Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete
NASA Astrophysics Data System (ADS)
Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.
2018-02-01
Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.
Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete
NASA Astrophysics Data System (ADS)
Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.
2018-06-01
Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.
Risk management of low air void asphalt concrete mixtures.
DOT National Transportation Integrated Search
2013-07-01
Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...
Correlation of air void parameters obtained by linear traverse with freeze-thaw durability.
DOT National Transportation Integrated Search
1983-01-01
The correlations obtainable from comparisons of the various air void parameters with the freeze-thaw durability of concretes are listed. It is shown that correlations are no better when only small voids are used than when the total void content is us...
DOT National Transportation Integrated Search
2014-07-01
The presence of water in asphalt pavements is detrimental to the life of the pavement. Most construction specifications require the pavement to be compacted to a specific air void content. As an asphalt pavement's air void contents increase, the perm...
DOT National Transportation Integrated Search
2014-07-01
The presence of water in asphalt pavements is detrimental to the life of the pavement. Most : construction specifications require the pavement to be compacted to a specific air void content. As an asphalt : pavements air void content increases, th...
Comparison of air void content measurements in fresh versus hardened concretes.
DOT National Transportation Integrated Search
1990-01-01
This study compares the air content of freshly mixed and hardened concretes. At the fresh stage, pressure meters (Types A and B) and a volumetric meter were used to determine the air content. At the hardened stage, the air content was calculated usin...
Evaluation of open-graded friction course mixture : technical assistance report.
DOT National Transportation Integrated Search
2004-10-01
Open-graded friction course (OGFC) is a porous, gap-graded, predominantly single size aggregate bituminous mixture that contains a high percentage of air voids. The high air void content and the open structure of this mix promote the effective draina...
Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption
Lukovic, Mladena; Ye, Guang
2015-01-01
In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801
Civil Engineering Applications of Ground Penetrating Radar in Finland
NASA Astrophysics Data System (ADS)
Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka
2014-05-01
Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt radar for the thickness evaluation of thin asphalt layers. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen
2018-05-01
The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.
Air void analyzer for plastic concrete.
DOT National Transportation Integrated Search
2008-10-01
The two main test methods that measure the air content in plastic concrete are the pressure method and the volumetric : or roll-a-meter method. Although these methods report the total air in the concrete, they do not distinguish between : entrained a...
Two reference time scales for studying the dynamic cavitation of liquid films
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, David E.
1991-01-01
Two formulas, one for characteristic time of filling a void with a vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. Based on this analysis, it is seen that in an oil film bearing operating under dynamic loads, the content of cavitation region should be oil vapor rather than the air liberated from solution, if the oil is free of entrained air.
Freeze-thaw resistance of concrete with marginal air content
DOT National Transportation Integrated Search
2007-05-01
Freeze-thaw resistance is a key durability factor for concrete pavements. Recommendations for the air void system parameters are normally 6 1 percent total air and a spacing factor of : < 0.20 millimeter (mm) (0.008 inch). However, it was observed...
Freeze-thaw resistance of concrete with marginal air content : final report
DOT National Transportation Integrated Search
2006-12-01
Freeze-thaw resistance is a key durability factor for concrete pavements. Recommendations for the air : void system parameters are normally: 6 1 percent total air, and spacing factor less than 0.20 : millimeters. However, it was observed that some...
DOT National Transportation Integrated Search
2016-10-01
Concrete freeze-thaw durability is prominently linked to the air void system within the concrete. : Concrete pavements in Kansas undergo repetitive freeze-thaw cycles. Total air content measurements : currently used on fresh concrete do not provide a...
DOT National Transportation Integrated Search
2016-10-01
Concrete freeze-thaw durability is prominently linked to the air void system : within the concrete. Concrete pavements in Kansas undergo repetitive : freeze-thaw cycles. Total air content measurements currently used on fresh : concrete do not provide...
NASA Technical Reports Server (NTRS)
Mahale, Anant D.; Prudhomme, Robert K.; Rebenfeld, Ludwig
1993-01-01
A technique based on matching the refractive index of an invading liquid to that of a fiber mat was used to study entrapment of air ('voids') that occurs during forced in-plane radial flow into nonwoven multifilament glass networks. The usefulness of this technique is demonstrated in quantifying and mapping the air pockets. Experiments with a series of fluids with surface tensions varying from 28 x 10(exp -3) to 36 x 10(exp -3) N/m, viscosities from 45 x 10(exp -3) to 290 x 10(exp -3) Pa.s, and inlet flow rates from 0.15 x 10(exp -6) to 0.75 x 10(exp -6) m(exp 3)/s, showed that void content is a function of the capillary number characterizing the flow process. A critical value of capillary number, Ca = 2.5 x 10(exp -3), identifies a zone below which void content increases exponentially with decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. Similar experiments carried out on surface treated nonwoven mats spanning a range of equilibrium contact angles from 20 deg to 78 deg showed that there is a critical contact angle above which negligible entrapment is observed. Below this value, there is no apparent effect of contact angle on the void fraction - capillary number relationship described earlier. Studies on the effect of filament wettability, and fluid velocity and viscosity on the size of the entrapment (voids) were also carried out. These indicate that larger sized entrapments which envelop more than one pore are favored by a low capillary number in comparison to smaller, pore level bubbles. Experiments were carried out on deformed mats - imposing high permeability spots at regular intervals on a background of low permeability. The effect of these spatial fluctuations in heterogeneity of the mat on entrapment is currently being studied.
Sulfur Impurities and the Microstructure of Alumina Scales
NASA Technical Reports Server (NTRS)
Smialek, James L.
1997-01-01
The relationship between the microstructure of alumina scales, adhesion, and sulfur content was examined through a series of nickel alloys oxidized in 1100 to 1200 deg. C cyclic or isothermal exposures in air. In cyclic tests of undoped NiCrAl, adhesion was produced when the sulfur content was reduced, without any change in scale microstructure. Although interfacial voids were not observed in cyclic tests of NiCrAl, they were promoted by long-term isothermal exposures, by sulfur doping, and in most exposures of NiAl. Two single crystal superalloys, PWA 1480 and Rene' N5, were also tested, either in the as-received condition or after the sulfur content had been reduced to less than 1 ppmw by hydrogen annealing. The unannealed alloys always exhibited spalling to bare metal, but interfacial voids were not observed consistently. Desulfurized PWA 1480 and Rene' N5 exhibited remarkable adhesion and no voidage for either isothermal or cyclic exposures. The most consistent microstructural feature was that, for the cases where voids did form, the scale undersides exhibited corresponding areas with ridged oxide grain boundaries. Voids were not required for spallation nor were other microstructural features essential for adhesion. These observations are consistent with the model whereby scale spallation is controlled primarily by interfacial sulfur segregation and the consequent degradation of oxide-metal bonding.
NASA Astrophysics Data System (ADS)
Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason
Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.
Addressing safety through evaluation and optimization of permeable friction course mixtures.
DOT National Transportation Integrated Search
2010-01-01
Permeable friction course (PFC) mixtures are a special type of hot mix asphalt characterized by a : high total air voids content to guarantee proper functionality and stone-on-stone contact of the coarse : aggregate fraction to ensure adequate mixtur...
NASA Astrophysics Data System (ADS)
Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.; Jalil, S. S. A.; Noh, M. S. M.; Idris, A. A.
2017-05-01
Plastic bottle for recycling can be found from the household waste stream, and most of them are made from Polyethylene Terephthalate. In this research, PET is utilized to explore the potential prospects to upgrade asphalt mixture properties. The objectives include deciding the best measure of PET to be used. For experimental, Marshall mix design was utilized to determine the ideal bitumen binder content and to test the modified mixture properties. The samples were created per the requirement for aggregate course wearing (ACW14) using the Standard Specification of Road Work (SSRW) in Malaysia. 20 samples were utilized to determine the binder content, and 30 samples were used to research the impact of modifying asphalt mixtures. 2%, 5%, 10%, 15% and 20% of PET by weight of the optimum binder content (4.8%) were tested. Optimum PET content is 10%, and the result shows a good stability with 16.824kN, 2.32g/cm3 bulk density, void filled with bitumen (VFB) with 71.35%, flow with 3.2248mm, air void (AV) with 4.53%, and void of mineral aggregate (VMA) with 15.15%. The outcomes showed that PET modifier gives better engineering properties. Therefore, 10% of PET by the weight of binder content was suggested as the best amount of the modifier.
DOT National Transportation Integrated Search
2015-11-01
Most departments of transportation, including Indiana, currently use the Superpave mixture design method to design asphalt mixtures. : This method specifies that the optimum asphalt content for a given gradation be selected at 4 percent air voids. Du...
Impact of Various Compaction Equipment on Hot-Mix Asphalt (HMA) Design in Ohio.
DOT National Transportation Integrated Search
1998-09-01
The study was initiated to examine the effect of different laboratory compaction devices on density, air voids, and optimum asphalt binder content for mixes designed for heavy volume traffic that are currently used in Ohio. A total of six and twelve ...
Air void analyzer for plastic concrete : technical summary report.
DOT National Transportation Integrated Search
2008-11-01
The best protection against freeze-thaw cycles in concrete is to have a good air void : system. Although microscopic, concrete is a porous material. Conventional field tests, : the volumetric or pressure tests, only provide the volume of air voids in...
X-ray Computed Tomography Assessment of Air Void Distribution in Concrete
NASA Astrophysics Data System (ADS)
Lu, Haizhu
Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.
Bias of air void system data from fly ash concretes.
DOT National Transportation Integrated Search
1983-01-01
Hollow censopheres of fly ash may have walls so thin that they will appear to be air voids when they appear on a polished slab prepared for air void determination by ASTM C457. Therefore the following precautions are recommended. 1. The operator of t...
Comparison of spacing factors as measured by the air-void analyzer and ASTM C457.
DOT National Transportation Integrated Search
2015-12-01
Freezing and thawing cycles will result in damage to concrete that is saturated : unless the concrete is properly entrained with small and well-dispersed air : voids. Durable concrete subject to cycles of freezing and thawing must : have an air-void ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Li, Yufeng; Wang, Shuai
Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%.more » Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.« less
NASA Astrophysics Data System (ADS)
Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar
2018-06-01
The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.
NASA Astrophysics Data System (ADS)
Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar
2018-02-01
The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.
Direct observation of void evolution during cement hydration
Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed; ...
2017-09-28
This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less
Direct observation of void evolution during cement hydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed
This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less
In-place voids monitoring of hot mix asphalt pavements : follow-up.
DOT National Transportation Integrated Search
2014-01-01
In order to validate the policy of allowing the adjustment of the asphalt cement to reduce the laboratory : air voids up to one percent, cores were taken over a period of four years on 19 paving projects and : tested for air voids. After being compac...
Evaluation of the RapidAir 457 air void analyzer.
DOT National Transportation Integrated Search
2012-03-01
An adequate air void system is imperative to produce concrete with freeze-thaw durability in a wet freeze environment such as found in Iowa. Specifications rely on a percentage of air obtained in the plastic state by the pressure meter. Actual, in pl...
DOT National Transportation Integrated Search
2006-01-01
The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...
NASA Astrophysics Data System (ADS)
Peterson, Karl
Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy assessment methods employed primarily by the remote sensing/satellite imaging community.
Air void characteristics of hardened concrete, 1945-1980.
DOT National Transportation Integrated Search
1985-01-01
Observations at the Research Council, coupled with the national interest in possible changes in the air void characteristics of air-entrained concretes because of the wide use of admixtures and changes in cement properties, raised a question as to wh...
DOT National Transportation Integrated Search
2015-06-01
Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...
Air void clustering : [technical summary].
DOT National Transportation Integrated Search
2015-06-01
Air void clustering around coarse aggregate in concrete has been : identified as a potential source of low strengths in concrete mixes by : several Departments of Transportation around the country. Research : was carried out to (1) develop a quantita...
High Temperature VARTM of Phenylethynyl Terminated Imides
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.
2009-01-01
LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.
NASA Astrophysics Data System (ADS)
Ma, Wen; Liu, Fushun
Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.
NASA Astrophysics Data System (ADS)
Deng, Bo; Shi, Yaoyao
2017-11-01
The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.
Pramanik, Rocky; Asplin, John R; Jackson, Molly E; Williams, James C
2008-10-01
Apatite and brushite kidney stones share calcium and phosphate as their main inorganic components. We tested the hypothesis that these stone types differ in the amount of proteins present in the stones. Intact stones were intensively analyzed by microcomputed tomography (micro CT) for both morphology (including the volume of voids, i.e., space devoid of X-ray dense material) and mineral type. To extract all proteins present in kidney stones in soluble form we developed a three-step extraction procedure using the ground stone powder. Apatite stones had significantly higher levels of total protein content and void volume compared to brushite stones. The void volume was highly correlated with the total protein contents in all stones (r2 = 0.61, P < 0.0001), and brushite stones contained significantly fewer void regions and proteins than did apatite stones (3.2 +/- 4.5% voids for brushite vs. 10.8 +/- 11.2% for apatite, P < 0.005; 4.1 +/- 1.6% protein for brushite vs. 6.0 +/- 2.4% for apatite, P < 0.03). Morphological observations other than void volume did not correlate with protein content of stones, and neither did the presence or absence of minor mineral components. Our results show that protein content of brushite and apatite stones is higher than that was previously thought, and also suggest that micro CT-visible void regions are related to the presence of protein.
Density of Asphalt Concrete - How Much is Needed?
DOT National Transportation Integrated Search
1990-01-01
Density is one of the most important parameters in construction of asphalt : mixtures. A mixture that is properly designed and compacted will contain enough : air voids to prevent rutting due to plastic flow but low enough air voids to : prevent perm...
Technology evaluation of characterization of the air void system in concrete.
DOT National Transportation Integrated Search
2009-09-01
The objective of this project was to evaluate current technologies that have the capability of characterizing the air void system in concrete within the first several hours of placement. This objective was met by developing a comprehensive technology...
Technology evaluation on characterization of the air void system in concrete.
DOT National Transportation Integrated Search
2009-09-17
The objective of this project was to evaluate current technologies that have the capability of characterizing the air void system in concrete within the first several hours of placement. This objective was met by developing a comprehensive technology...
Mechanical properties and durability of crumb rubber concrete
NASA Astrophysics Data System (ADS)
Chylík, Roman; Trtík, Tomáš; Fládr, Josef; Bílý, Petr
2017-09-01
This paper is focused on concrete with admixture of rubber powder, generally called crumb rubber concrete (CRC). The inspiration was found in Arizona, where one of the first CRCs has been created. However, Arizona has completely different climates than Central Europe. Could we use the crumb rubber concrete on construction applications in the Central European climate too? The paper evaluates the influence of the rubber powder on material characteristics and durability of CRC. CRCs with various contents of fine and coarse crumb powder were compared. The tested parameters were slump, air content, permeability, resistance of concrete to water with deicing chemicals, compressive and splitting tensile strength. The tests showed that workability, compressive strength and permeability decreased as the amount of rubber increased, but the air content increased as the rubber content increased. Photos of air voids in cement matrix from electron microscope were captured. The results of laboratory tests showed that admixture of rubber powder in concrete could have a positive impact on durability of concrete and concurrently contribute to sustainable development. Considering the lower compressive strength, CRC is recommended for use in applications where the high strength of concrete is not required.
Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System
Hong, Won-Taek; Jung, Young-Seok; Kang, Seonghun; Lee, Jong-Sub
2016-01-01
The objective of this study is to estimate multiple-cycles of the soil-water characteristic curve (SWCC) using an innovative volumetric pressure plate extractor (VPPE), which is incorporated with a membrane and time domain reflectometry (TDR). The pressure cell includes the membrane to reduce the experimental time and the TDR probe to automatically estimate the volumetric water content. For the estimation of SWCC using the VPPE system, four specimens with different grain size and void ratio are prepared. The volumetric water contents of the specimens according to the matric suction are measured by the burette system and are estimated in the TDR system during five cycles of SWCC tests. The volumetric water contents estimated by the TDR system are almost identical to those determined by the burette system. The experimental time significantly decreases with the new VPPE. The hysteresis in the SWCC is largest in the first cycle and is nearly identical after 1.5 cycles. As the initial void ratio decreases, the air entry value increases. This study suggests that the new VPPE may effectively estimate multiple-cycles of the SWCC of unsaturated soils. PMID:28774139
Impact of hydrated cement paste quality and entrained air-void system on the durability of concrete.
DOT National Transportation Integrated Search
2011-06-30
This study is designed to examine whether traditional limits used to describe the air-void system still : apply to concrete prepared with new admixtures and materials. For this research, the concrete mixtures : prepared were characterized with tradit...
Comparison of spacing factors as measured by the air-void analyzer and ASTM C457.
DOT National Transportation Integrated Search
2015-12-01
The Kansas Department of Transportation (KDOT) began using the Air-Void Analyzer (AVA) in : 2001 and first incorporated an AVA spacing factor requirement into paving specifications beginning in late : 2002. In 2005, a statewide investigation to evalu...
Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S
2014-01-01
The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.
Distribution of voids in field concrete.
DOT National Transportation Integrated Search
1978-01-01
This study was intended to evaluate the air void characteristics of concrete in an attempt to identify, quantitatively or semi-quantitatively, different types of voids and to predict their influence on strength and durability. At the outset, it was a...
Use of electrical resistivity to detect underground mine voids in Ohio
Sheets, Rodney A.
2002-01-01
Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.
DOT National Transportation Integrated Search
2013-06-01
This report concerns a feasibility study on the use of a non-destructive and non-invasive method to determine the size distribution of air voids in fresh concrete, which will be used for laying concrete pavement. A preliminary review of different tec...
Development of a robust field technique to quantify the air-void distribution in fresh concrete.
DOT National Transportation Integrated Search
2013-07-01
In order to make concrete frost durable it is common to provide a small and well distributed air void system. Current measuring techniques require weeks to complete on hardened and polished samples of concrete. This report presents the results of a n...
Voids characteristics of asphaltic concrete containing coconut shell
NASA Astrophysics Data System (ADS)
Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed
2017-07-01
Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.
Impedance probe to measure local void fraction profiles
NASA Astrophysics Data System (ADS)
Teyssedou, A.; Tapucu, A.; Lortie, M.
1988-04-01
A conductivity-type local void measurement system has been developed. The effects of the sensor tip geometry, the unbalance of the front-end bridge, the comparator threshold level, and the mass fluxes on the response of the instrument have been studied. The system has been calibrated under air-water two-phase flow conditions using the quick-closing-valve technique. Comparison of the void profiles obtained with the conductivity probe with those obtained using an optical probe confirms the applicability of this system for two-phase (air-water) flows.
NASA Astrophysics Data System (ADS)
Warlick, Kent M.
While the addition of short fiber to 3D printed articles has increased structural performance, ultimate gains will only be realized through the introduction of continuous reinforcement placed along pre-planned load paths. Most additive manufacturing research focusing on the addition of continuous reinforcement has revolved around utilization of a prefrabricated composite filament or a fiber and matrix mixed within a hot end prior to deposition on a printing surface such that conventional extrusion based FDM can be applied. Although stronger 3D printed parts can be made in this manner, high quality homogenous composites are not possible due to fiber dominated regions, matrix dominated regions, and voids present between adjacent filaments. Conventional composite manufacturing processes are much better at creating homogeneous composites; however, the layer by layer approach in which they are made is inhibiting the alignment of reinforcement with loads. Automated Fiber Placement techniques utilize in plane bending deformation of the tow to facilitate tow steering. Due to buckling fibers on the inner radius of curves, manufacturers recommend a minimum curvature for path placement with this technique. A method called continuous tow shearing has shown promise to enable the placement of tows in complex patterns without tow buckling, spreading, and separation inherent in conventional forms of automated reinforcement positioning. The current work employs fused deposition modeling hardware and the continuous tow shearing technique to manufacture high quality fiber reinforced composites with high positional fidelity, varying continuous reinforcement orientations within a layer, and plastic elements incorporated enabling the ultimate gains in structural performance possible. A mechanical system combining concepts of additive manufacturing with fiber placement via filament winding was developed. Paths with and without tension inherent in filament winding were analyzed through microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity on top of an already deposited tow surface as evident by the fifty-six percent reduction in error tolerance profile achieved. Lastly, proof of concept articles with unique fiber paths and neat plastic elements incorporated were produced to demonstrate fiber placement along pre-planned load paths and the ability to achieve greater structural efficiency through the use of less material. The results show that high positional fidelity and high quality composites can be produced through the use of the tow shearing technique implemented in the developed mechanical system. The implementation of forced air cooling was critical in achieving fidelity and quality in transition regions. Alignment of continuous reinforcement with pre-planned load paths was demonstrated in the proof of concept article with varying fiber orientations within a layer. Combining fused deposition modeling of plastic with the placement of continuous reinforcement enabled a honeycomb composite to be produced with higher specific properties than traditional composites. Thus, the current system demonstrated a greater capability of achieving ultimate gains in structural performance than previously possible.
Laboratory measurements of electrical resistivity versus water content on small soil cores
NASA Astrophysics Data System (ADS)
Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.
2003-04-01
The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic concentration in water may be neglected during the sewage of macro voids as it corresponds to a small quantity of water for the studied samples. Soil solid components are generally electrical insulators, the conduction of electrical current only lies on two phenomenon occurring in water : (i) volume conduction controlled by the electrolyte concentration in water and the geometrical characteristics of macro voids network ; (ii) surface conduction controlled by the double diffuse layer that depends on the solid-liquid interactions, the specific surface of clay minerals and the geometry of particles contacts. For the water contained in macro voids the preeminent phenomenon seems to be volume conduction while for the water contained in micro voids, it seems to be surface conduction. This hypothesis satisfyingly explains the shape of the electrical resistivity versus water content curves obtained for three different oxisols with clayey, clayey-sandy and sandy-clayey texture. [1] Archie G.E. 1942. The electrical resistivity log as an aid in determining some reservoirs characteristics. Trans. AIME, 146, 54-67. [2] Braudeau E. et al. 1999. New device and method for soil shrinkage curve measurement and characterization. S.S.S.A.J., 63(3), 525-535.
Dynamic void behavior in polymerizing polymethyl methacrylate cement.
Muller, Scott D; McCaskie, Andrew W
2006-02-01
Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.
NASA Astrophysics Data System (ADS)
Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha
Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.
Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.
Satyanarayan, L; Haberman, Michael R; Berthelot, Yves H
2010-10-01
Cellular polypropylene polymer foams, also known as ferroelectrets, are compelling candidates for air-coupled ultrasonic transducer materials because of their excellent acoustic impedance match to air and because they have a piezoelectric d(33) coefficient superior to that of PVDF. This study investigates the performance of ferroelectret transducers in the generation and reception of ultrasonic waves in air. As previous studies have noted, the piezoelectric coupling coefficients of these foams depend on the number, size, and distribution of charged voids in the microstructure. The present work studies the influence of these parameters both theoretically and experimentally. First, a three-dimensional model is employed to explain the variation of piezoelectric coupling coefficients, elastic stiffness, and dielectric permittivity as a function of void fraction based on void-scale physics and void geometry. Laser Doppler vibrometer (LDV) measurements of the effective d(33) coefficient of a specially fabricated prototype transmitting transducer are then shown which clearly indicate that the charged voids in the ferroelectret material are randomly distributed in the plane of the foam. The frequency-dependent dynamic d(33) coefficient is then reported from 50 to 500 kHz for different excitation voltages and shown to be largely insensitive to drive voltage. Lastly, two ferroelectret transducers are operated in transmit-receive mode and the received signal is shown to accurately represent the corresponding signal generated by the transmitting transducer as measured using LDV.
NASA Astrophysics Data System (ADS)
Sudarja, Indarto, Deendarlianto, Haq, Aqli
2016-06-01
Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.
Effect of mix parameters on longevity of bituminous mixtures
NASA Astrophysics Data System (ADS)
Reichle, Clayton Matthew
This study was performed to evaluate the effects of varying aggregate sources, aggregate gradations on the stripping and rutting potential of bituminous based plant mixes specified by the Missouri Department of Transportation. The different aggregate combinations included two different aggregate sources (Potosi Dolomite and Jefferson City Dolomite) including two variations for the Jefferson City Dolomite mix to simulate a marginally in-specification mix and an out-of-specification but in-field tolerance mix. The "field" mix simulated the marginal mix where field tolerance of high dust and low binder content were maximized. All three mixes were evaluated for stripping susceptibility using the Tensile Strength Ratio (TSR) test and the Hamburg Wheel Tracking Device (HWTD). The mix characteristics (unit weight, effective binder content, and air voids) were used for a Level 3 analysis in the Mechanistic-Empirical Pavement Design Guide (MEPDG) to determine long term pavement distress conditions such as fatigue cracking, rutting, and IRI (smoothness). The Potosi mix exhibited the best resistance to rutting and stripping during both the TSR testing as well as the Hamburg testing. The Jefferson City In-Spec and Out-of-Spec mixes showed less resistance to rutting and stripping in order, respectively. This was expected for the Jefferson City mixes where the aggregate was of lower quality (higher Los Angeles Abrasion, Micro Deval loss, absorption, and deleterious materials). Also, in the case of the Jefferson City Out-of-Spec mix, the binder content was lower. Upon evaluating the mixes using the MEPDG software, it was shown that mix characteristics such as air voids, VMA, and VFA influenced the fatigue cracking, rutting, and IRI predictions to a minor degree.
Treatment of stress urinary incontinence with adipose tissue-derived stem cells.
Lin, Guiting; Wang, Guifang; Banie, Lia; Ning, Hongxiu; Shindel, Alan W; Fandel, Thomas M; Lue, Tom F; Lin, Ching-Shwun
2010-01-01
Effective treatment for stress urinary incontinence (SUI) is lacking. This study investigated whether transplantation of adipose tissue-derived stem cells (ADSC) can treat SUI in a rat model. Rats were induced to develop SUI by postpartum vaginal balloon dilation and bilateral ovariectomy. ADSC were isolated from the peri-ovary fat, examined for stem cell properties, and labeled with thymidine analog BrdU or EdU. Ten rats received urethral injection of saline as a control. Twelve rats received urethral injection of EdU-labeled ADSC and six rats received intravenous injection of BrdU-labeled ADSC through the tail vein. Four weeks later, urinary voiding function was assessed by conscious cystometry. The rats were then killed and their urethras harvested for tracking of ADSC and quantification of elastin, collagen and smooth muscle contents. Cystometric analysis showed that eight out 10 rats in the control group had abnormal voiding, whereas four of 12 (33.3%) and two of six (33.3%) rats in the urethra-ADSC and tail vein-ADSC groups, respectively, had abnormal voiding. Histologic analysis showed that the ADSC-treated groups had significantly higher elastin content than the control group and, within the ADSC-treated groups, rats with normal voiding pattern also had significantly higher elastin content than rats with voiding dysfunction. ADSC-treated normal-voiding rats had significantly higher smooth muscle content than control or ADSC-treated rats with voiding dysfunction. Transplantation of ADSC via urethral or intravenous injection is effective in the treatment and/or prevention of SUI in a pre-clinical setting.
40 CFR 86.1114-87 - Suspension and voiding of certificates of conformity.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Vehicles, Including Light-Duty Trucks § 86.1114-87 Suspension and voiding of certificates of... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Suspension and voiding of certificates... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...
Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.
2014-01-01
The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875
Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.
2004-01-01
We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.
Void-Free Lid for Food Packaging
NASA Technical Reports Server (NTRS)
Watson, C. D.; Farris, W. P.
1986-01-01
Flexible cover eliminates air pockets in sealed container. Universal food-package lid formed from flexible plastic. Partially folded, lid unfolded by depressing center portion. Height of flat portion of lid above flange thereby reduced. Pressure of food against central oval depression pops it out, forming dome that provides finger grip for mixing contents with water or opening lid. Therefore food stays fresh, allows compact stacking of partially filled containers, and resists crushing. Originally developed for packaging dehydrated food for use in human consumption on Space Shuttle missions. Other uses include home canning and commercial food packaging.
Advanced Signal Processing Techniques Applied to Terahertz Inspections on Aerospace Foams
NASA Technical Reports Server (NTRS)
Trinh, Long Buu
2009-01-01
The space shuttle's external fuel tank is thermally insulated by the closed cell foams. However, natural voids composed of air and trapped gas are found as by-products when the foams are cured. Detection of foam voids and foam de-bonding is a formidable task owing to the small index of refraction contrast between foam and air (1.04:1). In the presence of a denser binding matrix agent that bonds two different foam materials, time-differentiation of filtered terahertz signals can be employed to magnify information prior to the main substrate reflections. In the absence of a matrix binder, de-convolution of the filtered time differential terahertz signals is performed to reduce the masking effects of antenna ringing. The goal is simply to increase probability of void detection through image enhancement and to determine the depth of the void.
Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight
2016-01-01
After exposure in the field and laboratory soil block culture testing, the void content of woodâplastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...
Actions to Void Certificates for Vehicle and Engines
n cases where EPA has determines that manufacturers have provided inaccurate, incomplete or falsified certification information or failed to keep required records, the Clean Air Act gives the EPA the authority to void certificates.
NASA Astrophysics Data System (ADS)
Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira
2006-03-01
Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.
Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-Ichi; Maruhashi, Akira
2006-03-07
Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.
