Science.gov

Sample records for air velocity sensors

  1. Air-Velocity Sensor For Helicopter

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas; Hellbaum, Richard F.

    1990-01-01

    New airspeed sensor conceived for accurate measurement of both airspeed and direction of flight of helicopter. Direction of motion of helicopter displayed by lighting of one of series of lamps encircling digital display of airspeed. Pressure transducer measures difference between impact and static pressures at tip of rotor blade by use of conventional pitot-static-tube assembly.

  2. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  3. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  4. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  5. Assessment of air velocity sensors for use in animal produciton facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  6. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  7. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  8. Metallic glass velocity sensor

    SciTech Connect

    Butler, J.L.; Butler, S.C.; Massa, D.P.; Cavanagh, G.H.

    1996-04-01

    A metallic glass accelerometer has been developed for use as an underwater sound velocity sensor. The device uses the metallic glass material Metglas 2605SC which has been processed to achieve a virgin coupling coefficient of 0.96. The mechanical to electrical conversion is based on the detection of the change in the inductance of the device as a result of bending motion. The detection method uses a carrier frequency signal which is amplitude modulated by the received signal. This scheme was originally described by Wun-Fogle, Savage and Clark [{open_quote}{open_quote}Sensitive wide frequency range magnetostrictive strain gauge,{close_quote}{close_quote} Sensors and Actuators, 1{underscore}2{underscore}, 323{endash}331 (1987)]. The bender is in the form of a three layered laminate with a closed magnetic path window frame structure. The theory of operation along with measured and calculated results are presented for a prototype element with approximate dimensions 1.5{times}1.0{times}0.1 inches. Calculated and measured results agree for a reduced effective coupling coefficient of 0.72 and operation with a carrier field intensity of 0.87 Oe and carrier frequency of 20 kHz. {copyright} {ital 1996 American Institute of Physics.}

  9. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  10. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  11. New Sensors For Flow Velocity And Acoustics

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1991-01-01

    Paper describes two sensor-development programs at Fluid Mechanics Laboratory at NASA Ames Research Center. One program for digital image velocimetry (DIV) sensors, and other program, for advanced acoustic sensors for wind tunnels. DIV measures, in real time, instantaneous velocity fields of time-varying flow or of collection of objects moving with varying velocities. Advanced acoustic sensors for wind tunnels being developed to reduce effects of interference from wind noise, noise from interactions between flows and sensors, flow-induced vibrations of sensors, deflections of accoustic waves by boundary layers induced by sensors, and reflections from walls and sensor supports.

  12. A new integrated optical angular velocity sensor

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Peluso, Francesco; Armenise, Mario N.

    2005-03-01

    Very compact and low-cost rotation sensors are strongly required for any moving systems in several applications. Integrated optical angular velocity sensors seem to be very promising in terms of low cost, compactness, light weight and high-performance. In the paper a new integrated optical angular velocity sensor having a passive resonant configuration is proposed. Preliminary results are really encouraging and demonstrate the possibility of using the sensor in gyro systems for satellite applications.

  13. Acoustic velocity sensor for the NRL ABC research platform

    SciTech Connect

    Corsaro, R.D.; Houston, B.

    1996-04-01

    A new research platform has been constructed for general underwater structural-acoustics studies of sensor/actuator coupling mechanisms, and in particular for active acoustic boundary control (ABC) studies. It consists of an array of 15 {open_quote}{open_quote}ABC{close_quote}{close_quote} tiles arranged in a 5{times}3 pattern on a backing structure (an air-backed steel plate). Tiles are 10 inches square, and each tile contains a large area actuator, pressure sensor, and (acoustic particle) velocity sensor. While the actuator and pressure sensor could be constructed of commercially available transducer material, the selection of a suitable acoustic velocity sensor proved more difficult. This paper describes the velocity sensor system selected and its impact on the resulting performance and characteristics of the ABC Platform. {copyright} {ital 1996 American Institute of Physics.}

  14. Airflow Simulations around OA Intake Louver with Electronic Velocity Sensors

    SciTech Connect

    Han, Hwataik; Sullivan, Douglas P.; Fisk, William J.

    2009-04-01

    It is important to control outdoor airflow rates into HVAC systems in terms of energy conservation and healthy indoor environment. Technologies are being developed to measure outdoor air (OA) flow rates through OA intake louvers on a real time basis. The purpose of this paper is to investigate the airflow characteristics through an OA intake louver numerically in order to provide suggestions for sensor installations. Airflow patterns are simulated with and without electronic air velocity sensors within cylindrical probes installed between louver blades or at the downstream face of the louver. Numerical results show quite good agreements with experimental data, and provide insights regarding measurement system design. The simulations indicate that velocity profiles are more spatially uniform at the louver outlet relative to between louver blades, that pressure drops imposed by the sensor bars are smaller with sensor bars at the louver outlet, and that placement of the sensor bars between louver blades substantially increases air velocities inside the louver. These findings suggest there is an advantage to placing the sensor bars at the louver outlet face.

  15. Overview of Emerging Air Sensors

    EPA Science Inventory

    These slides will be presented at the 2014 National Ambient Air Monitoring Conference in Atlanta, GA during August 11-15, 2014. The goal is to provide an overview of air sensor technology and the audience will be primarily state air monitoring agencies and EPA Regions.

  16. Measuring flying object velocity with CCD sensors

    NASA Astrophysics Data System (ADS)

    Ricny, Vaclav; Mikulec, Jiri

    1994-06-01

    An autonomous optoelectronic method of measuring the flying objects track velocity vector (TVV) using digital signal two-line CCD sensors has been developed and simulated at the Department of Radioelectronics at the Faculty of Electrical Engineering of the Technical University of Brno, Czech Republic. The principle of the method, the computer simulation of measuring device operations, the application of statistic estimates for the precision of values measured, and the presentation of the results achieved are described.

  17. The Enhanced-model Ladar Wind Sensor and Its Application in Planetary Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Soreide, D. C.; Mcgann, R. L.; Erwin, L. L.; Morris, D. J.

    1993-01-01

    For several years we have been developing an optical air-speed sensor that has a clear application as a meteorological wind-speed sensor for the Mars landers. This sensor has been developed for aircraft use to replace the familiar, pressure-based Pitot probe. Our approach utilizes a new concept in the laser-based optical measurement of air velocity (the Enhanced-Mode Ladar), which allows us to make velocity measurements with significantly lower laser power than conventional methods. The application of the Enhanced-Mode Ladar to measuring wind speeds in the martian atmosphere is discussed.

  18. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  19. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  20. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  1. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  2. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  3. Highlights from the Air Sensors 2014 Workshop

    EPA Science Inventory

    In June 2014, the U.S. Environmental Protection Agency (EPA) hosted its fourth next-generation air monitoring workshop to discuss the current state of the science in air sensor technologies and their applications for environmental monitoring, Air Sensors 2014: A New Frontier. Th...

  4. Linear air-fuel sensor development

    SciTech Connect

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  5. Derivation of vertical air velocity from conventional Radiosonde ascents

    NASA Astrophysics Data System (ADS)

    Manguttathil Gopalakrishnan, Manoj; Mohanakumar, Kesavapillai; Samson, Titu; Kottayil, Ajil; Varadarajan, Rakesh; Rebello, Rejoy

    2016-07-01

    In this work, we devise a method to estimate air vertical velocity from ascending radiosondes similar to that described in published results, but with certain differences in deriving the balloon parameters and the drag coefficient, while not considering explicitly the heat exchange between the balloon and the environment. We basically decompose the observed balloon ascent rate into vertical velocity in still air due to buoyancy force and that due to vertical air motion. The first part is computed from basic hydrodynamical principles and the vertical velocity is derived as the difference between observed ascent rate and the estimated still air vertical velocity. The derived values agree reasonably well (r=0.66) with vertical velocities observed with a collocated wind profiler radar, and the sources of uncertainties are discussed. Since vertical velocity is a difficult quantity to measure directly without expensive methods, derivation of the same from the conventional radiosonde ascents could be of great importance to the meteorological communities.

  6. Sensor selection for outdoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Dorsey, K. L.; Herr, John R.; Pisano, A. P.

    2014-06-01

    Gas chemical monitoring for next-generation robotics applications such as fire fighting, explosive gas detection, ubiquitous urban monitoring, and mine safety require high performance, reliable sensors. In this work, we discuss the performance requirements of fixed-location, mobile vehicle, and personal sensor nodes for outdoor air quality sensing. We characterize and compare the performance of a miniature commercial electrochemical and a metal oxide gas sensor and discuss their suitability for environmental monitoring applications. Metal oxide sensors are highly cross-sensitive to factors that affect chemical adsorption (e.g., air speed, pressure) and require careful enclosure design or compensation methods. In contrast, electrochemical sensors are less susceptible to environmental variations, have very low power consumption, and are well matched for mobile air quality monitoring.

  7. Village Green Project and Air Sensor Kits

    EPA Science Inventory

    This is a presentation for the OAQPS Teachers Workshop. Will provide a background overview on the Village Green Project and our air sensor kit for outreach, then have the teachers try putting it together.

  8. Simulation of air velocity in a vertical perforated air distributor

    NASA Astrophysics Data System (ADS)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  9. Sensors for Using Times of Flight to Measure Flow Velocities

    NASA Technical Reports Server (NTRS)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  10. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    NASA Astrophysics Data System (ADS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-11-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures.

  11. Shock-swallowing air sensor

    NASA Technical Reports Server (NTRS)

    Nugent, J.; Sakamoto, G. M.; Webb, L. D.; Couch, L. M.

    1979-01-01

    An air-data probe allows air to flow through it so that supersonic and hypersonic shock waves form behind pressure measuring orifices and tube instead of directly on them. Measured pressures are close to those in free-flowing air and are used to determine mach numbers of flying aircraft.

  12. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    NASA Technical Reports Server (NTRS)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  13. Flame Velocities over a Wide Composition Range for Pentane-air, Ethylene-air, and Propyne-air Flames

    NASA Technical Reports Server (NTRS)

    Simon, Dorothy M; Wong, Edgar, L

    1951-01-01

    Fundamental flame velocities are reported for pentane air, ethylene-air, and propylene-air mixtures for the concentration range 60 to 130 percent of stoichiometric. A form of the Tanford and Pease equation, which includes a small constant velocity term independent of diffusion, will predict the observed changes in flame velocity.

  14. Quantum effects in new integrated optical angular velocity sensors

    NASA Astrophysics Data System (ADS)

    Armenise, M. N.; Ciminelli, C.; de Leonardis, F.; Passaro, V. M. N.

    2004-06-01

    The paper describes the quantum effects to be considered in the model of new integrated optical angular velocity sensors. Integrated optics provides a promising approach to low-cost, light weight, and high performance devices. Some preliminary results are also reported.

  15. Performance of velocity sensor for flexural wave reduction

    SciTech Connect

    Ko, S.H.

    1996-04-01

    This paper presents the analysis (mathematical modeling) for the reduction of flexural wave (structure-borne) noise that is generated by a line force on a steel plate. The steel plate is covered with a baffle (elastomer layer) to reduce the flexural wave noise. The main objective is to evaluate the performance of a velocity sensor located at the outer surface of the baffle layer. Toward this objective, the transmissibility of the plate displacement (velocity) through the baffle structure has been evaluated. {copyright} {ital 1996 American Institute of Physics.}

  16. Evaluation of air acidity through optical sensors.

    PubMed

    Garcia-Heras, M; Kromka, K; Faber, J; Karaszkiewicz, P; Villegas, M A

    2005-05-15

    Optical sensors developed from dye-doped coatings obtained through the sol-gel method were designed and produced to evaluate air acidity. Both laboratory calibration and field test measurements in several locales of downtown Cracow, Poland, were undertaken with the aim of assessing the sensors' behavior. As a first approach, SO2 was considered as the main gaseous pollutant with acid properties capable of sensitizing the sensors under humid conditions. A relationship between the SO2 concentration measured by conventional automatic air pollution monitoring stations and the optical response of the sensors was established. To correlate such a relationship with the air acidity, a simple calculation, which also takes into account relative humidity, temperature, and atmospheric pressure, was done. Following this calculation, the sensors' detection threshold for pH was found to be 0.05, approximately. The sensors can be a very useful analytical tool to alert against acid rain risks in preventive conservation of historical materials, among other applications. PMID:15952380

  17. A smart indoor air quality sensor network

    NASA Astrophysics Data System (ADS)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  18. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  19. Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

    NASA Astrophysics Data System (ADS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn

    2011-06-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  20. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  1. Optical-fiber/microprocessor-based remote velocity sensor

    NASA Astrophysics Data System (ADS)

    Robertson, M. M.; Wolfe, J. P.

    A remote velocity sensor has been developed that uses both a fiber optic system to monitor the position of an object and a microprocessor to track the object's position and calculate its average forward velocity between fiducial points (marks on a code plate). Sensing does not require electrical power at the sensing site, and the data are transmitted to the processing site by optical fibers whose inherent advantages include essential immunity to electromagnetic interference (EMI) and radio frequency interference (RFI). A feasibility model was designed, built, and evaluated that has a position resolution of 0.4 mm and is capable of calculating velocities up to 2.1 m/s with the particular code plate used.

  2. Modeling the exit velocity of a compressed air cannon

    NASA Astrophysics Data System (ADS)

    Rohrbach, Z. J.; Buresh, T. R.; Madsen, M. J.

    2012-01-01

    The use of compressed air cannons in an undergraduate laboratory provides a way to illustrate the connection between diverse physics concepts, such as conservation of momentum, the work-kinetic energy theorem, gas expansion, air drag, and elementary Newtonian mechanics. However, it is not clear whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that neither process accurately predicts the exit velocity of our projectile. We discuss a model based on the flow of air through the valve, which is in much better agreement with our data.

  3. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  4. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  5. Unimpeded air velocity profiles of air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...

  6. Air velocity distributions from air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capability to control both liquid and air flow rates based on tree structures would be one of the advantages of future variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rate functions...

  7. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  8. Laser photoacoustic sensor for air toxicity measurements

    NASA Astrophysics Data System (ADS)

    Prasad, Coorg R.; Lei, Jie; Shi, Wenhui; Li, Guangkun; Dunayevskiy, Ilya; Patel, C. Kumar N.

    2012-06-01

    US EPA's Clean Air Act lists 187 hazardous air pollutants (HAP) or airborne toxics that are considered especially harmful to health, and hence the measurement of their concentration is of great importance. Numerous sensor systems have been reported for measuring these toxic gases and vapors. However, most of these sensors are specific to a single gas or able to measure only a few of them. Thus a sensor capable of measuring many of the toxic gases simultaneously is desirable. Laser photoacoustic spectroscopy (LPAS) sensors have the potential for true broadband measurement when used in conjunction with one or more widely tunable laser sources. An LPAS gas analyzer equipped with a continuous wave, room temperature IR Quantum Cascade Laser tunable over the wavelength range of 9.4 μm to 9.7 μm was used for continuous real-time measurements of multiple gases/chemical components. An external cavity grating tuner was used to generate several (75) narrow line output wavelengths to conduct photoacoustic absorption measurements of gas mixtures. We have measured various HAPs such as Benzene, Formaldehyde, and Acetaldehyde in the presence of atmospheric interferents water vapor, and carbon dioxide. Using the preliminary spectral pattern recognition algorithm, we have shown our ability to measure all these chemical compounds simultaneously in under 3 minutes. Sensitivity levels of a few part-per-billion (ppb) were achieved with several of the measured compounds with the preliminary laboratory system.

  9. Injection molded 1{endash}3 piezocomposite velocity sensors

    SciTech Connect

    Gentilman, R.L.; Bowen, L.J.; Fiore, D.F.; Pham, H.T.; Serwatka, W.J.

    1996-04-01

    A cost-effective technology has been developed for producing 1{endash}3 piezoelectric ceramic/polymer composites and transducers for underwater actuators, pressure sensors, and velocity sensors. Applications include active and passive sonar, underwater imaging, and active surface control. The key technology in the manufacturing process in the PZT ceramic injection molding process, in which an entire array of piezoelectric elements is molded to final net shape in one operation. Several designs of low-profile, area-averaging 1{endash}3 piezocomposite accelerometers have been fabricated. The initial breadboard accelerometers were made using a prepoled 50{times}50 mm injection molded 1{endash}3 PZT-5H preforms, containing 361 identical rods on a common baseplate. Additional mass was attached to the baseplate, which was metallized to serve as an electrode, and the free ends of the PZT rods were bonded to a fixed surface, which also functions as the other electrode. Subsequently, a manufacturing process was developed to create accelerometer {open_quote}{open_quote}islands{close_quote}{close_quote} within a 1{endash}3 piezocomposite transducer. The accelerometers can be made in arbitrary areas, shapes, and arrangements within the transducer panel, with the remaining area used either as a hydrophone or an actuator. This integral accelerometer technology is being optimized as part of an ARPA-funded active surface control program. This paper reviews the current state-of-the-art of injection molded piezocomposite transducers and describes some of the velocity sensor configurations made using this technology. {copyright} {ital 1996 American Institute of Physics.}

  10. VCSEL-based sensors for distance and velocity

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Carpaij, Mark; Gerlach, Philipp; Gronenborn, Stephan; Gudde, Ralph; Hellmig, Jochen; Kolb, Johanna; van der Lee, Alexander

    2016-03-01

    VCSEL based sensors can measure distance and velocity in three dimensional space and are already produced in high quantities for professional and consumer applications. Several physical principles are used: VCSELs are applied as infrared illumination for surveillance cameras. High power arrays combined with imaging optics provide a uniform illumination of scenes up to a distance of several hundred meters. Time-of-flight methods use a pulsed VCSEL as light source, either with strong single pulses at low duty cycle or with pulse trains. Because of the sensitivity to background light and the strong decrease of the signal with distance several Watts of laser power are needed at a distance of up to 100m. VCSEL arrays enable power scaling and can provide very short pulses at higher power density. Applications range from extended functions in a smartphone over industrial sensors up to automotive LIDAR for driver assistance and autonomous driving. Self-mixing interference works with coherent laser photons scattered back into the cavity. It is therefore insensitive to environmental light. The method is used to measure target velocity and distance with very high accuracy at distances up to one meter. Single-mode VCSELs with integrated photodiode and grating stabilized polarization enable very compact and cost effective products. Besides the well know application as computer input device new applications with even higher accuracy or for speed over ground measurement in automobiles and up to 250km/h are investigated. All measurement methods exploit the known VCSEL properties like robustness, stability over temperature and the potential for packages with integrated optics and electronics. This makes VCSEL sensors ideally suited for new mass applications in consumer and automotive markets.

  11. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  12. Fume hood performance: Face velocity variability inconsistent air volume systems

    SciTech Connect

    Volin, C.E.; Joao, R.V.; Gershey, E.L.; Reiman, J.S.; Party, E.

    1998-09-01

    A 3-year survey of 366 bench-type fume hoods in working laboratories in conventional, constant air volume settings showed that face velocities varied greatly from unit to unit and over time. Fume hoods with bypasses performed better than those without; however, even newly fabricated bypass hoods exhibited large variations. These variations were due to several factors; however, face velocities at 100 {+-} 10 ft/min at working sash heights in the range of 20 to 40 cm (8 to 16 inches) were attainable. The use of smoke showed poor containment, especially at face velocities below 85 ft/min (0.425 m/s) or above 130 ft/min (0.65 m/s) and when the hoods were obstructed by large items placed on the work surface. Auxiliary/supplemental air created unstable face velocities and poor smoke patterns. The analysis of 3 years of fume hood monitoring showed clearly the need for and importance of a maintenance program where the fume hood lower slots are cleaned and fans, ducts, dampers, and hoods are checked periodically.

  13. Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air

    NASA Astrophysics Data System (ADS)

    Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.

    1991-07-01

    Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.

  14. Comparison of umbo velocity in air- and bone-conduction.

    PubMed

    Röösli, Christof; Chhan, David; Halpin, Christopher; Rosowski, John J

    2012-08-01

    This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V(U)) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P(EC)) was measured simultaneously. For air conduction, V(U) at standard hearing threshold level was calculated. For BC, ΔV was defined as the difference between V(U) and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). ΔV and P(EC) at BC standard hearing threshold were calculated. ΔV at standard BC threshold was significantly smaller than V(U) at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above. PMID:22609771

  15. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  16. Impact of air velocity on the development and detection of small coal fires

    SciTech Connect

    Egan, M.R.

    1993-12-31

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate, that in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial stage of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine. 9 refs., 3 figs., 10 tabs.

  17. Concurrent Validity of the Polar s3 Stride Sensor for Measuring Walking Stride Velocity

    ERIC Educational Resources Information Center

    Grigg, Nicole; Smeathers, James; Wearing, Scott

    2011-01-01

    With this research, we sought to establish the accuracy of stride velocity data collected by the s3 Stride Sensor. Participants walked along a GAITRite mat at self-selected slow, preferred, and fast velocities, with two s3 Stride Sensors attached to their right foot. The start position was systematically varied such that the GAITRite system would…

  18. Micro-LiDAR velocity, temperature, density, concentration sensor

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M. (Inventor); Dorrington, Adrian A. (Inventor)

    2010-01-01

    A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals.

  19. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  20. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets.

    PubMed

    Miller, M F; Kessler, W J; Allen, M G

    1996-08-20

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O(2) density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1-2% of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm/s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages. PMID:21102916

  1. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  2. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    PubMed Central

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s).

  3. Regulatory Considerations of Lower Cost Air Pollution Sensor Data Performance

    EPA Science Inventory

    Low-cost, portable air quality sensors could be the next generation of air monitoring, however, this nascent technology is not without risk. This article looks at how the U.S. Environmental Protection Agency (EPA) uses air monitoring data, the procedures followed to ensure and a...

  4. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  5. Air-Microfluidics: Creating Small, Low-cost, Portable Air Quality Sensors

    EPA Science Inventory

    Air-microfluidics shows great promise in dramatically reducing the size, cost, and power requirements of future air quality sensors without compromising their accuracy. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical syste...

  6. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  7. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  8. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  9. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  10. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  11. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing. PMID:26398125

  12. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  13. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  14. Air-sea interaction with multiple sensors - Seasat legacy

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2003-01-01

    By flying a number of ocean observing sensors together, Seasat demonstrated potential of not only sensor synergism, but also science synergism, which has illuminated the path of spacebased air-sea interaction studies in more than two decades since its demise.

  15. Development of Micro Air Reconnaissance Vehicle as a Test Bed for Advanced Sensors and Electronics

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Vranas, Thomas L.; Fox, Robert L.; Kuhn, Theodore R.; Ingham, John; Logan, Michael J.; Barnes, Kevin N.; Guenther, Benjamin F.

    2002-01-01

    This paper describes the development of a Micro/Mini Air Reconnaissance Vehicle for advanced sensors and electronics at NASA Langley Research Center over the last year. This vehicle is expected to have a total weight of less than four pounds, a design velocity of 40 mph, an endurance of 15-20 minutes, and a maximum range of 5km. The vehicle has wings that are simple to detach yet retain the correct alignment. The upper fuselage surface has a quick release hatch used to access the interior and also to mount the varying propulsion systems. The sensor suite developed for this vehicle consists of a Pitot-static measurement system for determining air speed, an absolute pressure measurement for determining altitude, magnetic direction measurement, and three orthogonal gyros to determine body angular rates. Swarming GPS-guidance and in-flight maneuvering is discussed, as well as design and installation of some other advance sensors like MEMS microphones, infrared cameras, GPS, humidity sensors, and an ultrasonic sonar sensor. Also low cost, small size, high performance control and navigation system for the Micro Air Vehicle is discussed. At the end, laboratory characterization of different sensors, motors, propellers, and batteries will be discussed.

  16. Acoustic Particle Velocity Sensors: Design, Performance, and Applications Proceedings

    SciTech Connect

    Berliner, M.J.; Lindberg, J.F.

    1996-07-01

    These proceedings represent the papers presented at a workshop sponsored by the Office of Naval Research and the Acoustical Society of America. The topics discussed include designs, applications and performance of underwater acoustic sensors. There were 29 papers presented and all have been abstracted for the Energy Science and Technology database.(AIP)

  17. Plug-in Sensors for Air Pollution Monitoring.

    ERIC Educational Resources Information Center

    Shaw, Manny

    Faristors, a type of plug-in sensors used in analyzing equipment, are described in this technical report presented at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. Their principles of operation, interchangeability, and versatility for measuring air pollution at…

  18. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  19. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  20. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  1. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  2. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  3. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  4. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  5. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  6. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  7. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  8. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  9. Alignment of angular velocity sensors for a vestibular prosthesis.

    PubMed

    Digiovanna, Jack; Carpaneto, Jacopo; Micera, Silvestro; Merfeld, Daniel M

    2012-01-01

    Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing. PMID:22329908

  10. Alignment of angular velocity sensors for a vestibular prosthesis

    PubMed Central

    2012-01-01

    Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing. PMID:22329908

  11. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  12. Mobile Sensors and Applications for Air Pollutants

    EPA Science Inventory

    Executive Summary The public has long been interested in understanding what pollutants are in the air they breathe so they can best protect their environmental health and welfare. The current air quality monitoring network consists of discrete stations with expensive equipment ...

  13. Rapid evolution of air sensor technologies

    EPA Science Inventory

    Outdoor air pollution measurement approaches have historically been conducted using stationary shelters that require significant space, power, and expertise to operate. The cost and logistical requirements to conduct monitoring have limited the number of locations with continuou...

  14. Measuring densities of high-velocity metallic sprays using piezoelectric sensors

    SciTech Connect

    Lloyd, C. E.; Proud, W. G.

    2007-12-12

    Recent research efforts in large-scale hydrodynamic experiments have concentrated on the possibility of using piezoelectric sensors to study the evolution of ejecta. Ejecta are small (<100 m diameter) particulates that are ejected at high velocity (>1 km s{sup -1}) from a shocked surface. This paper investigates whether Dynasen PZT piezoelectric sensors are reliable and robust enough to measure accurate time-resolved stresses and densities in high-velocity metallic sprays. The sprays are assumed to have similar characteristics to ejecta sprays, and are generated by a gas gun and in a safe and reproducible manner. A complimentary diagnostic technique, utilising high-speed photography and fast x-radiography, measures the densities of the sprays independently, allowing the accuracy of the sensors to be assessed. The Dynasen sensors have been shown to perform relatively well in spray environments. Their accuracy can be improved by taking their mechanical impedance characteristics into account.

  15. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  16. TAMDAR Sensor Validation in 2003 AIRS II

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Murray, John J.; Anderson, Mark V.; Mulally, Daniel J.; Jensen, Kristopher R.; Grainger, Cedric A.; Delene, David J.

    2005-01-01

    This study entails an assessment of TAMDAR in situ temperature, relative humidity and winds sensor data from seven flights of the UND Citation II. These data are undergoing rigorous assessment to determine their viability to significantly augment domestic Meteorological Data Communications Reporting System (MDCRS) and the international Aircraft Meteorological Data Reporting (AMDAR) system observational databases to improve the performance of regional and global numerical weather prediction models. NASA Langley Research Center participated in the Second Alliance Icing Research Study from November 17 to December 17, 2003. TAMDAR data taken during this period is compared with validation data from the UND Citation. The data indicate acceptable performance of the TAMDAR sensor when compared to measurements from the UND Citation research instruments.

  17. Compact spectroscopic sensor for air quality monitoring in spacecrafts

    NASA Astrophysics Data System (ADS)

    Scherer, Benjamin; Hamid, Hakim; Rosskopf, Jürgen; Forouhar, Siamak

    2011-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Any fire event, accidental release of harmful gaseous contaminants or a malfunction in the air revitalization system has to be detected as fast as possible to provide enough time for the crew to react. In this paper, a fast sensor system based on laser spectroscopy is presented, which is able to detect three important gases: carbon monoxide for fire detection, hydrogen chloride for fire characterization and oxygen to monitor the air vitalization system. To provide a long maintenance-free operation time without the need for any consumables except power, a calibration-free measurement method was developed, which is only based on molecule specific constants which are available from the molecular data base HITRAN. The presented sensor offers the possibility for reliable and crosssensitivity-free air quality monitoring over a large pressure and temperature range.

