting down experiments. Towing experiments at constant acceleration (increasing velocity) were also done for comparison. From the equation of motion, the velocity-time curve v(t) was obtained. Curve-fitting procedures on experimental data of the velocity v yielded values of the rolling resistance force Fr and of the air friction coefficient k = Fa/v2. For the coasting down experiments, the group mean values per body mass m (N = 7) were km = k/m = (2.15 +/- 0.32) x 10(-3)m-1 and ar = Fr/m = (3.76 +/- 0.18) x 10(-2)ms-2, close to other values from the literature. The curves in the phase plane (velocity vs acceleration) and the small residual sum of squares indicated the validity of the theory. The towing experiments were not congruent with the coasting down experiments. Higher values of the air friction were found, probably due to turbulence of the air.

  14. In situ evaluation of air-sea CO2 gas transfer velocity in an inner estuary using eddy covariance - with a special focus on the importance of using reliable CO2-fluxes

    NASA Astrophysics Data System (ADS)

    Jørgensen, E. T.; Sørensen, L. L.; Jensen, B.; Sejr, M. K.

    2012-04-01

    The air-sea exchange of CO2 or CO2 flux is driven by the difference in the partial pressure of CO2 in the water and the atmosphere (ΔpCO2), the solubility of CO2 (K0) and the gas transfer velocity (k) (Wanninkhof et al., 2009;Weiss, 1974) . ΔpCO2 and K0 are determined with relatively high precision and it is estimated that the biggest uncertainty when modelling the air-sea flux is the parameterization of k. As an example; the estimated global air-sea flux increases by 70 % when using the parameterization by Wanninkhof and McGillis (1999) instead of Wanninkhof (1992) (Rutgersson et al., 2008). In coastal areas the uncertainty is even higher and only few studies have focused on determining transfer velocity for the coastal waters and even fewer on estuaries (Borges et al., 2004;Rutgersson et al., 2008). The transfer velocity (k600) of CO2 in the inner estuary of Roskilde Fjord, Denmark was investigated using eddy covariance CO2 fluxes (ECM) and directly measured ΔpCO2 during May and June 2010. The data was strictly sorted to heighten the certainty of the results and the outcome was; DS1; using only ECM, and DS2; including the inertial dissipation method (IDM). The inner part of Roskilde Fjord showed to be a very biological active CO2 sink and preliminary results showed that the average k600 was more than 10 times higher than transfer velocities from similar studies of other coastal areas. The much higher transfer velocities were estimated to be caused by the greater fetch and shallower water in Roskilde Fjord, which indicated that turbulence in both air and water influence k600. The wind speed parameterization of k600 using DS1 showed some scatter but when including IDM the r2 of DS2 reached 0.93 with an exponential parameterization, where U10 was based on the Businger-Dyer relationships using friction velocity and atmospheric stability. This indicates that some of the uncertainties coupled with CO2 fluxes calculated by the ECM are removed when including the IDM.

  15. Turbulent Methane-Air Combustion

    NASA Technical Reports Server (NTRS)

    Yaboah, Yaw D.; Njokwe, Anny; James, LaShanda

    1996-01-01

    This study is aimed at enhancing the understanding of turbulent premixed methane-air combustion. Such understanding is essential since: (1) many industries are now pursuing lighter hydrocarbon alternative fuels and the use of premixed flames to reduce pollutant emissions, and (2) the characteristic dimensions and flow rates of most industrial combustors are often large for flows to be turbulent. The specific objectives of the study are: (1) to establish the effects of process variables (e.g., flow rate, fuel/air ratio, chlorinated hydro-carbons, and pressure) on the emissions and flow structure (velocity distribution, streamlines, vorticity and flame shape), and (2) to develop a mechanistic model to explain the observed trends. This includes the acquisition of Dantec FlowMap Particle Image Velocimeter. The design and fabrication of the premixed burner has also been completed. The study is now at the stage of testing of equipment and analytical instruments. The presentation will give details on the tasks completed and on the current and future plans. The project is progressing well and all activities are on schedule. The outlook for the success of the project is bright.

  16. Air-Powered Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Andrews, T.; Bjorklund, R. A.; Elliott, D. G.; Jones, L. K.

    1987-01-01

    Air-powered launcher fires plastic projectiles without using explosive propellants. Does not generate high temperatures. Launcher developed for combat training for U.S. Army. With reservoir pressurized, air launcher ready to fire. When pilot valve opened, sleeve (main valve) moves to rear. Projectile rapidly propelled through barrel, pushed by air from reservoir. Potential applications in seismic measurements, avalanche control, and testing impact resistance of windshields on vehicles.

  17. Disinfecting Filters For Recirculated Air

    NASA Technical Reports Server (NTRS)

    Pilichi, Carmine A.

    1992-01-01

    Simple treatment disinfects air filters by killing bacteria, algae, fungi, mycobacteria, viruses, spores, and any other micro-organisms filters might harbor. Concept applied to reusable stainless-steel wire mesh filters and disposable air filters. Treatment used on filters in air-circulation systems in spacecraft, airplanes, other vehicles, and buildings to help prevent spread of colds, sore throats, and more-serious illnesses.

  18. System interactions of air pollutants

    SciTech Connect

    Pierson, W.E. )

    1992-06-01

    The impact of system interactions and simultaneous or sequential exposure to various air pollutants, both man-made and natural ones, requires greater concern in the interpretation of the total adverse impact of various air pollutants. It is clear that there are highly significant system interactions with exposure to various air pollutants, and these must be considered very carefully in the evaluation of their adverse health effects.