NASA Astrophysics Data System (ADS)
Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani
2018-04-01
Microstructured optical fibers (MOFs) allow a variety of advanced materials to be infiltrated in their air-voids for obtaining the increased fiber functionality, and offering a new versatile platform for developing the compact sensors devices. We aim to investigate the thermal characteristics of high-index core triangular hybrid polymer/silica MOFs with circular air-voids infused with polymer by using the analytical field model [1]. We demonstrate that infiltration of air-voids with polymer, e.g., polydimethylsiloxane (PDMS) can facilitate to tune the fundamental modal properties of MOF such as effective index of the mode, near and the far-field profiles, effective mode area and the numerical aperture over the temperature ranging from 0 °C to 100 °C, for different values of relative air-void ratios. The evolution of the mode shape for a given temperature has been investigated in transition from near-field to far-field regime. We have studied the thermal dependence of splice losses between hybrid MOF and the standard step-index single-mode optical fiber in combination with Fresnel losses. For enhancing the evanescent field interactions, we have evaluated fraction of power associated with fundamental mode of hybrid MOF. We have compared the accuracy of our results with those based on full-vector finite-difference (FD) method, as available in the literature.
Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres
NASA Astrophysics Data System (ADS)
Molendowska, Agnieszka; Wawrzenczyk, Jerzy
2017-10-01
This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.
NASA Technical Reports Server (NTRS)
Finckenor, J. L.
2003-01-01
To determie composite material properties' effects from porcessing variables, a 3 factorial designed experiment with two replicates was conducted. The factors were cure method (oven versus autoclave), layup (hand versus tape-laying machine), and thickness (8 versus 52 ply). Four material systems were tested: AS4/3501-6, IM7/8551-7, IM7/F655 bismaleimide (BMI), and shear tests on IM7/F584. Material properties were G(sub 12), v(sub 12), E(sub 1c) and E(sub 2c). Since the samples were necessarily nonstandard, strengths, though recorded, cannot be considered valid. Void content was also compared. Autoclave curing helped material properties for the low modulus fiber material but showed little benefit for higher stiffness fibers. The number of plies was very important for epoxy composites but not for the BMI. E(sub 1) was generally unaffected by any factor. Particularly high void content did correlate to reduced properties. Autoclave curing reduced void content over oven curiing but a moderate amount of voids, less than 1 percent void content, didnot correlate with material properties. Oven cures and hand layups can produce high-quality parts. Part thickness of epoxy composites is important, though cure optimization may improve performance. Significant variations can be caused by processing and it is important that test coupons always reflect the layup and processes of the final part.
Thermal inertia mapping of below ground objects and voids
NASA Astrophysics Data System (ADS)
Del Grande, Nancy K.; Ascough, Brian M.; Rumpf, Richard L.
2013-05-01
Thermal inertia (effusivity) contrast marks the borders of naturally heated below ground object and void sites. The Dual Infrared Effusivity Computed Tomography (DIRECT) method, patent pending, detects and locates the presence of enhanced heat flows from below ground object and void sites at a given area. DIRECT maps view contrasting surface temperature differences between sites with normal soil and sites with soil disturbed by subsurface, hollow or semi-empty object voids (or air gaps) at varying depths. DIRECT utilizes an empirical database created to optimize the scheduling of daily airborne thermal surveys to view and characterize unseen object and void types, depths and volumes in "blind" areas.
NASA Astrophysics Data System (ADS)
Tunstall, Lori Elizabeth
Air voids are deliberately introduced into concrete to provide resistance against frost damage. However, our ability to control air distribution in both traditional and nontraditional concrete is hindered by the limited amount of research available on air-entraining agent (AEA) interaction with both the solid and solution components of these systems. This thesis seeks to contribute to the information gap in several ways. Using tensiometry, we are able to quantify the adsorption capacity of cement, fly ash, and fly ash carbon for four commercial AEAs. These results indicate that fly ash interference with air entrainment is due to adsorption onto the glassy particles tucked inside carbon, rather than adsorption onto the carbon itself. Again using tensiometry, we show that two of the AEA show a stronger tendency to micellize and to interact with calcium ions than the others, which seems to be linked to the freezing behavior in mortars, since mortars made with these AEA require smaller dosages to achieve similar levels of protection. We evaluate the frost resistance of cement and cement/fly ash mortars by measuring the strain in the body as it is cooled and reheated. All of the mortars show some expansion at temperatures ≥ -42 °C. Many of the cement mortars are able to maintain net compression during this expansion, but none of the fly ash mortars maintain net compression once expansion begins. Frost resistance improves with an increase in AEA dosage, but no correlation is seen between frost resistance and the air void system. Thus, another factor must contribute to frost resistance, which we propose is the microstructure of the shell around the air void. The strain behavior is attributed to ice growth surrounding the void, which can plug the pores in the shell and reduce or eliminate the negative pore pressure induced by the ice inside the air void; the expansion would then result from the unopposed crystallization pressure, but this must be verified by future work. If the shell has numerous, tiny pores it is more difficult to eliminate suction, since more ice is needed to plug all the pores.
Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill
NASA Astrophysics Data System (ADS)
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-08-01
Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.
McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima
2018-04-01
Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.
DOT National Transportation Integrated Search
2007-09-01
Resin Modified Pavement (RMP) is a composite paving material consisting of a thin layer (2 inches) : of open graded hot mix asphalt (HMA) whose internal air voids (approximately 30% voids) are : filled with a latex rubber-modified portland cement gro...
Thermal and ultrasonic evaluation of porosity in composite laminates
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.
1992-01-01
The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.
Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.
Chen, Jun; Wang, Hao; Yao, Yangping
2016-07-01
In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenylethynyl Terminated Imide (PETI) Composites Made by High Temperature Vartm
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Lineberry, Quentin J.
2010-01-01
The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade. As these advanced structures increase in size and complexity, their production costs have grown significantly. A major contributor to these manufacturing costs is the requirement of elevated pressures, during high temperature processing, to create fully consolidated composite parts. Recently, NASA Langley has licensed a series of low viscosity Phenyl Ethynyl Terminated Imide, PETI, oligomers that possess a wide processing window to allow for Resin Transfer Molding, RTM, processing. These resins, PETI-8 and PETI-330, demonstrate void fractions of approx.1% under elevated pressure consolidation. However, when used with a standardized thermal curing cycle in a High Temperature Vacuum Assisted RTM (HT-VARTM) process, they display undesirable void contents in excess of 7%. It was determined previously that under the thermal cycles used for laminate fabrication, the phenylethynyl endcap underwent degradation leading to volatile evolution. Modifications to the processing cycle used in the laminate fabrication have reduced the void content significantly (typically less than 3%) for carbon fiber biaxially woven fabric. For carbon fiber uniaxial fabric, void contents of less than 2% have been obtained using both PETI-8 and PETI-330. The resins were infused into carbon fiber preforms at 260 C and cured between 316 C and 371 C. Photomicrographs of the panels were taken and void contents were determined by acid digestion. Mechanical properties of the panels were determined at both room and elevated temperatures. These include short beam shear and flexure tests. The results of this work are presented herein.
Experimental Detection and Characterization of Void using Time-Domain Reflection Wave
NASA Astrophysics Data System (ADS)
Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Zainal Abidin, M. H.; Mohammad, A. H.; Omar, A. H.
2018-04-01
Recent technologies in engineering views have brought the significant improvement in terms of performance and precision. One of those improvements is in geophysics studies for underground detection. Reflection method has been demonstrated to able to detect and locate subsurface anomalies in previous studies, including voids. Conventional method merely involves field testing only for limited areas. This may lead to undiscovered of the void position. Problems arose when the voids were not recognised in early stage and thus, causing hazards, costs increment, and can lead to serious accidents and structural damages. Therefore, to achieve better certainty of the site investigation, a dynamic approach is needed to be implemented. To estimate and characterize the anomalies signal in a better way, an attempt has been made to model air-filled void as experimental testing at site. Robust detection and characterization of voids through inexpensive cost using reflection method are proposed to improve the detectability and characterization of the void. The result shows 2-Dimensional and 3-Dimensional analyses of void based on reflection data with P-waves velocity at 454.54 m/s.
NASA Technical Reports Server (NTRS)
Feedback, Daniel L.; Cibuzar, Branelle R.
2009-01-01
The Urine Monitoring System (UMS) is a system designed to collect an individual crewmember's void, gently separate urine from air, accurately measure void volume, allow for void sample acquisition, and discharge remaining urine into the Waste Collector Subsystem (WCS) onboard the International Space Station. The Urine Monitoring System (UMS) is a successor design to the existing Space Shuttle system and will resolve anomalies such as: liquid carry-over, inaccurate void volume measurements, and cross contamination in void samples. The crew will perform an evaluation of airflow at the ISS UMS urinal hose interface, a calibration evaluation, and a full user interface evaluation. o The UMS can be used to facilitate non-invasive methods for monitoring crew health, evaluation of countermeasures, and implementation of a variety of biomedical research protocols on future exploration missions.
Method and apparatus for igniting an in situ oil shale retort
Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.
1981-01-01
A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less
Advanced manufacturing development of a composite empennage component for L-1011 aircraft
NASA Technical Reports Server (NTRS)
1978-01-01
Work continued toward the development of tooling and processing concepts required for a cocured hat/skin cover assembly. A plan was developed and implemented to develop the process for using preimpregnated T300/5208 with a resin content of 34 + or - 2 percent by weight. Use of this material results in a simplified laminating process because removal by bleeding or prebleeding is no longer required. The approach to this task basically consists of fabricating and testing flat laminated panels and simulated structural panels to verify known processing techniques relative to end-laminate quality. The flat panels were used to determine air bleeding arrangement and required cure cycle. Single and multihat-stiffened panels were fabricated using the established air bleeding arrangement and cure cycle with the resulting cured parts yielding excellent correlation of ply thickness with all surfaces clear of porosity and voids.
NASA Astrophysics Data System (ADS)
Park, Sang Yoon; Choi, Chi Hoon; Choi, Won Jong; Hwang, Seong Soon
2018-05-01
The non-autoclave curing technique with vacuum bag only (VBO) prepreg has been conceived as a cost-effective manufacturing method for producing high-quality composite part. This study demonstrated the feasibility of improving composite part's performances and established the effective mitigation strategies for manufacturing induced defects, such as internal voids and surface porosity. The experimental results highlighted the fact that voids and surface porosity were clearly dependent on the resin viscosity state at an intermediate dwell stage of the curing process. Thereafter, the enhancement of resin flow could lead to achieving high quality parts with minimal void content (1.3%) and high fiber fraction (53 vol.%). The mechanical testing showed comparable in-plane shear and compressive strength to conventional autoclave. The microscopic observations also supported the evidence of improved interfacial bonding in terms of excellent fiber wet-out and minimal void content for the optimized cure cycle condition.
Free-Volume Nanostructurization in Ga-Modified As2Se3 Glass.
Shpotyuk, Ya; Ingram, A; Shpotyuk, O; Dziedzic, A; Boussard-Pledel, C; Bureau, B
2016-12-01
Different stages of intrinsic nanostructurization related to evolution of free-volume voids, including phase separation, crystalline nuclei precipitation, and growth, were studied in glassy As2Se3 doped with Ga up to 5 at. %, using complementary techniques of positron annihilation lifetime spectroscopy, X-ray powder diffraction, and scanning electron microscopy with energy-dispersive X-ray analysis. Positron lifetime spectra reconstructed in terms of a two-state trapping model testified in favor of a native void structure of g-As2Se3 modified by Ga additions. Under small Ga content (below 3 at. %), the positron trapping in glassy alloys was dominated by voids associated with bond-free solid angles of bridging As2Se4/2 units. This void agglomeration trend was changed on fragmentation with further Ga doping due to crystalline Ga2Se3 nuclei precipitation and growth, these changes being activated by employing free volume from just attached As-rich glassy matrix with higher content of As2Se4/2 clusters. Respectively, the positron trapping on free-volume voids related to pyramidal AsSe3/2 units (like in parent As2Se3 glass) was in obvious preference in such glassy crystalline alloys.
Modeling quiescent phase transport of air bubbles induced by breaking waves
NASA Astrophysics Data System (ADS)
Shi, Fengyan; Kirby, James T.; Ma, Gangfeng
Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Jorge Luiz Goes; Passos, Julio Cesar; Verschaeren, Ruud
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi platemore » is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)« less
Low-void polyimide resins for autoclave processing
NASA Technical Reports Server (NTRS)
Jones, R. J.; Vaughan, R. W.
1972-01-01
Development of an advanced A-type polyimide, which can be used to produce autoclave molded, low-void content composites suitable for use at temperatures up to 316 C is reported. It consists of a mixture of methyl nadic anhydride, an 80:20 molar ratio of methylene dianaline and thiodianilene, and pyromellitic dianhydride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninokata, H.; Deguchi, A.; Kawahara, A.
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at themore » phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.« less
An Interlab Evaluation of the Variability in the ASTM C 457 Linear Traverse Method.
DOT National Transportation Integrated Search
2005-12-01
The vital role of air entrainment in preventing freeze-thaw damage in concrete is well known and well documented [Powers 1949]. Through the action of an air entraining agent (AEA) added to fresh concrete, an air void system comprised of various micro...
Mechanisms for Ductile Rupture - FY16 ESC Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip
2017-01-01
Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less
Neutron imaging of diabatic two-phase flows relevant to air conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geoghegan, Patrick J; Sharma, Vishaldeep
The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution willmore » have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility« less
High voltage capability electrical coils insulated with materials containing SF.sub.6 gas
Lanoue, Thomas J.; Zeise, Clarence L.; Wagenaar, Loren; Westervelt, Dean C.
1988-01-01
A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.
Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash
NASA Astrophysics Data System (ADS)
Kristiawan, S. A.; Sunarmasto; Murti, G. Y.
2017-02-01
Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.
Constraints on Cosmology and Gravity from the Dynamics of Voids.
Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen
2016-08-26
The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.
Effect of laminate edge conditions on the formation of microvoids in composite laminates
NASA Astrophysics Data System (ADS)
Anderson, J. P.; Altan, M. C.
2015-05-01
Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.
NASA Astrophysics Data System (ADS)
Muntaha, M.
2017-11-01
Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne
2013-01-01
Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.
Force measurement-based discontinuity detection during friction stir welding
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...
2017-02-23
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Force measurement-based discontinuity detection during friction stir welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.
Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less
Impact of cholesterol on voids in phospholipid membranes
NASA Astrophysics Data System (ADS)
Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo
2004-12-01
Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.
Kirkendall void formation in reverse step graded Si1-xGex/Ge/Si(001) virtual substrates
NASA Astrophysics Data System (ADS)
Sivadasan, Vineet; Rhead, Stephen; Leadley, David; Myronov, Maksym
2018-02-01
Formation of Kirkendall voids is demonstrated in the Ge underlayer of reverse step graded Si1-xGex/Ge buffer layers grown on Si(001) using reduced pressure chemical vapour deposition (RP-CVD). This phenomenon is seen when the constant composition Si1-xGex layer is grown at high temperatures and for x ≤ 0.7. The density and size of the spherical voids can be tuned by changing Ge content in the Si1-xGex and other growth parameters.
High Temperature VARTM of Phenylethynyl Terminated Imides (PETI) Resins
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Cano, Roberto J.; Britton, Sean M.; Watson, Kent A.; Jensen, Brian J.; Connell, John W.
2010-01-01
Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications a void fraction of less than 2% is desired. In the current study, two PETI resins, LARCTM PETI-330 and LARCTM PETI-8 have been used to fabricate test specimens using HT-VARTM. The resins were infused into carbon fiber preforms at 260 C and cured between 316 C and 371 C. Modifications to the thermal cycle used in the laminate fabrication have reduced the void content significantly (typically < 3%) for carbon fiber biaxially woven fabric. Photomicrographs of the panels were taken and void contents were determined by acid digestion. For carbon fiber uniaxial fabric, void contents of less than 2% have been obtained using both PETI-8 and PETI-330. Mechanical properties of the panels were determined at both room and elevated temperatures. These include short beam shear and flexure tests. The results of this work are presented herein.
NASA Astrophysics Data System (ADS)
Polowick, Christopher
The Low Cost Composites (LCC) group at Carleton University is studying out-of-autoclave composite manufacturing processes such as Vacuum Assisted Resin Transfer Moulding (VARTM) and Closed Cavity Bag Moulding (CCBM). These processes are used to produce inexpensive and high performance components for the GeoSurv II, an Unmanned Aerial Vehicle (UAV) being developed at Carleton University. This research has focused on optimizing VARTM processing parameters to reduce the weight and improve the strength and surface finish of GeoSurv II composite components. A simulation was developed to model resin flow through in VARTM infusions and was used to simulate mould filling and resin emptying of the GeoSurv II inverted V-empennage and mission avionics hatch. The resin infusion schemes of these parts were designed to ensure full preform resin saturation, and minimize thickness variations. An experimental study of the effects of the presence of a corner on composite thickness, void content, and strength was conducted. It was found that inside corners result in local increases in thickness and void content due to poor preform compaction. A novel bagging technique was developed to improve corner compaction, and this technique was shown to reduce thickness variability and void content. The strength, void content, and thickness variation were found to be heavily dependent on corner radius, with corner radii greater than 6.4 mm displaying the greatest improvement in performance for the layups considered. The design of the empennage and hatch mould incorporated the results of this study to improve the quality of these components.
NASA Astrophysics Data System (ADS)
Iveson, Simon M.
2003-06-01
Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.
Method for Molding Structural Parts Utilizing Modified Silicone Rubber
NASA Technical Reports Server (NTRS)
Weiser, Erik S. (Inventor); Baucom, Robert M. (Inventor); Snoha, John J. (Inventor)
1998-01-01
This invention improves upon a method for molding structural parts from preform material. Preform material to be used for the part is provided. A silicone rubber composition containing entrained air voids is prepared. The silicone rubber and preform material assembly is situated within a rigid mold cavity used to shape the preform material to die desired shape. The entire assembly is heated in a standard heating device so that the thermal expansion of the silicone rubber exerts the pressure necessary to force the preform material into contact with the mold container. The introduction of discrete air voids into the silicone rubber allows for accurately controlled pressure application on the preform material at the cure temperature.
DOT National Transportation Integrated Search
2012-06-01
Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a : specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize micros...
Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air
NASA Astrophysics Data System (ADS)
Lasemi, N.; Pacher, U.; Zhigilei, L. V.; Bomatí-Miguel, O.; Lahoz, R.; Kautek, W.
2018-03-01
Incubation effects in the nanosecond laser ablation of metals exhibit a strong dependence on the thermal and mechanical properties of both the target material and the background gas or liquid. The incubation in air is controlled mainly by thermal properties such as the heat of vaporization. In liquid, the correlation of the incubation and the ultimate tensile stress of the metals suggests that incubation may be related to the mechanical impact on the solid material by the cavitation bubble collapse, causing accumulation of voids and cracks in the subsurface region of the ablation craters. At high ultimate tensile stress, however, the low sensitivity to the environment suggests that the mechanical impact is likely to play a negligible role in the incubation. Finally, the correlation between the incubation and the carbon content of alcoholic liquids may be explained by an absorptivity increase of the cavity surfaces due to carbonaceous deposits generated by laser-induced pyrolysis, or by the mechanical impact of long-living bubbles at higher dynamic viscosity of liquids.
NASA Astrophysics Data System (ADS)
Elmehdi, Hussein Mohamed
This thesis is an analysis of voids in the breadmaking process, more specifically the effect of gas cells entrapped in the dough during mixing, their expansion during fermentation, and their relationship to the breadcrumb structure in the final product. This is important to food scientists because the voids ultimately influence the structural integrity of bread and hence its quality. Understanding how voids affect the viscoelastic properties of dough is also a challenging problem in soft condensed matter physics. Longitudinal ultrasonic velocity and attenuation measurements, performed at 54 kHz, investigated changes in the mechanical properties of dough and bread as void concentration was varied. In the first part of the thesis, the effect of voids on the properties of unyeasted dough at the end of mixing was investigated. As φ is increased, the attenuation coefficient increased linearly with φ hence the change in attenuation is proportional to the number of voids, allowing the combined effects of scattering and absorption by single voids to be directly determined. By contrast, the ultrasonic velocity decreased dramatically with increasing φ in the range 0.0 12 < φ < 0.03, while at higher φ, the velocity decrease was less rapid. An effective medium model successfully modeled the viscoelastic behavior of the dough at all void fraction values, provided that the shear modulus of the matrix was permitted to vary. The same ultrasonic technique was also used to monitor the increase in gas cell size due to CO 2 production during fermentation of yeasted dough. A large decrease in velocity and an increase in the attenuation coefficient were observed as the gas cells grew. In addition, at early fermentation times, a substantial contribution to the velocity decrease arises from a reduction in the shear modulus of the dough matrix. This occurs because the pH drops as CO2 molecules dissolve in the matrix and intermolecular interactions are weakened due to protein chain charge repulsion effects. In the second part of the thesis, freeze-dried breadcrumb structure was investigated. To change the size of the air cells, the dough was proofed for various times. Ultrasonic velocity and amplitude decrease with increasing φ. The experimental data were found to be in reasonable agreement with theoretical models for the elasticity of isotropic cellular foams and tortuosity. The effects of anisotropy in breadcrumb structure were studied by compressing samples uniaxially, thereby transforming the shape of the air cells from approximately spherical to elongated ellipsoids. Ultrasonic measurements were taken in the directions parallel and perpendicular to the strain. These results indicated that the path by which sound propagates is critical. The data were interpreted using the same two theoretical models, taking into account anisotropy effects. The tortuosity model was able to interpret the void fraction dependence of the velocity along the two orthogonal directions, thus giving a way of relating changes in ultrasonic velocity to changes in breadcrumb structure. This thesis demonstrates the potential for using ultrasound as a non-destructive, cheap and accurate tool for studying the effect of voids (and their expansion) on dough properties. These ultrasonic techniques can also be used to investigate the effect of air cells on the structural integrity of breadcrumb and hence be a useful tool for quantitatively assessing bread quality.
Mechanical Properties versus Morphology of Ordered Polymers. Volume III. Part I
1982-08-01
measured by wide angle x-ray scattering and differential scanning calorimetry, is unrelated to the diffuse scattered intensity [62]. Cellulose acetate which...increasing void fraction, in air swollen cellulose . Comparison of the volume fraction of voids calculated from the SAXS integrated intensity with...1964). 63. P.H. Hermans, D. Heikens, and A. Weidinger, "A Quantitative Investigation on the X-Ray Small Angle Scattering of Cellulose Fibers. Part II
Comparisons of sodium void and Doppler reactivities in large oxide and carbide LMFBRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, S F
Sodium void and Doppler reactivities in two full scale (3000 MWth) LMFBRs are analyzed; one is fueled with UO/sub 2/ - PuO/sub 2/ and the other is fueled with UC - PuC. These two reactors are analyzed for beginning of life as well as for beginning and end of equilibrium cycle conditions, and the variations of these two safety parameters with burnup are explained. A series of comperative analyses of these two and several hypothetical reactors are carried out to determine how differences in fuel type, sodium content, and heavy metal concentration between an oxide and a carbide reactor affectmore » their sodium void and Doppler reactivities. The effect of the presence of conrol poison on sodium void reactivity is also addressed.« less
Cement-based materials' characterization using ultrasonic attenuation
NASA Astrophysics Data System (ADS)
Punurai, Wonsiri
The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior. Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a realistic model for ultrasonic wave propagation study for concrete.
Critical analysis of partial discharge dynamics in air filled spherical voids
NASA Astrophysics Data System (ADS)
Callender, G.; Golosnoy, I. O.; Rapisarda, P.; Lewin, P. L.
2018-03-01
In this paper partial discharge (PD) is investigated inside a spherical air filled void at atmospheric pressure using a drift diffusion model. Discharge dynamics consisted of an electron avalanche transitioning into positive streamer, in agreement with earlier work on dielectric barrier discharges. Different model configurations were utilised to test many of the concepts employed in semi-analytical PD activity models, which use simplistic descriptions of the discharge dynamics. The results showed that many of these concepts may be erroneous, with significant discrepancies between the canonical reasoning and the simulation results. For example, the residual electric field, the electric field after a discharge, is significantly lower than the estimates used by classical PD activity models in the literature.
NASA Astrophysics Data System (ADS)
Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc
2008-11-01
A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.
A model for predicting thermal properties of asphalt mixtures from their constituents
NASA Astrophysics Data System (ADS)
Keller, Merlin; Roche, Alexis; Lavielle, Marc
Numerous theoretical and experimental approaches have been developed to predict the effective thermal conductivity of composite materials such as polymers, foams, epoxies, soils and concrete. None of such models have been applied to asphalt concrete. This study attempts to develop a model to predict the thermal conductivity of asphalt concrete from its constituents that will contribute to the asphalt industry by reducing costs and saving time on laboratory testing. The necessity to do the laboratory testing would be no longer required when a mix for the pavement is created with desired thermal properties at the design stage by selecting correct constituents. This thesis investigated six existing predictive models for applicability to asphalt mixtures, and four standard mathematical techniques were used to develop a regression model to predict the effective thermal conductivity. The effective thermal conductivities of 81 asphalt specimens were used as the response variables, and the thermal conductivities and volume fractions of their constituents were used as the predictors. The conducted statistical analyses showed that the measured values of thermal conductivities of the mixtures are affected by the bitumen and aggregate content, but not by the air content. Contrarily, the predicted data for some investigated models are highly sensitive to air voids, but not to bitumen and/or aggregate content. Additionally, the comparison of the experimental with analytical data showed that none of the existing models gave satisfactory results; on the other hand, two regression models (Exponential 1* and Linear 3*) are promising for asphalt concrete.
Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin
2017-01-01
In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed. PMID:28481308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.
2009-10-15
Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows inmore » the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)« less
Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M
2008-06-01
Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.
Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas
2017-02-01
In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles
NASA Astrophysics Data System (ADS)
Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven
2010-11-01
The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.
40 CFR 86.091-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2013 CFR
2013-07-01
... one of the previous headings including such extraordinary events as vehicle accidents (or accidents... representative by written request for his appearance, signed by the Assistant Administrator for Air and Radiation... Assistant Administrator for Air and Radiation. (8) EPA may void ab initio a certificate of conformity for...
40 CFR 86.091-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2012 CFR
2012-07-01
... one of the previous headings including such extraordinary events as vehicle accidents (or accidents... representative by written request for his appearance, signed by the Assistant Administrator for Air and Radiation... Assistant Administrator for Air and Radiation. (8) EPA may void ab initio a certificate of conformity for...
40 CFR 86.091-7 - Maintenance of records; submittal of information; right of entry.
Code of Federal Regulations, 2014 CFR
2014-07-01
... one of the previous headings including such extraordinary events as vehicle accidents (or accidents... representative by written request for his appearance, signed by the Assistant Administrator for Air and Radiation... Assistant Administrator for Air and Radiation. (8) EPA may void ab initio a certificate of conformity for...
High Temperature VARTM of Phenylethynyl Terminated Imides
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.; Ghose, Sayata; Watson, Kent A.
2009-01-01
Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. By modifying the thermal cycle used in laminate fabrication, the void content was reduced significantly (typically approximately 3%). Densities of the composites were determined using a density gradient column and the glass transition temperatures of the cured composites were measured by dynamic mechanical analysis. Photomicrographs of the panels were taken and void contents were determined by acid digestion. The results of this work are presented herein.
Mechanical Properties of Misers Bluff Sand.
1986-09-01
in Chapter 4. 4 .7 Y~ e -~1 % CHAPTER 2 LABORATORY TESTS 2.1 CONVENTIONAL SOIL TESTS Samples of MB sand were split from the available supply of...air Va , and void ratio e (the ratio of void volume to solid volume). These composition data are listed in Table 2.1 for each test. 5 2.3 MECHANICAL...and diameter changes are made. The data can be plotted as principal stress difference versus axial strain, the slope of which is Young’s modulus E
Two reference time scales for studying the dynamic cavitation of liquid films
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, D. E.
1992-01-01
Two formulas, one for the characteristic time of filling a void with the vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. By comparing these time scales with that of the dynamic operation of oil film bearings, it is concluded that the evaporation process is usually fast enough to fill the cavitation bubble with oil vapor; whereas the diffusion process is much too slow for the dissolved air to liberate itself and enter the cavitation bubble. These results imply that the formation of a two phase fluid in dynamically loaded bearings, as often reported in the literature, is caused by air entrainment. They further indicate a way to simplify the treatment of the dynamic problem of bubble evolution.
Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M.
2008-01-01
Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-μm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 μm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit. PMID:18417636
A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement
NASA Astrophysics Data System (ADS)
Drysdale, Graeme Robert
A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and percentage of crumb rubber in the modified binder of the compacted specimens.
NASA Astrophysics Data System (ADS)
Pochet, Steven
The measurement of the void fraction is an important parameter in many industrial fields. Whether it is to prevent the phenomenon of critical heat flux in heat tube of thermal power plants, the explosion of gas pockets in oil rigs’ pipes or to detect bubbles in medical catheters, the knowledge of the void fraction can be a key parameter in many diverse applications. Several invasive and non-invasive measurements techniques have been developed these last decades and are based on the difference between the physical properties of liquid and gas. Some of these techniques are not always possible to implement due to restrictions in the geometry of tubes or regulatory standards limiting their use. Throughout this work we propose a new non-invasive void fraction measurement technique based on the reflection of electromagnetic waves on the water-air interface of the mixture. The reflection of electromagnetic wave is induced by a change in the impedance of the propagation medium. The impedance is function of the dielectric properties of the medium. The characteristics of air and water being distinct, it is possible to calculate the complex reflection coefficient at the interface of a double phase mixture. To this end, mathematical modeling of the response of an electromagnetic wave in a tube containing a two phase mixture was made using the model of transmission lines, applicable to microwave frequencies we use. The effects of the amount of air in water and the position of the bubbles in the section of the tube were simulated. It was shown that the phase of the reflected wave was sensitive to the position of bubbles in the tube’s section and that the magnitude of the reflection coefficient varied with the mixture’s void fraction. Subsequently, we designed and built a six-ports reflectometer operating at 2.45
Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar
NASA Astrophysics Data System (ADS)
Azimmah, Azizatun; Widodo
2017-07-01
The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.
Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra
NASA Astrophysics Data System (ADS)
Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang
2016-02-01
We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.
Optimisation des proprietes physiques d'un composite carbone epoxy fabrique par le procede RFI
NASA Astrophysics Data System (ADS)
Koanda, Mahamat Mamadou Lamine
The RFI (Resin Film Infusion) process is a composite materials manufacturing process. Especially known for the small investment it requires, RFI processes are more and more widely used in the aeronautical industry. However a number of aspects of this process are still not well controlled. The quality of the final part depends on which process is used. In the case of RFI, controlling physical characteristics such as thickness, fiber volume fraction or void content remains a major challenge. This dissertation deals with the optimization of the physical properties of a carbon composite manufactured with RFI processes. The ASTMD3171 and ASTMD792 standards were used to measure the void content and fiber volume fraction. First, we introduced different layup sequences in the RFI process and evaluate their impact on the physical properties of the final product. The experiments show the primary mode A, with the resin film at the bottom, resulting in much better quality with controlled fiber volume fraction and void content. Mode B (film in the symmetrical plane) yields results identical to mode A except more irregular thicknesses. Mode C (symmetrical film in the laminate) produces locally unacceptable void contents. Mode D (resin film on the top of the laminate) yields much better results than mode A with the exception of the more irregular thicknesses. Making gaps and overlaps with the resin film has negative effects beyond 2.54
Arellano-García, Luis; Dorado, Antonio D; Morales-Guadarrama, Axayacatl; Sacristan, Emilio; Gamisans, Xavier; Revah, Sergio
2015-01-01
Excess biomass buildup in biotrickling filters leads to low performance. The effect of biomass accumulation in a biotrickling filter (BTF) packed with polyurethane foam (PUF) was assessed in terms of hydrodynamics and void space availability in a system treating dimethyl disulfide (DMDS) vapors with an alkaliphilic consortium. A sample of colonized support from a BTF having been operating for over a year was analyzed, and it was found that the BTF void bed fraction was reduced to almost half of that calculated initially without biomass. Liquid flow through the examined BTF yielded dispersion coefficient values of 0.30 and 0.72 m(2) h(-1), for clean or colonized PUF, respectively. 3D images of attached biomass obtained with magnetic resonance imaging allowed to calculate the superficial area and the biofilm volume percentage and depth as 650 m(2) m(-3), 35%, and 0.6 mm respectively. A simplified geometric approximation of the complex PUF structure was proposed using an orthogonal 3D mesh that predicted 600 m(2) m(-3) for the same biomass content. With this simplified model, it is suggested that the optimum biomass content would be around 20% of bed volume. The activity of the microorganisms was evaluated by respirometry and the kinetics represented with a Haldane equation type. Experimentally determined parameters were used in a mathematical model to simulate the DMDS elimination capacity (EC), and better description was found when the removal experimental data were matched with a model including liquid axial dispersion in contrast to an ideal plug flow model.
Recalls of Vehicles and Engines
n cases where EPA has determines that manufacturers have provided inaccurate, incomplete or falsified certification information or failed to keep required records, the Clean Air Act gives the EPA the authority to void certificates.
International Space Station Urine Monitoring System Functional Integration and Science Testing
NASA Technical Reports Server (NTRS)
Rodriguez, Branelle R.; Broyan, James Lee, Jr.
2008-01-01
Exposure to microgravity during human spaceflight is required to be defined and understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Urine voids are capable of measuring the calcium and other metabolic byproducts in a constituent s urine. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross contamination (<0.7 ml urine) and has volume accuracy of +/-2% between 100 to 1000 ml urine voids.
International Space Station Urine Monitoring System Functional Integration and Science Testing
NASA Technical Reports Server (NTRS)
Cibuzar, Branelle R.; Broyan, James Lee, Jr.
2009-01-01
Exposure to microgravity during human spaceflight is required to be defined and understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Urine voids are capable of measuring the calcium and other metabolic byproducts in a constituent s urine. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross contamination (<0.7 ml urine) and has volume accuracy of +/-2% between 100 to 1000 ml urine voids.
NASA Technical Reports Server (NTRS)
Orell, M. K.; Sheppard, C. H.; Vaughan, R. W.; Jones, R. J.
1974-01-01
A poly(Diels-Alder) (PDA) resin approach was investigated as a means to achieve autoclavability of high temperature resistant resin/fiber composites under mild fabrication procedures. Low void content Type A-S graphite reinforced composites were autoclave fabricated from a PDA resin/fiber prepared from an acetone:methanol:dioxane varnish. Autoclave conditions were 477K (400F) and 0.7 MN/sq m (100 psi) for up to two hours duration. After postcure at temperatures up to 589K (600F), the composites demonstrated high initial mechanical properties at temperatures up to 561K (550F). The results from isothermal aging studies in air for 1000 hours indicated potential for long-term ( 1000 hours) use at 533K (500F) and shorter-term (up to 1000 hours) at 561K (550F).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Kruzic
2007-09-01
Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less
Heat Transfar Properties of Flat-Panel Evacuated Porous Insrlators
NASA Astrophysics Data System (ADS)
Yoneno, Hirosyi; Yamamoto, Ryoichi
Flat Panel evacuated porous insulators have been produced by filling powder or fiber (such as perlite powder, diatomaceous earth powder, silica aerogel powder, g lass fiber and ceramic fiber) in film-like laminated plastic container and by evacuating to form vacuum in it is interior. Heat transfer properties of these evacuated insulators have been studied under various conditions (such as particle diameter, surface area, packing density, solid volume fraction and void dimension). The apparent mean thermal conductivity has been measured for the boundary surface temperature at cold face temperature 13°C and hot face temperature 35°. The effect of air pressure ranging from 1 Pa to one atomosphere (105 Pa) was examined. The results were as follows. (1) For each powder the apparent mean thermal conductivity decreases with decreasing residual air pressure, and at very low pressure bellow 1 -103 Pa the conductivity becomes indeqendent of pressure. The thermal conductivity at 1.3Pa is 0.0053 W/mK for perlite powder, 0.0048W/mK for diatomaceous earth powder, 0.0043 W/mK for silica aerogel powder and 0.0029W/mK for glass fiber. (2) With decreasing particle size, the apparent mean thermal conductivity is constant independent of residual air pressure in higher pressure region. It is that void dimension continues to decrease with particle size and the mean free path of air becomes comparable with void dimension. (3) In the range of minor solid volume fraction, the apparent mean thermal conductivity at very low precreases with decreasing particle size. This shows the thermal contact resistance of the solid particle increases with decreasing particle size.
Laboratory test on maximum and minimum void ratio of tropical sand matrix soils
NASA Astrophysics Data System (ADS)
Othman, B. A.; Marto, A.
2018-04-01
Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.
Effect of hydrogen on void initiation in tensile test of carbon steel JIS-S25C
NASA Astrophysics Data System (ADS)
Sugawa, S.; Tsutsumi, N.; Oda, K.
2018-06-01
In order to investigate the effect of hydrogen on tensile fracture mechanism of a carbon steel, tensile tests were conducted. Pre-strain specimens (0%, 5% and 10%) were used to study the effect of hydrogen content, since saturated hydrogen content in specimens increases in increasing dislocation density. The tensile strength and the yield stress of hydrogen specimens were almost the same as uncharged. In contrast, the reduction of area of hydrogen charged specimens was smaller than that of uncharged. To reveal the reasons of decrease of the reduction of area, the fracture surface and longitudinal cross section near the fracture surface were observed. On the fracture surface of uncharged specimens, only dimples were observed. On the other hand, dimples and flat fracture surface were observed on the fracture surface of hydrogen charged. On the longitudinal cross section of hydrogen charged specimens, many voids were observed compared to uncharged. From these observations, it is showed that hydrogen gives a rise to the increase of voids and the hydrogen charged specimens break without sufficient necking, thus hydrogen makes the reduction of area smaller.
NASA Technical Reports Server (NTRS)
Hulcher, Anthony Bruce; McGowan, David M.; Grimsley, Brian W.; Johnston, Norman J.; Gordon, Gail H. (Technical Monitor)
2001-01-01
Two 61-cm-diameter eight-ply quasi-isotropic IM7/PEEK cylindrical shells were fabricated by automated fiber placement the NASA Langley Research Center using only infrared radiant heat to preheat the substrate and incoming composite uni-tape. The shells were characterized by ultrasonic c-scans for overall consolidation quality, and by optical microscopy and acid digestion for void content. Compression tests were also performed. Although the material used in the study was of generally poor quality due to numerous splits and dry fiber regions, the process was able to achieve a net reduction in void content in the as-placed component. Microscopy of the composite shells revealed well-consolidated, void-free interfaces. The two cylinders were then tested in uni-axial compression in a 1334 kN-capacity hydraulic test machine until buckling occurred. A geometrically nonlinear finite element analysis was conducted, and the differences between the predicted and measured values were 18.0 and 25.8%, respectively. Inclusion of measured imperfections of the cylinder into the analysis is expected to reduce these differences.
NASA Astrophysics Data System (ADS)
Eshimiakhe, D.; Jimoh, R.
2017-12-01
A Kaolin mining site at Dajin Gwanma in north central Nigeria was investigated to determine the possibility of using 3D ERT to detect subsurface voids created due to mining of kaolin deposit and to perhaps suggest areas prone to subsidence. This study was undertaken on conceptual resistivity model that subsurface voids characterized by higher or lower resistivity than the host, depending on weather the void is in-filled water or not. The data collection was carried out with Terrameter SAS 4000 and ES 464 electrode selector equipment. Dipole-dipole configuration at electrode spacing of 5m was used to acquire the data along parallel profiles laid at equal interval in the study area. While the acquired data along each profile were inverted with 2D algorithm, a script file was created to collate the 2D data set into a 3D format and subsequently inverted using 3D algorithm. A volumetric resistivity model block of the study area was also created using the voxler 4 software. The results show that the voids are characterized by high resistivity (950Ωm-2500Ωm) at depth of between 0-4m and low resistivity (10Ωm-100Ωm) at a depth of 5-30m indicating both air-filled and water-filled voids respectively. The study shows that the voids increase in dimension with depth in NW-SE direction, suggesting that the voids are trending most probably along vertical bedrock joints. It also suggest that voids may overtime grow large enough that the overlying top soil can no longer bridge it, leading to its collapse.
NASA Astrophysics Data System (ADS)
Azimmah, Azizatun; Widodo
2017-04-01
Underground cavities or voids detection is essential especially when it comes to building construction. By knowing the presence of void lying underground, one could consider whether the subsidence is likely to be prevented or not. Ground penetrating radar is a high-frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. This geophysical method is suitable to be used to detect and locate voids beneath the surface especially those that lie in shallow depth. This research focused on how GPR could be implemented as void detector using model simulation or forward modelling. The models applied in the forward modelling process are to be made as similar as the real condition in the case study location which took place in Tahura Japan Cave, Bandung, Indonesia. Forward modelling needs to be done so in the future, we might use the modelling results as the references in measuring real GPR data in the location. We used three models that we considered fairly representative to prove that GPR is capable of detecting and locating voids underneath the ground. This research resulted in the different amplitude region around the considerably homogeneous region. The different amplitude region is characterized having an arc shape and is considered to be air which is known as the key component of voids.
Thermoplastic-carbon fiber hybrid yarn
NASA Technical Reports Server (NTRS)
Ketterer, M. E.
1984-01-01
Efforts were directed to develop processing methods to make carbon fiber/thermoplastic fiber preforms that are easy to handle and drapeable, and to consolidate them into low void content laminates. The objectives were attained with the development of the hybrid yarn concept; whereby, thermoplastic fiber can be intimately intermixed with carbon fiber into a hybrid yarn. This was demonstrated with the intermixing of Celion 3000 with a Celanese liquid crystal polymer fiber, polybutylene terepthalate fiber, or polyetheretherketone fiber. The intermixing of the thermoplastic matrix fiber and the reinforcing carbon fiber gives a preform that can be easily fabricated into laminates with low void content. Mechanical properties of the laminates were not optimized; however, initial results indicated properties typical of a thermoplastic/carbon fiber composites prepared by more conventional methods.
Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows
NASA Technical Reports Server (NTRS)
Rezkallah, Kamiel S.
1996-01-01
Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.
NASA Astrophysics Data System (ADS)
Su, Yu-Min; Hsu, Chen-Yu; Lin, Jyh-Dong
2014-03-01
This study was to assess the porosity of Porous Asphalt Concrete (PAC) in conjunction with a medical X-ray computed tomography (CT) facility. The PAC was designed as the surface course to achieve the target porosity 18%. There were graded aggregates, soils blended with 50% of coarse sand, and crushed gravel wrapped with geotextile compacted and served as the base, subbase, and infiltration layers underneath the PAC. The test site constructed in 2004 is located in Northern of Taiwan in which the daily traffic has been light and limited. The porosity of the test track was investigated. The permeability coefficient of PAC was found severely degraded from 2.2×10-1 to 1.2×10-3 -cm/sec, after nine-year service, while the permeability below the surface course remained intact. Several field PAC cores were drilled and brought to evaluate the distribution of air voids by a medical X-ray CT nondestructively. The helical mode was set to administrate the X-ray CT scan and two cross-sectional virtual slices were exported in seconds for analyzing air voids distribution. It shows that the clogging of voids occurred merely 20mm below the surface and the porosity can reduce as much about 3%. It was also found that the roller compaction can decrease the porosity by 4%. The permeability reduction in this test site can attribute to the voids of PAC that were compacted by roller during the construction and filled by the dusts on the surface during the service.
NASA Astrophysics Data System (ADS)
Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin
2017-12-01
The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.
Evaluation of self-consolidating concrete.
DOT National Transportation Integrated Search
2003-01-01
Conventional concrete tends to present a problem with regard to adequate consolidation in thin sections or areas of congested reinforcement, which leads to a large volume of entrapped air voids and compromises the strength and durability of the concr...
Jetting and flooding of granular backfill materials : [summary].
DOT National Transportation Integrated Search
2015-03-01
Granular backfill materials on highway projects are often compacted by mechanical methods. : This requires the contractor to place backfill material into loose lifts of varying thickness : and use compaction equipment to reduce air voids and increase...
Case Study of the Application of the Weapon System Warranty on the C-130 Program.
1986-09-01
31 Appendix A: Air Force Contract Law Center Suggested Systems Level Warranty Clauses . . . . . 33 Appendix B: Original C-130 Warranty ClauseCs...avoidance and still protect the government’s interest can work. vii This study recommends that the Department of Defense use the Air Force Contract Law Center’s...would have had the potential For allowing Lockheed to void a system level warranty had one been in effect such as the Air Force Contract Law Center’s
Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnage, K.G.; Davis, C.E.
1979-01-01
A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation.
Saarikoski, A; Koppeli, R; Salanterä, S; Taskinen, S; Axelin, A
2018-02-01
Daytime incontinence and enuresis are common problems in otherwise healthy children, and negatively influence their social lives and self-esteem. Motivation for treatment is often a real clinical problem. Children's experiences of their incontinence treatments have not been previously described. The aim of this study was to describe children's experiences of the Voiding School intervention as a treatment for their incontinence. A qualitative, descriptive focus-group study with a purposive sample was conducted at a Finish university hospital in 2014. Children aged 6-12 years participated in the Voiding School at an outpatient clinic. The intervention included two 1-day group visits 2 months apart. The educational content was based on the International Children Continence Society's standards for urotherapy. The education was delivered with child-oriented teaching methods. At the end of the second visit, 19 children were interviewed in five groups. Data were analysed with inductive content analysis. The children described incontinence as an embarrassing problem, which they had to hide at any cost. They had experienced bullying and social isolation because of it. Normal outpatient visits emphasized adult-to-adult communication, which made the children feel like outsiders. The children perceived the Voiding School as a nice and child-oriented experience. Making new friends was especially important to younger boys who felt that the Voiding School day was too long and issue-oriented. In the Voiding School, videos and 'learning by doing' helped the children to understand the basis of given advice, and they were able to learn new habits, which gave them control over the incontinence; this helped them to become 'the boss of the bladder'. Sharing experiences and improvements in their incontinence with their peers supported the children's self-esteem and encouraged them to do new things, such as staying overnight with friends. These experiences helped them to acquire control over the problem (Summary Figure). According to the children's experiences, normal outpatient visits were only appointments for adults, and not very useful for children. In the Voiding School, they were respected as being the main person, and their views were listened to. The results underlined the importance of a child-oriented approach to patient education with regard to children, and provided encouragement to further develop the intervention. Child orientation, peer support, learning by doing, and understanding the cause and effect helped children to gain control over their bladders. Based on the children's experiences, this could be achieved by a voiding school. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
On the Mechanism of Boron Ignition
NASA Technical Reports Server (NTRS)
Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.
1997-01-01
Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.
Application of imaging technology to improve the laboratory and field compaction of HMA.
DOT National Transportation Integrated Search
2009-04-01
Field compaction of asphalt mixtures is an important process that influences performance of asphalt : pavements. This study evaluates the relationship between different field compaction patterns and the : uniformity of air void distribution in asphal...
Issues pertaining to the permeability characteristics of coarsegraded Superpave mixes
DOT National Transportation Integrated Search
2002-07-01
In order to evaluate the relationships between in-place air voids, lift thickness, and permeability, 23 on-going HMA construction projects were visited and field permeability tests conducted. Field permeability tests were conducted at 15 randomly det...
Code of Federal Regulations, 2013 CFR
2013-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2010 CFR
2010-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2014 CFR
2014-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2011 CFR
2011-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Code of Federal Regulations, 2012 CFR
2012-10-01
... LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-13 Cofferdam. This term means a void or empty space separating two or more compartments for the purpose of isolation or to prevent the contents of one...
Infusion Processing of Phenylethynyl Terminated Imides by High Temperature RTM and VARTM
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Lewis, Todd M.; Cano, Roberto J.; Watson, Kent A.; Isayev, Avraam I.
2011-01-01
Fabrication of composite structures using infusion processes such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting both technologies for the fabrication of high temperature (HT) resistant composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using these high temperature out-of-autoclave processes. In the current study, two PETI resins, LARC(TradeMark) PETI-330 and LARC(TradeMark) PETI-8 have been used to make test specimens using both RTM and VARTM. For aerospace applications, a void fraction of less than 2% is desired. Traditionally, RTM has had the advantage over VARTM for generating composites with low void content. However, the process is limited in terms of size. Work at NASA LaRC has incorporated modifications to the thermal cycle used in laminate fabrication that have reduced the void content significantly (typically 1-3%) using the current HT-VARTM process. For composite fabrication by both RTM and VARTM, the resins were infused into three carbon fiber preforms (T650-35-3k 5HS, IM7-6k 5HS, and IM7-6k Uniweave) at 316 C and 260 C respectively and cured up to 371 C. The details of the RTM processing carried out at the University of Akron are discussed in this work along with a brief description of the HT-VARTM processing carried out at NASA-LaRC. Photomicrographs of the panels were taken and void contents were determined by acid digestion. Mechanical properties (short beam shear, SBS) of the panels fabricated by both infusion processes were determined at room temperature as well as at various elevated temperatures. The results of this work are presented herein.
Evaluation of pavement permeability in Mississippi.
DOT National Transportation Integrated Search
2003-07-01
The proper compaction of hot mix asphalt (HMA) pavements is vital for a stable and durable pavement. For dense-graded mixtures, it has been recommended that the initial in-place air voids at the time of construction should not be below 3 percent or a...
Modeling of hot-mix asphalt compaction : a thermodynamics-based compressible viscoelastic model
DOT National Transportation Integrated Search
2010-12-01
Compaction is the process of reducing the volume of hot-mix asphalt (HMA) by the application of external forces. As a result of compaction, the volume of air voids decreases, aggregate interlock increases, and interparticle friction increases. The qu...
Simulation, imaging, and mechanics of asphalt pavement (SIMAP) initiative
DOT National Transportation Integrated Search
1998-07-01
Asphalt concrete is a complex material that consists of aggregates, asphalt, and air voids. Aggregates are held together by asphalt and form a skeleton to support the weight of vehicles. The stiffer the asphalt, the tighter the aggregates are held to...
DOT National Transportation Integrated Search
2013-11-01
Current roadway quality control and quality acceptance (QC/QA) procedures for the Louisiana Department of Transportation and : Development (LADOTD) include coring for thickness, density, and air voids in hot mix asphalt (HMA) pavements and thickness ...
Illegal Immigration in the United States: Implications for Rule of Law and National Security
2012-02-15
AIR WAR COLLEGE AIR UNIVERSITY ILLEGAL IMMIGRATION IN THE UNITED STATES: IMPLICATIONS FOR RULE OF LAW AND NATIONAL SECURITY By Paul A...government’s failure to strictly enforce immigration laws presents national security vulnerabilities and is subversive to the rule of law . Without...the rule of law , serious social tensions will occur that impel states and localities to fill the void left by the lack of immigration enforcement. In
NASA Astrophysics Data System (ADS)
Valous, N. A.; Delgado, A.; Drakakis, K.; Sun, D.-W.
2014-02-01
The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hursin, M.; Koeberl, O.; Perret, G.
2012-07-01
High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivitymore » Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)« less
DOT National Transportation Integrated Search
2013-11-01
Current roadway quality control and quality acceptance (QC/QA) procedures for the Louisiana Department of Transportation and Development : (LADOTD) include coring for thickness, density, and air voids in hot mix asphalt (HMA) pavements and thickness ...
Compaction and measurement of field density for Oregon open-graded (F-MIX) asphalt pavement
DOT National Transportation Integrated Search
1999-06-01
A research project conducted by Oregon State University (OSU) and the Oregon Department of Transportation (ODOT) investigated compaction of Oregon F-mix asphalt pavement, an open-graded mix with 25-mm maximum size aggregate and air voids typically in...
Implementation of ASTM C157: testing of length change of hardened concrete : technical summary.
DOT National Transportation Integrated Search
2016-09-01
The Kansas Department of Transportation (KDOT) has a history of using : tests such as concrete strength, permeability, and air void structure as design : and acceptance criteria on concrete paving and bridge deck projects. In 2012, : the KDOT Concret...
Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, R.K.
1980-08-25
Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample wasmore » initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na/sub 2/O content of 4.6 wt%. An increased Na/sub 2/O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na/sub 2/O should aid in reduced cracking of the insulator during these tests.« less
DOT National Transportation Integrated Search
2009-07-01
Current roadway quality control and quality acceptance (QC/QA) procedures : for Louisiana include coring for thickness, density, and air void checks in hot : mix asphalt (HMA) pavements and thickness and compressive strength for : Portland cement con...
40 CFR 85.2217 - Loaded test-EPA 91.
Code of Federal Regulations, 2010 CFR
2010-07-01
....2217 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... determinations is a simple running average of the measurements taken over five seconds. (2) Pass/fail... measurements are voided if the measured concentration of CO plus CO2 falls below six percent or the vehicle's...
Development of a 4.75-mm (No. 4) NMS mixture : research project capsule.
DOT National Transportation Integrated Search
2017-08-01
The objective of this project is to develop a 4.75-mm NMAS asphalt mixture for Louisiana roads, which will involve establishing target criteria for aggregate gradations, volumetric properties (e.g., air voids, VMA, VFA, and dust-to-binder ratio) and ...
Liu, Qian; Zhang, Jianhua; He, Shu-Ang; Zou, Rujia; Xu, Chaoting; Cui, Zhe; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Xu, Kaibing; Hu, Junqing
2018-04-17
Lithium-sulfur (Li-S) batteries are investigated intensively as a promising large-scale energy storage system owing to their high theoretical energy density. However, the application of Li-S batteries is prevented by a series of primary problems, including low electronic conductivity, volumetric fluctuation, poor loading of sulfur, and shuttle effect caused by soluble lithium polysulfides. Here, a novel composite structure of sulfur nanoparticles attached to porous-carbon nanotube (p-CNT) encapsulated by hollow MnO 2 nanoflakes film to form p-CNT@Void@MnO 2 /S composite structures is reported. Benefiting from p-CNTs and sponge-like MnO 2 nanoflake film, p-CNT@Void@MnO 2 /S provides highly efficient pathways for the fast electron/ion transfer, fixes sulfur and Li 2 S aggregation efficiently, and prevents polysulfide dissolution during cycling. Besides, the additional void inside p-CNT@Void@MnO 2 /S composite structure provides sufficient free space for the expansion of encapsulated sulfur nanoparticles. The special material composition and structural design of p-CNT@Void@MnO 2 /S composite structure with a high sulfur content endow the composite high capacity, high Coulombic efficiency, and an excellent cycling stability. The capacity of p-CNT@Void@MnO 2 /S electrode is ≈599.1 mA h g -1 for the fourth cycle and ≈526.1 mA h g -1 after 100 cycles, corresponding to a capacity retention of ≈87.8% at a high current density of 1.0 C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Testing and analysis of LWT and SCB properties of asphalt concrete mixtures.
DOT National Transportation Integrated Search
2016-04-01
Currently, Louisianas Quality Control and Quality Assurance (QC/QA) practice for asphalt mixtures in : pavement construction is mainly based on controlling properties of plant produced mixtures that include : gradation and asphalt content, voids f...
Detection of underground voids in Ohio by use of geophysical methods
Munk, Jens; Sheets, R.A.
1997-01-01
Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio, where coal was mined under the site at a depth of about 50 feet. Interference from overhead powerlines, the field vehicle, and guardrails complicated an interpretation of the radar records where the depth of penetration was estimated to be less than 5 feet. Along State Route 33, in Logan County, Ohio, bedding planes and structures possibly associated with dissolution of limestone were profiled with ground-penetrating radar. Depth of penetration was estimated to be greater than 50 feet.
DOT National Transportation Integrated Search
2011-06-30
This publication is a statistical review of reported motor vehicle crashes in Maine during the five-year study period 2005 - 2009. The statistics are compiled from crash reports submitted to the Department of Transportation by the Traffic Division, D...
DOT National Transportation Integrated Search
2016-09-01
The Kansas Department of Transportation (KDOT) has a history of using : tests such as concrete strength, permeability, and air void structure as design : and acceptance criteria on concrete paving and bridge deck projects. In 2012, : the KDOT Concret...
Fracture Toughness Properties of Gd123 Superconducting Bulks
NASA Astrophysics Data System (ADS)
Fujimoto, H.; Murakami, A.
Fracture toughness properties of melt growth GdBa2Cu3Ox (Gd123) large single domain superconducting bulks with Ag2O of 10 wt% and Pt of 0.5 wt%; 45 mm in diameter and 25 mm in thickness with low void density were evaluated at 77 K through flexural tests of specimens cut from the bulks, and compared to those of a conventional Gd123 with voids. The densified Gd123 bulks were prepared with a seeding and temperature gradient method; first melt processed in oxygen, then crystal growth in air; two-step regulated atmosphere heat treatment. The plane strain fracture toughness, KIC was obtained by the three point flexure test of the specimens with through precrack, referring to the single edge pre-cracked beam (SEPB) method, according to the JIS-R-1607, Testing Methods for Fracture Toughness of High Performance Ceramics. The results show that the fracture toughness of the densified Gd123 bulk with low void density was higher than that of the standard Gd123 bulk with voids, as well as the flexural strength previously reported. We also compared the fracture toughness of as-grown bulks with that of annealed bulks. The relation between the microstructure and the fracture toughness of the Gd123 bulk was clearly shown.
NASA Astrophysics Data System (ADS)
Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo
2017-11-01
Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.
Clay with Desiccation Cracks is an Advection Dominated Environment
NASA Astrophysics Data System (ADS)
Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.
2012-04-01
Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment, indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.
Experimental study of microbubble drag reduction on an axisymmetric body
NASA Astrophysics Data System (ADS)
Song, Wuchao; Wang, Cong; Wei, Yingjie; Zhang, Xiaoshi; Wang, Wei
2018-01-01
Microbubble drag reduction on the axisymmetric body is experimentally investigated in the turbulent water tunnel. Microbubbles are created by injecting compressed air through the porous medium with various average pore sizes. The morphology of microbubble flow and the size distribution of microbubble are observed by the high-speed visualization system. Drag measurements are obtained by the balance which is presented as the function of void ratio. The results show that when the air injection flow rate is high, uniformly dispersed microbubble flow is coalesced into an air layer with the larger increment rate of drag reduction ratio. The diameter distributions of microbubble under various conditions are submitted to normal distribution. Microbubble drag reduction can be divided into three distinguishable regions in which the drag reduction ratio experiences increase stage, rapid increase stage and stability stage, respectively, corresponding to the various morphologies of microbubble flow. Moreover, drag reduction ratio increases with the decreasing pore sizes of porous medium at the identical void ratio in the area of low speeds, while the effect of pore sizes on drag reduction is reduced gradually until it disappears with the increasing free stream speeds, which indicates that smaller microbubbles have better efficiency in drag reduction. This research results help to improve the understanding of microbubble drag reduction and provides helpful references for practical applications.
Phenylethynyl Terminated Imide (PETI) Composites Made by High Temperature VARTM
NASA Technical Reports Server (NTRS)
Chose, Sayata; Cano, Roberto J.; Britton, Sean M.; Watson, Kent A.; Jensen, Brian J.; Connell, John W.
2010-01-01
Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, a void fraction of <2% is desired. In the current study, two PETI resins, LARC. PETI-330 and LARC. PETI-8 have been used to fabricate test specimens using HT-VARTM. The resins were infused into carbon fiber preforms at 260 C and cured between 316 and 371 C. Photomicrographs of the panels were taken and void contents were determined by acid digestion. Modifications to the thermal cycle used in the laminate fabrication have reduced the void content significantly; typically .3% for carbon fiber biaxially woven fabric and less than 2% for carbon fiber uniaxial fabric. Mechanical properties (short beam shear and flexure) of the panels were determined at both room and elevated temperatures. The results of this work are presented herein. This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
Mechanisms of objectionable textural changes by microwave reheating of foods: a review.