  18. Effect of angular velocity on sensors based on morphology dependent resonances.

    PubMed

    Ali, Amir R; Ioppolo, Tindaro

    2014-01-01

    We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle. PMID:24759108

  19. Effect of Angular Velocity on Sensors Based on Morphology Dependent Resonances

    PubMed Central

    Ali, Amir R.; Ioppolo, Tindaro

    2014-01-01

    We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle. PMID:24759108

  20. Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measurement of Local Blood Velocity

    NASA Astrophysics Data System (ADS)

    Tajikawa, Tsutomu; Takeshige, Mitsuhiko; Ishihara, Wataru; Kohri, Shimpei; Ohba, Kenkichi

    A new miniaturized fiber-optic laser Doppler velocimetry (LDV) sensor has been developed, which is capable of measuring the local velocity in various semi-opaque and opaque fluid flows, particularly whole blood velocity in vessels. The sensor has a convex lens-like fiber tip as a pickup and an improved optical transmission system with markedly decreased stray light. This paper describes methods for fabricating fiber tips like concave and convex lens and the characteristics of the optical sensor system equipped with the fabricated fiber tip. Conventional fiber-optic LDV sensors developed up to now have not been capable of measuring such opaque fluids because scattered light from scattering particles as erythrocytes has very low intensity, which makes signal-to-noise ratio of Doppler signal received by a sensor pickup significantly decreased. To overcome these problems, convex lens-like fiber tips have been fabricated by chemical etching, in which quartz fibers of multimode graded refractive index have been etched in aqueous solutions of hydrogen fluoride and ammonium fluoride under the appropriately controlled condition of the concentration of the solution, the etching duration time and the etchant temperature to obtain the desired curvature radius of the lens-like surface of the fiber tip. In this fiber-optic sensor, a laser beam emitted from the fiber tip can be focused at any position from about 0.1 to 0.5 mm distant from the fiber tip according to its curvature radius. The convex lens-like etched tip totally reduced the intensity of undesired reflecting light at the fiber end by 1/2 to 1/6 compared with normal cut fiber tip. Consequently, this fiber-optic LDV sensor system is capable of measuring the local flow velocity in semi-opaque and opaque fluids, whose turbidity was about five times higher than by any kinds of previous sensors.

  1. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  2. Impact of air velocity on the development and detection of small coal fires. Report of investigations/1993

    SciTech Connect

    Egan, M.R.

    1993-01-01

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number of smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate that, in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial state of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine.

  3. Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing

    SciTech Connect

    Pfister, Thorsten; Buettner, Lars; Shirai, Katsuaki; Czarske, Juergen

    2005-05-01

    Investigating shear flows is important in technical applications as well as in fundamental research. Velocity measurements with high spatial resolution are necessary. Laser Doppler anemometry allows nonintrusive precise measurements, but the spatial resolution is limited by the size of the measurement volume to {approx}50 {mu}m. A new laser Doppler profile sensor is proposed, enabling determination of the velocity profile inside the measurement volume. Two fringe systems with contrary fringe spacing gradients are generated to determine the position as well as the velocity of passing tracer particles. Physically discriminating between the two measuring channels is done by a frequency-division-multiplexing technique with acousto-optic modulators. A frequency-doubled Nd:YAG laser and a fiber-optic measuring head were employed, resulting in a portable and flexible sensor. In the center of the measurement volume of {approx}1-mm length, a spatial resolution of {approx}5 {mu}m was obtained. Spatially resolved measurements of the Blasius velocity profile are presented. Small velocities as low as 3 cm/s are measured. The sensor is applied in a wind tunnel to determine the wall shear stress of a boundary layer flow. All measurement results show good agreement with the theoretical prediction.

  4. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  5. Effects of air velocity on laying hen production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  6. Wireless sensor networks for indoor air quality monitoring.

    PubMed

    Yu, Tsang-Chu; Lin, Chung-Chih; Chen, Chun-Chang; Lee, Wei-Lun; Lee, Ren-Guey; Tseng, Chao-Heng; Liu, Shi-Ping

    2013-02-01

    The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%. PMID:22133488

  7. Development of Refrigerant Change Indicator and Dirty Air Filter Sensor

    SciTech Connect

    Mei, V.

    2003-06-24

    The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires

  8. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  9. Rise velocity of an air bubble in porous media: Theoretical studies

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Cihan, Abdullah; Drazenovic, Mirna

    2004-04-01

    The rise velocity of injected air phase from the injection point toward the vadose zone is a critical factor in in-situ air sparging operations. It has been reported in the literature that air injected into saturated gravel rises as discrete air bubbles in bubbly flow of air phase. The objective of this study is to develop a quantitative technique to estimate the rise velocity of an air bubble in coarse porous media. The model is based on the macroscopic balance equation for forces acting on a bubble rising in a porous medium. The governing equation incorporates inertial force, added mass force, buoyant force, surface tension and drag force that results from the momentum transfer between the phases. The momentum transfer terms take into account the viscous as well as the kinetic energy losses at high velocities. Analytical solutions are obtained for steady, quasi-steady, and accelerated bubble rise velocities. Results show that air bubbles moving up through a porous medium equilibrate after a short travel time and very short distances of rise. It is determined that the terminal rise velocity of a single air bubble in an otherwise water saturated porous medium cannot exceed 18.5 cm/s. The theoretical model results compared favorably with the experimental data reported in the literature. A dimensional analysis conducted to study the effect of individual forces indicates that the buoyant force is largely balanced by the drag force for bubbles with an equivalent radius of 0.2-0.5 cm. With increasing bubble radius, the dimensionless number representing the effect of the surface tension force decreases rapidly. Since the total inertial force is quite small, the accelerated bubble rise velocity can be approximated by the terminal velocity.

  10. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...

  11. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  12. Coherent Doppler Lidar for Measuring Altitude, Ground Velocity, and Air Velocity of Aircraft and Spaceborne Vehicles

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin (Inventor); Pierrottet, Diego F. (Inventor)

    2015-01-01

    A Doppler lidar sensor system includes a laser generator that produces a highly pure single frequency laser beam, and a frequency modulator that modulates the laser beam with a highly linear frequency waveform. A first portion of the frequency modulated laser beam is amplified, and parts thereof are transmitted through at least three separate transmit/receive lenses. A second portion of the laser beam is used as a local oscillator beam for optical heterodyne detection. Radiation from the parts of the laser beam transmitted via the transmit/receive lenses is received by the respective transmit/receive lenses that transmitted the respective part of the laser beam. The received reflected radiation is compared with the local oscillator beam to calculate the frequency difference there between to determine various navigational data.

  13. Design of passively aerated compost piles: Vertical air velocities between the pipes

    SciTech Connect

    Lynch, N.J.; Cherry, R.S.

    1996-09-01

    Passively aerated compost piles are built on a base of porous materials, such as straw or wood chips, in which perforated air supply pipes are distributed. The piles are not turned during composting, nor is forced-aeration equipment used, which significantly reduces the operating and capital expenses associated with these piles. Currently, pile configurations and materials are worked out by trial and error. Fundamentally based design procedures are difficult to develop because the natural convection air flow rate is not explicitly known, but rather is closely coupled with the pile temperature. This paper develops a mathematical model to analytically determine the maximum upward air flow velocity over an air supply pipe and the drop in vertical velocity away from the pipe. This model has one dimensionless number, dependent on the pile and base properties, which fully characterizes the velocity profile between the pipes. 9 refs., 4 figs., 1 tab.

  14. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    PubMed

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms. PMID:24907810

  15. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  16. Uncertainty in air quality observations using low-cost sensors

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Dauge, Franck R.; Dongol, Rozina; Vogt, Matthias; Schneider, Philipp

    2016-04-01

    Air pollution poses a threat to human health, and the WHO has classified air pollution as the world's largest single environmental health risk. In Europe, the majority of the population lives in areas where air quality levels frequently exceed WHO's ambient air quality guidelines. The emergence of low-cost, user-friendly and very compact air pollution platforms allowing observations at high spatial resolution in near real-time, provides us with new opportunities to simultaneously enhance existing monitoring systems as well as enable citizens to engage in more active environmental monitoring (citizen science). However the data sets generated by low-cost sensors show often questionable data quality. For many sensors, neither their error characteristics nor how their measurement capability holds up over time or through a range of environmental conditions, have been evaluated. We have conducted an exhaustive evaluation of the commercial low-cost platform AQMesh (measuring NO, NO2, CO, O3, PM10 and PM2.5) in laboratory and in real-world conditions in the city of Oslo (Norway). Co-locations in field of 24 platforms were conducted over a 6 month period (April to September 2015) allowing to characterize the temporal variability in the performance. Additionally, the field performance included the characterization on different monitoring urban monitoring sites characteristic of both traffic and background conditions. All the evaluations have been conducted against CEN reference method analyzers maintained according to the Norwegian National Reference Laboratory quality system. The results show clearly that a good performance in laboratory does not imply similar performance in real-world outdoor conditions. Moreover, laboratory calibration is not suitable for subsequent measurements in urban environments. In order to reduce the errors, sensors require on-site field calibration. Even after such field calibration, the platforms show a significant variability in the performance

  17. Flexible strain sensor for air muscles using polypyrrole coated rubber

    NASA Astrophysics Data System (ADS)

    Tjahyono, Arief P.; Aw, Kean C.; Travas-Sejdic, Jadranka; Li, K. C.

    2010-04-01

    A novel flexible large strain sensor was developed to be use with an air muscle. A piece of butyl rubber was coated with the conducting polymer, polypyrrole through bulk solution and chemical vapour deposition method. The strain sensor was able to response to sudden movements represented by the multiple step functions of the applied strain. Consistency of the sensor's output was studied and the average error in the change of resistance was calculated to be 0.32% and 0.72% for elongation and contraction respectively for the sample made using chemical vapour deposition. However, a hysteresis was observed for this sample for a single cycle of elongation and contraction with the highest error calculated to be 3.2% at a 0% applied strain. SEM images showed the propagation of surface micro-cracks as the cause of the variation in surface resistance with applied strain. In addition, slower relaxation rate of the rubber prevented the surface micro-cracks to open and close at the same rate. The idea of utilizing conducting polymer coating can be applied to the inner rubber tube of the air muscle. As such, a complete integration between actuator and sensor can be realized.

  18. The spatial-matched-filter beam pattern of a biaxial non-orthogonal velocity sensor

    NASA Astrophysics Data System (ADS)

    Lee, Charles Hung; Lee, Hye Rin Lindsay; Wong, Kainam Thomas; Razo, Mario

    2016-04-01

    This work derives the "spatial matched filter" beam pattern of a "u-u probe", which comprises two uniaxial velocity sensors, that are identical, collocated, and oriented supposedly in orthogonality. This non-orthogonality may be unrealized in real-world hardware implementation, and would consequentially cause a beamformer to have a systemic pointing error, which is derived analytically here in this paper. Other than this point error, this paper's analysis shows that the beam shape would otherwise be unchanged.

  19. Development of wireless sensor network for monitoring indoor air pollutant

    NASA Astrophysics Data System (ADS)

    Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad

    2015-05-01

    The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.

  20. CityAir app: Mapping air-quality perception using people as sensors

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Fredriksen, Mirjam; Cole-Hunter, Thomas; Robinson, Johanna; Keune, Hans; Nieuwenhuijsen, Mark; Bartonova, Alena

    2016-04-01

    Outdoor air pollution is a major environmental health problem affecting all people in developed and developing countries alike. Ambient (outdoor) air pollution in both cities and rural areas was estimated to cause 3.7 million premature deaths worldwide in 2012. In modern society, people are expending an increasing amount of time in polluted urban environments, thus increasing their exposure and associated health responses. Some cities provide information about air pollution levels to their citizens using air quality monitoring networks. However, due to their high cost and maintenance, the density of the monitoring networks is very low and not capable to capture the high temporal and spatial variability of air pollution. Thus, the citizen lacks a specific answer to the question of "how the air quality is in our surroundings". In the framework of the EU-funded CITI-SENSE project the innovative concept of People as Sensors is being applied to the field of outdoor air pollution. This is being done in eight European cities, including Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava and Vienna. People as Sensors defines a measurement model, in which measurements are not only taken by hardware sensors, but in which also humans can contribute with their individual "measurements" such as their subjective perception of air quality and other personal observations. In order to collect the personal observations a mobile app, CityAir, has been developed. CityAir allows citizens to rate the air quality in their surroundings with colour at their current location: green if air quality is very good, yellow if air quality is good, orange if air quality is poor and red if air quality is very poor. The users have also the possibility of indicating the source of pollution (i.e. traffic, industry, wood burning) and writing a comment. The information is on-line and accessible for other app users, thus contributing to create an air-quality map based on citizens' perception

  1. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  2. Definition of water droplets "strain cycles" in air times dependences on their sizes and movement velocities

    NASA Astrophysics Data System (ADS)

    Volkov, Roman; Zhdanova, Alena; Zabelin, Maxim; Kuznetsov, Geniy; Strizhak, Pavel

    2014-08-01

    Experimental investigation of water droplets deformation regularities during their motion in the air by the action of gravitational forces was executed. Characteristic sizes of droplets were varied in the range from 3 mm to 6 mm. Velocities of droplets movement attained to 5 m/s. The cross-correlation system of video registration was used. More than ten characteristic "strain cycles" of droplets during the 1 m distance motion by them thought the air were established. Characteristic of droplets forms, periods, dimensions and ranges were determined for all "strain cycles". "Strain cycle" times dependences on velocity and sizes of droplets were established.

  3. The civil air patrol ARCHER hyperspectral sensor system

    NASA Astrophysics Data System (ADS)

    Stevenson, Brian; O'Connor, Rory; Kendall, William; Stocker, Alan; Schaff, William; Holasek, Rick; Even, Detlev; Alexa, Drew; Salvador, John; Eismann, Michael; Mack, Robert; Kee, Pat; Harris, Steve; Karch, Barry; Kershenstein, John

    2005-05-01

    The Civil Air Patrol (CAP) is procuring Airborne Real-time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) systems to increase their search-and-rescue mission capability. These systems are being installed on a fleet of Gippsland GA-8 aircraft, and will position CAP to gain realworld mission experience with the application of hyperspectral sensor and processing technology to search and rescue. The ARCHER system design, data processing, and operational concept leverage several years of investment in hyperspectral technology research and airborne system demonstration programs by the Naval Research Laboratory (NRL) and Air Force Research Laboratory (AFRL). Each ARCHER system consists of a NovaSol-designed, pushbroom, visible/near-infrared (VNIR) hyperspectral imaging (HSI) sensor, a co-boresighted visible panchromatic high-resolution imaging (HRI) sensor, and a CMIGITS-III GPS/INS unit in an integrated sensor assembly mounted inside the GA-8 cabin. ARCHER incorporates an on-board data processing system developed by Space Computer Corporation (SCC) to perform numerous real-time processing functions including data acquisition and recording, raw data correction, target detection, cueing and chipping, precision image geo-registration, and display and dissemination of image products and target cue information. A ground processing station is provided for post-flight data playback and analysis. This paper describes the requirements and architecture of the ARCHER system, including design, components, software, interfaces, and displays. Key sensor performance characteristics and real-time data processing features are discussed in detail. The use of the system for detecting and geo-locating ground targets in real-time is demonstrated using test data collected in Southern California in the fall of 2004.

  4. Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity.

    PubMed

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  5. Long-Period Fiber Grating Sensors for the Measurement of Liquid Level and Fluid-Flow Velocity

    PubMed Central

    Wang, Jian-Neng; Luo, Ching-Ying

    2012-01-01

    This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO2-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1–5 were in the range of 1.35–9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7–12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds. PMID:22666046

  6. Micro sensor node for air pollutant monitoring: hardware and software issues.

    PubMed

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems. PMID:22408489

  7. Micro Sensor Node for Air Pollutant Monitoring: Hardware and Software Issues

    PubMed Central

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems. PMID:22408489

  8. Theoretical investigation of indium phosphide buried ring resonators for new angular velocity sensors

    NASA Astrophysics Data System (ADS)

    Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario Nicola

    2013-02-01

    Here, we report the guidelines to be followed to optimize the design of a new angular velocity sensor based on an indium phosphide (InP) ring resonator. Optical properties of InP ring resonators have been investigated together with some significant physical effects for improving the sensor sensitivity. Three-dimensional algorithms have been utilized for the theoretical estimation of the waveguide loss. An optimized waveguide with propagation loss <0.3 dB/cm and a ring resonator with a quality factor of 1.5×106 have been designed. Performance of angular velocity sensors based on InP low-loss ring resonators has been estimated and discussed. Resolution of 10 deg/h and bias drift in the range of 0.1 to 0.3 deg/h have been evaluated for a fully integrated optical gyro including an InGaAsP/InP optical cavity having a footprint less than 24 cm2.

  9. Highly transparent and rugged sensor for velocity determinations of cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Auer, Siegfried; Vonbun, F. O.

    1994-01-01

    In order to understand the evolution of interplanetary dust, numerous dust particles have been collected and analyzed. An analysis of the composition often provides information on the particle's origin. So does its origin. Composition and orbit data complement each other and should be determined together. If the last orbit of a particle can be determined, its orbital history can often be calculated backward in time and associated with its parent body. To determine the last orbit, the velocity needs to be measured before the particle is collected. The precision required in determining the velocity components relative to the spacecraft should be 1 percent or better. A sensor for naturally charged cosmic dust particles is discussed. Two models of the sensor were tested, one with a free-falling steel ball and the other with particles accelerated to high speed. Analytic expressions of the sensor signals are presented and compared with the test results. The errors in speed and angle were estimated to be about 0.3 percent and 0.2 degrees respectively.

  10. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and...

  11. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical...

  12. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  13. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  14. The Citizen Science Toolbox: A One-Stop Resource for Air Sensor Technology

    EPA Science Inventory

    The air sensor technology market is exploding with new sensors in all kinds of forms. Developers are putting sensors in wristbands, headphones, and cell phone add-ons. Small, portable and lower-cost measurement devices using sensors are coming on the market with a wide variety of...

  15. The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls.

    PubMed

    Bourke, A K; O'Donovan, K J; Olaighin, G

    2008-09-01

    This study investigates distinguishing falls from normal Activities of Daily Living (ADL) by thresholding of the vertical velocity of the trunk. Also presented is the design and evaluation of a wearable inertial sensor, capable of accurately measuring these vertical velocity profiles, thus providing an alternative to optical motion capture systems. Five young healthy subjects performed a number of simulated falls and normal ADL and their trunk vertical velocities were measured by both the optical motion capture system and the inertial sensor. Through vertical velocity thresholding (VVT) of the trunk, obtained from the optical motion capture system, at -1.3 m/s, falls can be distinguished from normal ADL, with 100% accuracy and with an average of 323 ms prior to trunk impact and 140 ms prior to knee impact, in this subject group. The vertical velocity profiles obtained using the inertial sensor, were then compared to those obtained using the optical motion capture system. The signals from the inertial sensor were combined to produce vertical velocity profiles using rotational mathematics and integration. Results show high mean correlation (0.941: Coefficient of Multiple Correlations) and low mean percentage error (6.74%) between the signals generated from the inertial sensor to those from the optical motion capture system. The proposed system enables vertical velocity profiles to be measured from elderly subjects in a home environment where as this has previously been impractical. PMID:18243034

  16. Attempts to characterize microballoon sensors for shock velocity and material motion studies

    SciTech Connect

    Kruse, H.W.; Looney, L.D.; Taylor, R.C.; Medina, R.S.; Baumgart, J.S.; Baca, G.T.; Dominguez, D.E.

    1986-01-01

    Optimization of performance of gas filled microballoons mounted on optical fibers as sensors for shock and material motion studies, was attempted by variation of several parameters. In some cases, results were not predictable and, in general, results were not as reproductible as desired. Change of some parameters caused little effect but effects of the sleeve size and sleeve material seem to be significant. Recorded shape of optical spectra match black-body temperature of 8000/sup 0/K when argon filled balloons were impacted with projectiles with velocity of 1 km/s, in close agreement with expected values based on ideal gas calculations. 3 refs., 10 figs.

  17. Development of high speed fiber grating sensor solutions for measuring velocity, position, pressure and temperature

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Benterou, Jerry

    2013-05-01

    A novel very high speed fiber grating sensor system has been used to support velocity, position, temperature and pressure measurements during burn, deflagration and detonation of energetic materials in Russian DDT tests. For the first time the system has been demonstrated in card gap testing and has allowed real time measurements of the position of the blast front into the card gap and monitoring of pressure at key locations in the card gap test. This paper provides an overview of this technology and examples of its application.

  18. A dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sarrazin, J.; Rodier, P.; Tivey, M. K.; Singh, H.; Schultz, A.; Sarradin, P. M.

    2009-11-01

    Numerous attempts have been made over the last thirty years to estimate fluid flow rates at hydrothermal vents, either at the exit of black smoker chimneys or within diffuse flow areas. In this study, we combine two methods to accurately estimate fluid flow velocities at diffuse flow areas. While the first method uses a hot film anemometer that performs high-frequency measurements, the second allows a relatively rapid assessment of fluid flow velocity through video imagery and provides in situ data to calibrate the sensor. Measurements of flow velocities on hydrothermal diffuse flow areas were obtained on the Mid-Atlantic Ridge (MAR). They range from 1.1 to 4.9 mm/s at the substratum level, in low-temperature (4.5-16.4 °C) diffuse flow areas from the Tour Eiffel sulfide edifice. A strong correlation was observed between fluid flow velocities and temperature, supporting the possible use of temperature as a proxy to estimate the flow rates in diffuse flow areas where such a simple linear flow/temperature relation is shown to dominate.

  19. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  20. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  1. Terahertz sensor for air pollution monitoring from spacecraft

    NASA Astrophysics Data System (ADS)

    You, Rui; Guo, Aiyan

    2016-07-01

    Terahertz wave is a radio wave which wavelength between infrared and microwave, substantial is from 0.1-1mm that is 300-3000GHz(0.3-3THz). Compare to microwave and visible/infrared it is advantage of resolution and better penetration in atmosphere respectively, and because of wavelength is similar to scale of micro-particle of air pollution, the absorption coefficient due to the many relevant molecules have a maximum signature in the THz region, such as SO2、CH4、H2S、NH3、CO、O3 etc. of molecules of polluted atmosphere . This paper present a conceptional solution of THz sensor for air pollution sounder which using of large aperture antenna and FSS with 15 channels in 0.183-1.5THz region, each channel with 2MHz by extreme narrow band filter for detecting signature of polluted air. Analysis data show that 2Km spatial resolution at 700km altitude orbit. Sensitive is about 10-12W/Hz1/2 level at cryogenic temp.

  2. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  3. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  4. Measurements of Flat-Flame Velocities of Diethyl Ether in Air

    PubMed Central

    Gillespie, Fiona; Metcalfe, Wayne K.; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Curran, Henry J.

    2013-01-01

    This study presents new adiabatic laminar burning velocities of diethyl ether in air, measured on a flat-flame burner using the heat flux method. The experimental pressure was 1 atm and temperatures of the fresh gas mixture ranged from 298 to 398 K. Flame velocities were recorded at equivalence ratios from 0.55 to 1.60, for which stabilization of the flame was possible. The maximum laminar burning velocity was found at an equivalence ratio of 1.10 or 1.15 at different temperatures. These results are compared with experimental and computational data reported in the literature. The data reported in this study deviate significantly from previous experimental results and are well-predicted by a previously reported chemical kinetic mechanism. PMID:23710107

  5. Effects of shape, size, and air velocity on entry loss factors of suction hoods.

    PubMed

    McLoone, H E; Guffey, S E; Curran, J P

    1993-03-01

    This study further elucidated the effects of air velocity, aspect ratio (face length to face width), and area ratio (face area to duct area) on entry loss factors of suction hoods. A full scale ventilation system was utilized to determine the entry loss factor attributable to each of 20 square and rectangular hoods with a 90 degrees included angle. Static and velocity pressures were measured using Pitot tubes connected by tubing to piezo-resistive pressure transducers and inclined tube manometers. The entry loss factor, Fh, is the ratio of hood total pressure loss to mean velocity pressure. Values of Fh determined in this study ranged from 0.17-1.85. The values of Fh were a hyperbolic function of area ratio with a region rapidly increasing change for area ratios less than 5. For area ratios greater than 5, the values of Fh approached an asymptote of 0.17. Among hoods with a given area ratio (e.g., 2.5, 5.1, or 10.2), values of Fh were independent of aspect ratio. To a limited extent, Fh values decreased as mean air velocities increased from 319-1770 m/min (1046-5807 feet/min). PMID:8447256

  6. An Empirical Model of Human Aspiration in Low-Velocity Air Using CFD Investigations

    PubMed Central

    Anthony, T. Renée; Anderson, Kimberly R.

    2016-01-01

    Computational fluid dynamics (CFD) modeling was performed to investigate the aspiration efficiency of the human head in low velocities to examine whether the current inhaled particulate mass (IPM) sampling criterion matches the aspiration efficiency of an inhaling human in airflows common to worker exposures. Data from both mouth and nose inhalation, averaged to assess omnidirectional aspiration efficiencies, were compiled and used to generate a unifying model to relate particle size to aspiration efficiency of the human head. Multiple linear regression was used to generate an empirical model to estimate human aspiration efficiency and included particle size as well as breathing and freestream velocities as dependent variables. A new set of simulated mouth and nose breathing aspiration efficiencies was generated and used to test the fit of empirical models. Further, empirical relationships between test conditions and CFD estimates of aspiration were compared to experimental data from mannequin studies, including both calm-air and ultra-low velocity experiments. While a linear relationship between particle size and aspiration is reported in calm air studies, the CFD simulations identified a more reasonable fit using the square of particle aerodynamic diameter, which better addressed the shape of the efficiency curve’s decline toward zero for large particles. The ultimate goal of this work was to develop an empirical model that incorporates real-world variations in critical factors associated with particle aspiration to inform low-velocity modifications to the inhalable particle sampling criterion. PMID:25438035

  7. Remote sensing and sensor testing via hot air balloons

    SciTech Connect

    Watson, S.M.; Kroutil, R.T.; Traynor, C.A.

    1996-11-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various remote sensing asks and sensor testing and atmospheric measurements. These platforms are inexpensive to operate, do not cause atmospheric disturbances as do higher speed platforms, and are extremely stable and free of vibrations inherent in aircraft structures. The equipment operated and tested on the balloons in connection with this project includes a prototype multispectral imaging spectrometer, high resolution CCD cameras, mid- and far-infrared cameras, a radiometer, FTIR spectrometers, video recording equipment and portable power generators carried beneath the balloon providing power to the equipment The experiments conducted on and from the balloon include chemical effluents characterization, atmospheric propagation through slant paths, obscurants imaging and scene reflectance. 7 refs.

  8. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  9. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  10. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  11. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  12. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  13. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particula...

  14. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    PubMed Central

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  15. A robust method to detect zero velocity for improved 3D personal navigation using inertial sensors.

    PubMed

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  16. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality.

    PubMed

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-01-01

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability. PMID:26516860

  17. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality

    PubMed Central

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-01-01

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability. PMID:26516860

  18. Air Pollution Sensors: Highlights from an EPA Workshop on the Evolution and Revolution in Low-Cost Participatory Air Monitoring

    EPA Science Inventory

    This article summarizes the findings from the EPA's Apps and Sensors for Air Pollution Workshop that was held March 26-27 of 2012. The workshop brought together researchers, developers, and community-based groups who have been working with sensors and apps in a variety of settin...

  19. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  20. Approach range and velocity determination using laser sensors and retroreflector targets

    NASA Technical Reports Server (NTRS)

    Donovan, William J.

    1991-01-01

    A laser docking sensor study is currently in the third year of development. The design concept is considered to be validated. The concept is based on using standard radar techniques to provide range, velocity, and bearing information. Multiple targets are utilized to provide relative attitude data. The design requirements were to utilize existing space-qualifiable technology and require low system power, weight, and size yet, operate from 0.3 to 150 meters with a range accuracy greater than 3 millimeters and a range rate accuracy greater than 3 mm per second. The field of regard for the system is +/- 20 deg. The transmitter and receiver design features a diode laser, microlens beam steering, and power control as a function of range. The target design consists of five target sets, each having seven 3-inch retroreflectors, arranged around the docking port. The target map is stored in the sensor memory. Phase detection is used for ranging, with the frequency range-optimized. Coarse bearing measurement is provided by the scanning system (one set of binary optics) angle. Fine bearing measurement is provided by a quad detector. A MIL-STD-1750 A/B computer is used for processing. Initial test results indicate a probability of detection greater than 99 percent and a probability of false alarm less than 0.0001. The functional system is currently at the MIT/Lincoln Lab for demonstration.

  1. Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Wieck, Lucas; Tao, Shiquan

    2013-02-01

    Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.

  2. Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames

    NASA Technical Reports Server (NTRS)

    Lee, John; Goroshin, Samuel; Kolbe, Massimiliano

    2001-01-01

    Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are

  3. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  4. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  5. The influence of bubble plumes on air-seawater gas transfer velocities

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Karle, L. M.; Higgins, B. J.; Farley, P. J.; Monahan, E. C.; Leifer, I. S.

    1996-05-01

    Laboratory results have demonstrated that bubble plumes are a very efficient air-water gas transfer mechanism. Because breaking waves generate bubble plumes, it could be possible to correlate the air-sea gas transport velocity kL with whitecap coverage. This correlation would then allow kL to be predicted from measurements of apparent microwave brightness temperature through the increase in sea surface microwave emissivity associated with breaking waves. In order to develop this remote-sensing-based method for predicting air-sea gas fluxes, a whitecap simulation tank was used to measure evasive and invasive kL values for air-seawater transfer of carbon dioxide, oxygen, helium, sulfur hexafluoride, and dimethyl sulfide at cleaned and surfactant-influenced water surfaces. An empirical model has been developed that can predict kL from bubble plume coverage, diffusivity, and solubility. The observed dependence of kL on molecular diffusivity and aqueous-phase solubility agrees with the predictions of modeling studies of bubble-driven air-water gas transfer. It has also been shown that soluble surfactants can decrease kL even in the presence of breaking waves.