  19. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.

  20. Indoor air pollution

    SciTech Connect

    Gold, D.R. )

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  1. Reactive Air Aluminization

    SciTech Connect

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  2. Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.

  3. Indoor air quality

    SciTech Connect

    Not Available

    1987-08-01

    Possible indoor air contaminants include carbon monoxide, carbon dioxide, nitrogen oxides, particulates, bacteria, fungi, and VOCs (volatile organic compounds). Sources comprise paints, pesticides, solvents, sealants, smoke, soils, adhesives, aerosols, dusts, cleansers, and moisture. Health effects can range from simple discomfort, tight-building syndrome symptoms, and dermatitis to much more serious maladies, such as Legionnaire's disease and cancer. Difficulties abound in dealing with IAQ problems. Government standards used in industrial settings-such as the OSHA permissible exposure limits or threshold limit values of the American Conference of Governmental Industrial Hygienists-are typically designed for heavy, short-term exposures to specific hazardous substances. These frequently prove inadequate in determining the deleterious nature of an IAQ complaint in a home, office, or school where pollutant concentrations may be quite low, exposures long-term, contaminants mixed, and, with some substances, interactions and health effects unknown. Also, government authority and responsibilities in nonindustrial settings are ill-defined.

  4. Air Composition and Chemistry

    NASA Astrophysics Data System (ADS)

    Brimblecombe, Peter

    1996-01-01

    This book is about the atmosphere and humanity's influence on it. For this new edition, Brimblecombe has rewritten and updated much of the book. In the early chapters, he discusses the geochemical, biological and maritime sources of the trace gases. Next, he examines the chemistry of atmospheric gases, suspended particles, and rainfall. After dealing with the natural atmosphere, he examines the sources of air pollution and its effects, with all scenarios updated from the last edition. Scenarios include decline in health, damage to plants and animals, indoor pollution, and acid rain. The final chapters, also revised, are concerned with the chemistry and evolution of the atmospheres of the planets of the solar system. Students with an interest in chemistry and the environmental sciences will find this book highly valuable.

  5. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  6. Clearing the air

    SciTech Connect

    Naquin, D.

    1998-05-01

    Like thunderclouds, predictions of doom for the environment and for business interests hover over the international climate treaty completed in Kyoto, Japan, last December. In the agreement, dubbed the Kyoto Protocol, participating countries agreed to reduce greenhouse gas (GHG) emissions below 1990 levels in an effort to slow down the phenomenon known as global warming. However, real-life effects of the United Nations-sponsored summit remain up in the air. Proposed regulation of greenhouse gas emissions would have profound effects on worldwide economies -- particularly the waste industry. But the Kyoto Protocol does not appear to satisfy any one group`s interests. This article examines all sides of this contentious and ongoing debate.

  7. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... impractical, air flow of 2 mph or less will be allowed at 0 mph vehicle speed. (3) The fan air flow velocity vector perpendicular to the axial flow velocity vector shall be less than 10 percent of the mean velocity measured at fan speeds corresponding to vehicle speeds of 20 and 40 mph. (4)(i) Fan axial air flow...

  8. Air/fuel ratio controller

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1980-12-23

    An internal combustion engine has a fuel injection pump and an air/fuel ratio controller. The controller has a lever that is connected to the pump lever. An aneroid moves the controller lever as a function of changes in intake manifold vacuum to maintain a constant air/fuel ratio to the mixture charge. A fuel enrichment linkage is provided that modifies the movement of the fuel flow control lever by the aneroid in response to changes in manifold gas temperature levels and exhaust gas recirculation to maintain the constant air/fuel ratio. A manual override is provided to obtain a richer air/fuel ratio for maximum acceleration.

  9. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  10. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  11. Infusion-related air embolism.

    PubMed

    Cook, Lynda S

    2013-01-01

    Vascular air embolism as a medically induced complication may be associated with numerous treatments and therapies. In infusion therapy, the risk is associated with venous and arterial catheterization as well as various other invasive procedures and much of the equipment used for them. The manner of air entry and the presentation of symptoms may vary greatly. Appropriate treatment options are dependent on air entry routes. Nurses need to be aware of the common and seldom-considered causes of air embolism to be able to guard against this complication, yet adequately support the patient if it occurs.

  12. Air supply distributor for fireplaces

    SciTech Connect

    Eberhardt, H.A.

    1984-09-18

    An air supply distributor for fireplaces having an opening in the hearth for the supply of relatively cold air is used in combination with means, such as a log holder or grate, for supporting combustible products and comprises a pair of side walls and a top cover. The distributor is adapted to be positioned under the log holder or grate to overlie the hearth opening so that relatively cold air passing through the hearth opening is directed toward the front opening of the fireplace from which it passes to the fire for supporting combustion thereof thereby minimizing the amount of air drawn from the room.

  13. The particles in town air

    PubMed Central

    Ellison, J. McK.