Mizrahi, Shimon
2012-01-01
Microwave reheating, compared to a conventional method, is notorious for lack of crust formation and severe toughening of flour and starch-based products. This review discusses how the typical thermal characteristics of microwave heating are involved in affecting the texture as well as the possible role of non-thermal effects. While low surface temperature is the well known mechanism why microwave heating is incapable of crust formation, the most severe toughening problems are caused by internal boiling. Beside moisture loss, the internally generated steam causes 2 main textural effects when it is vented out. The first is the replacing of non-condensable gases (air) in the product voids with a condensable one (steam). When the latter is condensed by cooling, a vacuum may be created in the voids causing their collapse and a formation of a more compact and tougher structure. The second textural effect involves amylose extraction from starch granules and its redistribution to eventually form a rich layer on the walls of the structural foam cells of the baked goods. Relatively fast crystallization of the amylose seems to be the main cause of toughening a short while after microwave heating. This mechanism is relevant mainly to products where starch is an important structural element. Structural disruptions by localize excessive steam pressure at hot-spots are also discussed in this review as well as methods of preventing or alleviating the most objectionable textural changes. The most effective ways of preventing these undesirable changes are by avoiding internal boiling and/or by manipulating the starch content and properties. © 2011 Institute of Food Technologists®
Development of an In-line Urine Monitoring System for the International Space Station
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Cibuzar, Branelle R.
2009-01-01
Exposure to microgravity during space flight causes bone loss when calcium and other metabolic by-products are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is thus essential in determining crew bone loss and the effectiveness of the countermeasures that are taken to minimize this loss. Earlier space shuttle Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to the cross-contamination that took place between users, as well as to fluid system instabilities. Crew urine voids are currently collected manually in a flexible plastic bag that contains a known tracer quantity. A crew member must completely mix the contents of this bag before withdrawing a representative syringe sample for later ground analysis. The existing bag system accuracy is therefore highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures void volume, and allows for syringe sampling. After the ISS UMS has been used by a crew member, it delivers urine to the WHC for normal processing. The UMS plumbing is then flushed with a small volume of water. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, consequently greatly reducing cross-contamination among urine voids (less than 0.5 mL urine) while also providing accurate volume measurements (less than 2 percent error for 100 to 1,000 mL void volumes). ISS UMS performance has been validated through extensive ground tests and reduced-gravity aircraft flights. The locker-sized ISS UMS is currently undergoing a design modification that will permit it to interface with the ISS Node 3 WHC Russian toilet (ACY) hardware. The operating principles, characteristics, and results of this design modification are outlined here.
Influence de la pression de mise en forme sur le detourage de stratifies carbone/epoxy
NASA Astrophysics Data System (ADS)
Coulon, Pierre
The need to reduce the weight of structures has led to an increasing use of composite materials in the aerospace industry. To meet the required tolerances and quality, the manufacturing processes must adapt to these new materials. The machining is one of these processes that need to be optimized to control the final part quality. This experimental study aims at understanding the relationship between manufacturing parameters of quasi-isotropic carbon fibre laminates and their machinability. After a preliminary study, it was concluded that curing pressure in autoclave was the most influential manufacturing parameter. The pressure is linked, experimentally, to the void content and then to the mechanical properties and finally to the cutting forces. The research methodology is based on a classic multifactorial design of experience in which the input factors are the curing pressure, feed rate and cutting speed. This study confirms the correlation existing between the curing pressure and void content as well as the relationship between the curing pressure and mechanical properties. The new element of this study is the correlation between the curing pressure and cutting forces during trimming. This last point is interesting because it leads to the development of a predictive model for cutting forces. Although the results of this study are hardly generalizable to other materials, the prediction of cutting forces is possible. Quality after machining is also studied through two criteria: the roughness measurement and evaluation of delamination. Roughness is measured using a roughness depth measuring equipment optimized to make best use of this technique. The study confirms the patterns already observed without being able to improve the characterization of cutting quality. Keywords: composites, trimming, curing pressure, cutting forces, void content, ILSS, delamination, roughness.
Eddy-Current Inspection of Ball Bearings
NASA Technical Reports Server (NTRS)
Bankston, B.
1985-01-01
Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.
Industrial waste utilization for foam concrete
NASA Astrophysics Data System (ADS)
Krishnan, Gokul; Anand, K. B.
2018-02-01
Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.
Velocity and void distribution in a counter-current two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel, S.; Schulenberg, T.; Laurien, E.
2012-07-01
Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less
Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.
Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi
2013-01-01
We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.
Lutenegger, A.J.; Hallberg, G.R.
1988-01-01
Lutenegger, A.J. and Hallberg, G.R., 1988. Stability of loess. Eng. Geol., 25: 247-261. The natural stability of loess soils can be related to fundamental geotechnical properties such as Atterberg limits, water content and void ratio. Field observations of unstable conditions in loess deposits in the upper midwest, U.S.A. show relationships between instability and the in situ moisture content and the liquidity index of the loess. Unstable loess can attain natural moisture contents equal to, or greater than, its liquid limit. Implications of these observations for applied engineering works are described. ?? 1988.
Development and freeze-thaw durability of high flyash-content concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadi, J.
1987-01-01
Objectives were to investigate the effects on concrete strength, drying shrinkage, freeze-thaw durability, and air-void system parameters of replacing various amounts of portland cement with different types of fly ash and to compare selected characteristics of such fly-ash concretes and fly-ash concretes containing a high-range water-reducing admixture to those of a control mixture. It was concluded that concrete mixtures with 90-day compressive strengths equal to the control could be produced when large amounts of cement were replaced by fly ash. In addition, when the high-range water-reducing admixtures was employed, very large amounts of cement could be replaced by fly ashmore » to yield mixtures whose compressive strengths were equal to or greater than the strengths of the control mix at all ages. The maximum amount of cement that could be replaced for equal-strength mixtures depended upon the nature of the fly ash. Drying shrinkage of plain fly-ash concretes and fly-ash concretes containing the high-range water-reducing admixture were similar to those of the control mix. The optimum fly-ash content in a concrete is comparable in strength and durability to a conventional (control) concrete was influenced by the chemical and physical characteristics of the fly ash.« less
Freeze-thaw durability of microwave cured air-entrained concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pheeraphan, T.; Leung, C.K.Y.
1997-03-01
The strength development of concrete can be greatly accelerated by curing with microwave energy. Microwave curing can therefore be beneficial to construction operations such as concrete precasting and repair. To provide freeze-thaw durability for infrastructure applications, air entrainment has to be introduced. In this investigation, the freeze-thaw resistance of microwave cured air-entrained concrete is measured, and compared to that of air-entrained concrete under normal curing. Their compressive strength at 14 days and air-void characteristics are also measured and compared. The test results indicate that microwave curing can impair the freeze-thaw durability of high w/c concrete but not for low w/cmore » concrete. Also, under microwave curing, the decrease in strength due to air entrainment becomes more significant. Based on these observations, it is recommended that for microwave cured air-entrained concrete, a low w/c ratio should be employed.« less
Influence of preconsolidation on consolidation quality after stamp forming of C/PEEK composites
NASA Astrophysics Data System (ADS)
Slange, T. K.; Warnet, L.; Grouve, W. J. B.; Akkerman, R.
2016-10-01
Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. Currently, expensive autoclave and press consolidation are used to preconsolidate blanks. This study investigates the influence of preconsolidation on final consolidation quality after stamp forming and explores the potential of alternative blank manufacturing methods that could reduce part costs. Blanks were manufactured using various blank manufacturing methods and subsequently were stamp formed. The consolidation quality both before and after stamp forming was compared, where the focus was on void content as the main measure for consolidation quality. The void content was characterized through thickness and density measurements, as well as by microscopy analysis. Results indicate that preconsolidation quality does have an influence on the final consolidation quality. This is due to the severe deconsolidation and limited reconsolidation during stamp forming. Nevertheless, the potential of automated fiber placement and ultrasonic spot welding as alternative blank manufacturing methods was demonstrated.
Effect of heavy metals and water content on the strength of magnesium phosphate cements.
Buj, Irene; Torras, Josep; Casellas, Daniel; Rovira, Miquel; de Pablo, Joan
2009-10-15
In this paper the mechanical properties of magnesium potassium phosphate cements used for the Stabilization/Solidification (S/S) of galvanic wastes were investigated. Surrogate wastes (metal nitrate dissolutions) were employed containing Cd, Cr(III), Cu, Ni, Pb or Zn at a concentration of 25 g dm(-3) and different water-to-solid (W/S) ratios (0.3, 0.4, 0.5 and 0.6 dm(3)kg(-1)) have been employed. Cements were prepared by mixing hard burned magnesia of about 70% purity with potassium dihydrogen phosphate. Compressive strength and tensile strength of specimens were determined. In addition the volume of permeable voids was measured. It was found that when comparing pastes that the volume of permeable voids increases and mechanical strength decreases with the increase of water-to-solid ratio (W/S). Nevertheless pastes with the same material proportions containing different metals show different mechanical strength values. The hydration products were analyzed by XRD. With the increase of water content not previously reported hydration compound was detected: bobierrite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Myungji; Kim, Hong Koo, E-mail: hkk@pitt.edu
2015-09-14
We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO{sub 2}/Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO{sub 2} and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstratingmore » a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO{sub 2}/Si structure are proposed.« less
An Efficient Modelling Approach for Prediction of Porosity Severity in Composite Structures
NASA Technical Reports Server (NTRS)
Bedayat, Houman; Forghani, Alireza; Hickmott, Curtis; Roy, Martin; Palmieri, Frank; Grimsley, Brian; Coxon, Brian; Fernlund, Goran
2017-01-01
Porosity, as a manufacturing process-induced defect, highly affects the mechanical properties of cured composites. Multiple phenomena affect the formation of porosity during the cure process. Porosity sources include entrapped air, volatiles and off-gassing as well as bag and tool leaks. Porosity sinks are the mechanisms that contribute to reducing porosity, including gas transport, void shrinkage and collapse as well as resin flow into void space. Despite the significant progress in porosity research, the fundamentals of porosity in composites are not yet fully understood. The highly coupled multi-physics and multi-scale nature of porosity make it a complicated problem to predict. Experimental evidence shows that resin pressure history throughout the cure cycle plays an important role in the porosity of the cured part. Maintaining high resin pressure results in void shrinkage and collapse keeps volatiles in solution thus preventing off-gassing and bubble formation. This study summarizes the latest development of an efficient FE modeling framework to simulate the gas and resin transport mechanisms that are among the major phenomena contributing to porosity.
Ladefoged, Claes N; Hansen, Adam E; Keller, Sune H; Fischer, Barbara M; Rasmussen, Jacob H; Law, Ian; Kjær, Andreas; Højgaard, Liselotte; Lauze, Francois; Beyer, Thomas; Andersen, Flemming L
2015-12-01
In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.
Thermoplastic coating of carbon fibers
NASA Technical Reports Server (NTRS)
Edie, D. D.; Lickfield, G. C.
1991-01-01
Using a continuous powder coating process, more than 1500 meters of T 300/LaRC-TPI prepreg were produced. Two different types of heating sections in the coating line, namely electrical resistance and convection heating, were utilized. These prepregs were used to fabricate unidirectional composites. During composite fabrication the cure time of the consolidation was varied, and composites samples were produced with and without vacuum. Under these specimens, the effects of the different heating sections and of the variation of the consolidation parameters on mechanical properties and void content were investigated. The void fractions of the various composites were determined from density measurements, and the mechanical properties were measured by tensile testing, short beam shear testing and dynamic mechanical analysis.
Immunochemical Investigations of Cell Surface Antigens of Anaerobic Bacteria
1977-01-15
sterile cecal contents were included in all inocula, our data indicates * that cecal contents from germ free rats can be used in place of sterile cecal...The void volume of the column was estimated with blue dextran. Molecular size of the un- digested Pool 1 material was estimated using a PM-30 membrane...51) using bovine serum albumin as a standard. Total sugars were measured by the phenol-sulfuric acid method (52) using glucose as a standards
Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow
Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi
2013-01-01
We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system. PMID:23378921
Nondestructive Evaluation of Foam Insulation on the Space Shuttle External Tank
NASA Technical Reports Server (NTRS)
Richter, Joel; Walker, James L.
2006-01-01
Foam loss on the External Tank (ET) during launch can be caused by a number of factors. Voids are the best understood mechanism of foam loss, although it is known that delaminations, cracks and crushed foam can also lead to liberation of foam. Shortly after the Columbia accident, work began on non-destructive evaluation of foam targeted at finding voids and delaminations. After several months of searching for candidate methods capable of inspecting ET foam, the five most promising techniques were taken through a blind test and narrowed down to two methods to develop and use for inspection of the ET. These methods were backscatter radiography and terahertz imaging. The backscatter radiography system measures a test part by detecting Compton backscattered x-ray energy generated by a collimated beam of x-rays directed at the test subject. This collimated beam is scanned across the subject, recording scatter intensity data one pixel at a time until the area of interest is covered. The resulting data can be used to generate an image similar to a radiograph. Some depth information can be gathered utilizing apertures or collimation on the detectors. The detectors are located around the collimated source, making this a single sided inspection. The void detection limit with the currently utilized system is around 0.5 inches in diameter by 0.2 inches high. The terahertz imaging system inspects a test part by utilizing a transceiver to emit a pulse focused at the aluminum skin of the ET, which reflects it back to the transceiver where it is analyzed. The transceiver is scanned across the area of interest until a measurement has been taken at every location. Amplitude, time delay and frequency content are examined to note any discontinuities which may be the result of a void or other type of defect. The pulse currently utilized is in the millimeter wave regime. The void detection limit with this system is around 0.5 inches in diameter by 0.2 inches high. With increased interest in other causes of foam loss following the flight of Discovery in July 2005, laser shearography was added to the techniques used for inspecting ET foam. The shearography method records a sheared image of a laser speckle pattern projected on a test part before And after some sort of excitation. The resultant fringe pattern allows the slope of the out of plane displacement to be measured. For crushed and delaminated foam applications, a non-contact air coupled acoustic force is used to excite the surface of the foam. Regions without defects tend to respond differently to the sound energy than do regions with defects, generating a map of the foam integrity. Foam crushed to a depth of about 0.1 inches is detectable with shearography even after it has relaxed to its original shape.
Saving the Information Commons.
ERIC Educational Resources Information Center
Bollier, David
2003-01-01
Discusses the control of digital content and the stakes for libraries and our democratic culture. Highlights include copyright term extension, the Digital Millennium Copyright Act, use of contract law to limit the public domain, database legislation, trademarks versus the public domain, the void in our cultural vocabulary, and the concept of the…
Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars
NASA Astrophysics Data System (ADS)
Wiens, Roger C.; Rubin, David M.; Goetz, Walter; Fairén, Alberto G.; Schwenzer, Susanne P.; Johnson, Jeffrey R.; Milliken, Ralph; Clark, Ben; Mangold, Nicolas; Stack, Kathryn M.; Oehler, Dorothy; Rowland, Scott; Chan, Marjorie; Vaniman, David; Maurice, Sylvestre; Gasnault, Olivier; Rapin, William; Schroeder, Susanne; Clegg, Sam; Forni, Olivier; Blaney, Diana; Cousin, Agnes; Payré, Valerie; Fabre, Cecile; Nachon, Marion; Le Mouelic, Stephane; Sautter, Violaine; Johnstone, Stephen; Calef, Fred; Vasavada, Ashwin R.; Grotzinger, John P.
2017-06-01
Voids and hollow spheroids between ∼1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302-305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1-4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only one hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. Origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Although some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.
Oliveira, Olga; Ferreira, Sónia; Reis, Maria Júlia; Oliveira, José Carlos; Correia-de-Sá, Paulo
2013-01-01
Background Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB) release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. Methods Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min) were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF) by ELISA. Results The urinary content of ATP, but not of NGF, normalized to patients’ urine creatinine levels (ATP/Cr) or urinary volume (ATP.Vol) were significantly (P<0.05) higher in OAB women with detrusor overactivity (n = 34) than in healthy controls (n = 30). Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. Conclusion A high area under the receiver operator characteristics (ROC) curve (0.741; 95% CI 0.62–0.86; P<0.001) is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome. PMID:23741373
On-line consolidation of thermoplastic composites
NASA Astrophysics Data System (ADS)
Shih, Po-Jen
An on-line consolidation system, which includes a computer-controlled filament winding machine and a consolidation head assembly, has been designed and constructed to fabricate composite parts from thermoplastic towpregs. A statistical approach was used to determine the significant processing parameters and their effect on the mechanical and physical properties of composite cylinders fabricated by on-line consolidation. A central composite experimental design was used to select the processing conditions for manufacturing the composite cylinders. The thickness, density, void content, degree of crystallinity and interlaminar shear strength (ILSS) were measured for each composite cylinder. Micrographs showed that complete intimate contact and uniform fiber-matrix distribution were achieved. The degree of crystallinity of the cylinders was found to be in the range of 25-30%. Under optimum processing conditions, an ILSS of 58 MPa and a void content of <1% were achieved for APC-2 (PEEK/Carbon fiber) composite cylinders. An in-situ measurement system which uses a slip ring assembly and a computer data acquisition system was developed to obtain temperature data during winding. Composite cylinders were manufactured with eight K-type thermocouples installed in various locations inside the cylinder. The temperature distribution inside the composite cylinder during winding was measured for different processing conditions. ABAQUS finite element models of the different processes that occur during on-line consolidation were constructed. The first model was used to determine the convective heat transfer coefficient for the hot-air heat source. A convective heat transfer coefficient of 260 w/msp{2°}K was obtained by matching the calculated temperature history to the in-situ measurement data. To predict temperature distribution during winding an ABAQUS winding simulation model was developed. The winding speed was modeled by incrementally moving the convective boundary conditions around the outer surface of the composite cylinder. A towpreg heating model was constructed to predict the temperature distribution on the cross section of the incoming towpreg. For the process-induced thermal stresses analysis, a thermoelastic finite element model was constructed. Using the temperature history obtained from thermal analysis as the initial conditions, the thermal stresses during winding and cooling were investigated.
Observations of Gas-Liquid Flows Through Contractions in Microgravity
NASA Technical Reports Server (NTRS)
McQuillen, John
1996-01-01
Tests were conducted for an air-water flow through two sudden contractions aboard the NASA DC-9 low gravity aircraft. Flow rate, residual accelerations, void fraction, film thickness, and pressure drop data were recorded and flow visualization at 250 images per second were recorded. Some preliminary results based on the flow visualization data are presented for bubbly, slug and annular flow.
Effect of various filler types on the properties of porous asphalt mixture
NASA Astrophysics Data System (ADS)
Shukry, Nurul Athma Mohd; Hassan, Norhidayah Abdul; Ezree Abdullah, Mohd; Rosli Hainin, Mohd; Yusoff, Nur Izzi Md; Putra Jaya, Ramadhansyah; Mohamed, Azman
2018-04-01
The open structure of porous asphalt exposes a large surface area to the effects of air and water, which accelerates the oxidation rate and affects the coating properties of the binder. These factors may influence the adhesive strength of the binder-aggregate and lead to cohesive failure within the binder film, contributing to aggregate stripping and moisture damage. The addition of fillers in asphalt mixtures has been identified to stiffen the asphalt binder and improve mixture strength. This study investigates the effect of various filler types (hydrated lime, cement, and diatomite) on the properties of porous asphalt. Compacted samples of porous asphalt were prepared using Superpave gyratory compactor at the target air void content of 21%. Each sample was incorporated with 2% of filler and polymer-modified binder of PG76. The morphology and chemical composition of fillers were investigated with a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The properties of porous asphalt were evaluated in terms of permeability, abrasion loss, resilient modulus, and indirect tensile strength. All mixtures were found to show high permeability rates. Mixtures with hydrated lime exhibited lower abrasion loss compared to mixtures with cement and diatomite. The use of diatomite increases the resistance of the mixtures to rutting and moisture damage compared to other fillers as shown by the enhanced resilient modulus and indirect tensile strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D.B.
This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is causedmore » by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.« less
Venturi flow meter and Electrical Capacitance Probe in a horizontal two-phase flow
NASA Astrophysics Data System (ADS)
Monni, G.; Caramello, M.; De Salve, M.; Panella, B.
2015-11-01
The paper presents the results obtained with a spool piece (SP) made of a Venturi flow meter (VMF) and an Electrical Capacitance Probe (ECP) in stratified two-phase flow. The objective is to determine the relationship between the test measurements and the physical characteristics of the flow such as superficial velocities, density and void fraction. The outputs of the ECP are electrical signals proportional to the void fraction between the electrodes; the parameters measured by the VFM are the total and the irreversible pressure losses of the two- phase mixture. The fluids are air and demineralized water at ambient conditions. The flow rates are in the range of 0,065-0,099 kg/s for air and 0- 0,039 kg/s (0-140 l/h) for water. The flow patterns recognized during the experiments are stratified, dispersed and annular flow. The presence of the VFM plays an important role on the alteration of the flow pattern due to wall flow detachment phenomena. The signals of differential pressure of the VFM in horizontal configuration are strongly dependent on the superficial velocities and on the flow pattern because of a lower symmetry of the flow with respect to the vertical configuration.
Investigation of the plastic fracture of high-strength aluminum alloys
NASA Technical Reports Server (NTRS)
Van Stone, R. H.; Merchant, R. H.; Low, J. R., Jr.
1974-01-01
In a study of plastic fracture in five high-strength aluminum alloys (2014, 2024, 2124, 7075, and 7079), it has been shown that fracture toughness is affected primarily by the size and volume fraction of the larger (2 to 10 microms) second-phase particles. Certain of these particles crack at small plastic strains, nucleating voids which, with further plastic strain, coalesce to cause fracture. Not all second-phase particles crack at small plastic strains, and qualitative analysis of those which are primarily responsible for void nucleation shows that they contain iron or silicon or both. This result suggests that a reduction in the iron and silicon impurity content of the alloys should improve fracture toughness without loss of strength.
NASA Astrophysics Data System (ADS)
Sherwin, Catherine M.; Baldini, James U. L.
2011-07-01
Hourly resolved cave air P and cave drip water hydrochemical data illustrate that calcite deposition on stalagmites can be modulated by prior calcite precipitation (PCP) on extremely short timescales. A very clear second-order covariation between cave air P and drip water Ca 2+ concentrations during the winter months demonstrates the effects of degassing-induced PCP on drip water chemistry. Estimating the strength of the cave air P control on PCP is possible because the PCP signal is so clear; at our drip site a one ppm shift in Ca 2+ concentrations requires a P shift of between 333 and 667 ppm. This value will undoubtedly vary from site to site, depending on drip water flow rate, residence time, drip water-cave air P differential, and availability of low P void spaces in the vadose zone above the cave. High-resolution cave environmental measurements were used to model calcite deposition on one stalagmite in Crag Cave, SW Ireland, and modelled growth over the study period (222 μm over 171 days) is extremely similar to the amount of actual calcite growth (240 μm) over the same time interval, strongly suggesting that equations used to estimate stalagmite growth rates are valid. Although cave air P appears to control drip water hydrochemistry in the winter, drip water dilution caused by rain events may have played a larger role during the summer, as evidenced by a series of sudden drops in Ca 2+ concentrations (dilution) followed by much more gradual increases in drip water Ca 2+ concentrations (slow addition of diffuse water). This research demonstrates that PCP on stalactites, cave ceilings, and void spaces within the karst above the cave partially controls drip water chemistry, and that thorough characterisation of this process at individual caves is necessary to most accurately interpret climate records from those sites.
Airborne fibre and asbestos concentrations in system built schools
NASA Astrophysics Data System (ADS)
Burdett, Garry; Cottrell, Steve; Taylor, Catherine
2009-02-01
This paper summarises the airborne fibre concentration data measured in system built schools that contained asbestos insulation board (AIB) enclosed in the support columns by a protective steel casing. The particular focus of this work was the CLASP (Consortium of Local Authorities Special Programme) system buildings. A variety of air monitoring tests were carried out to assess the potential for fibres to be released into the classroom. A peak release testing protocol was adopted that involved static sampling, while simulating direct impact disturbances to selected columns. This was carried out before remediation, after sealing gaps and holes in and around the casing visible in the room (i.e. below ceiling level) and additionally round the tops of the columns, which extended into the suspended ceiling void. Simulated and actual measurements of worker exposures were also undertaken, while sealing columns, carrying out cleaning and maintenance work in the ceiling voids. Routine analysis of these air samples was carried out by phase contrast microscopy (PCM) with a limited amount of analytical transmission electron microscopy (TEM) analysis to confirm whether the fibres visible by PCM were asbestos or non-asbestos. The PCM fibre concentrations data from the peak release tests showed that while direct releases of fibres to the room air can occur from gaps and holes in and around the column casings, sealing is an effective way of minimising releases to below the limit of quantification (0.01 f/ml) of the PCM method for some 95% of the tests carried out. Sealing with silicone filler and taping any gaps and seams visible on the column casing in the room, also gave concentrations below the limit of quantification (LOQ) of the PCM method for 95% of the tests carried out. The data available did not show any significant difference between the PCM fibre concentrations in the room air for columns that had or had not been sealed in the ceiling void, as well as in the room. Occupant exposures during normal classroom teaching activities in areas that had undergone remediation were also monitored with much greater use of TEM analysis to determine the asbestos fibre concentration. No asbestos fibres were found in the TEM analysis of samples of classroom air from seven schools, after remediation had taken place. Occupant exposures in one school and one office building have been monitored before remediation and only one asbestos fibre was found in each set of samples analysed. The average monitored occupant exposures to asbestos in CLASP buildings was <0.00005 f/ml, an order of magnitude lower than previous measurements in UK buildings.
Shear Wave Velocity for Evaluation of State of Cohesionless Soils with Fines
NASA Astrophysics Data System (ADS)
Lipiński, Mirosław J.; Wdowska, Małgorzata K.; Jaroń, Łukasz
2017-10-01
The paper concerns evaluation of cohesionless soils containing fines. In clean sands, state of soil is usually quantified by relative density DR with use of field techniques like static or dynamic probes. However, in cohesionless soils containing considerable amount of fines, relative density alone, which is based solely on void ratio values, is not representative. This results from the fact that in case of cohesionless soil there is no unique intrinsic compressibility line, like it is in case of cohesive soils. Thus state of soil depends not only on void ratio but also state of stress. For this reason it is necessary to look for an alternative means to quantify state of soils with fines. The paper concerns possibility of evaluation of state of soil containing various amount of fines on the basis of shear wave velocity measurement. The idea rests on the fact that void ratio and state of stress are the major factors which contribute to a state of soil and shear wave velocity as well. When measured shear wave velocities are normalised with respect to stresses the resulting values might be strictly correlated to void ratio. To validate this approach, an experimental test programme (based on series of sophisticated triaxial tests) was carried out on four kinds of sandy material containing various amount of fines up to 60%. The experimental data made possible to establish basic correlation between soil states and shear wave velocity for each kind of soil. Normalized shear wave velocity was compared with void ratio and state parameter as well. The obtained results revealed that determination of void ratio on the basis of shear wave velocity in a certain range of fines can be much more adequate than for clean sands. However, if the fines content exceeds certain value, the obtained correlation is no longer as good.
The Aeroflex: A Bicycle for Mobile Air Quality Measurements
Elen, Bart; Peters, Jan; Van Poppel, Martine; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout
2013-01-01
Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. PMID:23262484
The Aeroflex: a bicycle for mobile air quality measurements.
Elen, Bart; Peters, Jan; Poppel, Martine Van; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout
2012-12-24
Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification.
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
Peterson, Abbey; Erickson, Cuixia Shi; Nelson, Mark T.; Vizzard, Margaret A.
2014-01-01
Social stress may play a role in urinary bladder dysfunction in humans, but the underlying mechanisms are unknown. In the present study, we explored changes in bladder function caused by social stress using mouse models of stress and increasing stress. In the stress paradigm, individual submissive FVB mice were exposed to C57BL/6 aggressor mice directly/indirectly for 1 h/day for 2 or 4 wk. Increased stress was induced by continuous, direct/indirect exposure of FVB mice to aggressor mice for 2 wk. Stressed FVB mice exhibited nonvoiding bladder contractions and a decrease in both micturition interval (increased voiding frequency) and bladder capacity compared with control animals. ELISAs demonstrated a significant increase in histamine protein expression with no change in nerve growth factor protein expression in the urinary bladder compared with controls. Unlike stressed mice, mice exposed to an increased stress paradigm exhibited increased bladder capacities and intermicturition intervals (decreased voiding frequency). Both histamine and nerve growth factor protein expression were significantly increased with increased stress compared with control bladders. The change in bladder function from increased voiding frequency to decreased voiding frequency with increased stress intensity suggests that changes in social stress-induced urinary bladder dysfunction are context and duration dependent. In addition, changes in the bladder inflammatory milieu with social stress may be important contributors to changes in urinary bladder function. PMID:25100077
NASA Astrophysics Data System (ADS)
Kaufmann, Georg; Nielbock, Ralf; Romanov, Douchko
2015-12-01
In soluble rocks (limestone, dolomite, anhydrite, gypsum, …), fissures and bedding partings can be enlarged with time by both physical and chemical dissolution of the host rock. With time, larger cavities evolve, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these karst structures, e.g.: (i) gravity revealing air- and sediment-filled cave voids through negative Bouguer anomalies, (ii) electrical resistivity imaging (ERI) mapping different infillings of cavities either as high resistivities from air-filled voids or dry soft sediments, or low resistivities from saturated sediments, and (iii) groundwater flow through electrical potential differences (SP) arising from dislocated ionic charges from the walls of the underground flow paths. We have used gravity, ERI, and SP methods both in and above the Unicorn Cave located in the southern Harz Mountains in Germany. The Unicorn Cave is a show cave developed in the Werra dolomite formation of the Permian Zechstein sequence, characterised by large trunk passages interrupted by larger rooms. The overburden of the cave is only around 15 m, and passages are filled with sediments reaching infill thicknesses up to 40 m. We present results from our geophysical surveys above the known cave and its northern and southern extension, and from the cave interior. We identify the cave geometry and its infill from gravity and ERI measurements, predict previously unknown parts of the cave, and subsequently confirm the existence of these new passages through drilling. From the wealth of geophysical data acquired we derive a three-dimensional structural model of the Unicorn Cave and its surrounding, especially the cave infill.