  6. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions. PMID:21535663

  7. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  8. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Callaghan, Adrian H.; Nightingale, Philip D.; Shutler, Jamie D.

    2016-01-01

    Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.

  9. Thermal stability effects on the structure of the velocity field above an air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1987-01-01

    Mean velocity and turbulence measurements are described for turbulent flows above laboratory water waves, under various wind and thermal stratification conditions. Experimental results, when presented in the framework of Monin-Obukhov (1954) similarity theory, support local scaling based on evaluation of stratification effects at the same nondimensional distance from the mean water surface. Such scaling allows an extension of application of the above theory to the outer region of the boundary layer. Throughout the fully turbulent region, ratios of mean velocity gradients, eddy viscosities, and turbulence intensities under nonneutral and neutral conditions correlate well with the parameter z/Lambda (Lambda being a local Obukhov length and z the vertical coordinate of the mean air flow) and show good agreement with established field correlations. The influence of stratification on the wind-stress coefficient can be estimated from an empirical relationship in terms of its value under neutral conditions and a bulk Richardson number.

  10. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  11. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors.

    PubMed

    Grimes, C A; Kouzoudis, D

    2000-09-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. PMID:12143886

  12. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Kouzoudis, D.

    2000-01-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.

  13. Dynamics of air temperature, velocity and ammonia emissions in enclosed and conventional pig housing systems.

    PubMed

    Song, J I; Park, K-H; Jeon, J H; Choi, H L; Barroga, A J

    2013-03-01

    This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The NH3 concentration of both housing systems was also investigated in relation to the pig's growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to 29.1°C during summer and 17.9 to 23.1°C during winter whilst the CPH had a wider temperature variance during summer at 24.7 to 32.3°C. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to 18.2°C. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to

  14. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  15. Atmospheric corrosion effects of HNO 3—Influence of concentration and air velocity on laboratory-exposed copper

    NASA Astrophysics Data System (ADS)

    Samie, Farid; Tidblad, Johan; Kucera, Vladimir; Leygraf, Christofer

    A recently developed experimental set-up has been used to explore the atmospheric corrosion effects of nitric acid (HNO 3) on copper, in particular the influence of concentration and air velocity. Characterization and quantification of the corrosion products on exposed samples were performed with Fourier transform infrared (FT-IR) microspectrocscopy, ion chromatography, X-ray diffraction (XRD), micro-balance and microscopy. At low air velocity (0.03 cm s -1) HNO 3 deposition and weight gain of copper increased linearly with concentration up to 400 μg m -3 or 156 ppb. The influence of air velocity on corrosion of copper was tested within the range of 0.03-35.4 cm s -1. Although the air velocity in this study was significantly lower than typical outdoor wind values, a high HNO 3 concentration of the air velocity of 35.4 cm s -1 resulted in a relatively high deposition velocity ( Vd) of 0.9 cm s -1 on the metal surface and 1.2 cm s -1 on an ideal absorbent, which would imply a limiting deposition velocity on the copper surface ( Vd,surf) of 3.6 cm s -1. Results obtained in this study emphasize the importance for future research on the corrosion effects of HNO 3 on materials as very little has so far been done in this field.

  16. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  17. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward. PMID:21112151

  18. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  19. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    NASA Astrophysics Data System (ADS)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  20. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  1. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  2. Effect of Wind Tunnel Air Velocity on VOC Flux from Standard Solutions and CAFO Manure/Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used wind tunnels and flux chambers to quantify the flux of volatile organic compounds (VOCs), ammonia, and hydrogen sulfide and estimate emission factors from animal feeding operations (AFOs) without accounting for effects of air velocity or sweep air flow rate. L...

  3. Adaptive Preheating Duration Control for Low-Power Ambient Air Quality Sensor Networks

    PubMed Central

    Baek, Yoonchul; Atiq, Mahin K.; Kim, Hyung Seok

    2014-01-01

    Ceramic gas sensors used for measuring ambient air quality have features suitable for practical applications such as healthcare and air quality management, but have a major drawback—large power consumption to preheat the sensor for accurate measurements. In this paper; the adaptive preheating duration control (APC) method is proposed to reduce the power consumption of ambient air quality sensor networks. APC reduces the duration of unnecessary preheating, thereby alleviating power consumption. Furthermore, the APC can allow systems to meet user requirements such as accuracy and periodicity factor when detecting the concentration of a target gas. A performance evaluation of the power consumption of gas sensors is conducted with various user requirements and factors that affect the preheating duration of the gas sensor. This shows that the power consumption of the APC is lower than that of continuous power supply methods and constant power supply/cutoff methods. PMID:24658619

  4. Effect of air velocity on kinetics of thin layer carrot pomace drying.

    PubMed

    Kumar, N; Sarkar, B C; Sharma, H K

    2011-10-01

    Carrot pomace is a by-product obtained during carrot juice processing. Thin layer carrot pomace drying was performed in a laboratory scale hot air forced convective dryer. The drying experiments were carried out at the air velocity of 0.5, 0.7 and 1.0 m/s at air temperatures from 60 to 75 °C. It was observed that whole drying process of carrot pomace took place in a falling rate period except a very short accelerating period at the beginning. Mathematical models were tested to fit drying data of carrot pomace. The best fit model was observed on the basis of R², Chi-square and RMSE values. R² values for all the selected models were above 0.9783. The average values of effective diffusivity ranged from 2.61 × 10(-9) to 3.64 × 10(-9) m²/s. PMID:21954311

  5. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  6. Do-It-Yourself Air Sensors – Exploring the Atmosphere and Turning on Light Bulbs!?

    EPA Science Inventory

    These are educational slides that will be presented in a webinar to the National Science Teachers Association. Topics covered include general air quality, current EPA research, and EPA's particle sensor kit that is a classroom activity.

  7. Integrated optics ring-resonator chemical sensor for detection of air contamination

    NASA Technical Reports Server (NTRS)

    Manfreda, A. M.; Homer, M. L.; Ksendzov, A.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  8. Intregrated optics ring-resonator chemical sensor for detection of air contamination

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander; Homer, Margie L.; Manfreda, Allison M.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  9. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  10. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  11. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  12. Low cost sensors for PM and related air pollutants in the US and India

    EPA Science Inventory

    Emerging air quality sensors have a variety of possible applications. If accurate and reliable, they have a number of benefits over conventional monitors. They are low-cost, lightweight, and have low power consumption. Because of their low cost, a dense array of sensors instal...

  13. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    PubMed Central

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835

  14. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.

    PubMed

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835

  15. Fiber Grating Sensor System to Measure Velocity, Position, Pressure, and Temperature during Burn, Deflagration and Detonation of Highly Energetic Events

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    2013-06-01

    A novel very high speed fiber grating sensor system has been used to support velocity, position, temperature and pressure measurements during burn, deflagration and detonation of energetic materials including explosives and rocket propellant in Russian DDT tests. For the first time the system has been demonstrated in card gap testing and has allowed real time measurements of the position of the blast front into the card gap and monitoring of pressure at key locations in the card gap test. Fiber grating sensors are capable of providing a continuous measurement of the position, velocity, local pressure and temperature of energetic materials during the early stages of detonation and the transition to full detonation represents a significant advance in diagnostic capabilities. These measurements provide insight into this dynamic regime detonation physics. Continuous velocity and burn back position measurements are significantly more accurate in determining this run-up in velocity relative to single point measurements which yield only the average velocity measurement between the individual pin placement points. This work describes the first demonstration of this technology to card gap testing.

  16. Entrapped air bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity

    NASA Astrophysics Data System (ADS)

    de Jong, Jos; Jeurissen, Roger; Borel, Huub; van den Berg, Marc; Wijshoff, Herman; Reinten, Hans; Versluis, Michel; Prosperetti, Andrea; Lohse, Detlef

    2006-12-01

    Air bubbles entrapped in the ink channel are a major problem in piezo-driven inkjet printing. They grow by rectified diffusion and eventually counteract the pressure buildup at the nozzle, leading to a breakdown of the jetting process. Experimental results on the droplet velocity udrop as a function of the equilibrium radius R0 of the entrained bubble are presented. Surprisingly, udrop(R0) shows a pronounced maximum around R0=17μm before it sharply drops to zero around R0=19μm. A simple one-dimensional model is introduced to describe this counterintuitive behavior which turns out to be a resonance effect of the entrained bubble.

  17. Measurement of Gas and Liquid Velocities in an Air-Water Two-Phase Flow using Cross-Correlation of Signals from a Double Senor Hot-Film Probe

    SciTech Connect

    B. Gurau; P. Vassalo; K. Keller

    2002-02-19

    Local gas and liquid velocities are measured by cross-correlating signals from a double sensor hot-film anemometer probe in pure water flow and air water two-phase flow. The gas phase velocity measured in two-phase flow agrees with velocity data obtained using high-speed video to within +/-5%. A turbulent structure, present in the liquid phase, allows a correlation to be taken, which is consistent with the expected velocity profiles in pure liquid flow. This turbulent structure is also present in the liquid phase of a two-phase flow system. Therefore, a similar technique can be applied to measure the local liquid velocity in a two-phase system, when conditions permit.

  18. Evaluating the performance of low cost chemical sensors for air pollution research.

    PubMed

    Lewis, Alastair C; Lee, James D; Edwards, Peter M; Shaw, Marvin D; Evans, Mat J; Moller, Sarah J; Smith, Katie R; Buckley, Jack W; Ellis, Matthew; Gillot, Stefan R; White, Andrew

    2016-07-18

    Low cost pollution sensors have been widely publicized, in principle offering increased information on the distribution of air pollution and a democratization of air quality measurements to amateur users. We report a laboratory study of commonly-used electrochemical sensors and quantify a number of cross-interferences with other atmospheric chemicals, some of which become significant at typical suburban air pollution concentrations. We highlight that artefact signals from co-sampled pollutants such as CO2 can be greater than the electrochemical sensor signal generated by the measurand. We subsequently tested in ambient air, over a period of three weeks, twenty identical commercial sensor packages alongside standard measurements and report on the degree of agreement between references and sensors. We then explore potential experimental approaches to improve sensor performance, enhancing outputs from qualitative to quantitative, focusing on low cost VOC photoionization sensors. Careful signal handling, for example, was seen to improve limits of detection by one order of magnitude. The quantity, magnitude and complexity of analytical interferences that must be characterised to convert a signal into a quantitative observation, with known uncertainties, make standard individual parameter regression inappropriate. We show that one potential solution to this problem is the application of supervised machine learning approaches such as boosted regression trees and Gaussian processes emulation. PMID:27104223

  19. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  20. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency.

    PubMed

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  1. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    PubMed Central

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  2. Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-08-01

    The deformation of water, kerosene, and ethyl alcohol drops traveling a distance of up to 1 m in air with different velocities (1-5 m/s) is recorded by high-speed photography (the frame of the cross-correlation camera is less than 1 µs). It is shown that the shape of the drops varies cyclically. Several tens of "deformation cycles" are found, which have characteristic times, drop size variation amplitudes, and number of shapes. It is found that the velocity and size of the drops influence the parameters of their deformation cycles. Experiments with the drops are conducted in air at moderate Weber numbers (We < 10).

  3. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    NASA Astrophysics Data System (ADS)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  4. Measuring air gap width of permanent magnet linear generators using search coil sensor

    NASA Astrophysics Data System (ADS)

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-01

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Ångström Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of ±0.4mm in the range of 4-9.5mm air gap. The potential for future improvements of the sensitivity is considerable.

  5. Measuring air gap width of permanent magnet linear generators using search coil sensor

    SciTech Connect

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-15

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Angstroem Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of {+-}0.4 mm in the range of 4-9.5 mm air gap. The potential for future improvements of the sensitivity is considerable.

  6. Accurate measurement of the position and velocity of a falling object

    NASA Astrophysics Data System (ADS)

    Garg, Madhur; Kalimullah, Arun, P.; Lima, F. M. S.

    2007-03-01

    An object accelerates while it falls under the influence of the gravitational force. By using two sensors a precise and automated measurement of the velocity can be obtained. The analysis of these measurements may be insufficient if air resistance is important. We discuss how by increasing the number of sensors we can determine the velocity, terminal velocity, and acceleration due to gravity.

  7. High-performance air acoustic detection and classification sensor

    NASA Astrophysics Data System (ADS)

    Porter, Richard; Raines, Robert; Jones, Barry

    2009-05-01

    Acoustic signals are a principal detection modality for unattended sensor systems. However, the performance of these systems is frequently suboptimal due to insufficient dynamic range in small systems or excess power consumption in larger systems. This paper discusses an approach to developing an unattended ground sensor (UGS) system that has the best features of both worlds. This system, developed by McQ Inc., has exceptional dynamic range (> 100 dB) while operating at power levels of 1.5-5 watts. The system also has a user definable signal parameter library and automated detection methodology that will be described.

  8. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  9. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is

  10. Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report

    EPA Science Inventory

    This report summarizes the results of next generation air monitor (NGAM) volatile organic compound (VOC) evaluations performed using both laboratory as well as field scale settings. These evaluations focused on challenging lower cost (<$2500) NGAM technologies to either controlle...

  11. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    PubMed Central

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  12. Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Marandino, Christa

    2012-08-01

    This study is the first to directly correlate gas transfer velocity, measured at sea using the eddy-correlation (EC) technique, and satellite altimeter backscattering. During eight research cruises in different parts of the world, gas transfer velocity of dimethyl sulfide (DMS) was measured. The sample times and locations were compared with overpass times and locations of remote sensing satellites carrying Ku-band altimeters: ERS-1, ERS-2, TOPEX, POSEIDON, GEOSAT Follow-On, JASON-1, JASON-2 and ENVISAT. The result was 179 pairs of gas transfer velocity measurements and backscattering coefficients. An inter-calibration of the different altimeters significantly reduced data scatter. The inter-calibrated data was best fitted to a quadratic relation between the inverse of the backscattering coefficients and the gas transfer velocity measurements. A gas transfer parameterization based on backscattering, corresponding with sea surface roughness, might be expected to perform better than wind speed-based parameterizations. Our results, however, did not show improvement compared to direct correlation of shipboard wind speeds. The relationship of gas transfer velocity to satellite-derived backscatter, or wind speed, is useful to provide retrieval algorithms. Gas transfer velocity (cm/hr), corrected to a Schmidt number of 660, is proportional to wind speed (m/s). The measured gas transfer velocity is controlled by both the individual water-side and air-side gas transfer velocities. We calculated the latter using a numerical scheme, to derive water-side gas transfer velocity. DMS is sufficiently soluble to neglect bubble-mediated gas transfer, thus, the DMS transfer velocities could be applied to estimate water-side gas transfer velocities through the unbroken surface of any other gas.

  13. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  14. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    NASA Technical Reports Server (NTRS)

    Severs, R. K.

    1974-01-01

    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  15. Modeling and measuring self-noise in velocity and acceleration sensors

    SciTech Connect

    Gabrielson, T.B.

    1996-04-01

    Evaluation of the inherent noise levels of high-responsivity sensors is critical for good design but this area is often treated casually until testing reveals a problem. Careful noise analysis early in the design process can save time, effort, and much frustration and reveal options for better performance. Once the sensor is fabricated, careful measurement of its noise can uncover deficiencies in the design or construction. In fact, serious examination of sensor noise can often reveal more about the fundamental workings of the sensor than can measurement of its transduction response. The usual assumption that the preamplifier dominates the noise of a sensor system, while sometimes true over limited bands, often leads either to suboptimal performance or to unrealistic expectations. This paper contains a discussion of noise resulting from thermal-equilibrium agitation of mechanical elements, internal Johnson noise, equilibrium and non-equilibrium shot noise, 1/f noise, stress-induced noise in piezoceramics, various optical noise sources in fiber sensors, and preamplifier voltage and current noise. In addition, several measurement techniques are presented. These include effective isolation techniques for sub-nano-g resolution in ordinary laboratory spaces; coherence measurement; use of resistors as primary noise sources; and evaluation of preamplifier noise. {copyright} {ital 1996 American Institute of Physics.}

  16. Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units

    SciTech Connect

    Fernandez, Nicholas; Brambley, Michael R.; Katipamula, Srinivas

    2009-12-31

    This report documents the self-correction algorithms developed in the Self-Correcting Heating, Ventilating and Air-Conditioning (HVAC) Controls project funded jointly by the Bonneville Power Administration and the Building Technologies Program of the U.S. Department of Energy. The algorithms address faults for temperature sensors, humidity sensors, and dampers in air-handling units and correction of persistent manual overrides of automated control systems. All faults considered create energy waste when left uncorrected as is frequently the case in actual systems.

  17. Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air

    NASA Astrophysics Data System (ADS)

    Parkes, W.; Djakov, V.; Barton, J. S.; Watson, S.; MacPherson, W. N.; Stevenson, J. T. M.; Dunare, C. C.

    2007-07-01

    Optical fibre pressure sensors have potential performance advantages over electrical sensors in measuring rapid transients such as shock waves from explosive blasts. We report the development of micromachined optical fibre Fabry-Pérot pressure sensors using a silicon dioxide or nitride diaphragm and detail the fabrication stages of the sensor body and diaphragm. The planar technology used is based on silicon deep etching and direct fusion bonding of silicon wafers. Test results for both types of diaphragm are presented. Sensors with rise times better than 3 µs, range 0.1 to 1 MPa and resolution ~500 Pa have been demonstrated in explosives trials. Despite the difference in the sign of stress for the two diaphragm types, both demonstrated excellent high-speed response to explosively generated air shocks.

  18. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  19. Spatial Characteristics of Water Spray Formed by Two Impinging Jets at Several Jet Velocities in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Foster, Hampton H.; Heidmann, Marcus F.

    1960-01-01

    The spatial characteristics of a spray formed by two impinging water jets in quiescent air were studied over a range of nominal jet velocities of 30 to 74 feet per second. The total included angle between the 0.089-inch jets was 90 deg. The jet velocity, spray velocity, disappearance of the ligaments just before drop formation, mass distribution, and size and position of the largest drops were measured in a circumferential survey around the point of jet impingement. Photographic techniques were used in the evaluations. The distance from the point of jet impingement to ligament breakup into drops was about 4 inches on the spray axis and about 1.3 inches in the radial position +/-90 deg from the axis. The distance tended to increase slightly with increase in jet velocity. The spray velocity varied from about 99 to about 72 percent of the jet velocity for a change in circumferential position from the spray axis to the +/-80 deg positions. The percentages tended to increase slightly with an increase in jet velocity. Fifty percent of the mass was distributed about the spray axis in an included angle of slightly less than 40 deg. The effect of jet velocity was small. The largest observed drops (2260-micron or 0.090-in. diam.) were found on and about the spray axis. The size of the largest drops decreased for an increase in radial angular position, being about 1860 microns (0.074 in.) at the +/-90 deg positions. The largest drop sizes tended to decrease for an increase in jet velocity, although the velocity effect was small. A drop-size distribution analysis indicated a mass mean drop size equal to 54 percent of an extrapolated maximum drop size.

  20. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor

    SciTech Connect

    Kim, Yongdae; Park, Kyihwan; Kim, Sangyoo

    2009-04-15

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  1. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    NASA Astrophysics Data System (ADS)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM

  2. Sensor gas analyzer for acetone determination in expired air

    NASA Astrophysics Data System (ADS)

    Baranov, Vitaly V.

    2001-05-01

    Diseases and changes in the way of life change the concentration and composition of the expired air. Our adaptable gas analyzer is intended for the selective analysis of expired air and can be adapted for the solution of current diagnostic and analytical tasks by the user (a physician or a patient). Having analyzed the existing trends in the development of noninvasive diagnostics we have chosen the method of noninvasive acetone detection in expired air, where the acetone concentration correlates with blood and urine glucose concentrations. The appearance of acetone in expired air is indicative of disorders that may be caused not only by diabetes but also be wrong diet, incorrect sportsmen training etc. To control the disorders one should know the acetone concentration in the human body. This knowledge allows one to judge upon the state of the patient, choose a correct diet that will not cause damage to the patient's health, determine sportsmen training efficiency and results and solve the artificial pancreas problem. Our device provide highly accurate analysis, rapid diagnostics and authentic acetone quantification in the patient's body at any time aimed at prediction of the patient's state and assessing the efficiency of the therapy used. Clinical implementation of the device will improve the health and save lives of many thousands of diabetes sufferers.

  3. Experimental verification of the four-sensor probe model for flow diagnosis in air water flow in vertical pipe

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Mishra, R.

    2012-05-01

    Measuring the volumetric flow rate of each of the flowing components is required to be monitored in production logging applications. Hence it is necessary to measure the flow rates of gas, oil and water in vertical and inclined oil wells. An increasing level of interest has been shown by the researchers in developing system for the flow rate measurement in multiphase flows. This paper describes the experimental methodology using a miniature, local four-sensor probe for the measurement of dispersed flow parameters in bubbly two-phase flow for spherical bubbles. To establish interdependent among different parameters corresponding to dispersed flow, the available model has been used to experimentally obtain different parameters such as volume fraction, velocity and bubble shape of the dispersed phase in the bubbly air-water flow.

  4. A math model for high velocity sensoring with a focal plane shuttered camera.

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1971-01-01

    A new mathematical model is presented which describes the image produced by a focal plane shutter-equipped camera. The model is based upon the well-known collinearity condition equations and incorporates both the translational and rotational motion of the camera during the exposure interval. The first differentials of the model with respect to exposure interval, delta t, yield the general matrix expressions for image velocities which may be simplified to known cases. The exposure interval, delta t, may be replaced under certain circumstances with a function incorporating blind velocity and image position if desired. The model is tested using simulated Lunar Orbiter data and found to be computationally stable as well as providing excellent results, provided that some external information is available on the velocity parameters.

  5. Ultrafast fiber grating sensor systems for velocity, position, pressure, and temperature measurements

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Udd, Ingrid; Benterou, Jerry J.; Rodriguez, George

    2016-05-01

    In 2006 an approach was developed that used chirped fiber gratings in combination with a high speed read out configuration to measure the velocity and position of shock waves after detonation of energetic materials. The first demonstrations were conducted in 2007. Extensions of this technology were made to measure pressure and temperature as well as velocity and position during burn, deflagration and detonation. This paper reviews a series of improvements that have been made by Columbia Gorge Research, LLC, Lawrence Livermore National Lab and Los Alamos National Lab in developing and improving this technology.

  6. New Method for Projectile Velocity Measurement Using Faraday-Type Electromagnetic Sensor for Hypervelocity Impact Experiments and Detection Efficiency of the Method

    NASA Astrophysics Data System (ADS)

    Saito, Fumikazu; Kishimura, Hiroaki; Yokote, Hiroyuki; Tamura, Hideki; Yokoo, Manabu; Nakamura, Kazutaka G.; Kondo, Ken-ichi

    2012-09-01

    The authors developed a Faraday-type electromagnetic sensor as a conventional and fiducial technique for measuring the velocities of projectiles accelerated by propellant and gas guns. The sensor consists of a doughnut-shaped ferrite magnet and a pick-up coil, and detects the disturbance of the magnetic field in the pick-up coil caused by the passage of a metallic projectile. Projectile velocity is estimated from the time interval between two electromotive force signals and the distance between two sensors. Firing tests using a small nonmagnetic spherical Al projectile show that the projectile velocity is obtained with an accuracy of less than 2% in the velocity range from 2.17 to 5.80 km/s.

  7. Computational Fluid Dynamics Investigation of Human Aspiration in Low-Velocity Air: Orientation Effects on Mouth-Breathing Simulations

    PubMed Central

    Anthony, T. Renée

    2013-01-01

    Computational fluid dynamics was used to investigate particle aspiration efficiency in low-moving air typical of occupational settings (0.1–0.4 m s−1). Fluid flow surrounding an inhaling humanoid form and particle trajectories traveling into the mouth were simulated for seven discrete orientations relative to the oncoming wind (0°, 15°, 30°, 60°, 90°, 135° and 180°). Three continuous inhalation velocities (1.81, 4.33, and 12.11 m s−1), representing the mean inhalation velocity associated with sinusoidal at-rest, moderate, and heavy breathing (7.5, 20.8, and 50.3 l min−1, respectively) were simulated. These simulations identified a decrease in aspiration efficiency below the inhalable particulate mass (IPM) criterion of 0.5 for large particles, with no aspiration of particles 100 µm and larger for at-rest breathing and no aspiration of particles 116 µm for moderate breathing, over all freestream velocities and orientations relative to the wind. For particles smaller than 100 µm, orientation-averaged aspiration efficiency exceeded the IPM criterion, with increased aspiration efficiency as freestream velocity decreased. Variability in aspiration efficiencies between velocities was low for small (<22 µm) particles, but increased with increasing particle size over the range of conditions studied. Orientation-averaged simulation estimates of aspiration efficiency agree with the linear form of the proposed linear low-velocity inhalable convention through 100 µm, based on laboratory studies using human mannequins. PMID:23316076

  8. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  9. Tapered-fiber-based refractive index sensor at an air/solution interface.

    PubMed

    Lu, Ping; Harris, Jeremie; Wang, Xiaozhen; Lin, Ganbin; Chen, Liang; Bao, Xiaoyi

    2012-10-20

    An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach-Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber. PMID:23089794

  10. Near-surface S-wave velocity measured with six-degree-of-freedom seismic sensor Rotaphone

    NASA Astrophysics Data System (ADS)

    Malek, Jiri; Brokesova, Johana

    2015-04-01

    An essential parameter in seismic engineering is the near-surface S-wave velocity. Rotaphone, a six-degree-of-freedom seismic sensor can be used with advantage to retrieve it from collocated rotational and translational measurements. Rotaphone consists of highly sensitive geophones connected to a conjoint datalogger. The geophones are mounted in parallel pairs to a rigid (metal) ground-based frame. The instrument is designed to measure short-period translational ground motion (velocity) and, in addition, differential motion between the paired geophones. The records of those differential motions are used to obtain rotational components. In-situ calibration of individual geophones is performed simultaneously with each measurement, which enables to reach high sensitivity and accuracy of rotational measurements. In our method we utilize seismic waves produced by anthropogenic source - a generator of S waves and rotational ground motions. The generator contains a fixed part (anchored to the ground), a revolving part and a braking mechanism for immediate braking of the rotational part, in which rotational seismic motions are generated by immediately stopping the revolving part, whereby energy is transmitted into the rock massive. The generator produces repeatedly identical source pulses. Due to identity of the source pulses, we can suppress noise by means of stacking data from many generator actions and thus increase the depth range and resolution. The phase velocity retrieval is based on matching relevant acceleration and rotation rate components. Thanks to a near-source distance and high-frequency content of the source pulses, well-known equations for plane-wave approximation must be replaced by more adequate equations relating the individual rotation rate components to the translational ones. These equations are derived under an assumption of spherical wave. The resulting S-wave phase velocity is compared to the value obtained by standard profile measurements. The

  11. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  12. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  13. Range and velocity independent classification of humans and animals using a profiling sensor

    NASA Astrophysics Data System (ADS)

    Chari, Srikant; Smith, Forrest; Halford, Carl; Jacobs, Eddie; Brooks, Jason

    2010-04-01

    This paper presents object profile classification results using range and speed independent features from an infrared profiling sensor. The passive infrared profiling sensor was simulated using a LWIR camera. Field data collected near the US-Mexico border to yield profiles of humans and animals is reported. Range and speed independent features based on height and width of the objects were extracted from profiles. The profile features were then used to train and test three classification algorithms to classify objects as humans or animals. The performance of Naïve Bayesian (NB), K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM) are compared based on their classification accuracy. Results indicate that for our data set all three algorithms achieve classification rates of over 98%. The field data is also used to validate our prior data collections from more controlled environments.

  14. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  15. Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors

    NASA Astrophysics Data System (ADS)

    Heimann, I.; Bright, V. B.; McLeod, M. W.; Mead, M. I.; Popoola, O. A. M.; Stewart, G. B.; Jones, R. L.

    2015-07-01

    To carry out detailed source attribution for air quality assessment it is necessary to distinguish pollutant contributions that arise from local emissions from those attributable to non-local or regional emission sources. Frequently this requires the use of complex models and inversion methods, prior knowledge or assumptions regarding the pollution environment. In this paper we demonstrate how high spatial density and fast response measurements from low-cost sensor networks may facilitate this separation. A purely measurement-based approach to extract underlying pollution levels (baselines) from the measurements is presented exploiting the different relative frequencies of local and background pollution variations. This paper shows that if high spatial and temporal coverage of air quality measurements are available, the different contributions to the total pollution levels, namely the regional signal as well as near and far field local sources, can be quantified. The advantage of using high spatial resolution observations, as can be provided by low-cost sensor networks, lies in the fact that no prior assumptions about pollution levels at individual deployment sites are required. The methodology we present here, utilising measurements of carbon monoxide (CO), has wide applicability, including additional gas phase species and measurements obtained using reference networks. While similar studies have been performed, this is the first study using networks at this density, or using low cost sensor networks.