    1965-01-01

    Particles constitute an important part of air pollution, and their behaviour when suspended in air is very different from that of gas molecules: in particular, the mechanisms by which they become deposited on surfaces are different, and consequently the methods normally used for removing particles from the air, either for sampling or for cleaning it, rely mainly on mechanisms that do not enter into the behaviour of gas molecules. These mechanisms are described, and the ways in which they affect the problems of air pollution and its measurement are discussed. ImagesFIG. 8 PMID:14315713

  14. Fundamentals of air pollution. Third edition

    SciTech Connect

    Boubel, R.W.; Fox, D.L.; Turner, D.B.; Stern, A.C.

    1994-12-31

    This book presents an overview of air pollution. In Part I, the history of air pollution and the basic concepts involved with air pollution such as sources, scales, definitions are covered. Part II describes how airborne pollutants damage materials, vegetation, animals, and humans. Six fundamental aspects of air pollution are included in the text: The Elements of Air Pollution; The Effects of Air Pollution; Measurement and Monitoring of Air Pollution; Meterology of Air Pollution; regulatory Control of Air Pollution; and Engineering Control of Air Pollution.

  15. Colorado Air Quality Control Regulations and Ambient Air Quality Standards.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Health, Denver. Div. of Air Pollution Control.

    Regulations and standards relative to air quality control in Colorado are defined in this publication. Presented first are definitions of terms, a statement of intent, and general provisions applicable to all emission control regulations adopted by the Colorado Air Pollution Control Commission. Following this, three regulations are enumerated: (1)…

  16. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  17. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  18. The influence of air friction in speed skating.

    PubMed

    van Ingen Schenau, G J

    1982-01-01

    With the use of a wind tunnel the air friction force Fw on six speed skaters of different body builds was measured. The dependence of the drag coefficient CD on air velocity v and the influence of different skating postures on drag were investigated. At an air velocity of v = 12 m/sec, an angle between upper and lower leg of 110 degrees and a horizontal trunk position, the measured air friction constant kn(=Fw/V2) of all subjects was calculated from their height l and weight m according to the formula 0.0205 l3 square root m (standard error 2%). CD and as a consequence k appeared to be strongly dependent on air velocity. Expressions to correct k for other velocities and postures were derived and substituted into a power balance by which the influence of posture, ice condition, wind and altitude on performance was predicted.

  19. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  20. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  1. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  2. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  3. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  4. Air Safety Spinoffs

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Weight saving-even a matter of a few pounds-is an important consideration in airplane design and . construction. Boeing saved 200 pounds simply by substituting a new type of compressed gas cylinder on their 747 commercial airliners. For quickly evacuating passengers in the event of a ground emergency the 747 escape chutes allow ' passengers to slide to safety from the two-story height of the cabin deck. The chutes pop out of exitways and are automatically inflated in seconds by compressed air stored in pressure vessels. Boeing's weight saving resulted from a recent changeover to a new type of pressure vessel built by Structural Composites Industries Inc. of Azusa, Cal. The company employs technology originally developed for rocket motor casings; the cylinders are constructed by winding fibers around an aluminum liner. This technique offers high strength for very low weight-in this case 60 percent less than the pressure vessels earlier used on the 747. Another contribution to improved air safety is an underwater locator device. Called the "Pinger," it uses sonar techniques to locate aircraft crashed in water-or, more specifically, to recover the flight recorder aboard the airplane. Its recovery provides clues as to what caused the accident and suggests measures to prevent similar future occurrences. Until recently, there was no way to recover flight recorders aboard aircraft lost in water crashes. The Pinger, now serving 95 percent of the airline industry, provides an answer. Key element of the Pinger system is a small, battery-powered transmitter, or homing beacon, included as part of the recorder package. For as long as 30 days, the transmitter sends out an acoustic signal from water depths up to 20,000 feet. The other element of the system is a receiver, used by search crews to home in on the transmitter's signal. Originating as a U.S. Navy project, this device was refined and further developed by NASA's Langley Research Center to retrieve submerged nose cones

  5. Airborne rotary air separator study

    NASA Technical Reports Server (NTRS)

    Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.

    1990-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.

  6. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  7. Air pollution and allergic disease.

    PubMed

    Kim, Haejin; Bernstein, Jonathan A

    2009-03-01

    Over the past several decades, there has been increased awareness of the health effects of air pollution and much debate regarding the role of global warming. The prevalence of asthma and allergic disease has risen in industrialized countries, and most epidemiologic studies focus on possible causalities between air pollution and these conditions. This review examines salient articles and summarizes findings important to the interaction between allergies and air pollution, specifically volatile organic compounds, global warming, particulate pollutants, atopic risk, indoor air pollution, and prenatal exposure. Further work is necessary to determine whether patients predisposed to developing allergic disease may be more susceptible to the health effects of air pollutants due to the direct interaction between IgE-mediated disease and air pollutants. Until we have more definitive answers, patient education about the importance of good indoor air quality in the home and workplace is essential. Health care providers and the general community should also support public policy designed to improve outdoor air quality by developing programs that provide incentives for industry to comply with controlling pollution emissions.

  8. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  9. Air Pollution and Human Health

    ERIC Educational Resources Information Center

    Lave, Lester B.; Seskin, Eugene P.