Thermographic Analysis of Composite Cobonds on the X-33
NASA Technical Reports Server (NTRS)
Russell, S. S.; Walker, J. L.; Lansing, M. D.
2001-01-01
During the manufacture of the X-33 liquid hydrogen (LH2) Tank 2, a total of 36 reinforcing caps were inspected thermographically. The cured reinforcing sheets of graphite/epoxy were bonded to the tank using a wet cobond process with vacuum bagging and low temperature curing. A foam filler material wedge separated the reinforcing caps from the outer skin of the tank. Manufacturing difficulties caused by a combination of the size of the reinforcing caps and their complex geometry lead to a potential for trapping air in the bond line. An inspection process was desired to ensure that the bond line was free of voids before it had cured so that measures could be taken to rub out the entrapped air or remove the cap and perform additional surface matching. Infrared thermography was used to perform the procure 'wet bond' inspection as well a to document the final 'cured' condition of the caps. The thermal map of the bond line was acquired by heating the cap with either a flash lamp or a set of high intensity quartz lamps and then viewing it during cool down. The inspections were performed through the vacuum bag and voids were characterized by localized hot spots. In order to ensure that the cap had bonded to the tank properly, a post cure 'flash heating' thermographic investigation was performed with the vacuum bag removed. Any regions that had opened up after the preliminary inspection or that were hidden during the bagging operation were marked and filled by drilling small holes in the cap and injecting resin. This process was repeated until all critical sized voids were filled.
Thermographic Analysis of Composite Cobonds on the X-33
NASA Technical Reports Server (NTRS)
Russell, Samuel S.; Walker, James L.; Lansing, Matthew D.; Whitaker, Ann F. (Technical Monitor)
2000-01-01
During the manufacture of the X-33 liquid hydrogen (LH2) Tank 2, a total of thirty-six reinforcing caps were inspected thermographically. The cured reinforcing sheets of graphite/epoxy were bonded to the tank using a wet cobond process with vacuum bagging and low temperature curing. A foam filler material wedge separated the reinforcing caps from the outer skin of the tank. Manufacturing difficulties caused by a combination of the size of the reinforcing caps and their complex geometry lead to a potential for trapping air in the bond line. An inspection process was desired to ensure that the bond line was free of voids before it had cured so that measures could be taken to rub out the entrapped air or remove the cap and perform additional surface matching. Infrared thermography was used to perform the precure "wet bond" inspection as well as to document the final "cured" condition of the caps. The thermal map of the bond line was acquired by heating the cap with either a flash lamp or a set of high intensity quartz lamps and then viewing it during cool down. The inspections were performed through the vacuum bag and voids were characterized by localized hot spots. In order to ensure that the cap had bonded to the tank properly, a post cure "flash heating" thermographic investigation was performed with the vacuum bag removed. Any regions that had opened up after the preliminary inspection or that were hidden during the bagging operation were marked and filled by drilling small holes in the cap and injecting resin. This process was repeated until all critical sized voids were filled.
An Experimental Study of Plunging Liquid Jet Induced Air Carryunder and Dispersion
1991-12-24
the ’ greenhouse ’ effect (ie, the absorption of CO2 by the oceans), and a number of other important maritime-related applications. In particular, the air entrainment process due to the breaking bow waves of surface ships may cause long (ie, up to 5 km in length) wakes. Naturally easily detectable wakes are undesirable for naval warships. In the present study plunging liquid jet experiments were performed and detailed Laser Doppler Anemometer (LDA) data were taken of the phasic velocity field and the void fraction distribution in the induced two-phase
Chapter 2: Student Performance Data, School Attributes, and Relationships
ERIC Educational Resources Information Center
Mitchell, Murray; Castelli, Darla; Strainer, Skip
2003-01-01
Physical education as a school subject can be characterized as largely void of both consensus and accountability. Until the publication of the national content standards (NASPE, 1995) there was no explicit, shared vision regarding what is important to teach in school programs. There has been a sense that this lack of consensus somehow preserves…
It Shall Not Return to Me Void: Teaching Religious Content to Individuals with Cognitive Disability
ERIC Educational Resources Information Center
Iguchi, Carolyn M.
2010-01-01
This research is an exploratory qualitative investigation into the challenges of teaching religious material to individuals with cognitive disabilities. The study setting was a single large evangelical Christian church known for excellence in ministry to individuals with disabilities and their families. The following issues were explored: (a)…
Flipped Classrooms: An Agenda for Innovative Marketing Education in the Digital Era
ERIC Educational Resources Information Center
Green, Teegan
2015-01-01
Flipped classrooms reverse traditional lecturing because students learn content before class through readings and prerecorded videos, freeing lectures for hands-on activities and discussion. However, there is a dearth of literature in marketing education addressing flipped classrooms. This article fills this void using grounded theory to develop a…
Out-of-Autoclave Cure Composites
NASA Technical Reports Server (NTRS)
Hayes, Brian S.
2015-01-01
As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.
Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1972-01-01
Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.
Design of a bituminous mixture for perpetual pavement
NASA Astrophysics Data System (ADS)
Gireesh Kumar, S.; Satya, J.; Mittal, Kratagya; Raju, Sridhar
2018-03-01
The flexible pavements with a design period of 50 years without requiring major structural rehabilitation and reconstructions are called as perpetual pavements. The present study aims at designing a high modulus Dense Bituminous Macadam (DBM) mixture for perpetual pavements using Industrial Grade (IG) bitumen in combination with Viscosity Grade (VG30) bitumen. Various blending combinations were tried and the ratio of 70:30 for IG: VG30 was found to fulfill the requirements. The modified Marshall hammer was used for the preparation of specimens, as the nominal size of aggregate was 25 mm. A comparative study on DBM mixture with VG30 alone and with IG: VG30 (70:30) was done and the Optimum Binder Contents obtained were 5.0 % and 5.3 % respectively at 4 % air voids. The water sensitivity tests were carried out on the bituminous specimens in accordance with AASHTO T 283 and the Indirect Tensile Strength (ITS) ratio obtained were 80.0 % and 98.3 % respectively for specimens with VG30 and IG: VG30. The stiffness modulus of DBM specimens with IG: VG30 bitumen was 3 times higher than DBM with VG30 bitumen.
Qualitative criteria and thresholds for low noise asphalt mixture design
NASA Astrophysics Data System (ADS)
Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R.
2018-05-01
Low noise asphalt pavements are cost efficient and cost effective alternative for road traffic noise mitigation comparing with noise barriers, façade insulation and other known noise mitigation measures. However, design of low noise asphalt mixtures strongly depends on climate and traffic peculiarities of different regions. Severe climate regions face problems related with short durability of low noise asphalt mixtures in terms of considerable negative impact of harsh climate conditions (frost-thaw, large temperature fluctuations, hydrological behaviour, etc.) and traffic (traffic loads, traffic volumes, studded tyres, etc.). Thus there is a need to find balance between mechanical and acoustical durability as well as to ensure adequate pavement skid resistance for road safety purposes. Paper presents analysis of the qualitative criteria and design parameters thresholds of low noise asphalt mixtures. Different asphalt mixture composition materials (grading, aggregate, binder, additives, etc.) and relevant asphalt layer properties (air void content, texture, evenness, degree of compaction, etc.) were investigated and assessed according their suitability for durable and effective low noise pavements. Paper concluded with the overview of requirements, qualitative criteria and thresholds for low noise asphalt mixture design for severe climate regions.
Dynamic modulus of nanosilica modified porous asphalt
NASA Astrophysics Data System (ADS)
Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.
2017-11-01
Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.
Via fill properties of organic BARCs in dual-damascene application
NASA Astrophysics Data System (ADS)
Huang, Runhui
2004-05-01
With the introduction of copper as the interconnect metal, the Dual Damascene (DD) process has been integrated into integrated circuit (IC) device fabrication. The DD process utilizes organic bottom anti-reflective coatings (BARCs) not only to eliminate the thin film interference effects but also to act as via fill materials. However, three serious processing problems are encountered with organic BARCs. One is the formation of voids, which are trapped gas bubbles (evaporating solvent, byproduct of the curing reaction and air) inside the vias. Another problem is non-uniform BARC layer thickness in different via pitch areas. The third problem is the formation of fences during plasma etch. Fences are formed from materials that are removed by plasma and subsequently deposited on the sidewall surrounding the via openings during the etching process. Voids can cause variations in BARC top thickness, optical properties, via fill percentage, and plasma etch rate. This study focuses on the factors that influence the formation of voids and addresses the ways to eliminate them by optimizing the compositions of formulations and the processing conditions. Effects of molecular weight of the polymer, nature of the crosslinker, additives, and bake temperature were examined. The molecular weight of the polymer is one of the important factors that needs to be controlled carefully. Polymers with high molecular weights tend to trap voids inside the vias. Low molecular weight polymers have low Tg and low viscosity, which enables good thermal flow so that the BARC can fill vias easily without voids. Several kinds of crosslinkers were investigated in this study. When used with the same polymer system, formulations with different crosslinkers show varying results that affect planar fill, sidewall coverage, and, in some cases, voids. Additives also can change via fill behavior dramatically, and choosing the right additive will improve the via fill property. Processing conditions such as bake temperature also greatly affect via fill. Depending on the polymer thermal property and crosslinking reaction, varying the bake temperature can change the via fill behavior of the BARC. By understanding the nature of the polymer, the crosslinking reaction, and the processing conditions, we are able to design BARCs with better flow property to provide planar topography without voids inside the vias.
Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars
Wiens, Roger C.; Rubin, David M.; Goetz, Walter; ...
2017-02-21
Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less
Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Roger C.; Rubin, David M.; Goetz, Walter
Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less
A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, A.; Paller, M.; Dixon, K.
2012-06-29
The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste thatmore » forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.« less
Evaluation of the Air Void Analyzer
2013-07-01
lack of measurement would help explain the difference in values shown. Brief descriptions of other unpublished testing (Wang et al. 2008) CTL Group...structure measurements taken from the controlled laboratory mixtures. A three-phase approach was used to evaluate the machine. First, a global ...method. Hypothesis testing using t-statistics was performed to increase understanding of the data collected globally in terms of the processes used for
Reducing ingress of organic vapours into homes situated on contaminated land.
Crump, D; Brown, V; Rowley, J; Squire, R
2004-04-01
The efficacy of current landfill gas and radon mitigation measures for the prevention of ingress of organic vapours was investigated by the study of four houses situated on contaminated land in North West England. The chemical present in the ground of greatest concern for health due to exposure to vapour in the indoor air was hexachlorobutadiene (HCBD) and the concentration of this compound was used to assess the effectiveness of the remedial measures. A two stage remediation was undertaken. For a house with a solid floor the top surface of the floor was sealed and then for the second stage a fan was used to pressurise the soil gas beneath the house. In a house with a suspended timber floor, extra air bricks were installed to increase ventilation of the floor void and then a fan to further increase air exchange in the void. HCBD in air was monitored by both pumped and diffusive sampling methods. Control houses were also monitored that were not subject to remediation. It is concluded that the remedial measures used for radon protection of a suspended floor have the potential to reduce indoor HCBD concentrations by about 80%, at least in downstairs rooms (where initial levels were highest). The two techniques used for properties with solid floors do not appear to be as effective, and no benefit at all was seen without making allowances for changes in concentration that occurred in the control house over the same period. Further work is required to test the efficacy of the techniques over a longer period and under different circumstances of type of contamination and building characteristics.
NASA Astrophysics Data System (ADS)
Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.
2016-04-01
The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.
Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W
2016-04-29
The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.
Single Parenting from a Father's Heart. A Back-to-Basics Guide for Both Sexes.
ERIC Educational Resources Information Center
Horner, Steve
This book addresses the void in father-oriented parenting material by offering, from a father's point of view, practical, thoughtful, and inspiring solutions to help single parents and their children be more effective, productive, and content. The book's chapters are: (1) "Dedication Comes First," covering such topics as how parents view…
The sparkling Universe: clustering of voids and void clumps
NASA Astrophysics Data System (ADS)
Lares, Marcelo; Ruiz, Andrés N.; Luparello, Heliana E.; Ceccarelli, Laura; Garcia Lambas, Diego; Paz, Dante J.
2017-07-01
We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy sample from the Sloan Digital Sky Survey. We take into account the classification of voids into two types that resemble different evolutionary modes: those with a rising integrated density profile (void-in-void mode or R-type) and voids with shells (void-in-cloud mode or S-type). The results show that voids of the same type have stronger clustering than the full sample. We use the correlation analysis to define void clumps, associations with at least two voids separated by a distance of at most the mean void separation. In order to study the spatial configuration of void clumps, we compute the minimal spanning tree and analyse their multiplicity, maximum length and elongation parameter. We further study the dynamics of the smaller sphere that enclose all the voids in each clump. Although the global densities of void clumps are different according to their member-void types, the bulk motions of these spheres are remarkably lower than those of randomly placed spheres with the same radius distribution. In addition, the coherence of pairwise void motions does not strongly depend on whether voids belong to the same clump. Void clumps are useful to analyse the large-scale flows around voids, since voids embedded in large underdense regions are mostly in the void-in-void regime, where the expansion of the larger region produces the separation of voids. Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the relative velocities of voids that are mostly approaching.
NASA Astrophysics Data System (ADS)
Su, Yu-Min; Hou, Tsung-Chin; Lin, Li-Chiang; Chen, Gwan-Ying; Pan, Huang-Hsing
2016-04-01
Portland Cement Concrete plays a vital part of protecting structural rebars or steels when high-temperature fire incidents occur, that induces loss of evaporate water, dehydration of CH, and deconstruction of C-S-H. The objective of the study was to assess fire-damaged concrete in conjunction with nondestructive evaluation methods of acoustic emission, visual inspections, and X-ray computed tomography. The experimental program was to mix an Ordinary Portland Cement concrete firstly. Concrete cylinders with twenty-day moisture cure were treated in a furnace with 400 and 600°C for one hour. After temperature is cooled down, the concrete cylinders were brought to air or moisture re-curing for ten days. Due to the incident of the furnace, acoustic emission associated with splitting tensile strength test was not able to continue. Future efforts are planned to resume this unfinished task. However, two proposed tasks were executed and completed, namely visual inspections and voids analysis on segments obtained from X-ray CT facility. Results of visual inspections on cross-sectional and cylindrical length of specimens showed that both aggregates and cement pastes turned to pink or red at 600°C. More surface cracks were generated at 600°C than that at 400°C. On the other hand, voids analysis indicated that not many cracks were generated and voids were remedied at 400°C. However, a clear tendency was found that remedy by moisture curing may heal up to 2% voids of the concrete cylinder that was previously subject to 600°C of high temperature conditioning.
NASA Astrophysics Data System (ADS)
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-06-01
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.
Space charge neutralization by electron-transparent suspended graphene
Srisonphan, Siwapon; Kim, Myungji; Kim, Hong Koo
2014-01-01
Graphene possesses many fascinating properties originating from the manifold potential for interactions at electronic, atomic, or molecular levels. Here we report measurement of electron transparency and hole charge induction response of a suspended graphene anode on top of a void channel formed in a SiO2/Si substrate. A two-dimensional (2D) electron gas induced at the oxide interface emits into air and makes a ballistic transport toward the suspended graphene. A small fraction (>~0.1%) of impinging electrons are captured at the edge of 2D hole system in graphene, demonstrating good transparency to very low energy (<3 eV) electrons. The hole charges induced in the suspended graphene anode have the effect of neutralizing the electron space charge in the void channel. This charge compensation dramatically enhances 2D electron gas emission at cathode to the level far surpassing the Child-Langmuir's space-charge-limited emission. PMID:24441774
NASA Astrophysics Data System (ADS)
Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin
2018-02-01
The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-06-24
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-01-01
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields. PMID:27340030
Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection
Miller, R.D.; Steeples, D.W.
1991-01-01
Surface collapse over abandoned subsurface coal mines is a problem in many parts of the world. High-resolution P-wave reflection seismology was successfully used to evaluate the risk of an active sinkhole to a main north-south railroad line in an undermined area of southeastern Kansas, USA. Water-filled cavities responsible for sinkholes in this area are in a 0.6 m thick coal seam, 7 m deep. Dominant reflection frequencies in excess of 200 Hz enabled reflections from the coal seam to be discerned from the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the "room and pillar" mining technique practiced in this area near the turn of the century. The seismic survey showed that the apparent active sinkhole was not the result of reactivated subsidence but probably erosion. ?? 1991.
The 371 deg C mechanical properties of graphite/polyimide composites
NASA Technical Reports Server (NTRS)
Delvigs, P.
1985-01-01
A series of condensation polyimides based on pyromellitic dianhydride is synthesized and evaluated for potential application at 371 C. Several three-and four-ring benzenoid diamine systems containing oxygen bridging groups are investigated. Thermomechanical analysis of neat resin specimens indicate that the polyimide prepared from the dimethyl ester of pyrometallitic acid (PMDE) and 2,2-bis4-(4'-aminophenoxy) phenyl]-1,1,1,3,3,3- hexafluoropropane (BDAF) is the only resin system which has a glass transition temperature (Tg) above 371 C. The Tg of the PMDE/BDAF polyimide is found to be 390 C after a postcure air at 371 C for 24 hr. Unidirectional composites are fabricated from the PMDE/BDAF system and unsized Celion 6000 graphite fibers. Final cure temperatures in the range of 371 to 427 C with an applied pressure of 10.34 to 13.78 MPa are investigated. The void content of the composites ranges from 4.6 to 8.6 percent. Composites cured at 399 C under a pressure of 10.34 MPa and postcured in air at 371 C for 24 hr exhibit the highest 371 C interlaminar shear strength (ILSS, 40.7 MPa) and flexural strength (758 MPa). The thermo-oxidative stability of the composites is determined by subjecting specimens to isothermal exposure at 371 C in air at atmospheric pressure, as well as a pressure of 0.52 MPa. Specimens exposed at atmospheric pressure exhibit a weight loss of 12 percent after 200 hr of exposure and 88 percent retention of its original 371 C ILSS. In contrast, the specimens exposed at 0.52 MPa pressure exhibit a comparable weight loss after only 72 hr, and a 71 percent retention of its original 371 C ILSS.
Phenylethynyl Containing Polyarylene Ethers/Polyimides Resin Infiltration of Composites
NASA Technical Reports Server (NTRS)
Dunn, DeRome O.
1998-01-01
The following tasks were performed at NCA&TSU during the second year in performance of the grant. LaRC-LV-1 13 resin was synthesized at NCA&TSU. In order to perform the synthesis, glassware and needed apparatus were purchased with grant funds along with the appropriate monomers. It was found that the LaRC-LV-1 13 resin was easily synthesized by the NMP solvent/toluene imminization/distilled water precipitation process. However, in use this resin exhibited a bubbling/foaming behavior during cure that was detrimental leading to the production of composite panels having a high void content. Composite panels were fabricated using compression molding and resin transfer molding (RTM) techniques. Initial fiber volume determinations were computed at NCA&TSU along with NASA-Langley measured c-scans on the panels produced. The initial results indicated a unsatisfactory level of approximately 20% by volume of voids. Testing of uniaxial coupons in compression to failure also agreed with these results. The uniaxial coupons delaminated as the major mode of failure indicative of an unacceptably low level of resin and to much void content in the final composites produced. In discussions with Dr. Brian Jensen, it was suggested the void fraction needs to be reduced to at least 2% by volume for a useful composite. The panels produced used both resin synthesized at NASA-Langley and NCA&TSU. In reviewing our progress over the past year, it was noted that the resin as formulated by the current synthesis process bubbled at elevated temperature. This was especially observed in neat resin slugs cured at the recommended one, four and eight hour cure temperatures. Pressurized cures where then performed with pressures up to 200 psi and simultaneously the lowest eight hour cure temperatures. Although this procedure reduced the amount of bubbles to some extent in the neat resin slugs it did not completely eliminate them. The cure reaction appears to be very energetic even at the lowest recommended cure temperature. Currently, the pressurized cure apparatus developed at NCA&TSU is limited to 200 psi.
Rigid and Flexible Pavement Aircraft Tie-Downs
2010-05-01
Concrete Pier, Prior to PCC Placement Neenah anchors are equipped with two ½-in-diameter cored holes to allow insertion of a section of rebar through...facilitate this process, a Hilti drill was utilized to perform the concrete drilling process. The drill bit diameter exceeded the rebar diameter by...aggregate particles not become lodged against the rebar sections inside the dowel sleeves, impeding the flow of concrete and possibly creating air voids
RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface
NASA Astrophysics Data System (ADS)
Sahin, Halil Turgut
2013-01-01
An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seok; Jun, Naram; Lee, Sang Bae; Han, Young-Geun
2014-05-01
A reflective in-line modal interferometer based on a polarization-maintaining photonic crystal fiber (PM-PCF) with two exterior air holes is proposed for simultaneous measurement of chemical vapor and temperature. After fusion-splicing the PM-PCF with a standard single-mode fiber, we collapse all of air holes in the PM-PCF resulting in two types of interference patterns between the core and the cladding modes in the PM-PCF depending on two polarization states. Since two large air holes at the facet of the proposed modal interferometer are left open, a chemical vapor can be infiltrated into the voids. Different sensitivities corresponding to input polarization states are utilized for discrimination between chemical vapor and temperature sensitivities.
Analysis of the `Biarez Favre' and `Burland' models for the compressibility of remoulded clays
NASA Astrophysics Data System (ADS)
Favre, Jean-Louis; Hattab, Mahdia
2008-01-01
This study aims at comparing the prediction by the Biarez and Favre model as well as by the more recent Burland one, established for reconstituted normally consolidated clays submitted to oedometric loading. The former, proposed in the 1970s, uses the liquidity index IL, and while the latter introduces a parameter, Iv, which is a normalised void index based on two characteristic void ratios ( e100* and e1000*) corresponding to the oedometric curve of σv=100 kPa and σv=1000 kPa. The aim of these models is to predict the compressibility parameters based on the identification of parameters represented by the Atterberg limits ( wL, wP, Ip) as well as of other physical parameters such as the void ratio e or the natural water content wnat, taking into account the effective overburden pressure σv. These models, which represent the intrinsic properties of clays under compression, are compared with two experimental curves, the first one representing remoulded and reconstituted clay, and the other one a deepwater clay sediment taken from the Gulf of Guinea at a depth of 700 m.
NASA Astrophysics Data System (ADS)
Hart, Robert James
In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large delamination extending beyond the electrode locations, the oblique resistance increased by 30%. This result suggests that for damage sensing applications, the spacing of electrodes relative to the size of the delamination is important. Finally CT image data was used to model 3-D void distributions and the electrical response of such specimens were compared to models with no voids. As the void content increased, the electrical resistance increased non-linearly. The relationship between void content and electrical resistance was attributed to a combination of three factors: (i) size and shape, (ii) orientation, and (iii) distribution of voids. As a whole, the current thesis provides a comprehensive framework for developing predictive, resistance-based damage sensing models for CFRP laminates of various layup and thickness.
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
ERIC Educational Resources Information Center
Waring, Scott M.
2010-01-01
During the past decade, there has been more than an adequate amount of research addressing issues regarding social studies methods courses. However, the apparent void is that there is no clear understanding of what pedagogical content knowledge or understanding of pedagogical approaches teacher candidates bring with them to social studies methods…
NASA Astrophysics Data System (ADS)
Khosrownejad, S. M.; Curtin, W. A.
2017-10-01
Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve KI vs. Δa) are performed at LixSi compositions x = 0.5 , 1.0 , 1.5 for as-quenched/relaxed samples and at x = 0.5 , 1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness KIc ≈ 1.0 MPa√{ m} decreases slightly but the initial fracture energy JIc ≈ 10.5J/m2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at KIc ≈ 1.9 MPa√{ m} across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts JIc = ασy D where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of LixSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging/discharging. These findings indicate that the mechanical behavior (flow and fracture) of lithiated Si must be interpreted within a fully rate- and history-dependent framework.
Analysing hydro-mechanical behaviour of reinforced slopes through centrifuge modelling
NASA Astrophysics Data System (ADS)
Veenhof, Rick; Wu, Wei
2017-04-01
Every year, slope instability is causing casualties and damage to properties and the environment. The behaviour of slopes during and after these kind of events is complex and depends on meteorological conditions, slope geometry, hydro-mechanical soil properties, boundary conditions and the initial state of the soils. This study describes the effects of adding reinforcement, consisting of randomly distributed polyolefin monofilament fibres or Ryegrass (Lolium), on the behaviour of medium-fine sand in loose and medium dense conditions. Direct shear tests were performed on sand specimens with different void ratios, water content and fibre or root density, respectively. To simulate the stress state of real scale field situations, centrifuge model tests were conducted on sand specimens with different slope angles, thickness of the reinforced layer, fibre density, void ratio and water content. An increase in peak shear strength is observed in all reinforced cases. Centrifuge tests show that for slopes that are reinforced the period until failure is extended. The location of shear band formation and patch displacement behaviour indicate that the design of slope reinforcement has a significant effect on the failure behaviour. Future research will focus on the effect of plant water uptake on soil cohesion.
Deng, Bo; Shi, Yaoyao; Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-31
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing.
Yu, Tao; Kang, Chao; Zhao, Pan
2018-01-01
The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048
Merrill, Liana; Malley, Susan
2013-01-01
Stress exacerbates symptoms of functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) in humans, but mechanisms contributing to symptom worsening are unknown. These studies address stress-induced changes in the structure and function of the micturition reflex using an animal model of stress in male rats. Rats were exposed to 7 days of repeated variate stress (RVS). Target organ (urinary bladder, thymus, adrenal gland) tissues were collected and weighed following RVS. Evans blue (EB) concentration and histamine, myeloperoxidase (MPO), nerve growth factor (NGF), brain-derived neurotropic factor (BDNF), and CXCL12 protein content (ELISA) were measured in the urinary bladder, and somatic sensitivity of the hindpaw and pelvic regions was determined following RVS. Bladder function was evaluated using continuous, open outlet intravesical infusion of saline in conscious rats. Increases in body weight gain were significantly (P ≤ 0.01) attenuated by day 5 of RVS, and adrenal weight was significantly (P ≤ 0.05) increased. Histamine, MPO, NGF, and CXCL12 protein expression was significantly (P ≤ 0.01) increased in the urinary bladder after RVS. Somatic sensitivity of the hindpaw and pelvic regions was significantly (P ≤ 0.01) increased at all monofilament forces tested (0.1–4 g) after RVS. Intercontraction interval, infused volume, and void volume were significantly (P ≤ 0.01) decreased after RVS. These studies demonstrate increased voiding frequency, histamine, MPO, NGF, and CXCL12 bladder content and somatic sensitivity after RVS suggesting an inflammatory component to stress-induced changes in bladder function and somatic sensitivity. PMID:23657640
High Temperature VARTM of Phenylethynyl Terminated Imides
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.
2009-01-01
Depending on the part type and quantity, fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) can be more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at temperature up to 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. This finding was unexpected as high quality composite laminates have been fabricated under higher pressures using these resin systems. The amount of weight loss experienced during the thermal cycle was only about 1% by weight, but this leads to a significant amount of volatiles in a closed system. By modifying the thermal cycle used in laminate fabrication, the void content was significantly reduced (typically 3% or less). The results of this work are presented herein.
NASA Astrophysics Data System (ADS)
Thanya, I. N. A.; Suweda, I. W.; Putra, G. K.
2018-03-01
Demands on natural aggregate materials for road pavement can be reduced by utilizing reclaimed asphalt pavement (RAP). This research was aimed at evaluating the performance of AC-WC mixture using RAP materials from cold milling, bound with 80/100 pen asphalt. The RAP aggregate gradation was adjusted by adding the required amount of natural aggregates to meet the specification in Indonesia. The RAP and added aggregates were hotmixed and compacted with Marshall hummer at 2×75 blows. The asphalt content were varied. It was found that the optimum asphalt content was 6.05 % with the following Marshall characteristics: stability 1237.08 kg; flow 3.36 mm; Marshall quotient 324,73kg/mm; void in mix (VIM) 3,360%; void in mineral aggregate (VMA) 15.103; and void filled with bitumen (VFB) 77.759% and residual stability 91.04; all met the Indonesian specification. The cantabro abration loss (CAL) at 30°C was 9,02%. The indirect tensile stiffness modulus (ITSM) at 20 °C was 7961.4 MPa; dynamic creep with 100 kPa pressure at 40°C gave slope 0.0112 microsstrain/pulse which is suitable for heavy load traffic. The fatigue test results was obtained at increased stress level, i.e. at 900, 1100, and 1300 kPa. Based on the equation derived from the fatigue strain and repeated loading relationship, at 100 microstrain (με) the repeated load was 434,661.58 times, and at one million (106) repeated loading, the samples could withstand strain of 92,38 microstrain. The performance of the samples were overall better than AC-WC mixture using virgin aggregates bound with 60/70 pen asphalt.