  16. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence.

    PubMed

    Spuler, Scott M; Richter, Dirk; Spowart, Michael P; Rieken, Kathrin

    2011-02-20

    We discuss an optical fiber-based continuous-wave coherent laser system for measuring the wind speed in undisturbed air ahead of an aircraft. The operational principles of the instrument are described, and estimates of performance are presented. The instrument is demonstrated as a single line of sight, and data from the inaugural test flight of August 2010 is presented. The system was successfully operated under various atmospheric conditions, including cloud and clear air up to 12 km (40,300 ft). PMID:21343963

  17. Fluid bulk velocity and attenuation measurements in non-Newtonian liquids using a dipstick sensor

    NASA Astrophysics Data System (ADS)

    Cegla, F. B.; Cawley, P.; Lowe, M. J. S.

    2006-02-01

    This paper reports an evaluation of a method to measure acoustic fluid bulk properties in order to characterize the fluid. The method is based on a 'dipstick' that is inserted into the liquid of interest; a propagating interface wave, called the quasi-Scholte mode, is used to extract the necessary information. Quasi-Scholte mode measurements on four different silica-suspensions are compared to experiments in a conventional ultrasonic test cell. The results show that the liquid bulk velocity can accurately be retrieved by means of the new approach and errors range within the uncertainties imposed by the experimental setup (0.5%). Further bulk velocity measurements on distilled water and a 5% ethanol-distilled-water mixture over a range of temperatures illustrate that the method can successfully monitor small changes in velocity. The values of fluid attenuation measured by the two techniques agree well in their qualitative trends but quantitative differences of up to 20% are encountered. Errors in the measurements are believed to be mainly due to geometrical features of the current setup.

  18. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks. PMID:25844537

  19. Threshold velocities for input of soil particles into the air by desert soils

    SciTech Connect

    Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R.

    1980-10-20

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: disturbed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavement (alluvial deposits). 21 references, 5 figures, 6 tables.

  20. Measurements of the Air-flow Velocity in the Cylinder of an Airplane Engine

    NASA Technical Reports Server (NTRS)

    Wenger, Hermann

    1939-01-01

    The object of the present investigation is to determine the velocity in the BMW-VI cylinder of an externally driven single-cylinder test engine at high engine speeds using the hot-wire method of Ulsamer.

  1. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  2. Probability distribution functions for the initial liftoff velocities of saltating sand grains in air

    NASA Astrophysics Data System (ADS)

    Cheng, Hong; Zou, Xue-Yong; Zhang, Chun-Lai

    2006-11-01

    Saltating sand grains are the primary component of airborne sand and account for 75% of all transport flux of sand grains. Although they have been widely studied, the microscopic and macroscopic aspects of blown sand physics have not been united, and this has slowed development of this field. The main reason for this is that the bridge (probability distribution functions for initial liftoff velocities of saltating sand grains) between the macroscopic and microscopic research has not been satisfactorily solved because it is difficult to measure the initial liftoff parameters of saltating sand grains and because the underlying theory is lacking. In this paper, we combined theoretical analyses with wind tunnel experiment data to describe the liftoff parameters of saltating sand grains (the horizontal, vertical, and resultant liftoff velocities and angles). On the basis of these data, the liftoff angles follow a LogNorm4 distribution function, whereas the horizontal, vertical, and resultant liftoff velocities follow a Gamma distribution function. We also demonstrated that it is feasible to colligate initial liftoff velocities of saltating sand grains obtained under different frictional wind velocities by different scholars in wind tunnel experiments and comprehensively analyze their distributions. Therefore the distribution functions of initial liftoff velocities of saltating sand grains presented in this paper do a good job of reflecting the underlying physics.

  3. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping?

    EPA Science Inventory

    Project GoalDevelop tools Citizen Scientists can use to assist them in conducting environmental monitoringResearch PlanIdentify a citizen science project as a potential pilot study locationEstablish their pollutant monitoring interestsDevelop a sensor package to meet their needs ...

  4. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  5. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping

    EPA Science Inventory

    Research in Action: Collect air quality data to characterize near-road/near-source hotspots; Determine potential impact on nearby residences & roadways; Case study of successful use of such data; Relationship between distance to roadways and industrial sources, exposure to...

  6. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  7. A barometric pressure sensor based on the air-gap scale effect in a cantilever

    NASA Astrophysics Data System (ADS)

    Minh-Dung, Nguyen; Takahashi, Hidetoshi; Uchiyama, Takeshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-09-01

    The most common structure for a conventional barometric pressure sensor consists of a vacuum-sealed cavity and a diaphragm. However, we hypothesize that a simple structure with an unsealed cavity and an ultra-thin cantilever can provide more sensitive measurements. We produced a 300-nm-thick cantilever with a small spring constant, which made the cantilever sensitive to low pressures. We demonstrated that miniaturizing the air-gap of the cantilever enables the sensor to measure barometric pressure changes at a low pressure change rate with a high resolution, which was 1 Pa at 0.05 Hz, and for a gap size of 1.7 μm.

  8. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  9. Evaluation system for minor nervous dysfunction by pronation and supination of forearm using wireless acceleration and angular velocity sensors.

    PubMed

    Iramina, Keiji; Kamei, Yuuichiro; Katayama, Yoshinori

    2011-01-01

    We developed a simple, portable and easy system to the motion of pronation and supination of the forearm. This motion was measured by wireless acceleration and angular velocity sensor. The aim of this system is evaluation of minor nervous dysfunction. It is for the screening of the developmental disorder child. In this study, in order to confirm the effectiveness of this system, the reference curve of the neuromotor development was experimentally obtained. We studied 212 participants (108 males, 104 females) aged 7 to 12 years attending the kindergarten school. We could obtain the reference curve of the neuromotor development using this system. We also investigated the difference of neuromotor function between normally developed children and a ADHD child. There is a possibility that abnormality of the minor nervous dysfunction can be detected by using this system. PMID:22256040

  10. Combination of spaceborne sensor(s) and 3-D aerosol models to assess global daily near-surface air quality

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M.; Redemann, J.; Russell, P. B.

    2009-12-01

    Aerosol Particulate Matter (PM), measured by ground-based monitoring stations, is used as a standard by the EPA (Environmental Protection Agency) to evaluate daily air quality. PM monitoring is particularly important for human health protection because the exposure to suspended particles can contribute, among others, to lung and respiratory diseases and even premature death. However, most of the PM monitoring stations are located close to cities, leaving large areas without any operational data. Satellite remote sensing is well suited for a global coverage of the aerosol load and can provide an independent and supplemental data source to in situ monitoring. Nevertheless, PM at the ground cannot easily be determined from satellite AOD (Aerosol Optical Depth) without additional information on the optical/microphysical properties and vertical distribution of the aerosols. The objective of this study is to explore the efficacy and accuracy of combining a 3-D aerosol transport model and satellite remote sensing as a cost-effective approach for estimating ground-level PM on a global and daily basis. The estimation of the near-surface PM will use the vertical distribution (and, if possible, the physicochemical properties) of the aerosols inferred from a transport model and the measured total load of particles in the atmospheric column retrieved by satellite sensor(s). The first step is to select a chemical transport model (CTM) that provides “good” simulated aerosol vertical profiles. A few global (e.g., WRF-Chem-GOCART) or regional (e.g., MM5-CMAQ, PM-CAMx) CTM will be compared during selected airborne campaigns like ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites- California Air Resources Board). The next step will be to devise an algorithm that combines the satellite and model data to infer PM mass estimates at the ground, after evaluating different spaceborne instruments and possible multi-sensor combinations.

  11. Portable RF-Sensor System for the Monitoring of Air Pollution and Water Contamination

    PubMed Central

    Kang, Joonhee; Kim, Jin Young

    2012-01-01

    Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems. PMID:22928151

  12. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  13. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  14. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  15. Applications of the Zero-Group-Velocity Lamb Mode for Air-Coupled Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Evan, Victoria L.; Chimenti, D. E.

    2005-04-01

    Airborne ultrasound couples particularly well into plates at the zero-group-velocity point of the first order symmetric (S1) Lamb mode. Applications of this mode to ultrasonic imaging of plate-like structures are discussed. The sensitivity and high Q of this mode makes it ideal for imaging. Images from a wide variety of materials and samples, including composites and honeycomb structures are presented. Transmission at the zero-group-velocity frequency is shown to be particularly sensitive to nearby flaws and discontinuities, and is therefore suitable for wide-area scanning for cracks or manufacturing flaws.

  16. Refinement of a SPR sensor for application within air-tight buildings

    NASA Astrophysics Data System (ADS)

    Bryce, Emma; Sommerville, James; Aidoo, Kofi

    2009-08-01

    The development of air-tight buildings to significantly reduce the carbon emissions from buildings is a relatively new building technique. However the side effects of the new approach have not been fully investigated. One potential issue arising is from insufficient ventilation resulting in an increase in poor indoor air quality from exacerbated microbial growth through elevated humidity and temperature. At the moment there is no in situ real-time sensor for the detection of multiple microbes within the built environment. Developing a sensor utilizing the phenomena of Surface Plasmon Resonance as its detection method to continuously monitor in situ multiple microbial species and fungi is being undertaken. The research involves the refinement of the specialised instruments commercially available, simplifying the components and advancing the architecture of the interface allowing for the monitoring of multiple species and a novel output detection method.

  17. Spatio-temporal aggregation of European air quality observations in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Foerster, Theodor; Autermann, Christian; Pebesma, Edzer

    2012-10-01

    An increasing amount of observations from different applications such as long-term environmental monitoring or disaster management is published in the Web using Sensor Web technologies. The standardization of these technologies eases the integration of heterogeneous observations into several applications. However, as observations differ in spatio-temporal coverage and resolution, aggregation of observations in space and time is needed. We present an approach for spatio-temporal aggregation in the Sensor Web using the Geoprocessing Web. In particular, we define a tailored observation model for different aggregation levels, a process model for aggregation processes and a Spatio-Temporal Aggregation Service. The presented approach is demonstrated by a case study of delivering aggregated air quality observations on-demand in the Sensor Web.

  18. Development of a Zirconia-Based Electrochemical Sensor for the Detection of Hydrogen in Air

    SciTech Connect

    Brosha, E; Mukundan, R; Lujan, R; Garzon, F; Woo, L; Worsley, M; Glass, B

    2008-07-16

    Mixed potential sensors utilizing a machined, dense indium-tin oxide working electrode (In{sub 2}O{sub 3}:SnO{sub 2}; 90%:10%), a Pt wire counter electrode, and porous YSZ electrolyte were prepared using ceramic tape casting methods. The response of these devices to hydrogen concentrations up to 2% in air were studied from 600 to 740 C. The sensor response exhibited a reversible behavior and a fast response time with sensitivity increasing with decreasing temperature. GC analysis confirmed significant heterogeneous oxidation of the H{sub 2} on heated furnace tube wall surfaces thus driving sensor response at H{sub 2} concentrations greater than a few hundred ppm. The transition to a cold wall, miniature platform heater significantly reduced hydrogen oxidation although some flow rate dependence remains.

  19. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  20. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  1. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    PubMed

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309

  2. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo

    PubMed Central

    Groschup, Robin; Grosse, Christian U.

    2015-01-01

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable. PMID:26121610

  3. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo.

    PubMed

    Groschup, Robin; Grosse, Christian U

    2015-01-01

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable. PMID:26121610

  4. Soft Neurological Signs in Childhood by Measurement of Arm Movements Using Acceleration and Angular Velocity Sensors

    PubMed Central

    Kaneko, Miki; Yamashita, Yushiro; Inomoto, Osamu; Iramina, Keiji

    2015-01-01

    Soft neurological signs (SNS) are evident in the motor performance of children and disappear as the child grows up. Therefore SNS are used as criteria for evaluating age-appropriate development of neurological function. The aim of this study was to quantify SNS during arm movement in childhood. In this study, we focused on pronation and supination, which are arm movements included in the SNS examination. Two hundred and twenty-three typically developing children aged 4–12 years (107 boys, 116 girls) and 18 adults aged 21–26 years (16 males, two females) participated in the experiment. To quantify SNS during pronation and supination, we calculated several evaluation index scores: bimanual symmetry, compliance, postural stability, motor speed and mirror movement. These index scores were evaluated using data obtained from sensors attached to the participants’ hands and elbows. Each score increased as age increased. Results obtained using our system showed developmental changes that were consistent with criteria for SNS. We were able to successfully quantify SNS during pronation and supination. These results indicate that it may be possible to use our system as quantitative criteria for evaluating development of neurological function. PMID:26473867

  5. Soft neurological signs in childhood by measurement of arm movements using acceleration and angular velocity sensors.

    PubMed

    Kaneko, Miki; Yamashita, Yushiro; Inomoto, Osamu; Iramina, Keiji

    2015-01-01

    Soft neurological signs (SNS) are evident in the motor performance of children and disappear as the child grows up. Therefore SNS are used as criteria for evaluating age-appropriate development of neurological function. The aim of this study was to quantify SNS during arm movement in childhood. In this study, we focused on pronation and supination, which are arm movements included in the SNS examination. Two hundred and twenty-three typically developing children aged 4-12 years (107 boys, 116 girls) and 18 adults aged 21-26 years (16 males, two females) participated in the experiment. To quantify SNS during pronation and supination, we calculated several evaluation index scores: bimanual symmetry, compliance, postural stability, motor speed and mirror movement. These index scores were evaluated using data obtained from sensors attached to the participants' hands and elbows. Each score increased as age increased. Results obtained using our system showed developmental changes that were consistent with criteria for SNS. We were able to successfully quantify SNS during pronation and supination. These results indicate that it may be possible to use our system as quantitative criteria for evaluating development of neurological function. PMID:26473867

  6. A Portable Low-Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    NASA Astrophysics Data System (ADS)

    Popoola, Olalekan; Mead, Iq; Bright, Vivien; Baron, Ronan; Saffell, John; Stewart, Gregor; Kaye, Paul; Jones, Roderic

    2013-04-01

    Outdoor air quality and its impact on human health and the environment have been well studied and it has been projected that poor air quality will surpass poor sanitation as the major course of environmental premature mortality by 2050 (IGAC / IGBP, release statement, 2012). Transport-related pollution has been regulated at various levels by enactment of legislations at local, national, regional and global stages. As part of the mitigation measures, routine measurements of atmospheric pollutants such as carbon monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO2) have to be established in areas where air quality problems are identified. In addition, emission inventories are also generated for different atmospheric environments including urban areas and airport environments required for air quality models. Whilst recognising that most of the existing sparse monitoring networks provide high temporal measurements, spatial data of these highly variable pollutants are not captured, making it difficult to adequately characterise the highly heterogeneous air quality. Spatial information is often obtained from model data which can only be constrained using measurements from the sparse monitoring networks. The work presented here shows the application of low-cost sensor networks aimed at addressing this missing spatial information. We have shown in previous studies the application of low-cost electrochemical sensor network instruments in monitoring road transport pollutants including CO, NO and NO2 in an urban environment (Mead et. al. 2012, accepted Atmospheric Environment). Modified versions of these instruments which include additional species such as O3, SO2, VOCs and CO2 are currently deployed at London Heathrow Airport (LHR) as part of the Sensor Network for Air Quality (SNAQ) project. Meteorology data such as temperature, relative humidity, wind speed and direction are also measured as well as size-speciated particulates (0.38 to 17.4 µm). A network of 50

  7. Liquid-air based Fabry-Pérot cavity on fiber tip sensor.

    PubMed

    Llera, Miguel; Aellen, Thierry; Hervas, Javier; Salvadé, Yves; Senn, Pascal; Le Floch, Sébastien; Keppner, Herbert

    2016-04-18

    This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation. PMID:27137244

  8. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  9. Measurement of Respiration, Heart Beat and Body Movement on a Bed Using Dynamic Air-Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Kuno, Hiroaki; Takashima, Mitsuru; Okawai, Hiroaki

    In this study, the possibility of the measurement of respiration, heart beat, and body movement on a bed was examined using the dynamic air-pressure sensor aiming at a daily health monitoring. The dynamic air-pressure sensor measures vital information using a change of air pressure. Twelve healthy volunteers participated in this study. The dynamic air-pressure sensor was installed under the bed mat and respiration and heart beat information were measured. This information was compared with the standard waveforms obtained from respiratory belt transducer and the electrocardiograph. As a result, both waveforms demonstrate a high correlation, and confirmed the validity of this method. A change of waveform and a quantitative evaluation of respiration, heart beat, and body movement measured from during sleep using this sensor can be useful for a daily health monitoring.

  10. Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2014-06-01

    In this study we present gas exchange measurements conducted in a large scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.8 to 15 m s-1 conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of three) was observed for N2O under a surfactant covered water surface. In contrast, the surfactant affected CH3OH, the high solubility tracer only weakly.

  11. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air

  12. Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City

    NASA Astrophysics Data System (ADS)

    Reddy Yasa, Pavan; Shiva, Nagendra S. N.

    2016-04-01

    Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.

  13. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    EPA Science Inventory

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  14. Fault diagnosis and temperature sensor recovery for an air-handling unit

    SciTech Connect

    Lee, W.Y.; Shin, D.R.; House, J.M.

    1997-12-31

    The presence of faults and the influence they have on system operation is a real concern in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an inadmissible or unacceptable property of a system or a component. Unless corrected, faults can lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy conditions for building occupants. This paper describes the use of a two-stage artificial neural network for fault diagnosis in a simulated air-handling unit. The stage one neural network is trained to identify the subsystem in which a fault occurs. The stage two neural network is trained to diagnose the specific cause of a fault at the subsystem level. Regression equations for the supply and mixed-air temperatures are obtained from simulation data and are used to compute input parameters to the neutral networks. Simulation results are presented that demonstrate that, after a successful diagnosis of a supply air temperature sensor fault, the recovered estimate of the supply air temperature obtained from the regression equation can be used in a feedback control loop to bring the supply air temperature back to the setpoint value. Results are also presented that illustrate the evolution of the diagnosis of the two-stage artificial neural network from normal operation to various fault modes of operation.

  15. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations.

    PubMed

    Anderson, Kimberly R; Anthony, T Renée

    2014-06-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1-0.4 m s(-1)). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  16. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  17. 3D Tomographic Imaging of the Crustal Velocity Structure beneath the Marmara Sea using Air-gun and Earthquake Data

    NASA Astrophysics Data System (ADS)

    Tarancioglu, Adil; Kocaoglu, Argun H.; Ozalaybey, Serdar

    2014-05-01

    The objective of this study is to investigate the local seismicity and obtain a detailed three-dimensional crustal velocity structure beneath the Marmara Sea in an area surrounding the North Anatolian Fault Zone (NAFZ) by tomographic inversion using both controlled-source (air-gun) and earthquake data. The tomographic inversion is carried out by using the local earthquake tomography code SIMUL2000. Two sets of seismological data, collected in 2006 (EOSMARMARA experiment) and 2001 (SEISMARMARA experiment), are re-processed and used in this study. A total of 441 high quality earthquakes and 452 air-gun shots recorded by a total of 53 Ocean Bottom Seismometers (OBS) are selected for the simultaneous inversion for velocity and hypocentral parameters. The OBS location and time-drift errors are identified from air-gun shot records by a grid search method and required corrections are made on the travel time data. The initial (reference) velocity model and earthquake locations required for the three dimensional tomographic inversion are derived from the one-dimensional velocity model obtained by using the VELEST algorithm in which a subset of earthquakes are selected such that phase readings were made by at least five stations and maximum azimuthal gap was 180o. The inversion results are checked for initial model dependence and the effect of damping factor. The reliability of the results is also evaluated in terms of derivative-weighted-sum, resolution-diagonal-elements values and checkerboard tests. The hypocenter locations of the local earthquakes have been remarkably improved by the three-dimensional velocity model obtained from the tomographic inversion. The three-dimensional velocity model shows that the Tekirdag, Central and Cinarcik Basins are characterized generally by lower Vp (3.0 - 3.5 km/s) values and most of the earthquakes across these regions are located at the depths of 10 to 17 km, about 5 km deeper than those obtained from the one-dimensional reference

  18. Air Enquirer's multi-sensor boxes as a tool for High School Education and Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Morguí, Josep-Anton; Font, Anna; Cañas, Lidia; Vázquez-García, Eusebi; Gini, Andrea; Corominas, Ariadna; Àgueda, Alba; Lobo, Agustin; Ferraz, Carlos; Nofuentes, Manel; Ulldemolins, Delmir; Roca, Alex; Kamnang, Armand; Grossi, Claudia; Curcoll, Roger; Batet, Oscar; Borràs, Silvia; Occhipinti, Paola; Rodó, Xavier

    2016-04-01

    An educational tool was designed with the aim of making more comprehensive the research done on Greenhouse Gases (GHGs) in the ClimaDat Spanish network of atmospheric observation stations (www.climadat.es). This tool is called Air Enquirer and it consist of a multi-sensor box. It is envisaged to build more than two hundred boxes to yield them to the Spanish High Schools through the Education department (www.educaixa.com) of the "Obra Social 'La Caixa'", who funds this research. The starting point for the development of the Air Enquirers was the experience at IC3 (www.ic3.cat) in the CarboSchools+ FP7 project (www.carboschools.cat, www.carboschools.eu). The Air Enquirer's multi-sensor box is based in Arduino's architecture and contains sensors for CO2, temperature, relative humidity, pressure, and both infrared and visible luminance. The Air Enquirer is designed for taking continuous measurements. Every Air Enquirer ensemble of measurements is used to convert values to standard units (water content in ppmv, and CO2 in ppmv_dry). These values are referred to a calibration made with Cavity Ring Down Spectrometry (Picarro®) under different temperature, pressure, humidity and CO2 concentrations. Multiple sets of Air Enquirers are intercalibrated for its use in parallel during the experiments. The different experiments proposed to the students will be outdoor (observational) or indoor (experimental, in the lab) focusing on understanding the biogeochemistry of GHGs in the ecosystems (mainly CO2), the exchange (flux) of gases, the organic matter production, respiration and decomposition processes, the influence of the anthropogenic activities on the gases (and particles) exchanges, and their interaction with the structure and composition of the atmosphere (temperature, water content, cooling and warming processes, radiative forcing, vertical gradients and horizontal patterns). In order to ensure Air Enquirers a high-profile research performance the experimental designs

  19. A Low Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    NASA Astrophysics Data System (ADS)

    Bright, V.; Mead, M. I.; Popoola, O. A.; Baron, R. P.; Saffell, J.; Stewart, G.; Kaye, P.; Jones, R.

    2012-12-01

    Atmospheric composition within urban areas has a direct effect on the air quality of an environment in which a large majority of people live and work. Atmospheric pollutants including ozone (O3), nitrogen dioxide (NO2), volatile organic compounds (VOCs) and particulate matter (PM) can have a significant effect on human health. As such it is important to determine the potential exposure of individuals to these atmospheric constituents and investigate the processes that lead to the degradation of air quality within the urban environment. Whilst modelled pollutant levels on the local scale often suggest high degrees of spatial and temporal variability, the relatively sparse fixed site automated urban networks only provide low spatial resolution data that do not appear adequate in detecting such small scale variability. In this paper we demonstrate that measurements can now be made using networks of low-cost sensors that utilise a variety of techniques, including electrochemical and optical, to measure concentrations of atmospheric species. Once equipped with GPS and GPRS to determine position and transmit data respectively, these networks have the potential to provide valuable insights into pollutant variability inherent on the local or micro-scale. The methodology has been demonstrated successfully in field campaigns carried out in cities including London and Valencia, and is now being deployed as part of the Sensor Networks for Air Quality currently deployed at London Heathrow airport (SNAQ-Heathrow) which is outlined in the partner paper presented by Mead et al. (this conference). The SNAQ-Heathrow network of 50 sensor nodes will provide an unprecedented data set that includes measurements of O3, NO, NO2, CO, CO2, SO2, total VOCs, size-speciated PM as well as meteorological variables that include temperature, relative humidity, wind speed and direction. This network will provide high temporal (20 second intervals) and spatial (50 sites within the airport area

  20. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  1. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-03-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300

  2. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules

    NASA Astrophysics Data System (ADS)

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  3. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules.

    PubMed

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process. PMID:26133864

  4. Seluge++: A Secure Over-the-Air Programming Scheme in Wireless Sensor Networks

    PubMed Central

    Doroodgar, Farzan; Razzaque, Mohammad Abdur; Isnin, Ismail Fauzi

    2014-01-01

    Over-the-air dissemination of code updates in wireless sensor networks have been researchers' point of interest in the last few years, and, more importantly, security challenges toward the remote propagation of code updating have occupied the majority of efforts in this context. Many security models have been proposed to establish a balance between the energy consumption and security strength, having their concentration on the constrained nature of wireless sensor network (WSN) nodes. For authentication purposes, most of them have used a Merkle hash tree to avoid using multiple public cryptography operations. These models mostly have assumed an environment in which security has to be at a standard level. Therefore, they have not investigated the tree structure for mission-critical situations in which security has to be at the maximum possible level (e.g., military applications, healthcare). Considering this, we investigate existing security models used in over-the-air dissemination of code updates for possible vulnerabilities, and then, we provide a set of countermeasures, correspondingly named Security Model Requirements. Based on the investigation, we concentrate on Seluge, one of the existing over-the-air programming schemes, and we propose an improved version of it, named Seluge++, which complies with the Security Model Requirements and replaces the use of the inefficient Merkle tree with a novel method. Analytical and simulation results show the improvements in Seluge++ compared to Seluge. PMID:24618781

  5. How Small Can We Go: Exploring the Limitations and Scaling laws of Air-Microfluidic Particulate Matter Sensors

    EPA Science Inventory

    Air-microfluidics is a field that has the potential to dramatically reduce the size, cost, and power requirements of future air quality sensors. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical systems (MEMS) that can be ap...

  6. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  7. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-10-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study

  8. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  9. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    de Luca, A.; Santra, S.; Ghosh, R.; Ali, S. Z.; Gardner, J. W.; Guha, P. K.; Udrea, F.

    2016-02-01

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/-5% response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary

  10. Faster Array Training and Rapid Analysis for a Sensor Array Intended for an Event Monitor in Air

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, A. V.; Fonollosa, J.; Huerta, R.

    2013-01-01

    Environmental monitoring, in particular, air monitoring, is a critical need for human space flight. Both monitoring and life support systems have needs for closed loop process feedback and quality control for environmental factors. Monitoring protects the air environment and water supply for the astronaut crew and different sensors help ensure that the habitat falls within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the farther the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. There is an acknowledged need for an event monitor which samples the air continuously and provides near real-time information on changes in the air. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. We are working on a sensor array and new algorithms that will incorporate transient sensor responses in the analysis. Preliminary work has already showed more rapid quantification and identification of analytes and the potential for faster training time of the array. We will look at some of the factors that contribute to demonstrating faster training time for the array. Faster training will decrease the integrated sensor exposure to training analytes, which will also help extend sensor lifetime.

  11. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    PubMed Central

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-01-01

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s. PMID:26690434

  12. Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Jung, Eun Joo; Lee, Woo-Jin; Kim, Myoung Jin; Hwang, Sung Hwan; Rho, Byung Sup

    2014-01-01

    We have demonstrated a refractive index sensor based on a fiber optic Fabry-Perot (FP) interferometer with an open air cavity fabricated using a one-step mechanical sawing technique. The sensor head consists of a short FP cavity near the fiber patch cord tip, which was assembled by joining a ceramic ferrule and a single-mode fiber together. Owing to the open air cavity in the sensor head, various liquid samples with different refractive index can fill in-line air cavity, which makes the device usable as a refractometer. Moreover, due to the sensor head encircled with the robust ceramic ferrule, the device is attractive for sensing measurement in harsh environments. The sensor was tested in different refractive index solutions. The experimental result shows that the attenuation peak wavelength of the sensor is shifted toward a shorter wavelength with increasing refractive index, and the refractive index sensitivity is ˜92.5 nm/refractive index unit (RIU) and 73.75 dB/RIU. The proposed sensor can be used as an in-line refractometer for many potential applications in the sensing field.

  13. Self-assembled and highly selective sensors based on air-bridge-structured nanowire junction arrays.

    PubMed

    Park, Won Jeong; Choi, Kyung Jin; Kim, Myung Hwa; Koo, Bon Hyeong; Lee, Jong-Lam; Baik, Jeong Min

    2013-08-14

    We describe a strategy for creating an air-bridge-structured nanowire junction array platform that capable of reliably discriminating between three gases (hydrogen, carbon monoxide, and nitrogen dioxide) in air. Alternatively driven dual nanowire species of ZnO and CuO with the average diameter of ∼30 nm on a single substrate are used and decorated with metallic nanoparticles to form two-dimensional microarray, which do not need to consider the post fabrications. Each individual nanowires in the array form n-n, p-p, and p-n junctions at the micro/nanoscale on single substrate and the junctions act as electrical conducting path for carriers. The adsorption of gas molecules to the surface changes the potential barrier height formed at the junctions and the carrier transport inside the straight semiconductors, which provide the ability of a given sensor array to differentiate among the junctions. The sensors were tested for their ability to distinguish three gases (H2, CO, and NO2), which they were able to do unequivocally when the data was classified using linear discriminant analysis. PMID:23841667

  14. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    PubMed Central

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-01-01

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941

  15. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index. PMID:11282319

  16. Air-sea Exchange of Dimethylsulfide (DMS) - Separation of the Transfer Velocity to Buoyancy, Turbulence, and Wave Driven Components

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Huebert, B. J.; Fairall, C. W.