    1970-01-01

    Reviews studies statistically relating air pollution to mortality and morbidity rates for respiratory, and cardiovascular diseases, cancer and infant mortality. Some data recalculated. Estimates 50 percent air pollution reduction will save 4.5 percent (2080 million dollars per year) of all economic loss (hospitalization, income loss) associated…

  10. The Federal Air Pollution Program.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Described is the Federal air pollution program as it was in 1967. The booklet is divided into these major topics: History of the Federal Program; Research; Assistance to State and Local Governments; Abatement and Prevention of Air Pollution; Control of Motor Vehicle Pollution; Information and Education; and Conclusion. Federal legislation has…

  11. In Search of Air Pollution

    ERIC Educational Resources Information Center

    Beckendorf, Kirk

    2006-01-01

    Air pollution is no longer just a local issue; it is a global problem. The atmosphere is a very dynamic system. Pollution not only changes in chemical composition after it is emitted, but also is transported on local and global air systems hundreds and even thousands of miles away. Some of the pollutants that are major health concerns are not even…

  12. A Breath of Fresh Air

    ERIC Educational Resources Information Center

    Belew, Rachel

    2011-01-01

    One of the most important aspects of a healthy school--and one that, unfortunately, often falls by the wayside--is indoor air quality. The U.S. Government Accountability Office estimates that more than 15,000 schools nationwide report suffering from poor indoor air quality. According to the U.S. Environmental Protection Agency, schools with poor…

  13. Improved Air-Treatment Canister

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1982-01-01

    Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

  14. Clearing the Air about IAQ.

    ERIC Educational Resources Information Center

    Seyffer, Charles

    1999-01-01

    Discusses how to spot indoor air quality (IAQ) problems in schools and possible actions to take to eliminate them. Highlights the types of pollutants that contribute to IAQ deterioration and the physical symptoms commonly associated with them, and suggests ways of addressing older heating, ventilation, and air conditioning systems to improve air…

  15. Title III hazardous air pollutants

    SciTech Connect

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  16. New Federal Air Quality Standards.

    ERIC Educational Resources Information Center

    Stopinski, O. W.

    The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)

  17. Building Air Quality. Action Plan.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Indoor Air Div.

    Building managers and owners often confront competing demands to reduce operating costs and increase revenues that can siphon funds and resources from other building management concerns such as indoor air quality (IAQ). This resource booklet, designed for use with the "Building Air Quality Guide," provides building owners and managers with an…

  18. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  19. Wood stove air flow regulating

    SciTech Connect

    Brefka, P.E.

    1983-10-04

    A wood stove has primary and secondary air regulator doors at the bottom and top, respectively, of the stove door each rotating about the axis of a tightening knob in the center of the door opposite a baffle plate that defines with the door inside an air channel open at the top and bottom.

  20. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  1. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  2. The Economics of Air Cargo

    NASA Technical Reports Server (NTRS)

    Kersey, J. W.

    1972-01-01

    The economic factors involved in air cargo operations and air cargo marketing development are discussed. Specific steps which are followed by various airports to reduce operating costs are described. The economics of cargo handling within an airline are analyzed with respect to: (1) paperwork costs, (2) terminal costs, (3) line haul costs, and (4) claims costs.

  3. The Clean Air Mercury Rule

    SciTech Connect

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  4. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health. PMID:21621987

  5. Children, Pediatricians, and Polluted Air.

    ERIC Educational Resources Information Center

    Kane, Dorothy Noyes

    Explored are children's vulnerability and the pediatrician's role in relation to the problems posed by air pollution. Research is noted to have included a search of biomedical literature over the past 10 years; attendance at medical meetings; conferences with air pollution researchers, environmental protection administrators, and specialists in…

  6. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health.

  7. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  8. Penetration of Air Jets Issuing from Circular, Square, and Elliptical Orifices Directed Perpendicularly to an Air Stream

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; Callaghan, Edmund E.; Bowden, Dean T.

    1950-01-01

    An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.

  9. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  10. Air pollution: impact and prevention.

    PubMed

    Sierra-Vargas, Martha Patricia; Teran, Luis M

    2012-10-01

    Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution.

  11. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  12. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the

  13. Lithium-Air Cell Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  14. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  15. Picosecond laser filamentation in air

    NASA Astrophysics Data System (ADS)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  16. Air pollution: Impact and prevention

    PubMed Central

    SIERRA-VARGAS, MARTHA PATRICIA; TERAN, LUIS M

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution. PMID:22726103

  17. Air tight fuel burning stove

    SciTech Connect

    Nietupski, V.J.

    1980-03-11

    A fuel burning stove is claimed for holding and burning fuel to heat the surrounding atmosphere in a room where the stove is employed. The stove includes a fire box which supports the fuel and where the combustion is sustained. An air inlet is provided to the fire box allowing the inflow of air for combustion with the fuel. The air is preheated upon entry into the fire box for mixture with volatiles formed by the burning fuel directed toward the entering air by a baffle means to effect a secondary combustion. In addition, a movable damper cooperates with the baffle to direct volatiles toward the incoming heated air when the damper is in the closed position and to provide a more direct path to the chimney when in the open position.

  18. Estrogen turns down "the AIRE".

    PubMed

    Bakhru, Pearl; Su, Maureen A

    2016-04-01

    Genetic alterations are known drivers of autoimmune disease; however, there is a much higher incidence of autoimmunity in women, implicating sex-specific factors in disease development. The autoimmune regulator (AIRE) gene contributes to the maintenance of central tolerance, and complete loss of AIRE function results in the development of autoimmune polyendocrinopathy syndrome type 1. In this issue of the JCI, Dragin and colleagues demonstrate that AIRE expression is downregulated in females as the result of estrogen-mediated alterations at the AIRE promoter. The association between estrogen and reduction of AIRE may at least partially account for the elevated incidence of autoimmune disease in women and has potential implications for sex hormone therapy.