Kingery, L; Martin, M L; Naegeli, A N; Khan, S; Viktrup, L
2012-09-01
The objective of this qualitative interview study was to assess the content validity of the Benign Prostatic Hyperplasia Impact Index (BII) in a sample of men with signs and symptoms of Benign Prostatic Obstruction believed to be caused by benign prostatic hyperplasia (BPH lower urinary tract symptoms/BPH-LUTS) using concept elicitation (CE) and cognitive interviewing (CI) methods. Fifty men with BPH-LUTS participated in the study; 27 completed CE interviews and 23 completed cognitive interviews. Patient's average age was 69 years with a mean duration of BPH-LUTS of 6.5 years. IPSS scores ranged from 8 to 33 (higher scores indicating greater symptom severity). Overall, the most frequent symptoms (prevalence of ≥ 75%) reported spontaneously or after further explanation were awakening from sleep, increased daytime voiding (frequency), urgent desire to void (urgency), slow stream, and feeling of incomplete bladder emptying. Symptoms primarily recognized in response to follow up probe questions with a prevalence of ≥ 40% included terminal dribble, splitting of urinary stream, intermittent stream, straining and post-micturition dribble. Especially bothersome [> 5 on the numerical rating scale (NRS) of 0-10] and frequent symptoms included urgency and awakening at night to void. Discomfort or pain while urinating and post-micturition dribble were equally bothersome though less frequent. Five BPH symptom-related impact themes were identified: coping, daily responsibilities, emotion, lifestyle and relationships, and sleep. The BII was found to be easily understood, does capture clinically relevant BPH impacts related to urinary trouble and problems, and does capture most of the important symptom-related impacts as described by participants in this study. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.
2011-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical thermodynamic structure of the atmosphere in the pre-convective and convective environment. CAPE is an important metric because of it is a quantitative measure of atmospheric stability, which is necessary information when forecasting for convective weather. Case studies from the summer of 2010 were examined, and most impact from the AIRS retrieved profiles occurred over the data-void Gulf of Mexico with fields of convective potential closer to the RUC than the CNTL. Mixed results were found when AIRS retrieved profiles were used over land, so more cases need to be examined to determine whether AIRS would be an effective tool over land. Additional analyses of problematic convective forecasts over the Gulf Coast will be needed to determine the operational impact of AIRS. SPoRT eventually plans to transition the AIRS product to select Weather Forecast Office (WFO) partners, pending the outcome of these additional analyses.
Parameter studies of sediments in the Storegga Slide region
NASA Astrophysics Data System (ADS)
Yang, S. L.; Kvalstad, T.; Solheim, A.; Forsberg, C. F.
2006-09-01
Based on classification tests, oedometer tests, fall-cone tests and triaxial tests, physical and mechanical properties of sediments in the Storegga Slide region were analysed to assess parameter interrelationships. The data show good relationships between a number of physical and mechanical parameters. Goodness of fit between compression index and various physical parameters can be improved by multiple regression analysis. The interclay void ratio and liquidity index correlate well with the undrained shear strength of clay. Sediments with higher water content, liquid limit, activity, interclay void ratio, plasticity index and liquidity index showed higher compression index and/or lower undrained shear strength. Some relationships between parameters were tested by using data from two other sites south of the Storegga Slide. A better understanding of properties of sediments in regions such as that of the Storegga Slide can be obtained through this approach.
NASA Technical Reports Server (NTRS)
Tiede, D. A.
1972-01-01
A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.
Structural Investigations of Fibers and Films of Poly(p-phenylene benzobisthiazole). Volume 1
1982-05-01
differential scanning calorimetry, is unrelated to the diffuse scattered intensity [45]. Cellulose acetate which is known to be noncrystalline exhibits a high...Weidinger [45] found the diffuse scattered intensity increased with decreasing density and therefore, increasing void fraction, in air swollen cellulose ... Cellulose , and Poly(y-Benzyl-L-Glutamate)." J. Polym. Sci., Polym. Phys. Ed., 18, 663-682 (1980). 39. C.H. Kao and J.M. Ottino, personal communication
Inverse opal with an ultraviolet photonic gap
NASA Astrophysics Data System (ADS)
Ni, Peigen; Cheng, Bingying; Zhang, Daozhong
2002-03-01
Photonic crystals composed of TiO2 and air voids fabricated by the template method exhibit an ultraviolet photonic stop band (˜380 nm) in the Γ-L direction. Scanning electron microscopy images show that the inverse opal possesses face-centered-cubic symmetry with a lattice constant of 240 nm. The transmission spectra show that the change in transmittance is one order of magnitude in the gap, which is in accord with the reflection spectrum.
Stress Wave Scattering: Friend or Enemy of Non Destructive Testing of Concrete?
NASA Astrophysics Data System (ADS)
Aggelis, Dimitrios G.; Shiotani, Tomoki; Philippidis, Theodore P.; Polyzos, Demosthenes
Cementitious materials are by definition inhomogeneous containing cement paste, sand, aggregates as well as air voids. Wave propagation in such a material is characterized by scattering phenomena. Damage in the form of micro or macro cracks certainly enhances scattering influence. Its most obvious manifestation is the velocity variation with frequency and excessive attenuation. The influence becomes stronger with increased mis-match of elastic properties of constituent materials and higher crack content. Therefore, in many cases of large concrete structures, field application of stress waves is hindered since attenuation makes the acquisition of reliable signals troublesome. However, measured wave parameters, combined with investigation with scattering theory can reveal much about the internal condition and supply information that cannot be obtained in any other way. The size and properties of the scatterers leave their signature on the dispersion and attenuation curves making thus the characterization more accurate in case of damage assessment, repair evaluation as well as composition inspection. In this paper, three indicative cases of scattering influence are presented. Namely, the interaction of actual distributed damage, as well as the repair material injected in an old concrete structure with the wave parameters. Other cases are the influence of light plastic inclusions in hardened mortar and the influence of sand and water content in the examination of fresh concrete. In all the above cases, scattering seems to complicate the propagation behavior but also offers the way for a more accurate characterization of the quality of the material.
Annular Air Leaks in a liquid hydrogen storage tank
NASA Astrophysics Data System (ADS)
Krenn, AG; Youngquist, RC; Starr, SO
2017-12-01
Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.
Processing and Characterization of High Strength, High Ductility Hadfield Steel
1990-04-01
precipitation in high carbon content Hadfield steel resulting in the introduction of a grain boundary void nucleation softening mechanism leading to plastic...hardening, in comparison to the thin twin spacing of Fe-Ni martensite and inferred that carbon may have an important role in contributing to Hadfield steel ...approaches to strengthening from alloying or precipitation mechanisms are introduced, the deformation mechanisms responsible for Hadfield steel
Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity
NASA Technical Reports Server (NTRS)
Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.
1999-01-01
The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a forming bubble decreases, as the superficial liquid velocity is in-creased. Furthermore, it is shown that the void fraction of the resulting two-phase flow increases with volumetric gas flow rate Q(sub d), pipe diameter and gas injection nozzle diameter, while they decrease with surrounding liquid flow. The important role played by flowing liquid in detaching bubbles in a reduced gravity environment is thus emphasized. We observe that the void fraction can be accurately controlled by using single nozzle gas injection, rather than by employing multiple port injection, since the later system gives rise to unpredictable coalescence of adjacent bubbles. It is of interest to note that empirical bubble size and corresponding void fraction are somewhat smaller for the co-flow geometry than the cross-flow configuration at similar flow conditions with similar pipe and nozzle diameters. In order to supplement the empirical data, a theoretical model is employed to study single bubble generation in the dynamic (Q(sub d) = 1 - 1000 cu cm/s) and bubbly flow regime within the framework of the co-flow configuration. This theoretical model is based on an overall force balance acting on the bubble during the two stages of generation, namely the expansion and the detachment stage. Two sets of forces, one aiding and the other inhibiting bubble detachment are identified. Under conditions of reduced gravity, gas momentum flux enhances, while the surface tension force at the air injection nozzle tip inhibits bubble detachment. In parallel, liquid drag and inertia can act as both attaching and detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with our experimental results. However, at higher superficial liquid velocities, as the bubble loses its spherical form, empirical bubble size no longer matches the theoretical predictions. In summary, we have developed a combined experimental and theoretical work, which describes the complex process of bubble generation and resulting two-phase flow in a microgravity environment. Results of the present study can be used in a wide range of space-based applications, such as thermal energy and power generation, propulsion, cryogenic storage and long duration life support systems, necessary for programs such as NASA's Human Exploration for the Development of Space (HEDS).
Effects of soil tillage on the microwave emission of soils
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.
1985-01-01
In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.
NASA Astrophysics Data System (ADS)
Ruiz-Luna, H.; Porcayo-Calderon, J.; Alvarado-Orozco, J. M.; Mora-García, A. G.; Martinez-Gomez, L.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.
2017-12-01
The low-temperature electrochemical behavior of HVOF Ni-20Cr coatings was assessed. The coatings were evaluated in different conditions including as-sprayed, as-ground, and heat-treated in air and argon atmospheres. A detailed analysis of the coatings was carried out by means of XRD, SEM, and EPMA, prior and after the corrosion test. The corrosion rate was analyzed in a NaCl solution saturated with CO2. Results demonstrate that the use of a low-oxygen partial pressure favors the formation of a Cr2O3 layer on the surface of the coatings. According to the electrochemical results, the lower corrosion rates were obtained for the heat-treated coatings irrespective of the surface finishing, being the ground and argon heat-treated condition that shows the best corrosion performance. This behavior is due to the synergistic effect of the low-pressure heat treatment and the grinding processes. The grinding promotes a more homogeneous reaction area without surface heterogeneities such as voids, and the pre-oxidation treatment decreases the porosity content of the coating and also allows the growing of a Cr-rich oxide scale which acts as a barrier against the ions of the aqueous solution.
Enriched aluminide coatings for dispersion strengthened nickel materials
NASA Technical Reports Server (NTRS)
Levinstein, M. A.
1973-01-01
Improved aluminide/barrier coating combinations for dispersion strengthened nickel materials were investigated. The barrier materials involved alloys with refractory metal content to limit interdiffusion between the coating and the substrate, thereby minimizing void formation. Improved aluminide coatings involved the dispersion of aluminum-rich compounds. Coatings were tested in argon at 1533 K (2300 F) for 100 hours and in cyclic oxidation at 1422 K (2100 F). Two coatings on TDNiCr completed 300 hours of oxidation testing, none on TDNi. Selected coating combinations were evaluated in Mach 1 burner rig testing using JP-4 fuel and air at 1422 K (2100 F) and 1477 K (2200 F) for 350 and 100 hours, respectively. Static oxidation in 1-hour cycles was conducted at 1533 K (2300 F) for 100 hours. For comparison purposes a physical vapor deposition (PVD) NiCrAlY coating was tested concurrently. Only the NiCrA1Y coating survived the 1477 K (2200 F)/100-hour burner rig test and 275 hours of the 350-hour 1422 K (2100 F) test. Elevated temperature exposure reduced room temperature tensile properties but had little effect on elevated temperature properties.
NASA Astrophysics Data System (ADS)
Straß, B.; Conrad, C.; Wolter, B.
2017-03-01
Composite materials and material compounds are of increasing importance, because of the steadily rising relevance of resource saving lightweight constructions. Quality assurance with appropriate Nondestructive Testing (NDT) methods is a key aspect for reliable and efficient production. Quality changes have to be detected already in the manufacturing flow in order to take adequate corrective actions. For materials and compounds the classical NDT methods for defectoscopy, like X-ray and Ultrasound (US) are still predominant. Nevertheless, meanwhile fast, contactless NDT methods, like air-borne ultrasound, dynamic thermography and special Eddy-Current techniques are available in order to detect cracks, voids, pores and delaminations but also for characterizing fiber content, distribution and alignment. In Metal-Matrix Composites US back-scattering can be used for this purpose. US run-time measurements allow the detection of thermal stresses at the metal-matrix interface. Another important area is the necessity for NDT in joining. To achieve an optimum material utilization and product safety as well as the best possible production efficiency, there is a need for NDT methods for in-line inspection of the joint quality while joining or immediately afterwards. For this purpose EMAT (Electromagnetic Acoustic Transducer) technique or Acoustic Emission testing can be used.
The evolution of voids in the adhesion approximation
NASA Astrophysics Data System (ADS)
Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.
1994-08-01
We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.
The evolution of voids in the adhesion approximation
NASA Technical Reports Server (NTRS)
Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.
1994-01-01
We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 128(exp 3) particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H(sub 50) = 1 scals approximately as bar D(z) = bar D(sub zero)/(1+2)(exp 1/2), where bar D(sub zero) approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordialpotential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.
NASA Astrophysics Data System (ADS)
Yang, Zailin; Yang, Qinyou; Zhang, Guowei; Yang, Yong
2018-03-01
The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.
Study on process and characterization of high-temperature resistance polyimide composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang
2016-05-18
A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred.more » The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ∼305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (P{sub i}) during the imidization. The second-stage pressure (P{sub 2}) and the temperature for applying the P{sub 2} (T{sub 2}) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.« less
Variability of protein content in calcium oxalate monohydrate stones.
Williams, James C; Zarse, Chad A; Jackson, Molly E; Witzmann, Frank A; McAteer, James A
2006-08-01
Urinary stones are heterogeneous in their fragility to lithotripter shockwaves. As a first step in gaining a better understanding of the role of matrix in stone fragility, we measured extractible protein in calcium oxalate monohydrate (COM) stones that were extensively characterized by micro-computed tomography (micro CT). Stones were scanned using micro CT (Scanco mCT20, 34 microm). They were ground, and the protein extracted using four methods: 0.25M EDTA, 2% SDS reducing buffer, 9M urea buffer, and 10% acetic acid. Protein was measured using NanoOrange. The SDS extracts were also examined using polyacrylamide electrophoresis (PAGE). Extracted protein was highest with the SDS or urea methods (0.28% +/- 0.13% and 0.24% +/- 0.11%, respectively) and lower using the EDTA method (0.17% +/- 0.05%; P < 0.02). Acetic acid extracted little protein (0.006 +/- 0.002%; P < 0.001). Individual stones were significantly different in extractability of protein by the different methods, and SDS-PAGE revealed different protein patterns for individual stones. Extracted protein did not correlate with X-ray-lucent void percentage, which ranged from 0.06% to 2.8% of stone volume, or with apatite content. Extractible stone-matrix protein differs for individual COM stones, and yield is dependent on the extraction method. The presence of X-ray-lucent voids or minor amounts of apatite in stones did not correlate with protein content. The amounts of protein recovered were much lower than reported by Boyce, showing that these methods extracted only a fraction of the protein bound up in the stones. The results suggest that none of the methods tested will be useful for helping to answer the question of whether matrix content differs among stones of differing fragility to lithotripter shockwaves.
Oxidation of nickel-aluminum and iron-aluminum alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathcart, J.V.
1985-01-01
The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxidate-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements ismore » discussed. A brief description of the effect of preoxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included. 51 references, 14 figures, 1 table.« less
Oxidation of nickel-aluminum and iron-aluminum alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathcart, J.V.
1984-01-01
The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxide-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements aremore » discussed. A brief description of the effect of pre-oxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included.« less
2016-01-07
clays . The Emean/Estatic values were greater for loam than the other two types of soil – indicating greater amplification of emissions relative to a...ɸT): 0.35 m3-voids/m3- soil Soil permeability to soil gas flow (Kg): 1E-7 cm2 Soil gas phase dynamic viscosity : 1.8E-4 g/cm/s Soil domain
1993-01-22
AUGLPITCHROLLCONTROLa ttitude .-ontrol_roll_command, MAX..STABAUG3_PITCH-.ROLL..CONTROL); return ( attitude -.control-roll-commuand); static REAL set...pitch...if any). V V RETURNS: TRUE if successful, FALSE if not. V * PURPOSE: This routine performs the functions V V specifically related to the firing of a...specifically related to the flying a ADAT * missile. * void missile _adaLfly (aptr, sightiocation, locqsightto.world, tube, veh_list) ADATMISSILE
International Space Station Urine Monitoring System Functional Integration and Science Testing
NASA Technical Reports Server (NTRS)
Rodriquez, Branelle R.; Broyan, James Lee, Jr.
2011-01-01
Exposure to microgravity during human spaceflight needs to be better understood as the human exploration of space requires longer duration missions. It is known that long term exposure to microgravity causes bone loss. Measuring the calcium and other metabolic byproducts in a crew member s urine can evaluate the effectiveness of bone loss countermeasures. The International Space Station (ISS) Urine Monitoring System (UMS) is an automated urine collection device designed to collect urine, separate the urine and air, measure the void volume, and allow for syringe sampling. Accurate measuring and minimal cross-contamination is essential to determine bone loss and the effectiveness of countermeasures. The ISS UMS provides minimal cross-contamination (<0.7 mL urine) and has volume accuracy of 2% between 100 to 1000 mL urine voids. Designed to provide a non-invasive means to collect urine samples from crew members, the ISS UMS operates in-line with the Node 3 Waste and Hygiene Compartment (WHC). The ISS UMS has undergone modifications required to interface with the WHC, including material changes, science algorithm improvements, and software platform revisions. Integrated functional testing was performed to determine the pressure drop, air flow rate, and the maximum amount of fluid capable of being discharged from the UMS to the WHC. This paper will detail the results of the science and the functional integration tests.
Anderson localized modes in a disordered glass optical fiber
NASA Astrophysics Data System (ADS)
Karbasi, Salman; Hosseini, Seyedrasoul; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash
2014-02-01
A beam of light can propagate in a time-invariant transversely disordered waveguide because of transverse Anderson localization. We developed a disordered glass optical ber from a porous artisan glass (satin quartz). The refractive index pro le of the disordered glass optical ber is composed of a non-uniform distribution of air voids which can be approximated as longitudinally invariant. The ll-fraction of air voids is higher at the regions closer to the boundary compared with the central regions. The experimental results show that the beam radius of a localized beam is smaller at the regions closer to the boundary than the one at the central regions. In order to understand the reason behind these observations, the fully vectorial modes of the disordered glass ber are calculated using the actual scanning electron microscope image of the ber tip. The numerical calculations show that the modes at regions closer to the boundary of the ber are more localized compared with the modes at the central regions. Coupling of an input beam to the less-localized modes with large tails at the central regions of the ber results in a large beam radius. In comparison, a beam of light launched at the regions close to the boundary couples to the highly compact modes of the ber and results in a small localized beam radius.
NASA Astrophysics Data System (ADS)
Lai, Lipeng; Turitsyn, Konstantin S.; Zhang, Wendy W.
2008-11-01
Recent studies reveal that an inertial implosion, analogous to the collapse of a large cavity in water, governs how a submerged air bubble disconnects from a nozzle. For the bubble, slight asymmetries in the initial neck shape give rise to vibrations that grow pronounced over time. These results motivate our study of the final stage of asymmetric cavity collapse. We are particularly interested in the generic situation where the initial condition is sufficiently well-focused that a cavity can implode inwards energetically. Yet, because the initial condition is not perfectly symmetric, the implosion fails to condense all the energy. We consider cavity shapes in the slender-body limit, for which the collapse dynamics is quasi two-dimensional. In this limit, each cross-section of the cavity evolves as if it were a distorted void immersed in an inviscid and irrotational fluid. Simulations of a circular void distorted by an elongation-compression vibrational mode reveal that a variety of outcomes are possible in the 2D problem. Opposing sides of the void surface can curve inwards and contact smoothly in a finite amount of time. Depending on the phase of the vibration excited, the contact can be either north-south or east-west. Phase values that lie in the transition zone from one orientation to the other give rise to final shapes with large lengthscale separation. We show also that the final outcome varies non-monotonically with the initial amplitude of the vibrational mode.
Voids and superstructures: correlations and induced large-scale velocity flows
NASA Astrophysics Data System (ADS)
Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego
2017-09-01
The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.
Johnson, Emilie K; Estrada, Carlos R; Johnson, Kathryn L; Nguyen, Hiep T; Rosoklija, Ilina; Nelson, Caleb P
2014-09-01
One potential strategy for improving voiding diary completion rates and data quality is use of a mobile electronic format. We evaluated the acceptability and feasibility of mobile voiding diaries for patients with nonneurogenic lower urinary tract dysfunction, and compared mobile and paper voiding diaries. We prospectively enrolled children presenting with daytime symptoms of lower urinary tract dysfunction between July 2012 and April 2013. We enrolled an initial cohort of patients who were provided a paper voiding diary and a subsequent cohort who were provided a mobile voiding diary. We conducted in person interviews and assessed completion rates and quality, comparing paper and mobile voiding diary groups. We enrolled 45 patients who received a paper voiding diary and 38 who received a mobile voiding diary. Completion rates were 78% for paper voiding diaries and 61% for mobile voiding diaries (p = 0.10). Data quality measures for patients completing paper vs mobile voiding diaries revealed a larger proportion (63% vs 52%) providing a full 5 days of data and a smaller proportion (20% vs 65%) with data gaps. However, the paper voiding diary also demonstrated a lower proportion (80% vs 100%) that was completely legible and a lower proportion (40% vs 65%) with completely prospective data entry. The use of a mobile voiding diary was acceptable and feasible for our patients with lower urinary tract dysfunction, although completion rates were somewhat lower compared to paper voiding diaries. Data quality was not clearly better for either version. The mobile voiding diary format may offer data quality advantages for select groups but it did not display significant superiority when provided universally. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue
2017-10-01
In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.
Gammie, A; Abrams, P; Bevan, W; Ellis-Jones, J; Gray, J; Hassine, A; Williams, J; Hashim, H
2016-11-01
This study aimed to evaluate whether the pressure readings obtained from air-filled catheters (AFCs) are the same as the readings from simultaneously inserted water-filled catheters (WFCs). It also aimed to make any possible recommendations for the use of AFCs to conform to International Continence Society (ICS) Good Urodynamic Practices (GUP). Female patients undergoing urodynamic studies in a single center had water-filled and air-filled catheters simultaneously measuring abdominal and intravesical pressure during filling with saline and during voiding. The pressures recorded by each system at each event during the test were compared using paired t-test and Bland-Altman analyses. 62 patients were recruited, of whom 51 had pressures that could be compared during filling, and 23 during voiding. On average, the pressures measured by the two systems were not significantly different during filling and at maximum flow, but the values for a given patient were found to differ by up to 10 cmH 2 O. This study shows that AFCs and WFCs cannot be assumed to register equal values of pressure. It has further shown that even when the p det readings are compared with their value at the start of a test, a divergence of values of up to 10 cmH 2 O remains. If AFCs are used, care must be taken to compensate for any p det variations that occur during patient movement. Before AFCs are adopted, new normal values for resting pressures need to be developed to allow good quality AFC pressure readings to be made. Neurourol. Urodynam. 35:926-933, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Choosing Between Public and Private Providers of Depot Maintenance: A Proposed New Approach
1997-09-01
Appendix A Mathematical Form of the Model Appendix B Assumed Distributions for Evaluation Factors vm Contents Appendix C Trial Evaluation Workbook ...Figure 4-2. Revised Factor Scale Anchors 4-5 Figure 4-3. Workbook Display Establishing Relevance of Factor 4-5 Figure 4-4. Comparing Results of...Introduction process. To fill voids we conducted additional research in the areas of classical microeconomics , transaction cost economics, public
NASA Astrophysics Data System (ADS)
Clayton, N.; Crouchen, M.; Devred, A.; Evans, D.; Gung, C.-Y.; Lathwell, I.
2017-04-01
It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes ('pre-preg') and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.
Corrosion resistance of inconel 690 to borax, boric acid, and boron nitride at 1100{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imrich, K.J.
1996-12-12
Significant general and localized corrosion was observed on Inconel 690 coupons following exposure to borax, boric acid and boron nitride at 1100{degrees}C. Severe localized attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack (IGA) of the Inconel 690 was also observed. Severe internal void formation and IGA (30 mils penetration after 3 days) was observed in the coupon exposed to boric acid. Both borax and boric acid remove the protective chromium oxide; however, this layer canmore » be reestablished by heating the Inconel 690 to 975 {degrees}C in air for several hours. Inconel 690 in direct contact with boron nitride resulted in the formation of a thick chromium borate layer, a general corrosion rate of 50 to 90 mils per year, and internal void formation of 1 mil per day.« less
A compact x-ray system for two-phase flow measurement
NASA Astrophysics Data System (ADS)
Song, Kyle; Liu, Yang
2018-02-01
In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within ±4% when compared with the gas flowmeter for both conditions.
NASA Technical Reports Server (NTRS)
Colloredo, Scott; Gray, James A.
2011-01-01
The impending conclusion of the Space Shuttle Program and the Constellation Program cancellation unveiled in the FY2011 President's budget created a large void for human spaceflight capability and specifically launch activity from the Florida launch Site (FlS). This void created an opportunity to re-architect the launch site to be more accommodating to the future NASA heavy lift and commercial space industry. The goal is to evolve the heritage capabilities into a more affordable and flexible launch complex. This case study will discuss the FlS architecture evolution from the trade studies to select primary launch site locations for future customers, to improving infrastructure; promoting environmental remediation/compliance; improving offline processing, manufacturing, & recovery; developing range interface and control services with the US Air Force, and developing modernization efforts for the launch Pad, Vehicle Assembly Building, Mobile launcher, and supporting infrastructure. The architecture studies will steer how to best invest limited modernization funding from initiatives like the 21 st elSe and other potential funding.
Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method
NASA Astrophysics Data System (ADS)
Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi
2012-03-01
Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.
Redshift-space distortions around voids
NASA Astrophysics Data System (ADS)
Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson
2016-11-01
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.
NASA Astrophysics Data System (ADS)
Panchmatia, Parth
Numerous laboratory and field studies have demonstrated that concrete incorporating air cooled blast furnace slag (ACBFS) aggregate showed a higher degree of infilling of voids with ettringite as opposed to concrete prepared using naturally mined carbonate aggregates when exposed to similar environmental conditions. This observation prompted some to link the deterioration observed in the ACBFS aggregate concrete structures to the compromised freeze-thaw resistance due to infilling of air voids. Concerns about the release of sulfur from ACBFS aggregate into the pore solution of concrete had been presented as the reason for the observed ettringite deposits in the air voids. However, literature quantifying the influence of ACBFS aggregate on the chemistry of the pore solution of concrete is absent. Therefore, the main purpose of this research was to quantify the effects of ACBFS aggregate on the chemistry of the pore solution of mortars incorporating them. Coarse and crushed ACBFS aggregates were submerged in artificial pore solutions (APSs) representing pore solutions of 3-day, 7-day, and 28-day hydrated plain, binary, and ternary paste systems. The change in the chemistry of these artificial pore solutions was recorded to quantify the chemical contribution of ACBFS aggregate to the pore solution of concrete. It was observed that the sulfate concentration of all APSs increased once they were in contact with either coarse or crushed ACBFS aggregate. After 28 days of contact, the increase in sulfate concentration of the APSs ranged from 4.85 - 12.23 mmol/L and 14.21 - 16.87 mmol/L for contact with coarse and crushed ACBFS aggregate, respectively. More than 40% of the total sulfate that was released by the ACBFS aggregate occurred during the first 72 hours (3 days) of its contact with the APSs. There was little or no difference in the amount of sulfate released from ACBFS aggregate in the different types of APSs. In other words, the type of binder solution from which pore solution was extracted had no effect on the amount of sulfate that was released when it was in contact with ACBFS aggregate. The relatively quick release of sulfur from ACBFS aggregate into the APSs prompted investigation of the chemical composition of the pore solution of mortar (at early stages of hydration) incorporating ACBFS aggregate. The chemical composition of the pore solutions obtained from mortars prepared using ACBFS aggregate and plain and binary paste matrices was compared those of mortars prepared using Ottawa sand and plain and binary paste matrices. After 7 days of hydration, the sulfur (S) concentration of the pore solution extracted from mortars prepared using ACBFS aggregate was 3.4 - 5.6 times greater than that obtained from corresponding mortars (i.e. mortars with the same paste matrix) prepared using Ottawa sand. Binary mortars containing fly ash (FA) showed the lowest S content after 7 days of hydration amongst all mortars prepared using ACBFS aggregate. On the other hand, binary mortars prepared using slag cement (SC) and ACBFS aggregate had the highest S concentration after 7 days of hydration. These effects on the S concentration in the pore solutions can be explained by the difference in the chemical makeup of the binders, and not because of different rate of release of S from ACBFS into the pore solution. In addition, TGA analysis of 7-day hydrated mortars revealed that the ettringite, monosulfate, and calcium hydroxide content was lower in mortars prepared using ACBFS aggregate as opposed to those prepared using Ottawa sand. This could be because of the low degree of hydration in mortars with ACBFS aggregate because of the high sulfate concentration in its pore solution. The properties of the interfacial transition zone (ITZ), i.e. the zone in the vicinity of the aggregate surface, depends on the property of the aggregate such as its porosity and texture. Therefore, it is expected that the properties of ITZ around the ACBFS particle, which is porous and proven to contribute sulfate, be different from the ITZ around the naturally mined siliceous aggregate. Image analysis conducted on backscattered images obtained using scanning electron microscope revealed that the ITZ of naturally mined siliceous aggregate was more porous compared to the ITZ of ACBFS aggregate. In addition, calcium hydroxide deposits were more frequent and larger in size in the ITZ around siliceous sand than in the case of the ITZ around the ACBFS aggregate.
Cause Analysis on the Void under Slabs of Cement Concrete Pavement
NASA Astrophysics Data System (ADS)
Wen, Li; Zhu, Guo Xin; Baozhu
2017-06-01
This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.