    2009-12-01

    In the past several years, we have measured the sea-to-air flux of DMS directly with eddy covariance on five cruises in distinct oceanic environments, including the equatorial Pacific (TAO 2003), Sargasso Sea (Biocomplexity 2004), Northern Atlantic (DOGEE 2007), Southern Ocean (SO-GasEX 2008), and Peruvian/Chilean upwelling region (VOCALS-REx 2008). Normalizing DMS flux by its concurrent air-sea concentration difference gave us the transfer velocity of DMS (kDMS). Our wealth of kDMS measurements (~2000 hourly values) in very different oceans and across a wide range of wind speeds (0.5~20.5 m/s) provides an opportunity to evaluate existing parameterizations of k and quantify the importance of various controlling factors on gas exchange. Gas exchange in different wind speed regimes is driven by distinct physical mechanisms. In low winds (<4 m/s), buoyancy-driven convection results in a finite and positive kDMS. In moderate winds (4~10 m/s), turbulence from wind-stress prevails, as we found a near linear dependence of kDMS on wind speed and on friction velocity (u*). In high winds (>10 m/s), there is additional bubble-mediated exchange from wave-breaking, which depends on gas solubility (a function of temperature and to a lesser degree, salinity). When normalizing kDMS to a reference temperature of 20°C, we found the oft-used Schmidt number correction (for diffusivity) to be inadequate because it does not account for the temperature dependence in solubility. To quantify the solubility effect, we subtract the small buoyancy-driven term computed by the NOAA-COARE model 3.0a from k660 (kDMS corrected to a Schmidt number of 660). A linear fit to the residual k660 in the moderate wind regime allows us to further separate the turbulence-driven and wave-breaking components. A solubility correction is applied to the latter, which is then added back to the buoyancy and turbulence-driven terms to give k660,C. Compared to k660, k660,C shows a significant reduction in scatter

  17. Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2011-01-15

    The turbulent burning velocity is defined by the mass rate of burning and this also requires that the associated flame surface area should be defined. Previous measurements of the radial distribution of the mean reaction progress variable in turbulent explosion flames provide a basis for definitions of such surface areas for turbulent burning velocities. These inter-relationships. in general, are different from those for burner flames. Burning velocities are presented for a spherical flame surface, at which the mass of unburned gas inside it is equal to the mass of burned gas outside it. These can readily be transformed to burning velocities based on other surfaces. The measurements of the turbulent burning velocities presented are the mean from five different explosions, all under the same conditions. These cover a wide range of equivalence ratios, pressures and rms turbulent velocities for ethanol-air mixtures. Two techniques are employed, one based on measurements of high speed schlieren images, the other on pressure transducer measurements. There is good agreement between turbulent burning velocities measured by the two techniques. All the measurement are generalised in plots of burning velocity normalised by the effective unburned gas rms velocity as a function of the Karlovitz stretch factor for different strain rate Markstein numbers. For a given value of this stretch factor a decrease in Markstein number increases the normalised burning velocity. Comparisons are made with the findings of other workers. (author)

  18. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring.

    PubMed

    De Luca, A; Santra, S; Ghosh, R; Ali, S Z; Gardner, J W; Guha, P K; Udrea, F

    2016-02-28

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of ±5%; response and recovery times equal to 189 ± 49 s and 89 ± 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring. PMID:26842731

  19. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    PubMed

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  20. The Deployment of Carbon Monoxide Wireless Sensor Network (CO-WSN) for Ambient Air Monitoring

    PubMed Central

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C.; Khang, Soon-Jai

    2014-01-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011–2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1–1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  1. Atmospheric Chemistry Measurements in Schools and Outreach Activities with Low-cost Air Quality Sensors

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; McKenzie, K.

    2014-12-01

    The increasing range of low cost air quality sensors entering the market-place or being developed in-house in the last couple of years has led to many possibilities for using these instruments for public outreach activities or citizen science projects. A range of instruments sent out into local schools for the children to interpret and analyse the data and put the air quality in their area into context. A teaching package with tutorials has been developed to bring the data to life and link in with curriculum.The instruments have also been positioned around the city of Leicester in the UK to help understand the spatial variations in air quality and to assess the impact of retro-fitting buses on a busy bus route. The data is easily accessible online on a near real time basis and the various instruments can be compared with others around the country or the world from classrooms around the world.We will give an overview of the instrumentation with a comparison with commercial and cutting edge research instrumentation, the type of activities that were carried out and the public outreach forums where the data can be used.

  2. A noncontact intraocular pressure measurement device using a micro reflected air pressure sensor for the prediagnosis of glaucoma

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Hwan; Kim, Byeong Hee; Seo, Young Ho

    2012-03-01

    This study investigates a novel, portable tonometer using a micro reflected air pressure sensor for the prediagnosis of glaucoma. Because glaucoma progresses slowly and is not painful, glaucoma patients require a portable prediagnosis system to periodically measure intraocular pressure at home. Conventionally, intraocular pressure is measured by an air-puff tonometer whereby the cornea is deformed by a short pulse of air pressure and the magnitude of the corneal deformation is measured by optic systems such as a combination of laser- and photodiodes. In this study, a micro reflected air pressure sensor was designed, fabricated, and tested in order to measure the magnitude of corneal deformation without optic systems. In an experimental study, artificial eyes with different internal pressures were fabricated and these pressures were measured by the aforementioned system.

  3. Portable and low-cost sensors in monitoring air qualities in China

    NASA Astrophysics Data System (ADS)

    Ouyang, Bin; Popoola, Lekan; Jones, Roderic; Li, Chunlin; Chen, Jianmin

    2016-04-01

    The fast dynamics and the associated high spatial variability of the atmosphere calls for monitoring techniques that are robust, portable, low-power and ideally cheap (which thus allows for easy deployment and little maintenance needs over long measurement period), yet still offering sufficient sensitivity for measuring typical air pollutants at their ambient levels. We have over years developed a measuring suite (SNAQ box, Sensor Network for Air Quality), which weighs ~2.5 kg and has dimension of 30 cm (L)*20 cm (W)* 15 cm (H), and is capable of measuring wind speed and direction, relative humidity, gas species CO, NO, NO2, O3, SO2 (all based on electrochemical sensors), CO2 (based on NDIR, non-dispersive infrared) and total VOCs (based on PID, photoionization detector), and size-speciated particles (based on optical counting method with cut-off in size at 0.34 microns). Two of these boxes have been deployed in China during the 2015 Yangtze River campaign led by Fudan University, China during 22nd/Nov and 05th/Dec. One of the two boxes was mounted on a monitoring ship that sailed along the river aiming at capturing primarily emissions from ships, and the other was carried by a van that drove on roads but followed the track of the ship during the same period. Preliminary analysis of the data revealed that measurements were successful on both platforms for most of the targeted species with essentially no need of personnel interference during the entire campaign. Emission ratio of CO against NOx, or that of CO/NOx against CO2, for different dominating emission sources (vehicles vs. ships), can be readily quantified. Ongoing analysis includes correlating the measured pollution levels with different source profiles as well as meteorology conditions and understanding the background aerosol size profiles. We conclude that this technique provides a viable solution not only for routine point measurements of air quality in China, but also as construction unit for building

  4. The evolution of the clear air convective layer revealed by surface-based remote sensors

    NASA Technical Reports Server (NTRS)

    Noonkester, V. R.

    1976-01-01

    Results are reported for simultaneous observations of the growth and decay of the clear-air convective mixing layer near a coastline, which were made with an FM-CW radar, a high-power narrow-beam S-band radar, and an acoustic echo sounder. The main purpose of this study was to determine the relationship between the rise rate of the convective depth and the lapse rate of temperature, particularly in the morning hours. The results indicate that the three remote sensors can provide excellent mutually supporting data on the convective depth. It is found that this depth is well behaved during the day and that its rise rate varies roughly linearly with the inverse square root of the temperature lapse rate during the morning. The data suggest that some models concerning the rise rate require modification, since these models imply that the surface heat flux would have to be unreasonably large to produce the observed relationship.

  5. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  6. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  7. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  8. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. PMID:26777422

  9. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R.; Verhelst, S.

    2007-04-15

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  10. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  11. A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in the bronchial region

    NASA Astrophysics Data System (ADS)

    Shikida, M.; Naito, J.; Yokota, T.; Kawabe, T.; Hayashi, Y.; Sato, K.

    2009-10-01

    We developed a novel catheter-type flow sensor for measuring the aspirated- and inspired-air characteristics trans-bronchially. An on-wall in-tube thermal flow sensor is mounted inside the tube, and it is used as a measurement tool in a bronchoscope. The external diameter of the tube is less than a few mm, and therefore, it can evaluate the flow characteristics in the small bronchial region. We newly developed a fabrication process to miniaturize it to less than 2.0 mm in the external diameter by using a heat shrinkable tube. A film sensor fabricated by photolithography was inserted into the tube by hand. By applying a heat shrinking process, the film was automatically mounted on the inner wall surface, and the outer size of the tube was miniaturized to almost half its original size. The final inner and outer diameters of the tube were 1.0 mm and 1.8 mm, respectively. The relationship between the input power of the sensor and the flow rate obeyed King's equation in both forward and reverse flow conditions. The sensor output dependence on ambient temperature was also studied, and the curve obtained at 39.2 °C was used as the calibration curve in animal experiments. The sensor characteristics under reciprocating flow were studied by using a ventilator, and we confirmed that the sensor was able to measure the reciprocating flow at 2.0 Hz. Finally, we successfully measured the aspirated- and inspired-air characteristics in the air passage of a rat.

  12. Comparison of absolute and relative air humidity sensors fabricated with inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Selma, R.; Tarapata, G.; Marzecki, M.

    2015-09-01

    This paper describes design, manufacturing and testing of novelty humidity sensors manufactured in inkjet printing technology. Two types of sensors were produced - sensor for dew point hygrometer, along with heater and thermistor, and a relative humidity sensor. Both were tested and proven to be functional, with both advantages and disadvantages described further in the article.

  13. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  14. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities

    PubMed Central

    Krivec, Matic; Mc Gunnigle, Gerald; Abram, Anže; Maier, Dieter; Waldner, Roland; Gostner, Johanna M.; Überall, Florian; Leitner, Raimund

    2015-01-01

    The sensitivity of two commercial metal oxide (MOx) sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914) is based on tungsten oxide, the other (MQ-3) on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3) and 5.7 ppm (MiCS-5914). PMID:26561812

  15. Quantitative Ethylene Measurements with MOx Chemiresistive Sensors at Different Relative Air Humidities.

    PubMed

    Krivec, Matic; Mc Gunnigle, Gerald; Abram, Anže; Maier, Dieter; Waldner, Roland; Gostner, Johanna M; Überall, Florian; Leitner, Raimund

    2015-01-01

    The sensitivity of two commercial metal oxide (MOx) sensors to ethylene is tested at different relative humidities. One sensor (MiCS-5914) is based on tungsten oxide, the other (MQ-3) on tin oxide. Both sensors were found to be sensitive to ethylene concentrations down to 10 ppm. Both sensors have significant response times; however, the tungsten sensor is the faster one. Sensor models are developed that predict the concentration of ethylene given the sensor output and the relative humidity. The MQ-3 sensor model achieves an accuracy of ±9.2 ppm and the MiCS-5914 sensor model predicts concentration to ±7.0 ppm. Both sensors are more accurate for concentrations below 50 ppm, achieving ±6.7 ppm (MQ-3) and 5.7 ppm (MiCS-5914). PMID:26561812

  16. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR)

    PubMed Central

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-01-01

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590

  17. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR).

    PubMed

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-01-01

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590

  18. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.

    2015-04-01

    On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.

  19. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Suntz, R.; Bockhorn, H.

    2015-05-01

    The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

  20. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  1. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  2. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  3. A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature.

    PubMed

    Ferreira, Pedro M; Gomes, João M; Martins, Igor A C; Ruano, António E

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  4. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    PubMed Central

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  5. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  6. Electronic nose with an air sensor matrix for detecting beef freshness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design of an electronic nose includes the design of a matrix of chemical sensors such as gas sensors, and development of a pattern-recognition algorithm. The sensor matrix sniffs the vapor from a sample and provides a set of measurements. The pattern-recognizer compares the pattern of the meas...

  7. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    NASA Astrophysics Data System (ADS)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time

  8. A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small-scale flow directions and velocities in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Angermann, Lisa; Lewandowski, Jörg; Fleckenstein, Jan H.; Nützmann, Gunnar

    2012-12-01

    The hyporheic zone is strongly influenced by the adjacent surface water and groundwater systems. It is subject to hydraulic head and pressure fluctuations at different space and time scales, causing dynamic and heterogeneous flow patterns. These patterns are crucial for many biogeochemical processes in the shallow sediment and need to be considered in investigations of this hydraulically dynamic and biogeochemical active interface. For this purpose a device employing heat as an artificial tracer and a data analysis routine were developed. The method aims at measuring hyporheic flow direction and velocity in three dimensions at a scale of a few centimeters. A short heat pulse is injected into the sediment by a point source and its propagation is detected by up to 24 temperature sensors arranged cylindrically around the heater. The resulting breakthrough curves are analyzed using an analytical solution of the heat transport equation. The device was tested in two laboratory flow-through tanks with defined flow velocities and directions. Using different flow situations and sensor arrays the sensitivity of the method was evaluated. After operational reliability was demonstrated in the laboratory, its applicability in the field was tested in the hyporheic zone of a low gradient stream with sandy streambed in NE-Germany. Median and maximum flow velocity in the hyporheic zone at the site were determined as 0.9 × 10-4 and 2.1 × 10-4 m s-1 respectively. Horizontal flow components were found to be spatially very heterogeneous, while vertical flow component appear to be predominantly driven by the streambed morphology.

  9. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Icing Sensor Performance During the 2003 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Schaffner, Philip R.; Minnis, Patrick; Nguyen, Louis; Delnore, Victor E.; Daniels, Taumi S.; Grainger, C. A.; Delene, D.; Wolff, C. A.

    2004-01-01

    The Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor was deployed onboard the University of North Dakota Citation II aircraft in the Alliance Icing Research Study (AIRS II) from Nov 19 through December 14, 2003. TAMDAR is designed to measure and report winds, temperature, humidity, turbulence and icing from regional commercial aircraft (Daniels et. al., 2004). TAMDAR icing sensor performance is compared to a) in situ validation data from the Citation II sensor suite, b) Current Icing Potential products developed by the National Center for Atmospheric Research (NCAR) and available operationally on the NOAA Aviation Weather Center s Aviation Digital Data Server (ADDS) and c) NASA Advanced Satellite Aviation-weather Products (ASAP) cloud microphysical products.

  10. Air Monitoring System in Elders' Apartment with QCM Type Gas Sensors

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masashi; Ito, Tsukasa; Shiratori, Seimei

    The gas monitoring system for elders' apartment using QCM sensors was newly developed. The QCM sensors for sulfide gas and ammonia gas were used for this system. The system for bodily wastes was fabricated and applied to nursing care system in elders' apartment. This system is composed by the sensor unit, communication unit and data server. Care person can see whether the linen should be changed or not without seeing over each room. The QCM sensors have some problems such as the interference of humidity and temperature, therefore these influences were dissolved using humidity sensor and temperature sensor as feedback source. The sensors were placed in several points of elders' apartment for 2 weeks. This system can be used in elders' apartment successfully.

  11. A Gas Sensor Array For Environmental Air Monitoring: A Study Case Of Application Of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; De Gennaro, Gianluigi

    2011-09-01

    An array of commercial gas sensors and nanotechnology sensors has been integrated to quantify gas concentration of air-pollutants. A variety of chemoresistive gas sensors, commercial (Figaro and Fis) and developed at ENEA laboratories (metal-modified carbon nanotubes) were tested to implement a database useful for applied artificial neural networks (ANNs). The ANN algorithm used is the common perceptron multi-layer feed-forward network based on error back-propagation. Electronic Noses based on various sensor arrays related to mammalian olfactory systems have been largely reported [1,2]. Here, we reported on the perceptron-based ANNs applied to a large database of 3875 datapoints for environmental air monitoring. The ANNs performance has been individually assessed for any targeted gas. The response of the classifier has been measured for NO2, CO, CO2, SO2, and H2S gas. The NO2 characteristics exhibit that real concentrations and predicted concentrations are very close with a normalized mean square error (NMSE) in the test set as low as 6%.

  12. Implementation of the Rauch-Tung-Striebel Smoother for Sensor Compatibility Correction of a Fixed-Wing Unmanned Air Vehicle

    PubMed Central

    Chan, Woei-Leong; Hsiao, Fei-Bin

    2011-01-01

    This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly. PMID:22163819

  13. Implementation of the Rauch-Tung-Striebel smoother for sensor compatibility correction of a fixed-wing unmanned air vehicle.

    PubMed

    Chan, Woei-Leong; Hsiao, Fei-Bin

    2011-01-01

    This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV). The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA) and angle of sideslip (AoS) measurement, and an Attitude and Heading Reference System (AHRS) that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS) smoother, which consists of a forward pass Extended Kalman Filter (EKF) and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS). It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD) is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly. PMID:22163819

  14. Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete.

    PubMed

    Kee, Seong-Hoon; Zhu, Jinying

    2010-03-01

    Previous studies showed that the surface wave transmission coefficient across a surface-breaking crack in concrete can be used to estimate the crack depth. However, inconsistencies in the surface wave transmission measurements limit the test accuracy and application of this technique. The inconsistencies come from near-field scattering by the crack tip and inconsistent sensor coupling conditions on rough concrete surfaces. This study first investigates the near-field size based on numerical analyses, and then suggests that reliable surface wave transmission should be measured in the far field. Based on the far-field measurement, the relationship between the surface wave transmission ratio and the normalized crack depth (crack depth/wavelength) is obtained. In the experimental study, the air-coupled sensing method is proposed as a solution to the sensor coupling problem. Owing to the non-contact feature, the air-coupled sensing method not only improves testing speed but also enables more consistent signal measurement. The experimental study using air-coupled sensors shows good agreement with the results of numerical simulation and analytic solution. PMID:20329827

  15. Cavity ring-down spectroscopy sensor development for high-time-resolution measurements of gaseous elemental mercury in ambient air

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmüller, H.; Faïn, X.; Moore, C.

    2013-06-01

    We describe further development of a previous laboratory prototype pulsed cavity ring-down spectroscopy (CRDS) sensor into a field-deployable system for high-time-resolution, continuous, and automated measurement of gaseous elemental mercury (GEM) concentrations in ambient air. We employed an external, isotopically enriched Hg cell for automated locking and stabilization of the laser wavelength on the GEM peak absorption during measurements. Further, we describe implementation of differential absorption measurements via a piezoelectric tuning element for pulse-by-pulse tuning of the laser wavelength onto and off of the GEM absorption line. This allowed us to continuously correct (at 25 Hz) for system baseline extinction losses unrelated to GEM absorption. Extensive measurement and calibration data obtained with the system were based on spike addition in both GEM-free air and ambient air. Challenges and interferences that occurred during measurements (particularly in ambient air) are discussed including temperature and ozone (O3) concentration fluctuations, and steps taken to reduce these. CRDS data were highly linear (r2 ≥ 0.98) with data from a commercial Tekran 2537 Hg analyzer across a wide range of GEM concentrations (0 to 127 ng m-3) in Hg-free and ambient air. Measurements during periods of stable background GEM concentrations provided a conservative instrument sensitivity estimate of 0.35 ng m-3 for the CRDS system when time averaged for 5 min. This sensitivity, along with concentration patterns observed in ambient air (with the CRDS system and verified with the Tekran analyzer), showed that the sensor was capable of characterizing GEM fluctuations in ambient air. The value of fast-response GEM measurements was shown by a series of GEM spike additions - highlighting that high-temporal-resolution measurement allowed for detailed characterization of fast concentration fluctuations not possible with traditional analyzers.

  16. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  17. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  18. Italian Air Force Radar and Optical Sensor Experiments for the Detection of Space Objects in LEO Orbit

    NASA Astrophysics Data System (ADS)

    Del Genio, G.; Villadei, W.; Reali, M.; Del Grande, E.; Paoli, J.; Gemma, F.; Dolce, F.

    Italian Ministry of Defence is developing a sensor architecture for a national Space Surveillance & Tracking (SST) capability in order to protect its own space and satellite assets and infrastructure against the damage or destruction from collision with other space debris in LEO orbit. This national capability has recently joined the European Union SST Consortium, that is now facing the huge challenge of gradually becoming self-sufficient and independent in producing an integrated international space surveillance network. The national architecture will be composed of both radars and optical sensors since they have different capability and provide complementary type of information regarding targeted object. Collected data from networked sensors will be sent to an integration centre in order analyze it and make the orbit determination of the detected space debris using specific software tools. In this paper we briefly describe the potential capabilities of such architecture and the results of a preliminary radar-optical sensor data fusion experiment carried out with a monostatic long range radar and a telescope managed by Italian Air Force for the detection of a subset of space objects in LEO orbit. In particular, the optical sensor is a telescope properly designed for SST and is able to observe the portion of space above it with a coverage of 360°x90° in azimuth and elevation. The telescope is equipped with two CCD sensors: one with a wide field of view used for surveillance tasks and the second with a narrow field dedicated for tracking specific objects. The sensor is managed by an operating software system that allows user to remotely plan and schedule its daily activity and to make orbit determination and collision risk assessment in a completely automated way.

  19. Influence of velocity effects on the shape of N2 (and air) broadened H2O lines revisited with classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Tran, H.; Gamache, R. R.; Bermejo, D.; Domenech, J.-L.

    2012-08-01

    The modeling of the shape of H2O lines perturbed by N2 (and air) using the Keilson-Storer (KS) kernel for collision-induced velocity changes is revisited with classical molecular dynamics simulations (CMDS). The latter have been performed for a large number of molecules starting from intermolecular-potential surfaces. Contrary to the assumption made in a previous study [H. Tran, D. Bermejo, J.-L. Domenech, P. Joubert, R. R. Gamache, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 108, 126 (2007)], 10.1016/j.jqsrt.2007.03.009, the results of these CMDS show that the velocity-orientation and -modulus changes statistically occur at the same time scale. This validates the use of a single memory parameter in the Keilson-Storer kernel to describe both the velocity-orientation and -modulus changes. The CMDS results also show that velocity- and rotational state-changing collisions are statistically partially correlated. A partially correlated speed-dependent Keilson-Storer model has thus been used to describe the line-shape. For this, the velocity changes KS kernel parameters have been directly determined from CMDS, while the speed-dependent broadening and shifting coefficients have been calculated with a semi-classical approach. Comparisons between calculated spectra and measurements of several lines of H2O broadened by N2 (and air) in the ν3 and 2ν1 + ν2 + ν3 bands for a wide range of pressure show very satisfactory agreement. The evolution of non-Voigt effects from Doppler to collisional regimes is also presented and discussed.

  20. Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 °C

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Hyland, M.; James, B.

    2004-12-01

    During the deposition of Cr3C2-NiCr coatings, compositional degradation occurs, primarily through the dissolution of the carbide phase into the matrix. Exposure at an elevated temperature leads to transformations in the compositional distribution and microstructure. While these have been investigated in short-term trials, no systematic investigations of the long-term microstructural development have been presented for high-velocity sprayed coatings. In this work, high-velocity air fuel (HVAF) and high-velocity oxygen fuel (HVOF) coatings were treated at 900 °C for up to 60 days. Rapid refinement of the supersaturated matrix phase occurred, with the degree of matrix phase alloying continuing to decrease over the following 20 to 40 days. Carbide nucleation in the HVAF coatings occurred preferentially on the retained carbide grains, while that in the HVOF coatings developed in the regions of greatest carbide dissolution. This difference resulted in a variation in carbide morphologies. Preferential horizontal growth was evident in both coatings over the first 20 to 30 days of exposure, beyond which spheroidization of the microstructure occurred. After 30 days, the carbide morphology of both coatings was comparable, tending toward an expansive structure of coalesced carbide grains. The development of the carbide phase played a significant role in the microhardness variation of these coatings with time.

  1. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering.

    PubMed

    Rodrigo, Peter John; Iversen, Theis F Q; Hu, Qi; Pedersen, Christian

    2014-11-01

    We extend the functionality of a low-cost CW diode laser coherent lidar from radial wind speed (scalar) sensing to wind velocity (vector) measurements. Both speed and horizontal direction of the wind at ~80 m remote distance are derived from two successive radial speed estimates by alternately steering the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering is implemented optically with no moving parts by means of a controllable liquid-crystal retarder (LCR). The LCR switches the polarization between two orthogonal linear states of the lidar beam so it either transmits through or reflects off a polarization splitter. The room-temperature switching time between the two LOS is measured to be in the order of 100 μs in one switch direction but 16 ms in the opposite transition. Radial wind speed measurement (at 33 Hz rate) while the lidar beam is repeatedly steered from one LOS to the other every half a second is experimentally demonstrated - resulting in 1 Hz rate estimates of wind velocity magnitude and direction at better than 0.1 m/s and 1° resolution, respectively. PMID:25401817

  2. Aging curve of neuromotor function by pronation and supination of forearms using three-dimensional wireless acceleration and angular velocity sensors.

    PubMed

    Kaneko, M; Okui, H; Hirakawa, G; Ishinishi, H; Katayama, Y; Iramina, K

    2012-01-01

    We have developed an evaluation system for pronation and supination of forearms. The motion of pronation and supination of the forearm is used as a diagnosis method of developmental disability, etc. However, this diagnosis method has a demerit in which diagnosis results between doctors are not consistent. It is hoped that a more quantitative and simple evaluation method is established. Moreover it is hoped a diagnostic criteria obtained from healthy subjects can be established to diagnose developmental disorder patients. We developed a simple and portable evaluation system for pronation and supination of forearms. Three-dimensional wireless acceleration and angular velocity sensors are used for this system. In this study, pronation and supination of forearms of 570 subjects (subjects aged 6-12, 21-100) were examined. We could obtain aging curves in the neuromotor function of pronation and supination. These aging curves obtained by our developed system, has the potential to become diagnostic criteria for a developmental disability, etc. PMID:23366971

  3. a Study of Liquid - of Atomization Droplet Size Velocity and Temperature Distribution via Information Theory Spray Interaction with Ambient Air Motion.

    NASA Astrophysics Data System (ADS)

    Li, Xianguo

    Linear temporal instability analysis of a moving thin viscous liquid sheet of uniform thickness in an inviscid gas medium shows that surface tension always opposes, while surrounding gas and relative velocity between the sheet and gas favour the onset and development of instability. For gas Weber number smaller than the density ratio of gas to liquid, liquid viscosity enhances instability; If gas Weber number is slightly larger, aerodynamic and viscosity -induced instabilities interact with each other, displaying complicated effects of viscosity via Ohnesorge number; For much larger values of gas Weber numbers, aerodynamic instability dominates, liquid viscosity reduces disturbance growth rate and increases the dominant wavelength. Droplet probability distribution function (PDF) in sprays is formulated through information theory without resorting to the details of atomization processes. The derived analytical droplet size PDF is Nukiyama-Tanasawa type if conservation of mass is considered alone. If conservation of mass, momentum and energy is all taken into account, the joint droplet size and velocity PDF depends on Weber number, and compares favourably with measurements. Droplet velocity PDF is truncated Gaussian for any specific droplet size. Mean velocity approaches a constant value and velocity variance decreases as droplet size increases. Mean droplet diameters calculated agree well with observations. The computation indicates that atomization efficiency is very low, usually less than 1%. Droplet size, velocity and temperature PDF in sprays under combusting environment has also been derived. Effects of combustion on PDF occur mainly through the heat transferred into liquid sheet prior to its breakup. Experimental studies identify three modes of spray behaviours due to its interaction with various annular air flows, and show that bluff-body type of combustor has ability and easement to control aerodynamically spray angle, shape and droplet trajectories. It is

  4. Neuro-fuzzy estimation of passive robotic joint safe velocity with embedded sensors of conductive silicone rubber

    NASA Astrophysics Data System (ADS)

    Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena

    2016-05-01

    Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).

  5. A sensor management architecture concept for monitoring emissions from open-air demil operations.

    SciTech Connect

    Johnson, Michael M.; Robinson, Jerry D.; Stoddard, Mary Clare; Horn, Brent A.; Lipkin, Joel; Foltz, Greg W.