  19. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  20. Airing Out Anthrax

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The AiroCide TiO2 is an air-purifier that kills 93.3 percent of airborne pathogens that pass through it, including Bacillus anthraci, more commonly known as anthrax. It is essentially a spinoff of KES Science & Technology, Inc.'s Bio-KES system, a highly effective device used by the produce industry for ethylene gas removal to aid in preserving the freshness of fruits, vegetables, and flowers. The TiO2-based ethylene removal technology that is incorporated into the company's AiroCide TiO2 and Bio-KES products was first integrated into a pair of plant-growth chambers known as ASTROCULTURE(TM) and ADVANCED ASTROCULTURE(TM). Both chambers have housed commercial plant growth experiments in space on either the Space Shuttle or the International Space Station. The AiroCide TiO2 also has a proven record of destroying 98 percent of other airborne pathogens, such as microscopic dust mites, molds, and fungi. Moreover, the device is a verified killer of Influenza A (flu), E. coli, Staphylococcus aureas, Streptococcus pyogenes, and Mycoplasma pneumoniae, among many other harmful viruses.

  1. Radioxenon spiked air

    DOE PAGES

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The Internationalmore » Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  2. Radioxenon spiked air.

    PubMed

    Watrous, Matthew G; Delmore, James E; Hague, Robert K; Houghton, Tracy P; Jenson, Douglas D; Mann, Nick R

    2015-12-01

    Four of the radioactive xenon isotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This paper focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities. PMID:26318775

  3. Hands in the air

    PubMed Central

    Ping, Raedy; Goldin-Meadow, Susan

    2008-01-01

    Including gesture in instruction facilitates learning. Why? One possibility is that gesture points out objects in the immediate context and thus helps ground the words learners hear in the world they see. Previous work on gesture’s role in instruction has used gestures that either point to or trace paths on objects, thus providing support for this hypothesis. Here we investigate the possibility that gesture helps children learn even when it is not produced in relation to an object but is instead produced “in the air.” We gave children instruction in Piagetian conservation problems with or without gesture and with or without concrete objects. We found that children given instruction with speech and gesture learned more about conservation than children given instruction with speech alone, whether or not objects were present during instruction. Moreover, children who received instruction in speech and gesture were more likely to give explanations for how they solved the problems that they were not taught during the experiment; this advantage was found only when objects were absent during instruction. Gesture in instruction can thus help learners learn even when those gestures do not direct attention to visible objects, suggesting that gesture can do more for learners than simply ground arbitrary, symbolic language in the physical, observable world. PMID:18793062

  4. Radioxenon spiked air.

    PubMed

    Watrous, Matthew G; Delmore, James E; Hague, Robert K; Houghton, Tracy P; Jenson, Douglas D; Mann, Nick R

    2015-12-01

    Four of the radioactive xenon isotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This paper focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  5. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  6. Air Dehydration Membranes for Nonaqueous Lithium-Air Batteries

    SciTech Connect

    Zhang, Jian; Xu, Wu; Li, Xiaohong S; Liu, Wei

    2010-06-11

    In this paper, several types of new membranes were innovated and used as an O2-selective and H2O barrier films attached onto the cathode of non-aqueous Li-air batteries for continuous supplying of dry air into the batteries from ambient air. The membranes were prepared by depositing an O2/H2O selective coating layer on the exterior surface of a newly-invented thin porous Ni substrate sheet at thickness of ~50µm. The coatings tried include hydrophobic silicalite type zeolite and Teflon (PTFE) materials. The melted PTFE-membrane on the porous Ni sheet at 360°C enabled the Li-air batteries with Ketjen black carbon air electrodes to operate in ambient air (with 20% RH) for 21 days with a specific capacity of 1022 mAh/g carbon and a specific energy of 2792 Wh/kg carbon. Its performance is much better than the battery assembled with the same battery material but by use of a commercial, porous PTFE diffusion membranes as the moisture barrier layer on the cathode, which only had a discharge time of five and half days corresponding to a specific capacity of 267 mAh/g carbon and a specific energy of 704Wh/kg carbon. The Li-air battery with the present selective membrane barrier layer even showed better performance in ambient air operation (20% RH) than the reference battery tested in the dry air box (< 1% RH).

  7. Large scale air monitoring: lichen vs. air particulate matter analysis.

    PubMed

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10).

  8. Flight testing air-to-air missiles for flutter

    NASA Technical Reports Server (NTRS)

    Kutschinski, C. R.

    1975-01-01

    The philosophy of the design of air-to-air missiles and hence of flight testing them for flutter differs from that of manned aircraft. Primary emphasis is put on analytical and laboratory evaluation of missile susceptibility to aeroelastic and aero-servo-elastic instabilities and uses flight testing for confirmation of the absence of such instabilities. Flight testing for flutter is accomplished by using specially instrumented programmed missiles, air or ground launched with a booster to reach the extreme flight conditions of tactical use, or by using guided missiles with telemetered performance data. The instrumentation and testing techniques are discussed along with the success of recent flight tests.

  9. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  10. Air Pollution in the World's Megacities.

    ERIC Educational Resources Information Center

    Richman, Barbara T., Ed.

    1994-01-01

    Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…

  11. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  12. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  13. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  14. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  15. Radioxenon spiked air

    SciTech Connect

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  16. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2012-01-01

    Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.