Extracting and identifying concrete structural defects in GPR images
NASA Astrophysics Data System (ADS)
Ye, Qiling; Jiao, Liangbao; Liu, Chuanxin; Cao, Xuehong; Huston, Dryver; Xia, Tian
2018-03-01
Traditionally most GPR data interpretations are performed manually. With the advancement of computing technologies, how to automate GPR data interpretation to achieve high efficiency and accuracy has become an active research subject. In this paper, analytical characterizations of major defects in concrete structures, including delamination, air void and moisture in GPR images, are performed. In the study, the image features of different defects are compared. Algorithms are developed for defect feature extraction and identification. For validations, both simulation results and field test data are utilized.
2012-03-01
shoulders in place of soil shoulders adjacent to the runway shoulder. The EA Supplement evaluates the potential impacts that could result from...potential impacts that could result from constructing and operating ACB in place of soil shoulders. Resources with the potential to be affected by...excavated and graded prior to installing ACB mats. Soil from grading activities will be used to fill the voids in the ACB, with any remaining soil being
Use of an automatic resistivity system for detecting abandoned mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Burdick, R.G.
1983-01-01
A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.
The HI Content of Galaxies as a Function of Local Density and Large-Scale Environment
NASA Astrophysics Data System (ADS)
Thoreen, Henry; Cantwell, Kelly; Maloney, Erin; Cane, Thomas; Brough Morris, Theodore; Flory, Oscar; Raskin, Mark; Crone-Odekon, Mary; ALFALFA Team
2017-01-01
We examine the HI content of galaxies as a function of environment, based on a catalogue of 41527 galaxies that are part of the 70% complete Arecibo Legacy Fast-ALFA (ALFALFA) survey. We use nearest-neighbor methods to characterize local environment, and a modified version of the algorithm developed for the Galaxy and Mass Assembly (GAMA) survey to classify large-scale environment as group, filament, tendril, or void. We compare the HI content in these environments using statistics that include both HI detections and the upper limits on detections from ALFALFA. The large size of the sample allows to statistically compare the HI content in different environments for early-type galaxies as well as late-type galaxies. This work is supported by NSF grants AST-1211005 and AST-1637339, the Skidmore Faculty-Student Summer Research program, and the Schupf Scholars program.
Closure behavior of spherical void in slab during hot rolling process
NASA Astrophysics Data System (ADS)
Cheng, Rong; Zhang, Jiongming; Wang, Bo
2018-04-01
The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..
Kim, Sung Han; Oh, Shin Ah; Oh, Seung-June
2014-02-01
To identify the voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder. Between September 2005 and June 2010, 3-day voiding diaries of 49 consecutive bladder pain syndrome/interstitial cystitis patients and 301 overactive bladder patients were prospectively collected at an outpatient clinic and retrospectively analyzed. The characteristics of the two groups were not significantly different. However, all voiding variables including volume and frequency were significantly different except for the total voided volume: patients with bladder pain syndrome/interstitial cystitis showed significantly higher voiding frequencies, smaller maximal and mean voided volume, and more constant and narrower ranges of voided volume compared with overactive bladder patients (P < 0.005). Furthermore, mean intervals between voiding in bladder pain syndrome/interstitial cystitis were shorter and more consistent during the day and night (P < 0.001), although mean night-time variances were greater than daytime variances. Logistic regression analysis showed that total night-time frequency, maximal night-time voided volume and mean variance of daytime voiding intervals most significantly differentiated the two groups. Some voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder patients differ significantly according to 3-day voiding diary records. These findings provide additional information regarding the differences between these two diseases in the outpatient clinical setting. © 2013 The Japanese Urological Association.
3D Simulations of Void collapse in Energetic Materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2017-06-01
Voids present in the microstructure of heterogeneous energetic materials effect the sensitivity towards ignition. It is established that the morphology of voids can play a significant role in sensitivity enhancement of energetic materials. Depending on the void shape, sensitivity can be either increased or decreased under given loading conditions. In the past, effects of different void shapes i.e. triangular, ellipse, cylindrical etc. on the sensitivity of energetic materials have been analyzed. However, most of these studies are performed in 2D and are limited under the plain strain assumption. Axisymmetric studies have also been performed in the past to incorporate the 3D effects, however axisymmetric modeling is limited to only certain geometries i.e. sphere. This work analyzes the effects of various void shapes in three dimensions on the ignition behavior of HMX. Various void shapes are analyzed including spherical, prolate and oblate speheroid oriented at different orientations, etc. Three dimensional void collapse simulations are performed on a single void to quantify the effects void morphology on initiation. A Cartesian grid based Eulerian solver SCIMITAR3D is used to perform the void collapse simulations. Various aspects of void morphology i.e. size, thickness of voids, elongation, orientation etc. are considered to obtain a comprehensive analysis. Also, 2D plane strain calculations are compared with the three dimensional analysis to evaluate the salient differences between 2D and 3D modeling.
All-aromatic biphenylene end-capped polyquinoline and polyimide matrix resins
NASA Technical Reports Server (NTRS)
Droske, J. P.; Stille, J. K.; Alston, W. B.
1985-01-01
Biphenylene end-capped polyquinoline and polyimide resins afford low void content graphite-reinforced composites with good initial properties. However, with both resins, rapid degradation occurs during oxidative isothermal aging at elevated temperatures. The degradation is not observed during isothermal aging under a nitrogen atmosphere which suggests that the biphenylene end-cap (or the resulting crosslink/chain extension structures) is not particularly thermooxidatively stable. The nature of the thermooxidative instability is currently under investigation.
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.
2017-04-01
The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.
Friction stir welding process to repair voids in aluminum alloys
NASA Technical Reports Server (NTRS)
Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)
1999-01-01
The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.
Morphological Segregation in the Surroundings of Cosmic Voids
NASA Astrophysics Data System (ADS)
Ricciardelli, Elena; Cava, Antonio; Varela, Jesus; Tamone, Amelie
2017-09-01
We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R void, which we define as the region of influence of voids. The significance of this difference is greater than 3σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.
Cosmic voids and void lensing in the Dark Energy Survey science verification data
Sánchez, C.; Clampitt, J.; Kovacs, A.; ...
2016-10-26
Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ~50 Mpc/h or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-zmore » redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo- z scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius ~70 Mpc/h and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8 , we identify 87 voids with comoving radii spanning the range 18-120 Mpc/h, and carry out a stacked weak lensing measurement. With a significance of 4.4σ, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. In conclusion, it also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.« less
Saarikoski, A; Koppeli, R; Taskinen, S; Axelin, A
2018-06-01
Most urotherapy interventions are planned for children with daytime incontinence or symptoms, and are based on individual education. This study conducted a voiding school (VS) program with groups of 4-6 children with daytime incontinence or enuresis with or without daytime symptoms. The aim of this quasi-experimental study with a one-group pretest-posttest design was to assess the effectiveness of the VS intervention for treating children's daytime incontinence or enuresis. Sixty-nine 6-12-year-old children with incontinence classified as treatment resistant participated in the VS at an outpatient clinic. Based on a power analysis, a sample of 52 participants was required. The VS involved two whole-day group visits 2 months apart. The educational content of the intervention was based on the International Children's Continence Society's standards for urotherapy, and was delivered with child-oriented teaching methods, including group discussions with peers. The primary outcome measure was the number of dry days and nights. The amount of wetting was also estimated, and the frequency of voiding measured. Data were collected with 1-week voiding diaries before and after each visit. Changes in dependent variables between four measurement points was measured by using repeated measures variance analysis. The long-term effectiveness was evaluated from patient records concerning 3-month follow-up phone calls or other contacts 8-18 months after the VS. Fifty-eight children, 34 girls and 24 boys, completed the study. Twelve children had daytime incontinence, 18 had enuresis, and 28 had both. The number of dry days increased from a mean of 3.5-5.3 (P < 0.001), and the number of dry nights increased from a mean of 2.4-3.9 (P < 0.001) (Summary table). Thirteen (22%) children became completely dry. Three of them had daytime incontinence, five enuresis, and five both. Twenty-four out of 40 (60%) children with daytime incontinence, and 23 out of 46 (50%) children with enuresis showed ≥50% decrease in wetting episodes. The amount of wetting reduced, but the voiding frequency remained unchanged based on the voiding diaries. Twenty-two (45%) of the children were completely dry (six had daytime incontinence, nine enuresis, and seven both), and 16 (39%) showed further improvement, but eight (16%) children remained unchanged 8-18 months after the VS. Voiding school (VS) was an effective intervention for treating both daytime incontinence and nocturnal enuresis in children who had not benefited from standard treatment and were classified as treatment resistant. Copyright © 2018 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
On the abundance of extreme voids II: a survey of void mass functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chongchitnan, Siri; Hunt, Matthew, E-mail: s.chongchitnan@hull.ac.uk, E-mail: m.d.hunt@2012.hull.ac.uk
2017-03-01
The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.
Atomistic modeling of shock-induced void collapse in copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davila, L P; Erhart, P; Bringa, E M
2005-03-09
Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.
Nanovoid growth in BCC α-Fe: influences of initial void geometry
NASA Astrophysics Data System (ADS)
Xu, Shuozhi; Su, Yanqing
2016-12-01
The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.
Naoemova, Irina; De Wachter, Stefan; Wyndaele, Jean-Jacques
2008-01-01
To describe and compare voiding patterns on a 3-day sensation-related bladder diary (SR-BD) in women with urinary incontinence (UI) and healthy volunteers. A total of 251 women (224 incontinent patients and 27 healthy volunteers) who recorded a 3-day SR-BD and underwent standard cystometry participated in the study. Parameters from the 3-day SR-BD were compared between incontinent patients and healthy volunteers. Compared to continent women, all groups of incontinent women noted a significantly higher 24 hr voiding frequency, a greater voiding frequency per liter diuresis, a smaller mean voided volume for different degrees of bladder sensation with more voids made with higher intensity of desire to void. The smallest mean voided volumes for different degrees of desire to void and the highest voiding frequency per liter diuresis were observed in the urge incontinence group. There were different sensation-related voiding patterns on the 3-day SR-BD from incontinent women and healthy volunteers. All incontinence groups had increased bladder sensation compared to healthy volunteers. The most severe increase of bladder sensation was observed in the patients with urgency incontinence. (c) 2007 Wiley-Liss, Inc.
The dark matter of galaxy voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.
2014-03-01
How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.
Groutz, A; Gordon, D; Lessing, J B; Wolman, I; Jaffa, A; David, M P
1999-08-01
To examine the prevalence and characteristics of voiding difficulties in women. Two hundred six consecutive female patients who attended a urogynecology clinic were recruited. Patients were interviewed regarding the presence and severity of symptoms that would suggest voiding difficulties (ie, hesitancy, straining to void, weak or prolonged stream, intermittent stream, double voiding, incomplete emptying, reduction, and positional changes to start or complete voiding). Urodynamic evidence of voiding difficulty was considered as a peak flow rate less than 12 mL/s (voided volume greater than 100 mL), or residual urine volume greater than 150 mL, on two or more readings. Residual urinary volume, flow patterns, and pressure-flow parameters were analyzed and compared between symptomatic and asymptomatic patients who had urodynamic parameters of voiding difficulties. One hundred twenty-seven (61.7%) women reported having voiding difficulty symptoms; 79 others (38.3%) were free of such symptoms. Urodynamic diagnosis of voiding difficulty was made in 40 women (19.4% of the study population): 27 in the symptomatic group and 13 in the asymptomatic group (21.2% and 16.5%, respectively). Only 1 patient had voiding difficulty due to bladder outlet obstruction. All other cases of low flow rate were due to impaired detrusor contractility. Objective evidence of voiding difficulty may be found in both symptomatic and asymptomatic patients and is usually due to impaired detrusor contractility. The clinical significance of the abnormal flow parameters in asymptomatic patients is unclear.
Thermal Effects on a Low Cr Modification of PS304 Solid Lubricant Coating
NASA Technical Reports Server (NTRS)
Stanford, Malcolm K.; Yanke, Anne M.; DellaCorte, Christopher
2004-01-01
PS304 is a high temperature composite solid lubricant coating composed of Ni-Cr, Cr2O3, BaF2-CaF2 and Ag. The effect of reducing chromium content on the formation of voids in the Ni-Cr particles after heat treatment in PS304 coating was investigated. Coatings were prepared with Ni-20Cr or Ni-10Cr powder and in various combinations with the other constituents of PS304 (i.e., chromia, silver and eutectic BaF2-CaF2 powders) and deposited on metal substrates by plasma spray. Specimens were exposed to 650 C for 24 hr or 1090 C for 15 hr and then examined for changes in thickness, coating microstructure and adhesion strength. Specimens with Ni-10Cr generally had less thickness increase than specimens with Ni-20Cr, but there was great variance in the data. Reduction of chromium concentration in Ni-Cr powder tended to reduce the appearance of voids in the Ni-Cr phase after heat exposure. The presence of BaF2-CaF2 resulted in a significant increase in coating adhesion strength after heat treatment, while coatings without BaF2-CaF2 had no significant change. Chemical composition analysis suggested that the void formation was due to oxidation of chromium in the Ni-Cr constituent.
Portland cement concrete air content study.
DOT National Transportation Integrated Search
1987-04-20
This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...
Bubble Augmented Propulsor Mixture Flow Simulation near Choked Flow Condition
NASA Astrophysics Data System (ADS)
Choi, Jin-Keun; Hsiao, Chao-Tsung; Chahine, Georges
2013-03-01
The concept of waterjet thrust augmentation through bubble injection has been the subject of many patents and publications over the past several decades, and computational and experimental evidences of the augmentation of the jet thrust through bubble growth in the jet stream have been reported. Through our experimental studies, we have demonstrated net thrust augmentation as high as 70%for air volume fractions as high as 50%. However, in order to enable practical designs, an adequately validated modeling tool is required. In our previous numerical studies, we developed and validated a numerical code to simulate and predict the performance of a two-phase flow water jet propulsion system for low void fractions. In the present work, we extend the numerical method to handle higher void fractions to enable simulations for the high thrust augmentation conditions. At high void fractions, the speed of sound in the bubbly mixture decreases substantially and could be as low as 20 m/s, and the mixture velocity can approach the speed of sound in the medium. In this numerical study, we extend our numerical model, which is based on the two-way coupling between the mixture flow field and Lagrangian tracking of a large number of bubbles, to accommodate compressible flow regimes. Numerical methods used and the validation studies for various flow conditions in the bubble augmented propulsor will be presented. This work is supported by Office of Naval Research through contract N00014-11-C-0482 monitored by Dr. Ki-Han Kim.
Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows
NASA Astrophysics Data System (ADS)
Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.
2011-10-01
Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Maolong; Ryals, Matthew; Ali, Amir
2016-08-01
A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less
Molecular dynamics simulations of void defects in the energetic material HMX.
Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing
2013-09-01
A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 888.3045 - Resorbable calcium salt bone void filler device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...
21 CFR 1305.28 - Canceling and voiding electronic orders.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...
21 CFR 1305.28 - Canceling and voiding electronic orders.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...
38 CFR 3.207 - Void or annulled marriage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...
Molecular dynamics modeling and simulation of void growth in two dimensions
NASA Astrophysics Data System (ADS)
Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.
2013-10-01
The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.
Air permeability and trapped-air content in two soils
Stonestrom, David A.; Rubin, Jacob
1989-01-01
To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the disruption of gas-phase connectivity and in preventing air flow, and must be considered in any effectual model of air permeability relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricciardelli, Elena; Tamone, Amelie; Cava, Antonio
We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found atmore » smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.« less
Voids in cosmological simulations over cosmic time
NASA Astrophysics Data System (ADS)
Wojtak, Radosław; Powell, Devon; Abel, Tom
2016-06-01
We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.
Effect of voids on Arrhenius relationship between H-solubility and temperature in nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.Y.; Sun, X.K.; Hu, Z.Q.
1997-01-15
Many investigations about the states of hydrogen in voids within metals have been carried out over the past years. These probable states of hydrogen in the voids are directly relevant to hydrogen embrittlement mechanisms. Therefore, a knowledge of the states of hydrogen in the voids is important to an understanding of hydrogen-related degradation of material properties. Some results show that hydrogen exists as a molecule in the voids, while others suggest it is in the chemisorbed state on the internal surface of the voids. The results of Sung-Man lee et al. suggested that hydrogen in the voids in nickel existsmore » both in the gaseous and chemisorbed stats, and most of the hydrogen trapped in the voids seems to be present as a chemisorbed state in 1 atm. hydrogen pressure in the temperature range of 350--582 C. But there is no quantitative description concerning the effects of the voids on the solubility of hydrogen in materials. The purpose of this work is to describe quantitatively the effects of the voids on hydrogen solubility in nickel, considering hydrogen exists as gaseous and chemisorbed states in the voids, and the very weak physical adsorption above room temperature is neglected.« less
NASA Astrophysics Data System (ADS)
Castin, N.; Bakaev, A.; Bonny, G.; Sand, A. E.; Malerba, L.; Terentyev, D.
2017-09-01
We propose an object kinetic Monte Carlo (OKMC) model for describing the microstructural evolution in pure tungsten under neutron irradiation. We here focus on low doses (under 1 dpa), and we neglect transmutation in first approximation. The emphasis is mainly centred on an adequate description of neutron irradiation, the subsequent introduction of primary defects, and their thermal diffusion properties. Besides grain boundaries and the dislocation network, our model includes the contribution of carbon impurities, which are shown to have a strong influence on the onset of void swelling. Our parametric study analyses the quality of our model in detail, and confronts its predictions with experimental microstructural observations with satisfactory agreement. We highlight the importance for an accurate determination of the dissolved carbon content in the tungsten matrix, and we advocate for an accurate description of atomic collision cascades, in light of the sensitivity of our results with respect to correlated recombination.
Trial Maneuver Generation and Selection in the Paladin Tactical Decision Generation System
NASA Technical Reports Server (NTRS)
Chappell, Alan R.; McManus, John W.; Goodrich, Kenneth H.
1992-01-01
To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the "best" maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.
Trial maneuver generation and selection in the Paladin tactical decision generation system
NASA Technical Reports Server (NTRS)
Chappell, Alan R.; Mcmanus, John W.; Goodrich, Kenneth H.
1993-01-01
To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real-time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the 'best' maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.
Three-dimensional simulations of void collapse in energetic materials
NASA Astrophysics Data System (ADS)
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form duplicates original manifest. Each transit air cargo...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form duplicates original manifest. Each transit air cargo...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form duplicates original manifest. Each transit air cargo...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form duplicates original manifest. Each transit air cargo...
Methods of predicting aggregate voids.
DOT National Transportation Integrated Search
2013-03-01
Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate : voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Predictio...
Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongho; Kim, Young-Su; Mo, Chan B.
We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se)more » ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.« less
Log-Normal Distribution of Cosmic Voids in Simulations and Mocks
NASA Astrophysics Data System (ADS)
Russell, E.; Pycke, J.-R.
2017-01-01
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.
Theory of Dust Voids in Plasmas
NASA Technical Reports Server (NTRS)
Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.
1999-01-01
Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.
VizieR Online Data Catalog: A cosmic void catalog of SDSS DR12 BOSS galaxies (Mao+, 2017)
NASA Astrophysics Data System (ADS)
Mao, Q.; Berlind, A. A.; Scherrer, R. J.; Neyrinck, M. C.; Scoccimarro, R.; Tinker, J. L.; McBride, C. K.; Schneider, D. P.; Pan, K.; Bizyaev, D.; Malanushenko, E.; Malanushenko, V.
2017-08-01
We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV (Neyrinck 2008MNRAS.386.2101N) void finding algorithm to the Galaxy catalog. We identify a total of 10643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1228 voids with effective radii spanning the range 20-100h-1Mpc and with central densities that are, on average, 30% of the mean sample density. We release versions of the catalogs both with and without quality cuts. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stellar mass distribution of galaxies living inside and outside of the voids, and find no large difference. These BOSS and mock void catalogs are useful for a number of cosmological and galaxy environment studies. (1 data file).
Cosmic voids detection without density measurements
NASA Astrophysics Data System (ADS)
Elyiv, Andrii; Marulli, Federico; Pollina, Giorgia; Baldi, Marco; Branchini, Enzo; Cimatti, Andrea; Moscardini, Lauro
2015-03-01
Cosmic voids are effective cosmological probes to discriminate among competing world models. Their identification is generally based on density or geometry criteria that, because of their very nature, are prone to shot noise. We propose two void finders that are based on dynamical criterion to select voids in Lagrangian coordinates and minimize the impact of sparse sampling. The first approach exploits the Zel'dovich approximation to trace back in time the orbits of galaxies located in voids and their surroundings; the second uses the observed galaxy-galaxy correlation function to relax the objects' spatial distribution to homogeneity and isotropy. In both cases voids are defined as regions of the negative velocity divergence, which can be regarded as sinks of the back-in-time streamlines of the mass tracers. To assess the performance of our methods we used a dark matter halo mock catalogue CODECS, and compared the results with those obtained with the ZOBOV void finder. We find that the void divergence profiles are less scattered than the density ones and, therefore, their stacking constitutes a more accurate cosmological probe. The significance of the divergence signal in the central part of voids obtained from both our finders is 60 per cent higher than for overdensity profiles in the ZOBOV case. The ellipticity of the stacked void measured in the divergence field is closer to unity, as expected, than what is found when using halo positions. Therefore, our void finders are complementary to the existing methods, which should contribute to improve the accuracy of void-based cosmological tests.
NASA Astrophysics Data System (ADS)
Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.
2010-01-01
The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; McCarty, Will; Chou, Shih-Hung; Jedlovec, Gary
2009-01-01
The Atmospheric Infrared Sounder (AIRS) is acting as a heritage and risk reduction instrument for the Cross-track lnfrared Sounder (CrIS) to be flown aboard the NPP and NPOESS satellites. The hyperspectral nature of AIRS and CrIS provides high-quality soundings that, along with their asynoptic observation time over North America, make them attractive sources to fill the spatial and temporal data voids in upper air temperature and moisture measurements for use in data assimilation and numerical weather prediction. Observations from AlRS can be assimilated either as direct radiances or retrieved thermodynamic profiles, and the Short-Term Prediction Research and Transition (SPORT) Center at NASA's Marshall Space Flight Center has used both data types to improve short-term (0-48h), regional forecasts. The purpose of this paper is to share SPORT'S experiences using AlRS radiances and retrieved profiles in regional data assimilation activities by showing that proper handling of issues-including cloud contamination and land emissivity characterization-are necessary to produce optimal analyses and forecasts.
Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.
Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo
2017-12-20
In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.
Morphology of the supercluster-void network in ΛCDM cosmology
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Sheth, Jatush V.; Sahni, Varun
2004-09-01
We report here the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology in which voids and superclusters are treated on an equal footing. We study the dark matter density field in real space smoothed on a scale of 5 h-1 Mpc. Superclusters are defined as individual members of an overdense excursion set, and voids are defined as individual members of a complementary underdense excursion set at the same density threshold. We determine the geometric, topological and morphological properties of the cosmic web at a large set of density levels by computing Minkowski functionals for every supercluster and void using SURFGEN (described recently by Sheth et al.). The properties of the largest (percolating) supercluster and the complementary void are found to be very different from those of the individual superclusters and voids. In total, the individual superclusters occupy no more than about 5 per cent of the volume and contain no more than 20 per cent of the mass if the largest supercluster is excluded. Likewise, in total, individual voids occupy no more than 14 per cent of the volume and contain no more than 4 per cent of the mass if the largest void is excluded. Although superclusters are more massive and voids are more voluminous, the difference in maximum volumes is no greater than an order of magnitude. The genus value of individual superclusters can be ~5, while the genus of individual voids can reach ~50, implying a significant amount of substructure in superclusters and especially in voids. One of our main results is that large voids, as defined through the dark matter density field in real space, are distinctly non-spherical.
Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Seppälä, Eira
2004-03-01
In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.
Methods of predicting aggregate voids : [technical summary].
DOT National Transportation Integrated Search
2013-03-01
Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Prediction ...
NASA Astrophysics Data System (ADS)
Nam, Jingak
Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on the rebar. Fourth, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. This tendency for corrosion initiation increased in proportion to void size irrespective of specimen type. Also, [Cl -]th decreased with increasing void diameter. In addition, new ex-situ leaching method for determining concrete pore water alkalinity was developed.
Kon, Masafumi; Mitsui, Takahiko; Kitta, Takeya; Moriya, Kimihiko; Shinohara, Nobuo; Takeda, Masayuki; Nonomura, Katsuya
2018-02-01
We measured posterior urethra diameter (PUD) and external urethral sphincter diameter (EUSD), which can also be measured by voiding cystourethrography (VCUG) and investigated the relationship between PUD/EUSD and detrusor pressure (Pdet) during voiding by videourodynamics (VUDS). Sixty-three children, who were 3 years old or less and underwent VUDS, were enrolled in the present study. We measured PUD and EUSD in addition to detrusor pressure at the time of the widest EUS during voiding (Pdet-voiding) by VUDS, and PUD/EUSD was investigated compared to Pdet-voiding. Seventy-eight VUDS were performed in 63 patients, and the median age at VUDS was 10.2 months. These studies revealed a significant correlation between PUD/EUSD and Pdet-voiding (r = 0.641, p < 0.001). However, a significant correlation was not observed between PUD/EUSD and age (r = 0.180). We defined Pdet-voiding of more than 80 cmH 2 O as a high voiding pressure, and a PUD/EUSD of 2.4 was a good predictor for the cutoff value for high voiding pressure. Pdet-voiding was significantly higher in children with a PUD/EUSD of ≥ 2.4 (p < 0.001). In 19 children who had neurological diseases, a significant correlation was found between PUD/EUSD and Pdet-voiding (r = 0.842, p < 0.001), and a PUD/EUSD of 2.4 was a useful cutoff value for high voiding pressure. PUD/EUSD is a valuable tool to predict high voiding pressure in pediatric patients. A PUD/EUSD of ≥ 2.4 in VCUG indicates the need to perform more invasive tests, such as VUDS, in pediatric patients aged 3 and under with neuropathic diseases.
Krauss, J K; Regel, J P; Vach, W; Jüngling, F D; Droste, D W; Wakhloo, A K
1997-01-01
We investigate the predictive value of cerebrospinal fluid (CSF) flow void on outcome after shunting in a prospective series of patients with idiopathic normal pressure hydrocephalus (NPH). The degree and extension of CSF flow void were examined on T2-weighted magnetic resonance imaging scans of 37 elderly patients with idiopathic NPH who underwent subsequent shunting. The degree of flow void was assessed in comparison with the signal of large cerebral arteries. The extension was evaluated via the calculation of sum scores for the occurrence of flow void in different locations of the ventricular system. Those parameters were not considered in the decision to perform shunting. CSF flow void in the aqueduct and the adjacent third and fourth ventricles of the 37 patients with idiopathic NPH was compared with that of 37 age-matched control patients. CSF flow void scores in patients with idiopathic NPH were investigated for correlations between postoperative outcome scores and ventricular width indices. No difference was found between the occurrence of aqueductal CSF flow void in patients with idiopathic NPH and the control group. A significant difference, however, was noted for the extension of the CSF flow void, which was greater in the NPH group. Postoperative improvement was found in 33 of 37 patients with idiopathic NPH at a mean follow-up of 15.6 months. Only small, statistically not significant correlations were found between CSF flow void and postoperative outcome. Flow void sum scores, however, correlated significantly with ventricular width indices. The degree and extension of CSF flow void on T2-weighted magnetic resonance imaging scans have little predictive value for outcome after shunting in patients with idiopathic NPH. The greater extension of the CSF flow void in patients with NPH is most likely related to increased ventricular width. It is not useful to consider CSF flow void findings on conventional magnetic resonance imaging scans in making the decision to offer shunting in patients with idiopathic NPH.
Yu, Hong-Li; Zhang, Qian; Jin, Yang-Ping; Wang, Kui-Long; Lu, Tu-Lin; Li, Lin
2016-07-01
In order to compare the effect of sulfur fumigation processing and direct hot air heating technology on puerarin contents and efficacy of Puerariae Thomsonii Radix, the fresh roots of Pueraria thomsonii were cut into small pieces and prepared into direct sunshine drying samples, direct hot air drying samples, and sulfur fumigation-hot air drying samples. Moisture contents of the samples were then determined. The puerarin contents of different samples were compared by HPLC method. Moreover, the models of drunkenness mice were established, and then with superoxide dismutase (SOD) content as the index, aqueous decoction extracts of Puerariae Thomsonii Radix samples with sulfur fumigation processing and non-sulfur fumigation processing methods were administrated by ig; the effects of sulfur fumigation on contents of SOD in mice liver and serum were determined, and the sulfur fumigation samples and non-sulfur fumigation samples were investigated for moth and mildew under different packaging and storage conditions. Results showed that the sulfur fumigation samples significantly changed the puerarin content from Puerariae Thomsonii Radix. The content of puerarin was decreased gradually when increasing the times of sulfur fumigation and amount of sulfur. SOD content in drunken mice liver and serum was significantly decreased when increasing the times of sulfur fumigation, showing significant difference with both direct sunshine drying group and direct hot air drying group. Moth and mildew were not found in the sulfur fumigation samples and direct hot air drying samples whose moisture contents were lower than the limit in Pharmacopoeia. Research showed that sulfur fumigation can significantly reduce the content of main active ingredients and reduce the efficacy of Puerariae Thomsonii Radix, indicating that the quality of Puerariae Thomsonii Radix was significantly decreased after sulfur fumigation. However, the contents of the main active ingredients, efficacy and storage results of the direct hot air drying samples were similar to those in direct sunshine drying samples, so the hot air drying process was a nice drying technology which could be promoted for use. Copyright© by the Chinese Pharmaceutical Association.