    2005-09-01

    Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

  6. Applying Sensor Networks to Evaluate Air Pollutant Emissions from Fugitive and Area Sources

    EPA Science Inventory

    This is a presentation to be given at Duke University's Wireless Intelligent Sensor Network workshop on June 5, 2013. The presentation discusses the evaluation of a low cost carbon monoxide sensor network applied at a recent forest fire study and also evaluated against a referen...

  7. Noise reducing screen devices for in-flow pressure sensors

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric (Inventor); Liu, Sandy (Inventor); Jaeger, Stephen (Inventor); Horne, W. Clifton (Inventor)

    1997-01-01

    An acoustic sensor assembly is provided for sensing acoustic signals in a moving fluid such as high speed fluid stream. The assembly includes one or more acoustic sensors and a porous, acoustically transparent screen supported between the moving fluid stream and the sensor and having a major surface disposed so as to be tangent to the moving fluid. A layer of reduced velocity fluid separating the sensor from the porous screen. This reduced velocity fluid can comprise substantially still air. A foam filler material attenuates acoustic signals arriving at the assembly from other than a predetermined range of incident angles.

  8. Ballistic Range Measurements of Stagnation-Point Heat Transfer in Air and in Carbon Dioxide at Velocities up to 18,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Yee, Layton; Bailey, Harry E.; Woodward, Henry T.

    1961-01-01

    A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.

  9. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    SciTech Connect

    Liiv, Ingrid; Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  10. A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air

    PubMed Central

    Procek, Marcin; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Maciak, Erwin

    2015-01-01

    The paper deals with investigations concerning the construction of sensors based on a quartz crystal microbalance (QCM) containing a TiO2 nanostructures sensor layer. A chemical method of synthesizing these nanostructures is presented. The prepared prototype of the QCM sensing system, as well as the results of tests for detecting low NO2 concentrations in an atmosphere of synthetic air have been described. The constructed NO2 sensors operate at room temperature, which is a great advantage, because resistance sensors based on wide gap semiconductors often require much higher operation temperatures, sometimes as high as 500 °C. The sensors constructed by the authors can be used, among other applications, in medical and chemical diagnostics, and also for the purpose of detecting explosive vapours. Reactions of the sensor to nitroglycerine vapours are presented as an example of its application. The influence of humidity on the operation of the sensor was studied. PMID:25912352

  11. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  12. The Use of Mobile, Electrochemical Sensor Nodes for the Measurement of Personal Exposure to Gas-Phase Air Pollutants

    NASA Astrophysics Data System (ADS)

    Stewart, G.; Popoola, O. A.; Mead, M. I.; McKeating, S. J.; Calleja, M.; Hayes, M.; Baron, R. P.; Saffell, J.; Jones, R.

    2012-12-01

    In this paper we describe how low-cost, lightweight devices, which incorporate GPS and GPRS facilities and contain electrochemical sensors for carbon monoxide (CO), nitrogen monoxide (NO) and nitrogen dioxide (NO2), have been used to collect data representative of personal exposure to these important urban air pollutants. E.U. legislation has set target levels for gases thought to have adverse impacts on human health, and consequently led to a need for a more informed air pollution control policy. With many sites in the U.K. and in the rest of the E.U. still failing to meet annual targets for NO2, a need to better understand pollutant sources and behaviour has arisen. Moreover, while traditional chemiluminescence techniques provide precise measurements, the instruments are sparsely populated around urban centres and are thus limited in their ability to account for true personal exposure. Through a series of laboratory and field studies, it has been shown that electrochemical sensor nodes, when configured suitably and after post-processing of data, can provide selective, reproducible measurements, and that the devices have appropriate detection limits (at the low parts-per-billion level), as well as fast enough response times, for urban air quality studies. Both mobile nodes and their static analogues have been deployed with different aims. Static nodes have been used in dense networks in both the urban environment and in the grounds of a major international airport, as described in the partner papers of Mead et al and Bright et al. Mobile units are easily deployed in scalable networks for short-term studies on personal exposure; these studies have been carried out in a wide range of locations including Lagos, Kuala-Lumpur, London and Valencia. Data collected by both mobile and static sensor nodes illustrate the insufficiency of the existing infrastructure in accounting for both the spatial and temporal variability in air pollutants due to road traffic emissions

  13. Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.

    2015-12-01

    Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.

  14. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  15. A simulation of air pollution model parameter estimation using data from a ground-based LIDAR remote sensor

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Suttles, J. T.

    1977-01-01

    One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.

  16. Measuring air-sea gas-exchange velocities in a large-scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s-1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weaker.

  17. Study of a porous surface microphone sensor in an aerofoil. [air flow

    NASA Technical Reports Server (NTRS)

    Noiseux, D. U.; Noiseux, N. B.; Kadman, Y.

    1975-01-01

    The porous microphone in an airfoil is described as a directional sensor which rejects flow noise. The airfoil allows the sensor to be rotated in the airflow over a wide range of yaw angles, 0 to 90 degrees, avoiding flow separation over the surface of the sensor and its associated additional flow noise. The microphone is discussed in terms of its acoustic properties, vibration sensitivity, effect of Mach number on the directivity function, and flow noise. Additional information on the acoustic calibration of the microphone, the acceleration sensitivity of the airfoil, stationary source and receiver in a moving gas, acoustic tests in airflow, and flow noise tests of the airfoil porous surface sensor is included.

  18. Air sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters: Prospects for a long-term global time series

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Frew, Nelson M.; McCue, Scott J.

    2007-06-01

    Estimation of global and regional air-sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air-sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325-331.] for estimating the air-sea gas transfer velocity ( k) from the mean square slope of short wind waves (40-100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The

  19. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  20. A new instrumentation for particle velocity and velocity related measurements under water

    NASA Astrophysics Data System (ADS)

    Zhu, Weijia

    This dissertation investigates the capability of a new instrument for small particle velocity measurement and velocity related signal analysis in an underwater environment. This research started from the laser beam quality test, which was performed in air. It was conducted mainly by means of an optical fiber sensor combined with a computer controlled stepping motor as well as two other methods, edge detection and needle-tip scattering. The stepping motor offers a constant velocity to the fiber sensor, so that the beam separation can be accurately measured by using the constant velocity value and the transit time determined by the cross correlation function of two digital signals. Meanwhile, information of the beam intensity profile, the parallelism of the two beams and the in-air beam widths can also be obtained in the test. By using the calibrated beam separation of the ribbon pair in the beam quality test, particle velocity measurements are carried out based on the relation between velocity, displacement and time in a 500-liter open water tank. The time delay for a particle crossing over the two ribbons in sequence is obtained by computing the cross correlation of the two signals. In fact, the time delay is actually a statistical mean value of many particles that cross over the ribbons in a short time. So is the measured velocity. The third part of this research is the practical study on pulse shape analysis based on the data sets of the velocity measurement. Several computer programs are developed to explore the pulse height distribution in a data set, to study the pulse degeneration, the relationship between the pulse width and the velocity, and the in-water beam width information. Some important reference materials are displayed in the appendices such as the fundamentals of the cross correlation and auto correlation, three main MATLAB programs developed for this research, the theoretical analysis of particle diffraction.

  1. Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents

    NASA Technical Reports Server (NTRS)

    Awtry, A. R.; Miller, J. H.

    2002-01-01

    The progress in the development of a sensor for the detection of trace air constituents to monitor spacecraft air quality is reported. A continuous-wave (cw), external-cavity tunable diode laser centered at 1.55 micrometers is used to pump an optical cavity absorption cell in cw-cavity ringdown spectroscopy (cw-CRDS). Preliminary results are presented that demonstrate the sensitivity, selectivity and reproducibility of this method. Detection limits of 2.0 ppm for CO, 2.5 ppm for CO2, 1.8 ppm for H2O, 19.4 ppb for NH3, 7.9 ppb for HCN and 4.0 ppb for C2H2 are calculated.

  2. Error estimations of dry deposition velocities of air pollutants using bulk sea surface temperature under common assumptions

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Yao; Tsuang, Ben-Jei; Keenlyside, Noel; Wang, Shu-Lun; Arthur Chen, Chen-Tung; Wang, Bin-Jye; Liu, Tsun-Hsien

    2010-07-01

    It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8-4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m -2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5-2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m -2. Scale analysis shows that for a slightly soluble gas (e.g., NO 2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO 2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O 3 and CO 2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.

  3. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  4. A novel air flow sensor from printed PEDOT micro-hairs

    NASA Astrophysics Data System (ADS)

    Parcell, J.; Aydemir, N.; Devaraj, H.; Travas-Sejdic, J.; Williams, D. E.; Aw, K. C.

    2013-11-01

    We report the creation of a low flow rate sensor from PEDOT micro-hairs. The hairs are printed as pipette-defined depositions using a nanopositioning system. The printing technique was developed for fabricating structures in 2D and 3D. Here micro-hairs with diameters of 4.4 μm were repeatedly extruded with constant heights. These hairs were then applied to produce a prototype flow rate sensor, which was shown to detect flows of 3.5 l min-1. Structural analysis was performed to demonstrate that the design can be modified to potentially observe flows as low as 0.5 l min-1. The results are extended to propose a practical digital flow rate sensor.

  5. Design of an integrated sensor system for the detection of traces of different molecules in the air

    NASA Astrophysics Data System (ADS)

    Strle, D.; Muševič, I.

    2015-04-01

    This article presents the design of a miniature detection system and its associated signal processing electronics, which can detect and selectively recognize vapor traces of different materials in the air - including explosives. It is based on the array of surface-functionalized COMB capacitive sensors and extremely low noise, analog, integrated electronic circuit, hardwired digital signal processing hardware and additional software running on a PC. The instrument is sensitive and selective, consumes a minimum amount of energy, is very small (few mm3) and cheap to produce in large quantities, and is insensitive to mechanical influences. Using an electronic detection system built of low noise analog front-end and hard-wired digital signal processing, it is possible to detect less than 0.3ppt of TNT molecules in the atmosphere (3 TNT molecules in 1013 molecules of the air) at 25°C on a 1 Hz bandwidth using very small volume and approx. 10 mA current from a 5V supply voltage. The sensors are implemented in a modified MEMS process and analog electronics in 0.18 um CMOS technology.

  6. Evaluation of the spatial and temporal measurement requirements of remote sensors for monitoring regional air pollution episodes

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.; Bowley, C. J.; Barnes, J. C.

    1979-01-01

    The spatial and temporal measurement requirements of satellite sensors for monitoring regional air pollution episodes were evaluated. Use was made of two sets of data from the Sulfate Regional Experiment (SURE), which provided the first ground-based aerosol measurements from a regional-scale station network. The sulfate data were analyzed for two air pollution episode cases. The results of the analysis indicate that the key considerations required for episode mapping from satellite sensors are the following: (1) detection of sulfate levels exceeding 20 micron-g/cu m; (2) capability to view a broad area (of the order of 1500 km swath) because of regional extent of pollution episodes; (3) spatial resolution sufficient to detect variations in sulfate levels of greater than 10 micron-g/cu m over distances of the order of 50 to 75 km; (4) repeat coverage at least on a daily basis; and (5) satellite observations during the mid to late morning local time, when the sulfate levels have begun to increase after the early morning minimum levels, and convective-type cloud cover has not yet increased to the amount reached later in the afternoon. Analysis of the satellite imagery shows that convective clouds can obscure haze patterns. Additional parameters based on spectral analysis include wavelength and bandwidth requirements.

  7. Fully self-contained vision-aided navigation and landing of a micro air vehicle independent from external sensor inputs

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-06-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  8. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  9. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  10. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  11. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  12. Effects of sensor locations on air-coupled surface wave transmission measurements across a surface-breaking crack.

    PubMed

    Kee, Seong-Hoon; Zhu, Jinying

    2011-02-01

    Previous studies show that the surface wave transmission (SWT) method is effective to determine the depth of a surface-breaking crack in solid materials. However, nearfield wave scattering caused by the crack affects the reliability and consistency of surface wave transmission measurements. Prior studies on near-field scattering have focused on the case where crack depth h is greater than wavelength λ of surface waves (i.e., h/λ > 1). Near-field scattering of surface waves remains not completely understood in the range of h/λ for the SWT method (i.e., 0 ≤ h/λ ≤ 1/3), where the transmission coefficient is sensitive to crack depth change and monotonically decreases with increasing h/λ. In this study, the authors thoroughly investigated the near-field scattering of surface waves caused by a surface-breaking crack using experimental tests and numerical simulations for 0 ≤ h/λ ≤ 1/3. First, the effects of sensor locations on surface wave transmission coefficients across a surface-breaking crack are studied experimentally. Data are collected from Plexiglas and concrete specimens using air-coupled sensors. As a result, the variation of transmission coefficients is expressed in terms of the normalized crack depth (h/λ) as well as the normalized sensor location (x/λ). The validity of finite element models is also verified by comparing experimental results with numerical simulations (finite element method). Second, a series of parametric studies is performed using the verified finite element model to obtain more complete understanding of near-field scattering of surface waves propagating in various solid materials with different mechanical properties and geometric conditions. Finally, a guideline for selecting appropriate sensor arrangements to reliably obtain the crack depth using the SWT method is suggested. PMID:21342828

  13. Rapid evolution of air pollution sensor technology for research and consumer product applications

    EPA Science Inventory

    Outdoor air pollution measurement approaches have historically been conducted using stationary shelters that require significant space, power, and expertise to operate. The cost and logistical requirements to conduct monitoring have limited the number of locations with continuou...

  14. Integrating Sensor Monitoring Technology into the Current Air Pollution Regulatory Support Paradigm: Practical Considerations

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) along with state, local, and tribal governments operate Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instruments to assess compliance with US air pollution standards designed to protect human and ecosystem health....

  15. F-18 SRA closeup of nose cap showing new flush air data system sensor holes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The small numbers on the nose of this F-18 aircraft at NASA's Dryden Flight Research Center, Edwards, California, show the locations of 11 tiny holes which are an integral part of a new air data system installed on the aircraft. The Real-Time Flush Air Data Sensing system measures the speed and direction of the airflow past the aircraft and its altitude, similar to standard air data systems. It incorporates flush-mounted pressure taps, miniature transducers and an advanced research computer to give pilots more accurate information than standard systems employing external probes can provide. Developed by Dryden researchers in cooperation with Honeywell's Research and Technology Center, Minneapolis, Minnesota, the system was flight tested on Dryden's Systems Research Aircraft (SRA) last year, and is now being used as a precise reference for other air data systems currently being evaluated on the modified F-18.

  16. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  17. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors.

    PubMed

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-01-01

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m⁻³ enabling a calculated limit of detection (LOD) at 0.14 mmol m⁻³ (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated. PMID:24213678

  18. F-18 SRA closeup of nose cap showing new flush air data system sensor holes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small numbers on the nose cap of this F-18 Systems Research Aircraft at NASA's Dryden Flight Research Center, Edwards, California, show the locations of 11 tiny holes, which are an integral part of a new air data system installed on the aircraft. The Real-Time Flush Air Data Sensing system measures the speed and direction of the airflow past the aircraft and its altitude, similar to standard air data systems. It differs from those systems by incorporating flush-mounted pressure taps, miniature transducers and an advanced research computer to give the pilot more accurate information than systems employing external probes provide. Stephen A. Whitmore of Dryden's Aerodynamics Branch won NASA's Space Act Award for his development of the Real-Time Flush Air Data Sensing system. The award honors projects which are scientifically or technologically significant to the aeronautics and space community. The system was flight tested on the modified F-18 last year, and is now being used as a precise reference system for other air data systems currently being evaluated on the aircraft.

  19. Design and fabrication of a metal core PVDF fiber for an air flow sensor

    NASA Astrophysics Data System (ADS)

    Bian, Yixiang; Liu, Rongrong; Huang, Xiaomei; Hong, Jin; Huang, Huiyu; Hui, Shen

    2015-10-01

    To track prey or avoid predators, many arthropods can detect variations in airflow and pressure gradients using an array of very thin and sensitive filiform hairs. In this study, metal core piezoelectric poly(vinylidene fluoride) (PVDF) fibers were prepared to mimic such hair sensors. The flexibility of the fibers was very good, which was helpful for overcoming the typical brittleness of piezoelectric ceramic fibers. At the same time, the diameter of the fibers was very small (down to 50 μm in diameter). In order to mimic the insects’ hairs to the maximum extent, which was expected to greatly improve the sensitivity of such PVDF fiber-based sensors, a feasible process to prepare and extract electrodes on the surface of the fibers had to be developed. Compared with stainless steel filament-core fibers, the molybdenum filament-core PVDF fibers were easy to stretch. The molybdenum filament was then covered by a cylindrical PVDF layer with a diameter of 400 μm. One half of the longitudinal surface of the fibers was spray-coated with a conductive silver adhesive. The metal core was then used as one electrode, and the conductive silver adhesive was used as the other electrode. After polarization, a single metal-core PVDF fiber could be used as an airflow sensor. The surface structure and the sections of the PVDF fiber were analyzed by scanning electron microscopy. The results of the mechanical stretching tests showed that the metal core greatly enhanced the mechanical properties of the PVDF fibers. X-ray diffraction revealed that the greater the stretching ratio, the higher the α-to-β-phase conversion rate during the preparation of the PVDF fibers. A single metal-core PVDF fiber was used as a bionic airflow sensor, and a mechanical model of this sensor was derived. The airflow sensing capability of the PVDF fiber was experimentally confirmed in a miniature wind tunnel. The results showed that a cantilevered metal-core PVDF fiber is capable of detecting the range

  20. The Microflown Particle Velocity Sensor

    NASA Astrophysics Data System (ADS)

    Jacobsen, Finn; de Bree, Hans-Elias

    The phenomenon of sound involves molecules of a fluid moving back and forth in the direction of propagation (with no net flow), accompanied by changes in the pressure, density, and temperature. The density and pressure variations are directly proportional to the sound pressure [1].

  1. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    ERIC Educational Resources Information Center

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  2. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  3. Measuring Air Resistance in a Computerized Laboratory.

    ERIC Educational Resources Information Center

    Takahashi, Ken; Thompson, D.

    1999-01-01

    Presents an activity that involves dropping spherical party balloons onto a sonic motion sensor to show that the force associated with the air resistance is proportional to both the square of the velocity and the cross-sectional area of the balloon. (Author/WRM)

  4. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2012-12-01

    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind

  5. Walk-through survey report: HVLV (high velocity low volume) control technology for aircraft bonded wing and radome maintenance at Air Force Logistics Command, McClellan Air Force Base, Sacramento, California

    SciTech Connect

    Hollett, B.A.

    1983-08-01

    A walk through survey was conducted at the Sacramento Air Logistics Center, McClellan Air Force Base, California, on June 13, 1983, to evaluate the use of High Velocity Low Volume (HVLV) technology in the aircraft-maintenance industry. The HVLV system consisted of 65 ceiling drops in the bonded honeycomb shop where grinding and sanding operations created glass fiber and resin dusts. Preemployment and periodic physical examinations were required. Workers were required to wear disposable coveralls, and disposable dust masks were available. Workers walked through decontamination air jet showers before leaving the area to change clothes. Environmental monitoring revealed no significant dust exposures when the HVLV system was in use. Performance of the exhaust system on the eight-inch-diameter nose cone sanding operation was good, but the three-inch-diameter tools were too large and the shrouds too cumbersome for use on many hand-finishing tasks. The author concludes that the HVLV system is partially successful but requires additional shroud design. Further development of small tool shrouds is recommended.

  6. Acoustic and vibration performance evaluations of a velocity sensing hull array

    SciTech Connect

    Cray, B.A.; Christman, R.A.

    1996-04-01

    Acoustic and vibration measurements were conducted at the Naval Undersea Warfare Center{close_quote}s Seneca Lake Facility to investigate the {ital in} {ital situ} signal response of a linear array of velocity sensors (sensors that measure either acoustic particle acceleration, velocity, or displacement have generically been denoted as {ital velocity} {ital sensors}) on a coating. The coating used at Seneca Lake consisted of air-voided elastomeric tiles with an overall coating thickness of approximately 3 inches. The accelerometer array and coating were mounted on the Seneca Lake Hull Fixture, which measures 33 feet lengthwise with an arc length of 20 feet. The fixture weighs approximately 30 tons. Specifically, measurements of {ital in} {ital situ} sensitivity, velocity reduction, reflection gain, array beam response, and equivalent planewave self-noise levels are presented. {copyright} {ital 1996 American Institute of Physics.}

  7. Social Media as a Sensor of Air Quality and Public Response in China

    PubMed Central

    Wang, Shiliang; Dredze, Mark

    2015-01-01

    Background Recent studies have demonstrated the utility of social media data sources for a wide range of public health goals, including disease surveillance, mental health trends, and health perceptions and sentiment. Most such research has focused on English-language social media for the task of disease surveillance. Objective We investigated the value of Chinese social media for monitoring air quality trends and related public perceptions and response. The goal was to determine if this data is suitable for learning actionable information about pollution levels and public response. Methods We mined a collection of 93 million messages from Sina Weibo, China’s largest microblogging service. We experimented with different filters to identify messages relevant to air quality, based on keyword matching and topic modeling. We evaluated the reliability of the data filters by comparing message volume per city to air particle pollution rates obtained from the Chinese government for 74 cities. Additionally, we performed a qualitative study of the content of pollution-related messages by coding a sample of 170 messages for relevance to air quality, and whether the message included details such as a reactive behavior or a health concern. Results The volume of pollution-related messages is highly correlated with particle pollution levels, with Pearson correlation values up to .718 (n=74, P<.001). Our qualitative results found that 67.1% (114/170) of messages were relevant to air quality and of those, 78.9% (90/114) were a firsthand report. Of firsthand reports, 28% (32/90) indicated a reactive behavior and 19% (17/90) expressed a health concern. Additionally, 3 messages of 170 requested that action be taken to improve quality. Conclusions We have found quantitatively that message volume in Sina Weibo is indicative of true particle pollution levels, and we have found qualitatively that messages contain rich details including perceptions, behaviors, and self-reported health

  8. Risk-based objectives for the allocation of chemical, biological, and radiological air emissions sensors.

    PubMed

    Lambert, James H; Farrington, Mark W

    2006-12-01

    This article addresses the problem of allocating devices for localized hazard protection across a region. Each identical device provides only local protection, and the devices serve localities that are exposed to nonidentical intensities of hazard. A method for seeking the optimal allocation Policy Decisions is described, highlighting the potentially competing objectives of maximizing local risk reductions and coverage risk reductions. The metric for local risk reductions is the sum of the local economic risks avoided. The metric for coverage risk reductions is adapted from the p-median problem and equal to the sum of squares of the distances from all unserved localities to their closest associated served locality. Three graphical techniques for interpreting the Policy Decisions are presented. The three linked graphical techniques are applied serially. The first technique identifies Policy Decisions that are nearly Pareto optimal. The second identifies locations where sensor placements are most justified, based on a risk-cost-benefit analysis under uncertainty. The third displays the decision space for any particular policy decision. The method is illustrated in an application to chemical, biological, and/or radiological weapon sensor placement, but has implications for disaster preparedness, transportation safety, and other arenas of public safety. PMID:17184404

  9. Use of Temperature Sensors to Determine Exclusivity of Improved Stove Use and Associated Household Air Pollution Reductions in Kenya.

    PubMed

    Lozier, Matthew J; Sircar, Kanta; Christensen, Bryan; Pillarisetti, Ajay; Pennise, David; Bruce, Nigel; Stanistreet, Debbi; Naeher, Luke; Pilishvili, Tamara; Farrar, Jennifer Loo; Sage, Michael; Nyagol, Ronald; Muoki, Justus; Wofchuck, Todd; Yip, Fuyuen

    2016-04-19

    Household air pollution (HAP) contributes to 3.5-4 million annual deaths globally. Recent interventions using improved cookstoves (ICS) to reduce HAP have incorporated temperature sensors as stove use monitors (SUMs) to assess stove use. We deployed SUMs in an effectiveness study of 6 ICSs in 45 Kenyan rural homes. Stove were installed sequentially for 2 weeks and kitchen air monitoring was conducted for 48 h during each 2-week period. We placed SUMs on the ICSs and traditional cookstoves (TCS), and the continuous temperature data were analyzed using an algorithm to examine the number of cooking events, days of exclusive use of ICS, and how stove use patterns affect HAP. Stacking, defined as using both a TCS and an ICS in the same day, occurred on 40% of the study days, and exclusive use of the ICS occurred on 25% of study days. When researchers were not present, ICS use declined, which can have implications for long-term stove adoption in these communities. Continued use of TCSs was also associated with higher HAP levels. SUMs are a valuable tool for characterizing stove use and provide additional information to interpret HAP levels measured during ICS intervention studies. PMID:26953674

  10. Effect of gas-transfer-velocity parameterization choice on CO2 air-sea fluxes in the North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, I.; Piskozub, J.

    2015-11-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air-sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.

  11. Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry.

    PubMed

    Wajid, Mohd; Kumar, Arun; Bahl, Rajendar

    2016-05-01

    Acoustic vector-sensors (AVS) have been designed using the P-P method for different microphone configurations. These configurations have been used to project the acoustic intensity on the orthogonal axes through which the direction of arrival (DoA) of a sound source has been estimated. The analytical expressions for the DoA for different microphone configurations have been derived for two-dimensional geometry. Finite element method simulation using COMSOL-Multiphysics has been performed, where the microphone signals for AVS configurations have been recorded in free field conditions. The performance of all the configurations has been evaluated with respect to angular error and root-mean-square angular error. The simulation results obtained with ideal geometry for different configurations have been corroborated experimentally with prototype AVS realizations and also compared with microphone-array method, viz., Multiple Signal Classification and Generalized Cross Correlation. Experiments have been performed in an anechoic room using different prototype AVS configurations made from small size microphones. The DoA performance using analytical expressions, simulation studies, and experiments with prototype AVS in anechoic chamber are presented in the paper. The square and delta configurations are found to perform better in the absence and presence of noise, respectively. PMID:27250174

  12. Real-Time Optical Fuel-to-Air Ratio Sensor for Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Mongia, Rajiv K.; Dibble, Robert W.

    1999-01-01

    The measurement of the temporal distribution of fuel in gas turbine combustors is important in considering pollution, combustion efficiency and combustor dynamics and acoustics. Much of the previous work in measuring fuel distributions in gas turbine combustors has focused on the spatial aspect of the distribution. The temporal aspect however, has often been overlooked, even though it is just as important. In part, this is due to the challenges of applying real-time diagnostic techniques in a high pressure and high temperature environment. A simple and low-cost instrument that non-intrusively measures the real-time fuel-to-air ratio (FAR) in a gas turbine combustor has been developed. The device uses a dual wavelength laser absorption technique to measure the concentration of most hydrocarbon fuels such as jet fuel, methane, propane, etc. The device can be configured to use fiber optics to measure the local FAR inside a high pressure test rig without the need for windows. Alternatively, the device can readily be used in test rigs that have existing windows without modifications. An initial application of this instrument was to obtain time-resolved measurements of the FAR in the premixer of a lean premixed prevaporized (LPP) combustor at inlet air pressures and temperatures as high as 17 atm at 800 K, with liquid JP-8 as the fuel. Results will be presented that quantitatively show the transient nature of the local FAR inside a LPP gas turbine combustor at actual operating conditions. The high speed (kHz) time resolution of this device, combined with a rugged fiber optic delivery system, should enable the realization of a flight capable active-feedback and control system for the abatement of noise and pollutant emissions in the future. Other applications that require an in-situ and time-resolved measurement of fuel vapor concentrations should also find this device to be of use.

  13. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  14. Concerning the flow about ring-shaped cowlings Part IX : the influence of oblique oncoming flow on the incremental velocities and air forces at the front part of circular cowls

    NASA Technical Reports Server (NTRS)

    Kuchemann, Dietrich; Weber, Johanna

    1952-01-01

    The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.

  15. The Monitoring of CO in the Air of Tirana Using Solid State Gas Sensors and Its Influence in the Degradation of Ancient Monuments and Sculptures

    NASA Astrophysics Data System (ADS)

    Deda, Antoneta; Telhaj, Ervis

    2005-10-01

    A depth study, as collaboration between the Monuments Protection Institute and Department of Physics, is carried out on the dilapidated phenomena of monuments and sculptures of Tirana caused by CO. The air of Tirana has long been monitored by an innovative traffic light system that is based on solid state gas sensors. The system is installed in two important places in Tirana with respect to the settings of monuments and sculptures. Two types of sensors with base SnO2 are used, which are very effective at detecting CO in the air. The sensors are fabricated by a new screen printing technology, starting from different nanostructural semiconducting oxides powders, and are calibrated in the environmental laboratory at the University of Tirana. The development of reliable and selective solid state gas sensors is strongly needed to reduce cost problems so that more areas can be monitored. High levels of CO is a concern in Albania. In Tirana the traffic is main cause of air pollution. This great quantity of CO, which frequently passes the permitted norm, has begun to be problematic, mostly in health care. Interaction of the surfaces of monuments with CO is damaging to the monuments, increasing the alternation process of the formation the secondary phases, especially in the presence of the base level of humidity, a situation which is often noted at the monuments with calcareous bases.