  17. Air turbo-ramjet engine

    SciTech Connect

    Kepler, C.E.

    1991-12-24

    This patent describes a jet engine capable of being used to power an aircraft throughout a range of speeds from subsonic to high supersonic. It comprises means for bounding an internal passage centered on an axis and including, in succession as considered in the direction of axial flow of incoming air into and through the passage, a fixed-area air inlet section, a diverging passage section, a mixing section, a combustion section, and an outlet section; fan means situated in the air inlet section and including a rotor mounted in the bounding means for rotation about the axis and including a plurality of circumferentially spaced rotor blade members; means for selectively rotating the rotor about the axis with attendant impelling action of the rotor blade members on the air flowing therebetween; and means for selectively discharging air from a region of the passage situated between the air inlet section and the diverging passage section to the exterior of the bounding means, both at subsonic and supersonic speeds of the aircraft, when the amount of incoming air passing through the fixed-area inlet section exceeds that required in the combustion section.

  18. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  19. Earth-air heat exchanger

    SciTech Connect

    Kammel, D.W.

    1985-01-01

    Optimizing the thermal environment of a livestock building is beneficial to the growth and production of the animal. Minimizing temperature extremes of inlet ventilation air to the livestock building by passing the air through underground ducts would accomplish this goal. Providing this optimum environment by reducing heating and cooling loads would reduce energy costs and increase profits for the producer. The heat transfer in an earth-air heat exchanger was studied in two phases to develop design criteria for these systems. The experimental phase consisted of an earth-air exchanger installation from which data were collected during hot weather (cooling effect), cold weather (heating effect), and mild weather performances. The analytical phase developed a finite element program for simulating the earth-air heat exchanger and studying the effects of important parameters on the heat transfer rate and the air temperature. Results of the first phase were used to verify the computer model. Design criteria for the earth-air heat exchanger were determined based on the information obtained in the two phases of this study.

  20. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  1. 76 FR 66717 - Notification of a Public Teleconference of the Clean Air Scientific Advisory Committee Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... AGENCY Notification of a Public Teleconference of the Clean Air Scientific Advisory Committee Air Monitoring and Methods Subcommittee AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY... announces a public teleconference of the Clean Air Scientific Advisory Committee (CASAC) Air Monitoring...

  2. Droplet detachment by air flow for microstructured superhydrophobic surfaces.

    PubMed

    Hao, Pengfei; Lv, Cunjing; Yao, Zhaohui

    2013-04-30

    Quantitative correlation between critical air velocity and roughness of microstructured surface has still not been established systematically until the present; the dynamics of water droplet detachment by air flow from micropillar-like superhydrophobic surfaces is investigated by combining experiments and simulation comparisons. Experimental evidence demonstrates that the onset of water droplet detachment from horizontal micropillar-like superhydrophobic surfaces under air flow always starts with detachment of the rear contact lines of the droplets from the pillar tops, which exhibits a similar dynamic mechanism for water droplet motion under a gravity field. On the basis of theoretical analysis and numerical simulation, an explicit analytical model is proposed for investigating the detaching mechanism, in which the critical air velocity can be fully determined by several intrinsic parameters: water-solid interface area fraction, droplet volume, and Young's contact angle. This model gives predictions of the critical detachment velocity of air flow that agree well with the experimental measurements.

  3. Strain-induced extinction of hydrogen-air counterflow diffusion flames - Effects of steam, CO2, N2, and O2 additives to air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.

    1992-01-01

    A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.

  4. Study of air pollutant detectors

    NASA Technical Reports Server (NTRS)

    Gutshall, P. L.; Bowles, C. Q.

    1974-01-01

    The application of field ionization mass spectrometry (FIMS) to the detection of air pollutants was investigated. Current methods are reviewed for measuring contaminants of fixed gases, sulfur compounds, nitrogen oxides, hydrocarbons, and particulates. Two enriching devices: the dimethyl silicone rubber membrane separator, and the selective adsorber of polyethylene foam were studied along with FIMS. It is concluded that the membrane enricher system is not a suitable method for removing air pollutants. However, the FIMS shows promise as a useable system for air pollution detection.

  5. Implementing Title III -- Air toxics

    SciTech Connect

    Shaw, B.W.

    1995-12-31

    The South Coast Air Quality Management District (AQMD) is taking three basic approaches to implementing the new National Emissions Standards for Hazardous Air Pollutants (NESHAPs) from the Title III program: accept and implement, as written, the NESHAPs where few sources are located in the South Coast Air Basin; incorporate with simplification of the NESHAP requirements into AQMD rules when many sources are involved; then seek equivalency by the US EPA; and incorporate with a market-based rule (VOC RECLAIM), part of many NESHAPs which control volatile organic compound as HAPs. Whatever the approach, emphasis will be placed on: streamlining and simplification; helping sources understand requirements and comply; and common sense.

  6. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  7. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  8. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  9. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  10. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  11. AIRS Level 2 Data Products

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto

    2003-01-01

    The Atmospheric InfraRed Sounder (AIRS) Standard Retrieval Product consists of retrieved cloud and surface properties; profiles of retrieved temperature, water vapor, and ozone; and a flag indicating the presence of cloud ice or water. They contain quality assessment flags in addition to retrieved quantities and are generated for all locations where atmospheric soundings are taken. An AIRS granule consists of 6 minutes of data. This corresponds to approximately 1/15 of an orbit but exactly 45 scan lines of AMSU-A data or 135 scan lines of AIRS and HSB data.

  12. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  13. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  14. Quantification and control of the spatiotemporal gradients of air speed and air temperature in an incubator.

    PubMed

    Van Brecht, A; Aerts, J M; Degraeve, P; Berckmans, D

    2003-11-01

    Around the optimal incubator air temperature only small spatiotemporal deviations are allowed. However, air speed and air temperature are not uniformly distributed in the total volume of the incubator due to obstruction of the eggs and egg trays. The objectives of this research were (1) to quantify the spatiotemporal gradients in temperature and velocity and (2) to develop and validate a control algorithm to increase the uniformity in temperature during the entire incubation process. To improve the uniformity of air temperature, the airflow pattern and the air quality need to be controlled more optimally. These data show that the air temperature between the eggs at a certain position in a large incubator is the result of (1) the mean air temperature of the incubator; (2) the exchange of heat between the egg and its micro-environment, which is affected by the air speed at that certain position; (3) the time-variable heat production of the embryo; and (4) the heat influx or efflux as a result from the movement of hot or cold air in the incubator toward that position, which is affected by the airflow pattern. This implies that the airflow pattern needs to be controlled in a more optimal way. To maximize the uniformity of air temperature, an active and adaptive control of the three-dimensional (3-D) airflow pattern has been developed and tested. It was found to improve the spatiotemporal temperature distribution. The chance of having a temperature reading in the interval from 37.5 to 38.1 degrees C increased by 3% compared to normal operating conditions.

  15. An ultrasonic air pump using an acoustic traveling wave along a small air gap.

    PubMed

    Koyama, Daisuke; Wada, Yuji; Nakamura, Kentaro; Nishikawa, Masato; Nakagawa, Tatsuyuki; Kihara, Hitoshi

    2010-01-01

    An ultrasonic air pump that uses a traveling wave along a small air gap between a bending vibrator and a reflector is discussed. The authors investigate ultrasonic air pumps that make use of bending vibrators and reflectors and confirm that air can be induced to flow by generating an asymmetric acoustic standing wave along an air gap. In this paper, we proposed a novel ultrasonic air pump in which a traveling wave along an air gap induces acoustic streaming and achieves one-way airflow. Two new reflector configurations, stepped and tapered, were designed and used to generate traveling waves. To predict airflow generation, sound pressure distribution in the air gap was calculated by means of finite element analysis (FEA). As a preliminary step, 2 FEA models were compared: one piezoelectric-structure-acoustic model and one piezoelectric- structure-fluid model, which included the viscosity effect of the fluid. The sound pressure distribution in the air gap, including fluid viscosity, was calculated by the FEA because it is expected to be dominant and thus have a strong effect on the sound pressure field in such a thin fluid layer. Based on the FEA results of the stepped and the tapered reflectors, it was determined that acoustic traveling waves could propagate along the gaps. Experiments were carried out with the designed bending vibrator and the reflectors. The acoustic fields in the air gap were measured via a fiber optic probe, and it was determined that the sound pressure and the phase distribution tendencies corresponded well with the results computed by FEA. Through our experiments, one-way airflow generation, in the same direction of the traveling wave and with the maximum flow velocity of 5.6 cm/s, was achieved.

  16. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  17. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  18. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  19. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air... detect maximum concentrations of beryllium in the ambient air. (b) All monitoring sites shall be...

  20. Guide to Air Cleaners in the Home

    MedlinePlus

    ... Air Duct Cleaning Asthma Health, Energy Efficiency and Climate Change Flood Cleanup Home Remodel Indoor airPLUS Mold Radon ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and ...

  1. Wood stove with safety forced air system

    SciTech Connect

    Erickson, A.J.; Thulman, R.D.

    1982-08-03

    A high efficiency, air-tight wood stove has a firebox with front, side, rear, top and bottom walls, primary air introducing means for admitting combustion air into the firebox, air flow means adjacent the bottom of the firebox for directing a flow of air upwardly across at least one firebox wall, at least one supplemental air inlet for diverting a portion of the air from the air flow means into the firebox, fan means for forcing air through the air flow means and through the supplemental air inlet, the size of the primary air introducing means being chosen to automatically restrict the combustion in the firebox if the fan means stops to maintain the temperature of the stove and surroundings at safe levels.

  2. Air Quality Guide for Ozone

    MedlinePlus

    ... is one of our nation’s most common air pollutants. Use the chart below to help reduce your ... human health. Ozone forms when two types of pollutants (VOCs and NOx) react in sunlight. These pollutants ...

  3. State of the Air 2015

    MedlinePlus

    Key Findings Ozone Pollution Year Round Particle Short Term Particle Cleanest Cities People at Risk What Needs to Be Done Methodology ... Compare Your Air Select Your State Health Risks Ozone Particle Pollution Children’s Health Disparities & Near Highways Protect ...

  4. What's Up in the Air?

    ERIC Educational Resources Information Center

    Lowe, Elizabeth M.

    1981-01-01

    Reviews progress made in the past decade to reduce levels of air pollutants in New York. Described are current monitoring and control efforts conducted by the New York State Department of Environmental Conservation. (WB)

  5. Psychological reactions to air pollution

    SciTech Connect

    Evans, G.W.; Colome, S.D.; Shearer, D.F.