  16. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  17. New free-air and Bouguer gravity fields of Taiwan from multiple platforms and sensors

    NASA Astrophysics Data System (ADS)

    Hwang, Cheinway; Hsu, Hung-Jui; Chang, Emmy T. Y.; Featherstone, W. E.; Tenzer, Robert; Lien, Tzuyi; Hsiao, Yu-Shen; Shih, Hsuan-Chang; Jai, Pang-Ho

    2014-01-01

    We construct 1‧ × 1‧ grids of free-air and Bouguer gravity anomalies around Taiwan with well-defined error estimates for quality assessment. The grids are compiled from land, airborne and shipborne gravity measurements, augmented with altimeter gravity at sea. Three sets of relative land gravity measurements are network-adjusted and outlier-edited, yielding accuracies of 0.03-0.09 mGal. Three airborne gravity sets are collected at altitudes 5156 and 1620 m with accuracies of 2.57-2.79 mGal. Seven offshore shipborne gravity campaigns around Taiwan and its offshore islands yield shallow-water gravity values with 0.88-2.35 mGal accuracies. All data points are registered with GPS-derived geodetic coordinates at cm-dm accuracies, allowing for precise gravity reductions and computing gravity disturbances. The various datasets are combined by the band-limited least-squares collocation in a one-step procedure. In the eastern mountainous (or offshore) region, Bouguer anomalies and density contrasts without considering the oceanic (or land) topographic contribution are underestimated. The new grids show unprecedented tectonic features that can revise earlier results, and can be used in a broad range of applications.

  18. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System

    PubMed Central

    Chen, Chen; Liu, Fei; Lin, Jun; Zhu, Kaiguang; Wang, Yanzhang

    2016-01-01

    The air-core coil sensor (ACS) is widely used as a transducer to measure the variation in magnetic fields of a helicopter transient electromagnetic (TEM) system. A high periodic emitting current induces the magnetic field signal of the underground medium. However, such current also generates a high primary field signal that can affect the received signal of the ACS and even damage the receiver. To increase the dynamic range of the received signal and to protect the receiver when emitting current rises/falls, the combination of ACS with magnetic flux compensation structure (bucking coil) is necessary. Moreover, the optimized ACS, which is composed of an air-core coil and a differential pre-amplifier circuit, must be investigated to meet the requirements of the helicopter TEM system suited to rapid surveying for shallow buried metal mine in rough topography. Accordingly, two ACSs are fabricated in this study, and their performance is verified and compared inside a magnetic shielding room. Using the designed ACSs, field experiments are conducted in Baoqing County. The field experimental data show that the primary field response can be compensated when the bucking coil is placed at an appropriate point in the range of allowed shift distance beyond the center of the transmitting coil and that the damage to the receiver induced by the over-statured signal can be solved. In conclusion, a more suitable ACS is adopted and is shown to have better performance, with a mass of 2.5 kg, resultant effective area of 11.6 m2 (i.e., diameter of 0.496 m), 3 dB bandwidth of 66 kHz, signal-to-noise ratio of 4 (i.e., varying magnetic field strength of 0.2 nT/s), and normalized equivalent input noise of 3.62 nV/m2. PMID:27077862

  19. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System.

    PubMed

    Chen, Chen; Liu, Fei; Lin, Jun; Zhu, Kaiguang; Wang, Yanzhang

    2016-01-01

    The air-core coil sensor (ACS) is widely used as a transducer to measure the variation in magnetic fields of a helicopter transient electromagnetic (TEM) system. A high periodic emitting current induces the magnetic field signal of the underground medium. However, such current also generates a high primary field signal that can affect the received signal of the ACS and even damage the receiver. To increase the dynamic range of the received signal and to protect the receiver when emitting current rises/falls, the combination of ACS with magnetic flux compensation structure (bucking coil) is necessary. Moreover, the optimized ACS, which is composed of an air-core coil and a differential pre-amplifier circuit, must be investigated to meet the requirements of the helicopter TEM system suited to rapid surveying for shallow buried metal mine in rough topography. Accordingly, two ACSs are fabricated in this study, and their performance is verified and compared inside a magnetic shielding room. Using the designed ACSs, field experiments are conducted in Baoqing County. The field experimental data show that the primary field response can be compensated when the bucking coil is placed at an appropriate point in the range of allowed shift distance beyond the center of the transmitting coil and that the damage to the receiver induced by the over-statured signal can be solved. In conclusion, a more suitable ACS is adopted and is shown to have better performance, with a mass of 2.5 kg, resultant effective area of 11.6 m² (i.e., diameter of 0.496 m), 3 dB bandwidth of 66 kHz, signal-to-noise ratio of 4 (i.e., varying magnetic field strength of 0.2 nT/s), and normalized equivalent input noise of 3.62 nV/m². PMID:27077862

  20. Linking morphology to ecosystem structure using air-borne sensors for monitoring the Earth System

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Giardino, C.; Valentini, E.; Bresciani, M.; Gasperini, L.

    2010-12-01

    Coastal Landscape, and how they change over time, provide the template on which the emerging role of Earth system science (ESS) closely linked with the development of space-borne sensors can stand in the center of a newly emerging science of the Earth's surface, where strong couplings links human dynamics, biology, biochemistry, geochemistry, geomorphology, and fluid dynamics including climate change. Modern views on the behavior of complex systems like the coastal one, allow the interpretation of phenomenological coastal landscape as a stationary landscape-state that correspond to a dynamic equilibrium, and to a self-organized exogenic order of the edge of the chaos. Therefore is essential for a thoroughly understanding of spatiotemporal variations in coastal dynamics and habitat distribution for the source of nonlinearity and complexity in geomorphic system make gathering data appropriate for use in developing and testing models of biological and physical process interacting across a wide range of scale. In this paper a physics based approach was applied to MIVIS (Multi-spectral IR and Visible Imaging Spectrometer) and LiDAR (Light Detection and Ranging) airborne data, simultaneously acquired on 12 May 2009 in order to integrate geomorphological and ecological observations into a detailed macrophytes map of Lake Trasimeno (Italy). Shallow water vegetation, in fact, plays an essential role in determining how coastal morphology and ecosystems dynamics respond to feedbacks between biological and physical processes. An accurate field campaign was carried out during the airborne survey and a collection of different biophysical parameter has been achieved. The purposes of the field observations were twofold. First, field observations allowed identification of biophysical habitats and properties associated both to radiometric and limnological features. Secondly, field reconnaissance allowed identifying significant parameters involved in optical interpretation of the

  1. Acoustic Humidity Sensor

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy; Kwack, Eug Y.; Venkateshan, Shakkottai

    1990-01-01

    Industrial humidity sensor measures volume fraction of water in air via its effect on speed of sound. Only portion of sensor exposed to sensed atmosphere is pair of stainless-steel tubes, one containing dry air and other containing moist air. Counters measure intervals between reflected pulses. Sensor rugged enough for use in harsh environments like those used to control drying of paper in paper mills, where most humidity sensors do not survive.

  2. Assessment of diffusion parameters of new passive samplers using optical chemical sensor for on-site measuring formaldehyde in indoor air: experimental and numerical studies.

    PubMed

    Vignau-Laulhere, Jane; Mocho, Pierre; Plaisance, Hervé; Raulin, Katarzyna; Desauziers, Valérie

    2016-03-01

    New passive samplers using a sensor consisting of a sol-gel matrix entrapping Fluoral-P as sampling media were developed for the determination of formaldehyde in indoor air. The reaction between Fluoral-P and formaldehyde produces a colored compound which is quantified on-site by means of a simple optical reading module. The advantages of this sensor are selectivity, low cost, ppb level limit of detection, and on-site direct measurement. In the development process, it is necessary to determine the sampling rate, a key parameter that cannot be directly assessed in the case of diffusive samplers using optical chemical sensor. In this study, a methodology combining experimental tests and numerical modeling is proposed and applied at five different radial diffusive samplers equipped with the same optical chemical sensor to assess the sampled material flows and sampling rates. These radial diffusive samplers differ in the internal volume of the sampler (18.97 and 6.14 cm(3)), the position of sensor inside the sampler (in front and offset of 1.2 cm above the membrane) and the width of the diffusion slot (1.4 and 5.9 mm). The influences of these three parameters (internal volume, position of sensor inside the sampler, and width of the diffusion slot) were assessed and discussed with regard to the formaldehyde sampling rate and water uptake by sensor (potential interference of measure). Numerical simulations based on Fick's laws are in agreement with the experimental results and provide to estimate the effective diffusion coefficient of formaldehyde through the membrane (3.50 × 10(-6) m(2) s(-1)). Conversion factors between the sensor response, sampled formaldehyde mass and sampling rate were also assessed. PMID:26847188

  3. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  4. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  5. Investigation and Optimization of the Performance of an Air-Coil Sensor with a Differential Structure Suited to Helicopter TEM Exploration

    PubMed Central

    Chen, Chen; Liu, Fei; Lin, Jun; Wang, Yanzhang

    2015-01-01

    An air-coil sensor (ACS) is a type of induction magnetometer used as a transducer to measure the variations of a magnetic field. This device is widely applied in helicopter transient electromagnetic method (TEM) exploration. Most helicopter TEM explorations generate common-mode noise and require extreme ACS specifications, both of which inevitably challenge geophysical explorations. This study proposes a differential air-core coil combined with a differential pre-amplifier to reduce the common-mode noise induced in exploration surveys. To satisfy the stringent performance requirements, including the geometric parameters and electrical specifications, the physical calculations in theory and the equivalent schematic of an ACS with noise location are investigated, respectively. The theory calculation and experimental result for the optimized ACS are then compared on the basis of a differential structure. Correspondingly, an ACS is constructed with a mass, resultant effective area, 3 dB bandwidth, signal-to-noise ratio, and normalized equivalent input noise of 2.5 kg, 5.5 m2 (diameter is 0.5 m), 71 kHz, 20 (the varying magnetic field strength is 1 nT/s), and 5.43 nV/m2, respectively. These data are superior to those of the traditional induction sensor 3D-3. Finally, a field experiment is performed with a fabricated sensor to show a valid measurement of the time-varying magnetic field of a helicopter TEM system based on the designed ACS. PMID:26389908

  6. Investigation and Optimization of the Performance of an Air-Coil Sensor with a Differential Structure Suited to Helicopter TEM Exploration.

    PubMed

    Chen, Chen; Liu, Fei; Lin, Jun; Wang, Yanzhang

    2015-01-01

    An air-coil sensor (ACS) is a type of induction magnetometer used as a transducer to measure the variations of a magnetic field. This device is widely applied in helicopter transient electromagnetic method (TEM) exploration. Most helicopter TEM explorations generate common-mode noise and require extreme ACS specifications, both of which inevitably challenge geophysical explorations. This study proposes a differential air-core coil combined with a differential pre-amplifier to reduce the common-mode noise induced in exploration surveys. To satisfy the stringent performance requirements, including the geometric parameters and electrical specifications, the physical calculations in theory and the equivalent schematic of an ACS with noise location are investigated, respectively. The theory calculation and experimental result for the optimized ACS are then compared on the basis of a differential structure. Correspondingly, an ACS is constructed with a mass, resultant effective area, 3 dB bandwidth, signal-to-noise ratio, and normalized equivalent input noise of 2.5 kg, 5.5 m² (diameter is 0.5 m), 71 kHz, 20 (the varying magnetic field strength is 1 nT/s), and 5.43 nV/m², respectively. These data are superior to those of the traditional induction sensor 3D-3. Finally, a field experiment is performed with a fabricated sensor to show a valid measurement of the time-varying magnetic field of a helicopter TEM system based on the designed ACS. PMID:26389908

  7. Investigation of Slipstream Velocity

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr

    1925-01-01

    These experiments were made at the request of the Bureau of Aeronautics, Navy Department, to investigate the velocity of the air in the slipstream in horizontal and climbing flight to determine the form of expression giving the slipstream velocity in terms of the airspeed of the airplane. The method used consisted in flying the airplane both on a level course and in climb at full throttle and measuring the slipstream velocity at seven points in the slipstream for the whole speed range of the airplane in both conditions. In general the results show that for both condition, horizontal and climbing flights, the slipstream velocity v subscript 3 and airspeed v can be represented by straight lines and consequently the equations are of the form: v subscript s = mv+b where m and b are constant. (author)

  8. Comparative Study on Extinction Process of Gas-Blasted Air and CO2 Arc Discharge Using Two-Dimensional Electron Density Imaging Sensor

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko; Nakano, Tomoyuki; Murai, Kosuke; Tanaka, Yasunori; Shinkai, Takeshi

    2015-09-01

    Systematic comparison of the electron density images for various kinds of arc-quenching gas media inside high-voltage circuit breakers is a promising method for the effective search and development of SF6-alternative gases. However, electron density imaging over the decaying arcs around the nozzle throat of the circuit breakers is extremely difficult by using the conventional arc generation setup and localized type sensing systems, due to the nozzle opaqueness and spatiotemporal instability of long-gap arc discharges around current zero. Here, we achieved two-dimensional electron density imaging over the decaying arcs around the nozzle throat first in the world, by a combination of the development of a unique gas flow nozzle integrating a cubic quartz cell and the single-shot recordings using Shack-Hartmann sensors. Shack-Hartmann sensors were applied to gas-blasted air and CO2 arc discharges under current-zero phases after sudden switch-off of stationary arc currents. These experimental results showed that the electron densities and arc diameters took the minimums in the upper stream nozzle regions with the maximum blasting gas speeds. In addition, CO2 had a shorter electron density decaying time constant than air, which is consistent with the previous theoretical studies on higher interruption performance of CO2 compared with air.

  9. Application of Artificial Neural Networks to the Development of Improved Multi-Sensor Retrievals of Near-Surface Air Temperature and Humidity Over Ocean

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne

    2012-01-01

    Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.

  10. Estimating Attenuation Coefficients and P-Wave Velocities of the Shallow San Jacinto Fault Zone from Betsy Gunshots Data Recorded by a Spatially Dense Array with 1108 Sensors

    NASA Astrophysics Data System (ADS)

    Ozakin, Yaman; Ben-Zion, Yehuda

    2016-04-01

    We estimate values of P wave velocity and P attenuation coefficients (QP) for the subsurface material at the Sage Brush Flat site along the Clark branch of the San Jacinto Fault Zone. The data are generated by 33 Betsy gunshots and recorded by a spatially dense array of 1108 vertical component geophones deployed in a rectangular grid that is approximately 600 m x 600 m. We automatically pick the arrival times of the seismic body waves from each explosion arriving at stations within 200 m. These measurements are used to derive an average velocity map with velocity values ranging from 500 m/s to 1250 m/s. We estimate the energy of the early P waves by squaring the amplitudes in a short window relative to the automatic picks. These energies are fitted to a decay function representing the geometrical spreading and intrinsic attenuation. By separating the stations into spatial bins and calculating attenuation values for each by linear regression, we construct a QP values map. Most of the QP values are in 5-20 range, which is consistent with other studies of shallow fault zone regions.

  11. Evaluation of small sensor technology for criteria air pollutants at ground-based sites and a citizen science network

    EPA Science Inventory

    A number of small sensor technologies for the measurement of NOz, O: and other criteriapollutants have recently emerged. There is a growing interest in understanding the capability ofsensor technology in accurately measuring ambient concentrations of gas-phase criteriapollutants....

  12. A simple extension of Rüchardt's method for measuring the ratio of specific heats of air using microcomputer-based laboratory sensors

    NASA Astrophysics Data System (ADS)

    Severn, G. D.; Steffensen, T.

    2001-03-01

    A lower division laboratory experiment is described which measures the ratio of specific heats for air, γ≡Cp/Cv, using Rüchardt's method augmented by microcomputer-based laboratory sensors. A low pressure gauge transducer records the damped pressure oscillations, leading to a value of γ=1.41±0.04. Adding a laser switch, one can extend the method to determine γ from the ratio of pressure and volume variations, γ=-(dp/dV)(V/p), which yields 1.33±0.05. Nonadiabatic processes are considered.

  13. Velocity and mass flux distribution measurements of spherical glass beads in air flow in a 90-deg vertical-to-horizontal bend

    NASA Astrophysics Data System (ADS)

    Kliafas, Yannis

    The fluid mechanics of a mixture of gas and glass beads in a 90-deg bend was studied, and the resulting mean streamwise and radial velocities and the associated Reynolds stresses are reported. Higher negative slip velocities were observed for 100-micron beads than for 50-micron beads. At angular displacements of 0 deg the radial velocity was directed toward the inner wall for both sizes of beads. Most of the bead-wall collisions occurred between the 30- and 60-deg stations. Bead-wall interaction was the controlling factor influencing the behavior of the beads. The inner wall was generally erosion-free, and no erosion was observed on the side walls, which were made of glass. A 2.5-m-long deposition-free area was observed for both bead sizes used. The results are significant for coal gasification technology.

  14. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  15. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  16. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--PAHS IN AIR--REAL TIME SENSOR ANALYTICAL RESULTS

    EPA Science Inventory

    This PAHs in Air data set contains 516 readings detecting the presence of polynuclear aromatic hydrocarbons (PAHs) in 86 households in the Arizona Border Study using a photo ionization device (PID). Keywords: air; PAHs, real time.

    The U.S.-Mexico Border Program is sponsored by...

  17. Acoustic particle acceleration sensors

    SciTech Connect

    Franklin, J.B.; Barry, P.J.

    1996-04-01

    A crossed dipole array provides a directional receiving capability in a relatively small sensor package and is therefore very attractive for many applications in acoustics. Particle velocity measurements on two axes perpendicular to each other are required to provide the dipole signals. These can be obtained directly using particle velocity sensors or via simple transfer functions using acceleration and displacement sensors. Also, the derivative of the acoustic pressure with respect to space provides a signal proportional to the particle acceleration and gives rise to the pressure gradient sensor. Each of these sensors has strengths and drawbacks depending on the frequency regime of interest, the noise background, and whether a point or a line configuration of dipole sensors is desired. In this paper, the performance of acceleration sensors is addressed using a sensor concept developed at DREA. These sensors exploit bending stresses in a cantilever beam of piezoelectric material to obtain wide bandwidth and high sensitivity. Models which predict the acceleration sensitivity, pressure sensitivity, and natural frequency for this type of sensor are described. Experimental results obtained using several different versions of these sensors are presented and compared with theory. The predicted performance of acceleration sensors are compared with that of pressure gradient arrays and particle velocity sensors. {copyright} {ital 1996 American Institute of Physics.}

  18. F-18 SRA closeup of nose cap showing L-Probe experiment and standard air data sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This under-the-nose view of a modified F-18 Systems Research Aircraft at NASA's Dryden Flight Research Center, Edwards, California, shows three critical components of the aircraft's air data systems which are mounted on both sides of the forward fuselage. Furthest forward are two L-probes that were the focus of the recent Advanced L-probe Air Data Integration (ALADIN) experiment. Behind the L-probes are angle-of-attack vanes, while below them are the aircraft's standard pitot-static air data probes. The ALADIN experiment focused on providing pilots with angle-of-attack and angle-of-sideslip air data as well as traditional airspeed and altitude information, all from a single system. Once fully developed, the new L-probes have the potential to give pilots more accurate air data information with less hardware.

  19. Air/Liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor.

    PubMed

    Li, Zetang; Wang, Zhong Lin

    2011-01-01

    We present a new approach for fabricating flexible fiber nanogenerators (FNGs) that can be used for smart shirts, flexible electronics, and medical applications. These FNGs are based on carbon fibers that are covered cylindrically by textured zinc oxide (ZnO) thin films. Once subjected to uni-compression by applying a pressure, the cylindrical ZnO thin film is under a compressive strain, resulting in a macroscopic piezopotential across its inner and exterior surfaces owing to the textured structure of the film, which is the driving force for generating an electric current in the external load. Using such a structure, an output peak voltage of 3.2 V and average current density of 0.15 μA cm(-2) are demonstrated. The FNGs rely on air pressure, so that it can work in a non-contact mode in cases of rotating tires, flowing air/liquid, and even in blood vessels. Pressure-driven FNGs added to a syringe show potential to harvest energy in blood vessels, gas pipes, and oil pipes, as long as there is a fluctuation in pressure (or turbulence). Heart-pulse driven FNGs can serve as ultrasensitive sensors for monitoring the behavior of the human heart, which may possibly be applied to medical diagnostics as sensors and measurement tools. PMID:21080378

  20. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    R. Demler

    2006-04-01

    been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on

  1. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    PubMed

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies. PMID:27101450

  2. Superior Performance of High-Velocity Oxyfuel-Sprayed Nanostructured TiO2 in Comparison to Air Plasma-Sprayed Conventional Al2O3-13TiO2

    NASA Astrophysics Data System (ADS)

    Lima, R. S.; Marple, B. R.

    2005-09-01

    Air plasma-sprayed conventional alumina-titania (Al2O3-13wt.%TiO2) coatings have been used for many years in the thermal spray industry for antiwear applications, mainly in the paper, printing, and textile industries. This work proposes an alternative to the traditional air plasma spraying of conventional aluminatitania by high-velocity oxyfuel (HVOF) spraying of nanostructured titania (TiO2). The microstructure, porosity, hardness (HV 300 g), crack propagation resistance, abrasion behavior (ASTM G65), and wear scar characteristics of these two types of coatings were analyzed and compared. The HVOF-sprayed nanostructured titania coating is nearly pore-free and exhibits higher wear resistance when compared with the air plasma-sprayed conventional alumina-titania coating. The nanozones in the nanostructured coating act as crack arresters, enhancing its toughness. By comparing the wear scar of both coatings (via SEM, stereoscope microscopy, and roughness measurements), it is observed that the wear scar of the HVOF-sprayed nanostructured titania is very smooth, indicating plastic deformation characteristics, whereas the wear scar of the air plasma-sprayed alumina-titania coating is very rough and fractured. This is considered to be an indication of a superior machinability of the nanostructured coating.

  3. Chemical sensors

    SciTech Connect

    Janata, J.; Josowicz, M.; DeVaney, D.M. )

    1994-06-15

    This review of chemical sensors contains the following topics of interest: books and reviews; reviews of sensors by their type; fabrication and selectivity; data processing; thermal sensors; mass sensors (fabrication, gas sensors, and liquid sensors); electrochemical sensors (potentiometric sensors, amperometric sensors, and conductometric sensors); and optical sensors (fabrication, liquid sensors, biosensors, and gas sensors). 795 refs., 1 tab.

  4. CHARACTERIZATION OF AN AQUITARD AND DIRECT DETECTION OF LNAPL AT HILL AIR FORCE BASE USING GPR AVO AND MIGRATION VELOCITY ANALYSES

    EPA Science Inventory

    Large quantities of non-aqueous phase liquids (NAPL) contaminate the near surface sediments at Operable Unit 1 (OU1), Hill Air Force Base (HAFB), Utah. In October 2000, a 3D, multi-offset GPR survey was acquired at OU1 with two objectives: 1) to i...

  5. A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps

    SciTech Connect

    Brambley, Michael R.

    2009-09-01

    This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

  6. Multispectral and DSLR sensors for assessing crop stress in corn and cotton using fixed-wing unmanned air systems

    NASA Astrophysics Data System (ADS)

    Valasek, John; Henrickson, James V.; Bowden, Ezekiel; Shi, Yeyin; Morgan, Cristine L. S.; Neely, Haly L.

    2016-05-01

    As small unmanned aircraft systems become increasingly affordable, reliable, and formally recognized under federal regulation, they become increasingly attractive as novel platforms for civil applications. This paper details the development and demonstration of fixed-wing unmanned aircraft systems for precision agriculture tasks. Tasks such as soil moisture content and high throughput phenotyping are considered. Rationale for sensor, vehicle, and ground equipment selections are provided, in addition to developed flight operation procedures for minimal numbers of crew. Preliminary imagery results are presented and analyzed, and these results demonstrate that fixed-wing unmanned aircraft systems modified to carry non-traditional sensors at extended endurance durations can provide high quality data that is usable for serious scientific analysis.

  7. Flow sensor using optical fiber strain gauges

    NASA Astrophysics Data System (ADS)

    Schmitt, Nicolas F.; Morgan, R.; Scully, Patricia J.; Lewis, Elfed; Chandy, Rekha

    1995-09-01

    A novel technique for the measurement of air flow velocity using an optical fiber sensor is reported. The sensor measures the deformation of a rubber cantilever beam when subjected to the stresses induced by drag forces in the presence of the airflow. Tests performed in a wind tunnel have indicated a sensitivity of 2 (mu) /(m/s). A qualitative model based on fiber mode propagation has been developed which allows the sensor to be characterized in terms of optical losses. A single 1 mm diameter polymer fiber is mounted on the rectangular section rubber cantilever (section 14 mm by 6 mm) and six grooves are etched into the fiber which extend into the core of the fiber. As the beam deviates the surface deforms (stretches or contracts) and the fiber is subjected to strain. As the strain is increased the grooves become wider and the amount of light transmitted through the fiber is reduced due to increased losses. The sensor described has all the advantages of optical fiber sensors including electrical noise immunity and intrinsic safety for use in hazardous environments. However, its simple construction, robustness, versatility for a number of different fluid applications, as well as relatively low cost make it attractive for use in a wide variety of measurement applications e.g. wind velocity measurement where airborne moisture or chemicals are present.

  8. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: measurement principle and static calibration.

    PubMed

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min(-1). The nonlinear behavior allows sensitivities equal to 0.6 V l(-1) min for flow rates ranging from -2.0 to +2.0 l min(-1), equal to 2.0 V l(-1) min for flow rates ranging from -3.0 to -2.0 l min(-1) and from +2.0 to +3.0 l min(-1), up to 5.7 V l(-1) min at higher flow rates ranging from -7.0 to -3.0 l min(-1) and from +3.0 to +7.0 l min(-1). The linear range extends from 3.0 to 7.0 l min(-1) with constant sensitivity equal to 5.7 V l(-1) min. The sensor is able to detect a flow-rate equal to 1.0 l min(-1) with a sensitivity of about 400 mV l(-1) min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min(-1), corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l(-1) min. PMID:21361616

  9. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: Measurement principle and static calibration

    NASA Astrophysics Data System (ADS)

    Saccomandi, Paola; Schena, Emiliano; Silvestri, Sergio

    2011-02-01

    An optoelectronic target-type volumetric air flow-rate transducer for bidirectional measurements is presented. The sensor is composed of a T-shaped target and two nominally identical LED-photodiode couples which are operated in differential mode. The sensitive surfaces of the photodiodes are differentially shadowed by the deflection of the target, which in turn depends on the gas flow-rate. The principle of operation is described in mathematical terms and the design parameters have been optimized in order to obtain the highest sensitivity along with minimal pressure drop and reduced dimensions. The sensor is placed in a 20 mm diameter hose and was tested with air flow-rate in the typical temperature range of mechanical ventilation between 20 and 40 °C. The theoretical model was validated through experiments carried out in the volumetric flow range from -7.0 to +7.0 l min-1. The nonlinear behavior allows sensitivities equal to 0.6 V l-1 min for flow rates ranging from -2.0 to +2.0 l min-1, equal to 2.0 V l-1 min for flow rates ranging from -3.0 to -2.0 l min-1 and from +2.0 to +3.0 l min-1, up to 5.7 V l-1 min at higher flow rates ranging from -7.0 to -3.0 l min-1 and from +3.0 to +7.0 l min-1. The linear range extends from 3.0 to 7.0 l min-1 with constant sensitivity equal to 5.7 V l-1 min. The sensor is able to detect a flow-rate equal to 1.0 l min-1 with a sensitivity of about 400 mV l-1 min. The differential nature of the output minimizes the influence of the LEDs' power supply variations and allows to obtain a repeatability in the order of 3% of full scale output. The small pressure drop produced by the sensor placed in-line the fluid stream, of about 2.4 Pa at 7 l min-1, corresponds to a negligible fluid dynamic resistance lower than 0.34 Pa l-1 min.

  10. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  11. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    PubMed

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  12. Numerical and Physical Simulation of the Low-Velocity Air Flow in a Diffuser with a Circular Cavity in the Case of Suction of the Air from the Central Cylindrical Body Positioned in the Cavity

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Guvernyuk, S. V.; Zubin, M. A.; Baranov, P. A.; Ermakov, A. M.

    2015-01-01

    Comparative analysis of the results of solution of the steady-state Reynolds equations closed with the use of the shear-stress transfer model for the air fl ow in a divergent channel with suction of the air from the surface of the cylindrical central body positioned in the circular vortex cavity built in the lower wall of the channel with the corresponding experimental data has been performed.

  13. Evaluation of different airflow sensors at the WIPP facility

    SciTech Connect

    McDaniel, K.; Duckworth, I.J.; Prosser, B.S.