    1988-02-01

    Interviews with a large representative sample of Los Angeles residents reveal that these citizens are somewhat aware and concerned about air pollution, but not knowledgeable about its causes. Direct behaviors to reduce causes of pollution or one's exposure to it are rare. A moderate percentage of people seek out information about air pollution or complain about it. Fewer follow state health advisories by reducing automobile driving or restricting activity during air pollution episodes. Preliminary modeling of citizen compliance with air pollution health advisories suggest that personal beliefs about negative health effects are a important predictor of compliance. Finally, modest but significant relationships are noted between ambient photochemical oxidants and anxiety symptoms. The latter finding controls for age, socioeconomic status, and temperature.

  6. Air tamponade of the heart

    PubMed Central

    Orłowski, Tadeusz; Iwanowicz, Katarzyna; Snarska, Jadwiga

    2016-01-01

    Pneumopericardium is a rare disease defined as the presence of air or gas in the pericardial sac. Among the etiological factors, the following stand out: chest trauma, barotrauma, air-containing fistulas between the pericardium and the surrounding structures, secondary gas production by microorganisms growing in the pericardial sac, and iatrogenic factors. Until now, spontaneous pneumopericardium has been considered a harmless and temporary state, but a review of clinical cases indicates that the presence of air in the pericardium can lead to cardiac tamponade and life-threatening hemodynamic disturbances. We present the case of an 80-year-old patient with a chronic bronchopericardial fistula, who suffered from a cardiac arrest due to air tamponade of the heart. PMID:27516791

  7. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  8. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    This book addresses air pollution's sources and movement; biochemical, cellular, and whole-plant effects, impacts on agricultural and natural systems; and control. The effects of convective turbulence and atmospheric stability are well illustrated. The diagnosis of air pollution injury to plants and mimicking symptoms are discussed. The environmental and source variables that affect pollutant dispersion are explained by use of the Gaussian dispersion model. An overview is presented of the effects of sulfur dioxide, photochemical oxidants, and fluoride on stomatal function, photosynthesis, respiration, and metabolic processes and products. Information is discussed concerning combinations of air pollutants, impacts on lichens, and effects of trace metals on plants. The relationship between air pollutants and diseases or other stress factors is evaluated.

  9. Manual on indoor air quality

    SciTech Connect

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  10. In Brief: Air pollution app

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    A new smartphone application takes advantage of various technological capabilities and sensors to help users monitor air quality. Tapping into smartphone cameras, Global Positioning System (GPS) sensors, compasses, and accelerometers, computer scientists with the University of Southern California's (USC) Viterbi School of Engineering have developed a new application, provisionally entitled “Visibility.” Currently available for the Android telephone operating system, the application is available for free download at http://robotics.usc.edu/˜mobilesensing/Projects/AirVisibilityMonitoring. An iPhone application may be introduced soon. Smartphone users can take a picture of the sky and then compare it with models of sky luminance to estimate visibility. While conventional air pollution monitors are costly and thinly deployed in some areas, the smartphone application potentially could help fill in some blanks in existing air pollution maps, according to USC computer science professor Gaurav Sukhatme.

  11. Measuring Air-Ionizer Output

    NASA Technical Reports Server (NTRS)

    Lonborg, J. O.

    1985-01-01

    Test apparatus checks ion content of airstream from commercial air ionizer. Apparatus ensures ion output is sufficient to neutralize static charges in electronic assembly areas and concentrations of positive and negative ions are balanced.

  12. Coping with Indoor Air Pollution

    MedlinePlus

    ... itself. Household chemical cleaners Use baking soda or vinegar and water as household cleaners. For a job ... after each use by using one-part white vinegar to three-parts water. Let the pieces air- ...

  13. Air cushion vehicles: A briefing

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Finnegan, P. M.

    1971-01-01

    Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described.

  14. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  15. Global Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; Sudo, Kengo; Szopa, Sophie; Horowitz, Larry W.; Takemura, Toshihiko; Zeng, Guang; Cameron-Smith, Philip J.; Cionni, Irene; Collins, William J.; Dalsoren, Stig; Eyring, Veronika; Folberth, Gerd A.; Ginoux, Paul; Josse, Batrice; Lamarque, Jean-Francois; OConnor, Fiona M.; Mackenzie, Ian A.; Nagashima, Tatsuya; Shindell, Drew Todd; Spracklen, Dominick V.

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  16. Call for improving air quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    The European Environmental Bureau (EEB), a federation of citizen organizations, has called for stricter policies in Europe to protect human health and the environment. "Air pollution emanates from sources all around us, be they cars, industrial plants, shipping, agriculture, or waste. The [European Union] must propose ambitious legislation to address all of these sources if it is to tackle the grave public health consequences of air pollution," EEB secretary general Jeremy Wates said on 8 January.

  17. The new Clean Air Act

    SciTech Connect

    Padmanabha, A.P. ); Olem, H. )

    1991-05-01

    This article is a title by title review of the new Clean Air Act and how it affects water quality and wastewater treatment. The bill provides for restoring and protecting lakes and rivers by reducing acid-rain-causing emissions and toxics from nonpoint-source runoff. Topics covered include urban smog, mobile sources, air toxics, acid rain, permits, ozone-depleting chemicals, enforcement, and the law's socio-economic impacts.

  18. The Clean Air Interstate Rule

    SciTech Connect

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  19. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  20. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.