    1999-07-01

    The Waste Isolation Pilot Plant (WIPP) is an US Department of Energy underground disposal facility designed to permanently and safely isolate US defense-generated transuranic radioactive waste. The underground ventilation system is engineered to minimize the release of radioactive contamination to the environment in the event of an accident. During 1994 an extensive ventilation remote monitoring and control system was installed. It consists of fifteen air velocity sensors, eight differential pressure stations, automated control features on key underground air regulators, and eight psychrometric stations. The airflow monitoring component of the system has been a problem since the original installation. Due to the WIPP's variable airflow capabilities, the air velocity sensors required extensive and time-consuming re-calibration to make the sensors read out volumetric flow, rather than the point or line values, which they were factory calibrated for. Problems with the hardware made the process difficult. Furthermore, once re-calibrated the durability and reliability of the units were inconsistent, and often unacceptable. Two new types of airflow sensors were tested; one or both of which will ultimately replace the old units. The tested sensors were an ultrasonic-type device (FloSonic), and a warm body, mass flow unit (Airboss*200W) (a re-engineered version of the previous units). Recommendations were made regarding which type of sensor to install at specific locations. These decisions were based on the conditions at each sensor location and the relative strengths of the two sensor types. Installation, field calibration methodology, test procedures, main results and recommendations are discussed.

  14. Questions Students Ask: About Terminal Velocity.

    ERIC Educational Resources Information Center

    Meyer, Earl R.; Nelson, Jim

    1984-01-01

    If a ball were given an initial velocity in excess of its terminal velocity, would the upward force of air resistance (a function of velocity) be greater than the downward force of gravity and thus push the ball back upwards? An answer to this question is provided. (JN)

  15. GMTI radar minimum detectable velocity.

    SciTech Connect

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  16. Surface determination of the air-earth electrical current density using co-located sensors of different geometry

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Harrison, R. G.

    2006-06-01

    A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9h was 1.76±0.002pAm-2.

  17. Shroud debris modeling techniques for IR sensors in space

    NASA Astrophysics Data System (ADS)

    VanderWyst, Anton; Jenkins, David G.; Ahmad, Anees

    2007-09-01

    Space-based surveillance sensors are covered by a shroud to protect the delicate optics from adverse environments (aerothermal heating and contamination) during hypersonic flight through the atmosphere. Once the sensor payload reaches a safe altitude, the shroud is deployed and then sensor operation begins. When the pyrotechnic actuators are fired to deploy the shroud or nosecone, large and microscopic particles are dislodged. The source of these particles is the charred thermal protection insulation material on outer surface of the shroud, and particulate contaminants deposited on the inside surface of shroud and on sensor components during assembly process. These dislodged particles can end up within the sensor field of view (FOV), and remain there for extended periods of time, with the duration depending on the air density and vehicle velocity. These undesirable particles within the sensor FOV can degrade infrared sensor performance in several ways. These particles can cause obscuration, scattering and produce spurious thermal signature, thus making it difficult to image the objects of interest. This paper presents the aeromodeling techniques used to estimate the number and size of particles, and the duration these particles can stay within the sensor FOV. This information can then be used to predict the resulting degradation in sensor performance.

  18. [Growth and polysaccharide formation in Sinorhizobium meliloti strains in an air-lift-type fermentor. Effect on nodulation velocity in alfalfa plants].

    PubMed

    Lorda, G S; Castaño, R C; Pordomingo, A B; Pastor, M D; Balatti, A P

    2003-01-01

    In this paper the influence of the exopolysaccharides produced by Sinorhizobium meliloti strains on the nodulation rates in alfalfa plants has been considered. The experiments were performed in a rotary shaker and in an air-lift type fermentor. Different Sinorhizobium meliloti strains were used. Bacterial growth rates were determined by viable cell counts. Exopolysaccharide concentration was determined by precipitation with ethanol. It was observed that maximum cell concentration was in the order of 1 x 10(10) cell/ml and exopolysaccharide content was approximately 11 g/l. The experiments performed with alfalfa plants in a controlled environment chamber showed that, when inoculation was carried out with diluted suspensions (1/10), nodulation time was reduced from 10 to 4 days, while the strains retained their symbiotic properties. PMID:12920984

  19. Multi-sensor Approach on Air Quality Application and Assessment Using Measurements in DISCOVER-AQ as a Testbed

    NASA Astrophysics Data System (ADS)

    Chu, D.; Ferrare, R. A.; Lewis, J. R.; McGrath-Spangler, E. L.; Welton, E. J.; Hains, J.; Szykman, J.; Holben, B. N.

    2013-12-01

    This study focuses on the Mid-Atlantic States extended from the DISCOVER-AQ study area with airborne HSRL, surface MPLNet and DRAGON as well as spaceborne CALIPSO measurements. Airborne HSRL sensor made routine observations in July over Baltimore-Washington Corridor. At GSFC, MPLNET measures aerosol extinction profiles while DRAGON-AERONET observes total columnar aerosol optical depth. The point observations at NASA GSFC are used to validate CALIPSO observations and connect with those in a range of distance from the overpassing CALIPSO. The application of aerosol scale height has been studied for PM2.5 estimation in the eastern US of DISCOVER-AQ field campaign area. Seasonal characteristics are explored. Comparisons between different regions of DISCOVER-AQ will also be discussed.

  20. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

    PubMed Central

    Wagner, Tino

    2016-01-01

    Summary Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions. PMID:27335735

  1. Electrochemical sensors for volatile nitrogen compounds in air. Final report to J&N Associates, Inc. from Illinois Institute of Technology, Re: Department of Energy Phase I STTR Project DOE No. DE-FG02-99ER86090

    SciTech Connect

    Stetter, Joseph R.; Penrose, William R.; Roh, Sae-Won

    2000-09-07

    Air pollutant gases such as nitric oxide, nitrogen dioxide, nitrous acid, and peroxyacetyl nitrate are commonly encountered in urban atmospheres. They constitute a nuisance to some, and a positive danger to others with such respiratory conditions as asthma and emphysema. It is known that exposure to these gases is a function of microenvironment, but monitoring of microenvironments is presently too uneconomical to be used except in rare cases, such as ''sick buildings''. Gas sensors that are small, sensitive, selective, and inexpensive are needed to make such monitoring practical. Many sensor types have apparently reached their technological development limit, but porous-electrode amperometric gas sensors have not been thoroughly explored for low-concentration applications. We have explored amperometric gas sensors of several types for lower detection limits to a series of nitrogen gases. Evidence gathered in this study indicates that greater sensitivity will be achieved by reducing the noise level of the working electrode, rather than increasing the output signal.

  2. Small Break Air Ingress Experiment

    SciTech Connect

    Chang Oh; Eung Soo Kim

    2011-09-01

    The small break air-ingress experiment, described in this report, is designed to investigate air-ingress phenomena postulated to occur in pipes in a very high temperature gas-cooled reactor (VHTRs). During this experiment, air-ingress rates were measured for various flow and break conditions through small holes drilled into a pipe of the experimental apparatus. The holes were drilled at right angles to the pipe wall such that a direction vector drawn from the pipe centerline to the center of each hole was at right angles with respect to the pipe centerline. Thus the orientation of each hole was obtained by measuring the included angle between the direction vector of each hole with respect to a reference line anchored on the pipe centerline and pointing in the direction of the gravitational force. Using this reference system, the influence of several important parameters on the air ingress flow rate were measured including break orientation, break size, and flow velocity . The approach used to study the influence of these parameters on air ingress is based on measuring the changes in oxygen concentrations at various locations in the helium flow circulation system as a function of time using oxygen sensors (or detectors) to estimate the air-ingress rates through the holes. The test-section is constructed of a stainless steel pipe which had small holes drilled at the desired locations.

  3. Monitoring of patient glucose infusion using a surface plasmon resonance-based fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Jiangling; Yan, Yurong; Li, Shengqiang; Ding, Xiaojuan; Ding, Shijia; Huang, Yu

    2015-10-01

    A surface plasmon resonance (SPR)-based optic fiber monitoring system was introduced in this paper to monitor patients’ infusion process. The SPR-based fiber optic sensor provides a dramatically enhanced flexibility during the monitoring process. The experimental results showed that the spectral shift of sensor is correlated with glucose concentration and its flowing speed. The presence of fatal air bubbles in a glucose infusion solvent is detectable in real time, so that the consequent medical accident is avoidable. This sensor can simultaneously provide the information of liquid concentration and its flowing velocity, and make a judgment on the presence of air bubbles in solution during infusion. It provides experimental guidance on designing and manufacturing a sensor for on-line clinical monitoring systems in the future.

  4. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    NASA Astrophysics Data System (ADS)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many

  5. The use of lidar as optical remote sensors in the assessment of air quality near oil refineries and petrochemical sites

    NASA Astrophysics Data System (ADS)

    Steffens, Juliana; Landulfo, Eduardo; Guardani, Roberto; Oller do Nascimento, Cláudio A.; Moreira, Andréia

    2008-10-01

    Petrochemical and oil refining facilities play an increasingly important role in the industrial context. The corresponding need for monitoring emissions from these facilities as well as in their neighborhood has raised in importance, leading to the present tendency of creating real time data acquisition and analysis systems. The use of LIDAR-based techniques, both for air quality and emissions monitoring purposes is currently being developed for the area of Cubatao, Sao Paulo, one of the largest petrochemical and industrial sites in Brazil. In a partnership with the University of SÃ#o Paulo (USP) the Brazilian oil company PETROBRAS has implemented an Environmental Research Center - CEPEMA - located in the industrial site, in which the development of fieldwork will be carried out. The current joint R&D project focuses on the development of a real time acquisition system, together with automated multicomponent chemical analysis. Additionally, fugitive emissions from oil processing and storage sites will be measured, together with the main greenhouse gases (CO2, CH4), and aerosols. Our first effort is to assess the potential chemical species coming out of an oil refinery site and to verify which LIDAR technique, DIAL, Raman, fluorescence would be most efficient in detecting and quantifying the specific atmospheric emissions.

  6. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    Wayne Hill; Roger Demler

    2004-06-01

    The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to pulverized

  7. SENSOR FOR INDIVIDUAL BURNER CONTROL OF COAL FIRING RATE, FUEL-AIR RATIO AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill

    2004-02-01

    The project's overall objective is to development a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the non-specific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to

  8. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  9. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  10. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  11. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator

    SciTech Connect

    Haque, Shah M.E.; Deev, A.V.; Subaschandar, N.; Rasul, M.G.; Khan, M.M.K.

    2009-01-15

    The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

  12. Geographically distributed environmental sensor system

    DOEpatents

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  13. Effects of air velocity on broiler production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent improvements in poultry genetics have resulted in increased growth rates (Havenstein et al., 2003) and total heat production (Chepete and Xin, 2001; Xin et al., 2001). In addition, market weights have also increased with white the meat demand of the U.S. resulting in birds being marketed at ...

  14. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  15. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  16. Integrated IR sensors

    NASA Astrophysics Data System (ADS)

    Tom, Michael; Trujillo, Edward

    1994-06-01

    Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.

  17. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  18. Particulate matter sensor with a heater

    DOEpatents

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  19. Pore Velocity Estimation Uncertainties

    NASA Astrophysics Data System (ADS)

    Devary, J. L.; Doctor, P. G.

    1982-08-01

    Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.

  20. Ka-Band Radar Terminal Descent Sensor

    NASA Technical Reports Server (NTRS)

    Pollard, Brian; Berkun, Andrew; Tope, Michael; Andricos, Constantine; Okonek, Joseph; Lou, Yunling

    2007-01-01

    The terminal descent sensor (TDS) is a radar altimeter/velocimeter that improves the accuracy of velocity sensing by more than an order of magnitude when compared to existing sensors. The TDS is designed for the safe planetary landing of payloads, and may be used in helicopters and fixed-wing aircraft requiring high-accuracy velocity sensing

  1. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  2. A portable air-quality station based on thick film gas sensors for real time detection of traces of atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Fioravanti, A.; Bonanno, A.; Gherardi, S.; Carotta, M. C.; Skouloudis, A. N.

    2016-03-01

    Different functional materials, single or mixed nano-crystalline semiconductor oxides, were synthesized via appropriated wet-chemistry routes. The powders were used to fabricate metal oxide (MOX) thick film gas sensors. Portable monitoring stations based on the aforementioned sensors were prepared, including electronics for acquisition, processing and wireless transmission of the data. Results of long term trials in field, carried out locating few units closely to as many conventional fixed-site monitoring stations, have been reported. The comparison was performed between the temporal evolution of the conductivity changes of the sensors with the pollutants’ concentrations, as measured by the analytical instruments.

  3. Revolution of Sensors in Micro-Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2012-08-01

    Microsensors realized by micro-electromechanical systems (MEMS) technology play a key role as the input devices of systems. In this report, the following sensors are reviewed: piezoresistive and capacitive pressure sensors, surface acoustic wave (SAW) wireless pressure sensors, tactile sensor networks for robots, accelerometers, angular velocity sensors (gyroscopes), range image sensors using optical scanners, infrared imagers, chemical sensing systems as Fourier transform infrared (FTIR) spectroscopy and gas chromatography, flow sensors for fluids, and medical sensors such as ultrafine optical-fiber blood pressure sensors and implantable pressure sensors.

  4. Method for determining individual deposition velocities of radon progeny.

    PubMed

    Angell, C T; Pedretti, M; Norman, E B

    2015-04-01

    The deposition velocity of radon progeny is used to model the removal of progeny from the air by surfaces in assessing indoor air quality. It can also be used to assess radon-induced background in sensitive, low-background experiments. A single value of the deposition velocity is typically used for all radon progeny for modeling purposes. This paper presents a method for uniquely determining the individual deposition velocities of radon progeny. Measurements demonstrating the method were carried out. PMID:25618737

  5. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2004-05-18

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  6. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  7. Electronic Nose System Sensors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Jet Propulsion Laboratory has designed and built an electronic nose system -- ENose -- to take on the duty of staying alert for smells that could indicate hazardous conditions in a closed spacecraft environment. Its sensors (shown here) are tailored so they conduct electricity differently when an air stream carries a particular chemical across them. JPL has designed and built a 3-pound flight version. The active parts are 32 sensors, each with a different mix of polymers saturated with carbon. When certain chemicals latch onto a sensor, they change how the sensor conducts electricity. This signal tells how much of a compound is in the air. The electronic nose flown aboard STS-95 in 1998 was capable of successfully detecting 10 toxic compounds.

  8. Calculating Internal Avalanche Velocities From Correlation With Error Analysis.

    NASA Astrophysics Data System (ADS)

    McElwaine, J. N.; Tiefenbacher, F.

    Velocities inside avalanches have been calculated for many years by calculating the cross-correlation between light sensitive sensors using a method pioneered by Dent. His approach has been widely adopted but suffers from four shortcomings. (i) Corre- lations are studied between pairs of sensors rather than between all sensors simulta- neously. This can result in inconsistent velocities and does not extract the maximum information from the data. (ii) The longer the time that the correlations are taken over the better the noise rejection, but errors due to non-constant velocity increase. (iii) The errors are hard to quantify. (iv) The calculated velocities are usually widely scattered and discontinuous. A new approach is described that produces a continuous veloc- ity field from any number of sensors at arbitrary locations. The method is based on a variational principle that reconstructs the underlying signal as it is advected past the sensors and enforces differentiability on the velocity. The errors in the method are quantified and applied to the problem of optimal sensor positioning and design. Results on SLF data from chute experiments are discussed.

  9. Networked Sensor Arrays

    SciTech Connect

    R. J. Tighe

    2002-10-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical.

  10. Nerve conduction velocity

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see how ...

  11. Flow in Smooth Straight Pipes at Velocities Above and Below Sound Velocity

    NASA Technical Reports Server (NTRS)

    Frossel, W

    1938-01-01

    To investigate the laws of flow of compressible fluids in pipes, tests were carried out with air flowing at velocities below and above that of sound in straight smooth pipes. Air was chosen as the flow medium. In order that the effect of compressibility may be brought out most effectively, the velocity should lie between 100 and 500 m/s (200 and 1,000 mph); that is, be of the order of magnitude of the velocity of sound in air. The behavior of the compression shock in a smooth cylindrical pipe was also investigated. The compression shock can occur at any position in the pipe, depending on the throttling downstream, and travels upstream with increasing throttling up to the pipe entrance, so that only subsonic velocities occur in the pipe.

  12. Temperature and Strain Coefficient of Velocity for Langasite SAW Devices

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, G. M.

    2013-01-01

    Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.

  13. Computing discharge using the index velocity method

    USGS Publications Warehouse

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  14. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  15. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  16. Prediction of flame velocities of hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Simon, Dorothy M

    1954-01-01

    The laminar-flame-velocity data previously reported by the Lewis Laboratory are surveyed with respect to the correspondence between experimental flame velocities and values predicted by semitheoretical and empirical methods. The combustible mixture variables covered are hydrocarbon structure (56 hydrocarbons), equivalence ratio of fuel-air mixture, mole fraction of oxygen in the primary oxygen-nitrogen mixture (0.17 to 0.50), and initial mixture temperature (200 degrees to 615 degrees k). The semitheoretical method of prediction considered are based on three approximate theoretical equations for flame velocity: the Semenov equation, the Tanford-Pease equation, and the Manson equation.

  17. Dust particle velocity measurement

    NASA Technical Reports Server (NTRS)

    Thielman, L. O.

    1976-01-01

    A laser Doppler velocimeter was used to measure the velocity distributions for particles entering a vacuum chamber from the atmosphere through calibrated leaks. The relative number of particles per velocity interval was obtained for particulates of three size distributions and two densities passing through six different leak geometries. The velocity range 15 to 320 meters per second was investigated. Peak particle velocities were found to occur in the 15 to 150 meters per second range depending upon type of particle and leak geometry. A small fraction of the particles were found to have velocities in the 150 to 320 meters per second range.

  18. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  19. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  20. Video guidance sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard

    1991-01-01

    A Martin-Marietta study comparing the application of laser, video, or RF sensors was conducted in 1982. The study concluded that video was the most attractive sensor (the video also could be used for operator monitoring). The Retro-Reflector field Tracker from the Solar Array Flight Experiment was chosen as a 'first generation' sensor and integrated with guidance algorithms for evaluation on the air-bearing vehicle. Results indicated that this sensor was not applicable for the noise environment posed by the multi-layer insulation used on most spacecraft. A 'second generation' sensor was developed to be used with a modified RMS target. This sensor utilized two sets of laser diodes to acquire three optically filtered targets. The targets were illuminated first with a 780 nanometer diode, followed by illumination with a 830 nm diode. The second digitized picture was subtracted from the first to get a low-noise image. The centroids of the retroreflectors were used then to uniquely derive target attitude and range. The sensor presently operates to 80 feet and within +/- 40 degrees in pitch and yaw. Sensor operability is a concern if the sun is within a +/- 40 degree cone angle to the target. The present sensor performance characteristics are less than 1 percent range error and less than 1 degree angle error. Future sensor development is anticipated to extend the operating range to 150 feet and reduce the cone angle of sensor inoperability to within +/- 10 degrees of direct sunlight. Performance improvements also are anticipated. TRW currently is developing a system that utilizes dual cameras with simultaneous diode illumination. Although further development is being pursued, the basic system has proven sound, and the sensor is essentially ready for application.

  1. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  2. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to... approves a higher velocity, the velocity of the air current in the trolley haulage entries shall be limited to not more than 250 feet per minute. A higher air velocity may be required to limit the...

  3. Connections between density, wall-normal velocity, and coherent structure in a heated turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley

    2015-11-01

    Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  4. Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement

    PubMed Central

    Yang, Bo; Hu, Di; Wu, Lei

    2016-01-01

    A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive

  5. Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement.

    PubMed

    Yang, Bo; Hu, Di; Wu, Lei

    2016-01-01

    A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)², which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive

  6. Sensor Technology and Performance Characteristics

    EPA Science Inventory

    The US EPA is currently involved in detailed laboratory and/or field studies involving a wide variety of low cost air quality sensors currently being made available to potential citizen scientists. These devices include sensors associated with the monitoring of nitrogen dioxide (...

  7. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  8. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  9. Mass Sensor

    SciTech Connect

    Adams, B.E.

    2001-01-18

    The purpose of this CRADA was to use Honeywell's experience in low temperature cofire ceramics and traditional ceramics to assemble a relatively low-cost, mass-producible miniature mass analyzer. The specific design, given to us by Mass Sensors, LLC, was used to test for helium. The direct benefit for the participant was to have a prototype unit assembled for the purpose of proof of concept and the ability to secure venture capital investors. From that, the company would begin producing their own product for sale. The consumer/taxpayer benefits come from the wide variety of industries that can utilize this technology to improve quality of life. Medical industry can use this technology to improve diagnostic ability; manufacturing industry can use it for improved air, water, and soil monitoring to minimize pollution; and the law enforcement community can use this technology for identification of substances. These are just a few examples of the benefit of this technology. The benefits to DOE were in the area of process improvement for cofire and ceramic materials. From this project we demonstrated nonlinear thickfilm fine lines and spaces that were 5-mil wide with 5-mil spaces; determined height-to diameter-ratios for punched and filled via holes; demonstrated the ability to punch and fill 5-mil microvias; developed and demonstrated the capability to laser cut difficult geometries in 40-mil ceramic; developed and demonstrated coupling LTCC with standard alumina and achieving hermetic seals; developed and demonstrated three-dimensional electronic packaging concepts; and demonstrated printing variable resistors within 1% of the nominal value and within a tightly defined ratio. The capability of this device makes it invaluable for many industries. The device could be used to monitor air samples around manufacturing plants. It also could be used for monitoring automobile exhaust, for doing blood gas analysis, for sampling gases being emitted by volcanoes, for studying

  10. Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities

    SciTech Connect

    Giangrande S. E.; Luke, E. P.; Kollias, P.

    2012-02-01

    Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

  11. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing.

    PubMed

    Masani, Kei; Vette, Albert H; Abe, Masaki O; Nakazawa, Kimitaka

    2014-03-01

    The purpose of this study was to test the hypothesis that the center of pressure (COP) velocity reflects the center of mass (COM) acceleration due to a large derivative gain in the neural control system during quiet standing. Twenty-seven young (27.2±4.5 years) and twenty-three elderly (66.2±5.0 years) subjects participated in this study. Each subject was requested to stand quietly on a force plate for five trials, each 90 s long. The COP and COM displacements, the COP and COM velocities, and the COM acceleration were acquired via a force plate and a laser displacement sensor. The amount of fluctuation of each variable was quantified using the root mean square. Following the experimental study, a simulation study was executed to investigate the experimental findings. The experimental results revealed that the COP velocity was correlated with the COM velocity, but more highly correlated with the COM acceleration. The equation of motion of the inverted pendulum model, however, accounts only for the correlation between the COP and COM velocities. These experimental results can be meaningfully explained by the simulation study, which indicated that the neural motor command presumably contains a significant portion that is proportional to body velocity. In conclusion, the COP velocity fluctuation reflects the COM acceleration fluctuation rather than the COM velocity fluctuation, implying that the neural motor command controlling quiet standing posture contains a significant portion that is proportional to body velocity. PMID:24444652

  12. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  13. About measuring velocity dispersions

    NASA Astrophysics Data System (ADS)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  14. In situ correlative measurements for the ultraviolet differential absorption lidar and the high spectral resolution lidar air quality remote sensors: 1980 PEPE/NEROS program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.

    1981-01-01

    In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.

  15. Steel Spheres and Skydiver--Terminal Velocity

    ERIC Educational Resources Information Center

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.

  16. Improvement of Toluene Selectivity via the Application of an Ethanol Oxidizing Catalytic Cell Upstream of a YSZ-Based Sensor for Air Monitoring Applications

    PubMed Central

    Sato, Tomoaki; Breedon, Michael; Miura, Norio

    2012-01-01

    The sensing characteristics of a yttria-stabilized zirconia (YSZ)-based sensor utilizing a NiO sensing-electrode (SE) towards toluene (C7H8) and interfering gases (C3H6, H2, CO, NO2 and C2H5OH) were evaluated with a view to selective C7H8 monitoring in indoor atmospheres. The fabricated YSZ-based sensor showed preferential responses toward 480 ppb C2H5OH, rather than the target 50 ppb C7H8 at an operational temperature of 450 °C under humid conditions (RH ≃ 32%). To overcome this limitation, the catalytic activity of Cr2O3, SnO2, Fe2O3 and NiO powders were evaluated for their selective ethanol oxidation ability. Among these oxides, SnO2 was found to selectively oxidize C2H5OH, thus improving C7H8 selectivity. An inline pre-catalytic cell loaded with SnO2 powder was installed upstream of the YSZ-based sensor utilizing NiO-SE, which enabled the following excellent abilities by selectively catalyzing common interfering gases; sensitive ppb level detection of C7H8 lower than the established Japanese Guideline value; low interferences from 50 ppb C3H6, 500 ppb H2, 100 ppb CO, 40 ppb NO2, as well as 480 ppb C2H5OH. These operational characteristics are all indicative that the developed sensor may be suitable for real-time C7H8 concentration monitoring in indoor environments. PMID:22666053

  17. A cavity ring-down spectroscopy sensor for measurements of gaseous elemental mercury - Part 1: Development for high time resolution measurements in ambient air

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmüller, H.; Faïn, X.; Moore, C.

    2012-12-01

    The ability to make high time resolution measurements of gaseous elemental mercury (GEM) concentrations in air is imperative for the understanding of mercury cycling. Here we describe further development and field implementation of a laboratory prototype pulsed cavity ring-down spectroscopy (CRDS) system for high time resolution, continuous and automated measurement of GEM concentrations in ambient air. In particular, we present use of an external, isotopically enriched Hg cell for automated wavelength locking and wavelength stabilization to maintain laser wavelength on the peak of GEM absorption line in ambient air. We further describe implementation of differential absorption measurements using a piezoelectric tuning element that allows for continuous accounting of system baseline extinction losses needed to calculate GEM absorption coefficients. Data acquisition systems and software programs were modified to acquire high-speed ring-down data at 50 Hz repetition rate as well as process and analyze data in real time. The system was installed in a mobile trailer, and inlet systems and temperature controls were designed to minimize effects of changes in ambient air temperature and ozone (O3) concentration. Data that identify technical challenges and interferences that occurred during measurements, including temperature fluctuations, interferences by ambient O3 and drifts in frequency conversion efficiencies are discussed. Successful development of a CRDS system capable of measuring ambient air GEM concentrations with high time resolution is based on minimizing these interferences.

  18. Sensor Evaluation Report

    EPA Science Inventory

    This report is the result of low cost air quality sensor performance trials conducted in the NERL’s on-site laboratories located in the Research Triangle Park, NC during 2012-2013. Such trials were viewed as highly valuable for all parties following the conclusion of the U.S. E...

  19. Measurements of Shaped Charge Jet Velocity

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2013-06-01

    Penetration depth is an important requirement in oil/gas well perforating jobs. The depth determines how far the wellbore can directly communicate with reservoir fluids. Deep perforation charges are widely used in oilfield industry and most of those are powder metal liner charge for no carrot-like slug left as solid liner does. Comprehensive measurements for the powder metal liner shaped charge jet characteristics, namely, the jet density and velocity, are needed to predict the shaped charge performance and to plan the perforating job. This paper focuses on an experimental work of jet velocity measurements. A medium size of powder metal liner charges (27 grams HMX) is used in the tests. The powder jet shoots through a stack of limestone blocks with shorting switch set in between. Half inch air-gap between two blocks is design to provide space for jet traveling in air to record free fly velocity, meanwhile the jet penetration velocity in the limestone is measured. Aluminum foil switches are used to record the jet Time of Arrival (TOA). The charged switch shorted by the metal jet when it arrives. The shorting signal is recorded. The two velocities can be used to estimate the jet penetration effectiveness. A series of TOA tests show that jet velocity along its length linearly decreases from jet tip to tail until the stagnation points referring to which jet material moves in opposite direction.

  20. Tropospheric Airborne Meteorological Data and Reporting (TAMDAR) Icing Sensor Performance during the 2003/2004 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Nguyen, Louis A.; Daniels, Taumi; Minnis, Patrick; Schaffner, Phillip R.; Cagle, Melinda F.; Nordeen, Michele L.; Wolff, Cory A.; Anderson, Mark V.; Mulally, Daniel J.

    2005-01-01

    NASA Langley Research Center and its research partners from the University of North Dakota (UND) and the National Center for Atmospheric Research (NCAR) participated in the AIRS II campaign from November 17 to December 17, 2003. AIRS II provided the opportunity to compare TAMDAR in situ in-flight icing condition assessments with in situ data from the UND Citation II aircraft's Rosemont system. TAMDAR is designed to provide a general warning of ice accretion and to report it directly into the Meteorological Data Communications and Reporting System (MDCRS). In addition to evaluating TAMDAR with microphysical data obtained by the Citation II, this study also compares these data to the NWS operational in-flight icing Current Icing Potential (CIP) graphic product and with the NASA Advanced Satellite Aviation-weather Products (ASAP) Icing Severity product. The CIP and ASAP graphics are also examined in this study to provide a context for the Citation II's sorties in AIRS II.