Radioisotope measurement of selected parameters of liquid-gas flow using single detector system
NASA Astrophysics Data System (ADS)
Zych, Marcin; Hanus, Robert; Jaszczur, Marek; Mosorov, Volodymyr; Świsulski, Dariusz
2018-06-01
To determine the parameters of two-phase flows using radioisotopes, usually two detectors are used. Knowing the distance between them, the velocity of the dispersed phase is calculated based on time delay estimation. Such a measurement system requires the use of two gamma-ray sealed sources. But in some situations it is also possible to determine velocity of dispersed phase using only one scintillation probe and one gamma-ray source. However, this requires proper signal analysis and prior calibration. This may also cause larger measurement errors. On the other hand, it allows measurements in hard to reach areas where there is often no place for the second detector. Additionally, by performing a previous calibration, it is possible to determine the void fraction or concentration of the selected phase. In this work an autocorrelation function was used to analyze the signal from the scintillation detector, which allowed for the determination of air velocities in slug and plug flows with an accuracy of 8.5%. Based on the analysis of the same signal, a void fraction with error of 15% was determined.
Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M
2004-10-01
To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.
On the observability of coupled dark energy with cosmic voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander
2015-01-01
Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.
1983-08-01
bedrock. Reservoir deposits are rich in silt and clay as shown by the plastic nature of material behind Cave Creek Dam. Recent alluvium is directly...formation and the zone I, impervious material. Then rolling with the rubber tired equipment would fill voids and small cracks with the clayey, plastic ...Assoclates US " 2 t 64urvey air J.1y 1969. ___OSOWRS g.Aorizatnfa( conirol ji 45 on G1A - EEA fSI Alaon~ral ieodtc Survey Dafum. Yerftci 4 1 -5 AtE
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
Salamon, J; Wicklein, D; Didié, M; Lange, C; Schumacher, U; Adam, G; Peldschus, K
2014-04-01
The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation. Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0 T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy. Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91. The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC. • Detection of single magnetically labeled MSC in-vivo using a clinical 3.0 T MRI is possible.• Fluorescent and magnetic co-labeling does not affect cell vitality.• The number of cells detected by MRI and histology has a high correlation. © Georg Thieme Verlag KG Stuttgart · New York.
Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.
Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan
2017-12-01
To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.
Rayleigh-wave diffractions due to a void in the layered half space
Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.
2006-01-01
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.
LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu
2017-01-20
Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less
Are the measurements of water-filled and air-charged catheters the same in urodynamics?
Digesu, G Alessandro; Derpapas, Alexandros; Robshaw, Penny; Vijaya, Gopalan; Hendricken, Caroline; Khullar, Vik
2014-01-01
The aim of our study was to compare air-charged and water-filled catheters simultaneously in the measurement of the intravesical, abdominal and detrusor pressure during urodynamic investigations. Consecutive women with lower urinary tract symptoms, referred for urodynamics were prospectively studied. Readings of intravesical pressure (p(ves)), abdominal pressure (p(abd)) and detrusor pressure (p(det)), recorded by both the air-charged and water-filled catheters, were displayed simultaneously and compared at the end of filling, on standing, on sitting prior to voiding and at the maximum involuntary detrusor contraction. The signals (pressures) recorded by both types of catheter were compared using the Bland-Altman plot and paired samples t test. Twenty women with a mean age of 49 (range 36-72) were recruited. One patient with normal urodynamics was excluded in view of the poor quality trace. At each of the four comparison points, the air-charged catheters consistently produced higher mean pressures than the water-filled catheters. There were wide variations in the difference between the readings produced by the two types of catheter. Pressures measured using air-charged catheters are not comparable with water-filled catheters and are therefore not interchangeable. Caution must be used when comparing urodynamic parameters using air-charged and water-filled catheters.
Fast Estimation of Dietary Fiber Content in Apple.
Le Gall, Sophie; Even, Sonia; Lahaye, Marc
2016-02-17
Dietary fibers (DF) are one of the nutritional benefits of fleshy fruit consumption that is becoming a quality criterion for genetic selection by breeders. However, the AOAC total DF content determination is not readily amenable for screening large fruit collections. A new screening method of DF content in an apple collection based on the automated preparation of cell wall material as an alcohol-insoluble residue (AIR) is proposed. The yield of AIR from 27 apple genotypes was compared with DF measured according to AOAC method 985.29. Although residual protein content in AIRs did not affect DF measurement, subtraction of starch content above 3% dry weight in AIRs was needed to agree with AOAC measured DF. A fast colorimetric screening of starch in AIR was developed to detect samples needing correction. The proposed method may prove useful for the rapid determination of DF in collections of other fleshy fruit besides apple.
Morphological statistics of the cosmic web
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.
2004-07-01
We report the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology treating voids and superclusters on an equal footing. We study the dark matter density field in real space smoothed with the Ls = 5 h[minus sign]1Mpc Gaussian window. Superclusters and voids are defined as individual members of over-dense and under-dense excursion sets respectively. We determine the morphological properties of the cosmic web at a large number of dark matter density levels by computing Minkowski functionals for every supercluster and void. At the adopted smoothing scale individual superclusters totally occupy no more than about 5% of the total volume and contain no more than 20% of mass if the largest supercluster is excluded. Likewise, individual voids totally occupy no more than 14% of volume and contain no more than 4% of mass if the largest void is excluded. The genus of individual superclusters can be ˜ 5 while the genus of individual voids reaches ˜ 55, implying significant amount of substructure in superclusters and especially in voids. Large voids are typically distinctly non-spherical.
Fluid intake and voiding; habits and health knowledge in a young, healthy population
Das, Rebekah N; Grimmer-Somers, Karen A
2012-01-01
Objectives Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. Methods A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. Results The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. Conclusion More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence. PMID:24199175
Fluid intake and voiding; habits and health knowledge in a young, healthy population.
Das, Rebekah N; Grimmer-Somers, Karen A
2012-01-01
Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence.
NASA Technical Reports Server (NTRS)
Zahm, A F; Bear, R M
1929-01-01
Part I describes vibration tests, in a wind tunnel, of simple airfoils and of the tail plane of an M0-1 airplane model; it also describes the air flow about this model. From these tests are drawn inferences as to the cause and cure of aerodynamic wing vibrations. Part II derives stability criteria for wing vibrations in pitch and roll, and gives design rules to obviate instability. Part III shows how to design spars to flex equally under a given wing loading and thereby economically minimize the twisting in pitch that permits cumulative flutter. Resonant flutter is not likely to ensue from turbulence of air flow along past wings and tail planes in usual flying conditions. To be flutterproof a wing must be void of reversible autorotation and not have its centroid far aft of its pitching axis, i. e., axis of pitching motion. Danger of flutter is minimized by so proportioning the wing's torsional resisting moment to the air pitching moment at high-speed angles that the torsional flexure is always small. (author)
NASA Technical Reports Server (NTRS)
Roth, D. J.; Baaklini, G. Y.
1986-01-01
The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.
Quantifying Effects of Voids in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.
2013-01-01
Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.
Finite-difference numerical simulations of underground explosion cavity decoupling
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Preston, L. A.; Jensen, R. P.
2012-12-01
Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion source located at the center of a spherical cavity generates only diverging compressional waves. However, we find that shear waves are generated by an off-center source, or by a non-spherical cavity (e.g. a tunnel). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Method of simulating spherical voids for use as a radiographic standard
Foster, Billy E.
1977-01-01
A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.
Rodríguez-Robledo, M. Concepción; González-Lozano, M. Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; López-Martínez, Rubén; Ramírez-Galicia, Guillermo
2018-01-01
Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications. PMID:29642522
Rodríguez-Robledo, M Concepción; González-Lozano, M Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; Bazán-Mora, Elva; López-Martínez, Rubén; Ramírez-Galicia, Guillermo; Poisot, Martha
2018-04-09
Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.
The Effects of High Al2O3 on the Metallurgical Properties of Sinter
NASA Astrophysics Data System (ADS)
Yu, Wen-tao; Zuo, Hai-bin; Zhang, Jian-liang; Zhang, Tao
Sintering-pot tests and metallurgical performances of sinter with 4 kind of different Al2O3 contents are experimented in this paper. Results show: when the Al2O3 contents increase from 2.0% to 3.5%, acicular calcium ferrites in mine phase will be gradually replaced by plate-like iron calcium. The increase of Al2O3 contents will lead to the addition of liquid viscosity and the reduction of permeability of sinter bed. Sintering time will be prolonged. The rate of yield is stable basically but production is low; besides, the increase of liquid viscosity will decrease of drum strength. The change of permeability of the material layer will make RDI+3.15 decrease first and then increase when Al2O3 contents changed from 2.0% to 3.5%. RI of sinter shows a contrary trend because many open voids are formed by deterioration of liquidity first and then pores closed.
Lee, Chang-Gon; Ahmed, Maruf; Jiang, Gui-Hun; Eun, Jong-Bang
2017-08-01
Encapsulated Asian pear juice powder was produced through spray drying using three maltodextrin levels (15, 20, and 25% w/v) and three inlet air temperatures (130, 150, and 170 °C). The impact of maltodextrin concentrations and inlet air temperatures on color, bioactive compounds, and morphological characteristics of encapsulated Asian pear juice powder were investigated. Maltodextrin concentrations and inlet air temperatures significantly influenced L * and b * values of encapsulated Asian pear juice powder. Increasing inlet air temperatures increased total phenolic content, whereas the vitamin C content decreased. Vitamin C content was strongly correlated with particle size, inlet air temperature, and maltodextrin concentration. ABTS + radical-scavenging activity was highly correlated with total phenol content while DPPH radical-scavenging activity was highly correlated with vitamin C content. Encapsulated powders made with higher inlet air temperature and higher maltodextrin concentration had lowest median particle diameter with a smoother, more regular and rounded outer surface than those of encapsulated powders produced with lower inlet air temperature and lower maltodextrin concentration. Therefore, the results demonstrate that high-quality encapsulated Asian pear juice powder could be manufactured by adding 15% (w/v) maltodextrin and spray-drying at 170 °C.
The Effect of Filaments and Tendrils on the H I Content of Galaxies
NASA Astrophysics Data System (ADS)
Crone Odekon, Mary; Hallenbeck, Gregory; Haynes, Martha P.; Koopmann, Rebecca A.; Phi, An; Wolfe, Pierre-Francois
2018-01-01
We use the ALFALFA H I survey to examine whether the cold gas reservoirs of galaxies are inhibited or enhanced in large-scale filaments. Our sample includes 9947 late-type galaxies with H I detections and 4236 late-type galaxies with well-determined H I detection limits that we incorporate using survival analysis statistics. We find that, even at fixed local density and stellar mass, and with group galaxies removed, the H I deficiency of galaxies in the stellar mass range 8.5 < log(M/M ⊙) < 10.5 decreases with distance from the filament spine, suggesting that galaxies are cut off from their supply of cold gas in this environment. We also find that, at fixed local density and stellar mass, the galaxies that are the most gas-rich are those in small, correlated “tendril” structures within voids: although galaxies in tendrils are in significantly denser environments, on average, than galaxies in voids, they are not redder or more H I deficient. This stands in contrast to the fact that galaxies in tendrils are more massive than those in voids, suggesting a more advanced stage of evolution. Finally, at fixed stellar mass and color, galaxies closer to the filament spine, or in high-density environments, are more deficient in H I. This fits a picture where, as galaxies enter denser regions, they first lose H I gas and then redden as star formation is reduced.
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Straub, J.S.; Ott, L.L.
1984-04-01
Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less
Systematic void fraction studies with RELAP5, FRANCESCA and HECHAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stosic, Z.; Preusche, G.
1996-08-01
In enhancing the scope of standard thermal-hydraulic codes applications beyond its capabilities, i.e. coupling with a one and/or three-dimensional kinetics core model, the void fraction, transferred from thermal-hydraulics to the core model, plays a determining role in normal operating range and high core flow, as the generated heat and axial power profiles are direct functions of void distribution in the core. Hence, it is very important to know if the void quality models in the programs which have to be coupled are compatible to allow the interactive exchange of data which are based on these constitutive void-quality relations. The presentedmore » void fraction study is performed in order to give the basis for the conclusion whether a transient core simulation using the RELAP5 void fractions can calculate the axial power shapes adequately. Because of that, the void fractions calculated with RELAP5 are compared with those calculated by BWR safety code for licensing--FRANCESCA and the best estimate model for pre- and post-dryout calculation in BWR heated channel--HECHAN. In addition, a comparison with standard experimental void-quality benchmark tube data is performed for the HECHAN code.« less
Fluid outlet at the bottom of an in situ oil shale retort
Hutchins, Ned M.
1984-01-01
Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.
Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort
Ricketts, Thomas E.
1980-01-01
Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.
NASA Astrophysics Data System (ADS)
Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick
2007-04-01
High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.
NASA Astrophysics Data System (ADS)
Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.
2016-01-01
In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.
NASA Astrophysics Data System (ADS)
Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.
2017-10-01
Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.
An experimental study of permeability within an out-of-autoclave vacuum-bag-only CFRP laminate
NASA Astrophysics Data System (ADS)
Wallace, Landon F.
The out-of-autoclave vacuum-bag-only (OOA-VBO) manufacturing process is a process that eliminates an autoclave when manufacturing aerospace quality carbon fiber reinforced plastics (CFRP). OOA-VBO pre-impregnated resin tow systems rely on air channel networks that guide unwanted voids out of the laminate. The air path networks can be characterized by measuring the permeability of a pre-cured laminate. Permeability results were successfully obtained for a laminate with a compaction similar to that found in a typical vacuum bagging setup. A study was done to find the relationship between compaction of the laminate and permeability. Permeability was measured as the laminate cured, using a constant temperature ramp rate. An experimental nodal analysis was performed to find the permeability at the midpoint of the in-plane direction.
Gravitational Effects on Closed-Cellular-Foam Microstructure
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond J.; Wessling, Francis C.; McMannus, Samuel P.; Mathews, John; Patel, Darayas
1996-01-01
Polyurethane foam has been produced in low gravity for the first time. The cause and distribution of different void or pore sizes are elucidated from direct comparison of unit-gravity and low-gravity samples. Low gravity is found to increase the pore roundness by 17% and reduce the void size by 50%. The standard deviation for pores becomes narrower (a more homogeneous foam is produced) in low gravity. Both a Gaussian and a Weibull model fail to describe the statistical distribution of void areas, and hence the governing dynamics do not combine small voids in either a uniform or a dependent fashion to make larger voids. Instead, the void areas follow an exponential law, which effectively randomizes the production of void sizes in a nondependent fashion consistent more with single nucleation than with multiple or combining events.
The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests
NASA Astrophysics Data System (ADS)
Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson
2018-05-01
We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantagemore » of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.« less
Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S
2014-08-01
In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication on the flow mode, and a visualization of the radial material distribution can be obtained. A benefit of this system is its potential to be mounted at any axial height of a two-phase test section without requirements for pre-fabricated entrances or windows. This could mean a significant increase in flexibility of the void distribution assessment capability at many existing two-phase test loops.
Hollow-Wall Heat Shield for Fuel Injector Component
NASA Technical Reports Server (NTRS)
Hanson, Russell B. (Inventor)
2018-01-01
A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1986-01-01
The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
Probability of detection of internal voids in structural ceramics using microfocus radiography
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Roth, D. J.
1985-01-01
The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.
Note: Void effects on eddy current distortion in two-phase liquid metal.
Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M
2015-10-01
A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.
A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool
ERIC Educational Resources Information Center
Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar
2011-01-01
The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…
Cosmology with void-galaxy correlations.
Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S
2014-01-31
Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.
Effect of oxygen on the ignition of liquid fuels
NASA Technical Reports Server (NTRS)
Pahl, H
1929-01-01
The ignition temperature, ignition lag, and ignition strength of simple and homogeneous fuels in combustion air of small oxygen content differ from what they are in air of greater oxygen content. In the case of small oxygen content, these fuels behave as if mixed unevenly. In the case of air with a definite oxygen content, the simple fuels have two ignition points, between which ignition takes place within a certain temperature range. The phenomena are explained by pyrogenous decomposition, comparison of the individual heat quantities, and the effect of the walls.
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam, and...
Deformation of periodic nanovoid structures in Mg single crystals
NASA Astrophysics Data System (ADS)
Xu, Shuozhi; Su, Yanqing; Zare Chavoshi, Saeed
2018-01-01
Large scale molecular dynamics (MD) simulations in Mg single crystal containing periodic cylindrical voids subject to uniaxial tension along the z direction are carried out. Models with different initial void sizes and crystallographic orientations are explored using two interatomic potentials. It is found that (i) a larger initial void always leads to a lower yield stress, in agreement with an analytic prediction; (ii) in the model with x[\\bar{1}100]-y[0001]-z[11\\bar{2}0] orientations, the two potentials predict different types of tension twins and phase transformation; (iii) in the model with x[0001]-y[11\\bar{2}0]-z[\\bar{1}100] orientations, the two potentials identically predict the nucleation of edge dislocations on the prismatic plane, which then glide away from the void, resulting in extrusions at the void surface; in the case of the smallest initial void, these surface extrusions pinch the void into two voids. Besides bringing new physical understanding of the nanovoid structures, our work highlights the variability and uncertainty in MD simulations arising from the interatomic potential, an issue relatively lightly addressed in the literature to date.
Experimental testing of hot mix asphalt mixture made of recycled aggregates.
Rafi, Muhammad Masood; Qadir, Adnan; Siddiqui, Salman Hameed
2011-12-01
The migration of population towards big cities generates rapid construction activities. These activities not only put pressure on natural resources but also produce construction, renovation and demolition waste. There is an urgent need to find out ways to handle this waste owing to growing environmental concerns. This can reduce pressure on natural resources as well. This paper presents the results of experimental studies which were carried out on hot mix asphalt mixture samples. These samples were manufactured by adding recycled aggregates (RA) with natural crushed stone aggregates (CSA). Three levels of addition of RA were considered in the presented studies. RA were obtained from both the concrete waste of construction, renovation and demolition activities and reclaimed asphalt pavement. Separate samples were manufactured with the coarse and fine aggregate fractions of both types of RA. Samples made with CSA were used as control specimens. The samples were prepared and tested using the Marshall method. The performance of the samples was investigated in terms of density-void and stability/flow analysis and was compared with the performance criteria as given by National Highway Authority for wearing course material in Pakistan. Based on this data optimum asphalt contents were determined. All the samples made by adding up to 50% RA conform to the specification requirements of wearing course material as given by National Highway Authority in terms of optimum asphalt contents, voids in mineral aggregates and stability/flow. A statistical analysis of variation of these samples confirmed that addition is also possible statistically.
Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei
2016-07-14
We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.
Chae, Ji Y; Bae, Jae H; Lee, Jeong G; Park, Hong S; Moon, Du G; Oh, Mi M
2017-06-02
To evaluate the effects of preoperative low maximal flow rate (Qmax) on voiding trials after the midurethral sling (MUS) procedure in women with stress urinary incontinence (SUI). One hundred and sixty-eight women who underwent MUS procedure were enrolled. Preoperative free uroflowmetry was performed and patients were divided by Qmax. Low Qmax was defined as a Qmax under 15 mL/sec with voided volume at least 150 mL. Surgical results, failure of voiding trial, and postoperative uroflowmetry parameters were compared between the groups. Failure of voiding trial was defined by a PVR more than 100 mL on postoperative uroflowmetry. At the discharge day, there were 42 cases showing failure of voiding trial and 33 cases requiring CIC, but only one patient showed failure of voiding trial at 12 months postoperatively. Overall, 48 patients had preoperative low Qmax. Low Qmax group showed lower Qmax in all of postoperative uroflowmetry, but there were no significant differences in the rate of postoperative voiding trial failure or CIC. The low Qmax group was then divided into two groups according to the preoperative detrusor pressure at Qmax over and under 20 cmH 2 O in pressure flow study. Comparing the two groups, no significant differences were observed in the cure rate, voiding trial failure or CIC. Our results suggest that women with preoperative low Qmax experienced no definite unfavorable voiding problem from the MUS procedure compared to those with normal voiding function. MUS procedure may be regarded as a safe and successful procedure in SUI women with low Qmax. © 2017 John Wiley & Sons Australia, Ltd.
Development of Laser Fabricated Ti-6Al-4V
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2006-01-01
Laser Engineered Net Shaping (LENS) depositions with Ti-6Al-4V gas-atomized powder were accomplished at five different temperatures, ranging from 30 to 400 C, imposed on the base plate. These base plate temperatures were employed in an effort to relieve stresses which develop during the deposition. Warpage of the base plate was monitored. Only a slight decline in warpage was observed as the base plate temperature was increased. Results indicate that substrate temperatures closer to the stress relief minimum of 480 C would relieve deposition stresses, though process parameters would likely need to be modified to compensate for the higher base plate temperature. The compositions of the as-received powder and the LENS deposited material were chemically analyzed. The oxygen content of the LENS material was 0.154 wt.% which is less than the maximum impurity limit of 0.2 percent for commercial Ti-6Al-4V alloys, but is over the limit allowed in ELI grade (0.13 percent). The level of oxygen in the commercial base plate used was only 0.0635 percent. Tensile specimens were machined from the LENS deposited material and tested in tension at room temperature. The ultimate and yield tensile stresses of the LENS material were about 1200 and 1150 MPa respectively, which is about 20 percent higher than the strengths of wrought Ti-6Al-4V. The higher strength of the LENS material was due to its fine structure and high oxygen content. The LENS deposits were not fully dense; voids were frequent at the interfaces between deposited layers. These dispersed sheets of voids were parallel to the longitudinal axis of the resulting tensile specimens. Apparently there was sufficient continuous, fully dense material longitudinally to enable the high strengths. Ductility was low in the LENS material. Percent elongation at failure in the LENS material was near 4 percent, which is less than half of what is usually expected from Ti-6Al-4V. The low ductility was caused by high oxygen levels, and the presence of voids. It is likely that the relatively high scan speeds used in our depositions contributed to the lack of full density in our LENS material.
Roe, Brenda; Ostaszkiewicz, Joan; Milne, Jill; Wallace, Sheila
2007-01-01
This paper reports a comparison of the data analysis and outcomes from four Cochrane systematic reviews on bladder training and voiding programmes for the management of urinary incontinence using metastudy descriptive techniques to inform clinical practice, generate new ideas and identify future research directions. Bladder training is used for cognitively and physically able adults to regain continence by increasing the time interval between voids. Prompted voiding, habit retraining and timed voiding, collectively known as voiding programmes, are generally used for people with cognitive and physical impairments in institutional settings. Bladder training and voiding programmes feature as common clinical practice for the management of urinary incontinence. A synopsis of four Cochrane systematic reviews that included randomized controlled trials on bladder training, prompted voiding, habit retraining and timed voiding was undertaken using metastudy techniques for the synthesis of qualitative research, and has provided a discursive comparison and contrast of the meta-data analysis and outcomes of these reviews. Frequency of incontinence was the most common and constant outcome measure of effectiveness in the reviews. Limited data were available on other health outcomes, change in dependency status, quality of life and cost-effectiveness. The systematic review on bladder training included different types of urinary incontinence, whereas those on voiding programmes did not differentiate the type of incontinence. There is evidence on the effectiveness of bladder training but long-term follow up studies are needed. Evidence on the effectiveness of voiding programmes is limited and not available for many outcomes. Future research needs to consider the theory underpinning interventions for bladder training and voiding programmes for urinary incontinence and should incorporate recognized 'quality' research designs, established outcomes and long-term follow up. It is unclear whether health outcomes for people with comorbidities, cognitive and physical impairments will improve if extensive diagnostic and assessment investigations are undertaken.
Method to Estimate the Dissolved Air Content in Hydraulic Fluid
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.
2011-01-01
In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated temperatures.
NASA Astrophysics Data System (ADS)
van de Weygaert, R.; van Kampen, E.
1993-07-01
The first results of an extensive study of the structure and dynamics of underdense regions in gravitational instability scenarios are presented. Instead of adopting spherically symmetric voids with some idealized initial density and velocity profile, underdense regions of a given size and depth, embedded in an initial density fluctuation field, are generated. In order to accomplish this in a consistent way, these initial conditions are set up by means of Bertschinger's constrained random field code. The generated particle samples of 64^3^ particles in a box of side 100 Mpc are followed into the non-linear regime by Bertschinger's PM N- body code. In this way we address the dependence of the structure and kinematics of the void both on the initial depth of the void and on the fluctuation field in which it is embedded. In particular, this study provides some understanding of how far fluctuations on small scales modify the dynamics of the large-scale void, and especially of how far the properties of small structures inside the void are affected by the global properties of the void. One of the conspicuous features of the initial density fields inside protovoids appears to be the existence of a `void hierarchy', with small voids embedded in larger voids. The survival of this hierarchy during the riot evolution of the void depends critically on the initial depth as well as on the clustering scenario involved. As well as presenting a qualitative discussion of the structure of underdense regions in initial density fields in different scenarios, and the results of simulations of the ensuing non-linear evolution, we concentrate in particular on a comparison of the global density and velocity fields in voids with predictions from linear theory as well as from the spherical outflow model. The relation between the initial linear depth, the resulting non-linear depth and the excess expansion velocities in voids is addressed. In addition, we find that, while near its centre a void becomes more and more spherical, the shape of its boundary is influenced to a large extent by the structures surrounding the void and therefore is generally more irregular. In this first study we concentrate on single voids in Einstein-de Sitter universes. The underdense regions considered are linear 1 σ_0_, 2 σ_0_ and 3 σ_0_ dips in fields that are Gaussian-smoothed on a scale of R_G_ = 10 h^-1^ Mpc, approximately half the size of the Bootes void. These regions are studied in terms of the Cold Dark Matter and Hot Dark Matter scenarios as well as in terms of the scale-free scenarios P(k) is proportional to k^0^, k^-1^ and k^-2^. The Hubble constant is taken to be H_0_ = 100 h km s^-1^ Mpc^-1^.
NASA Astrophysics Data System (ADS)
Ryota, Suganuma; Koichi, Yasuoka
2015-09-01
Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.
Removal of introduced inorganic content from chipped forest residues via air classification
Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; ...
2015-08-04
Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and inmore » a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.« less
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 4 2011-10-01 2011-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 4 2014-10-01 2014-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 4 2012-10-01 2012-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to its...
Dynamics of voids and their shapes in redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Kei-ichi; Sakai, Nobuyuki; Triay, Roland, E-mail: maeda@waseda.jp, E-mail: nsakai@e.yamagata-u.ac.jp, E-mail: triay@cpt.univ-mrs.fr
2011-08-01
We investigate the dynamics of a single spherical void embedded in a Friedmann-Lemaitre universe, and analyze the void shape in the redshift space. We find that the void in the redshift space appears as an ellipse shape elongated along the line of sight (i.e., an opposite deformation to the Kaiser effect). Applying this result to observed void candidates at the redshift z ∼ 1-2, it may provide us with a new method to evaluate the cosmological parameters, in particular the value of a cosmological constant.
Pores and Void in Asclepiades’ Physical Theory
Leith, David
2012-01-01
This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299
Water content dependence of trapped air in two soils
Stonestrom, David A.; Rubin, Jacob
1989-01-01
An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.
3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry
NASA Astrophysics Data System (ADS)
Özdemir, İ. Bedii; Akar, Fırat
2018-05-01
The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.
Stochastic Nonlinear Response of Woven CMCs
NASA Technical Reports Server (NTRS)
Kuang, C. Liu; Arnold, Steven M.
2013-01-01
It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.
Pre-breakdown phenomena and discharges in a gas-liquid system
NASA Astrophysics Data System (ADS)
Tereshonok, D. V.; Babaeva, N. Yu; Naidis, G. V.; Panov, V. A.; Smirnov, B. M.; Son, E. E.
2018-04-01
In this paper, we investigate pre-breakdown and breakdown phenomena in gas-liquid systems. Cavitation void formation and breakdown in bubbles immersed in liquids are studied numerically, while complete breakdown of bubbled water is studied in experiments. It is shown that taking into account the dependence of water dielectric constant on electric field strength plays the same important role for cavitation void appearance under the action of electrostriction forces as the voltage rise time. It is also shown that the initial stage of breakdown in deformed bubbles immersed in liquid strongly depends on spatial orientation of the bubbles relative to the external electric field. The effect of immersed microbubbles, distributed in bulk water, on breakdown time and voltage is studied experimentally. At the breakdown voltage, the slow ‘thermal’ mechanism is changed by the fast ‘streamer-leader’ showing a decrease in breakdown time by two orders of magnitude by introducing microbubbles (0.1% of volumetric gas content) into the water. In addition, the plasma channel is found to pass between nearby microbubbles, exhibiting some ‘guidance’ effect.
Processing and Properties of a Phenolic Composite System
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Bai, J. M.; Baughman, James M.
2006-01-01
Phenolic resin systems generate water as a reaction by-product via condensation reactions during curing at elevated temperatures. In the fabrication of fiber reinforced phenolic resin matrix composites, volatile management is crucial in producing void-free quality laminates. A commercial vacuum-bag moldable phenolic prepreg system was selected for this study. The traditional single-vacuum-bag (SVB) process was unable to manage the volatiles effectively, resulting in inferior voidy laminates. However, a double vacuum bag (DVB) process was shown to afford superior volatile management and consistently yielded void-free quality parts. The DVB process cure cycle (temperature /pressure profiles) for the selected composite system was designed, with the vacuum pressure application point carefully selected, to avoid excessive resin squeeze-outs and achieve the net shape and target resin content in the final consolidated laminate parts. Laminate consolidation quality was characterized by optical photomicrography for the cross sections and measurements of mechanical properties. A 40% increase in short beam shear strength, 30% greater flexural strength, 10% higher tensile and 18% higher compression strengths were obtained in composite laminates fabricated by the DVB process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaohui; Jacobsen, Stefan; He Jianying
2009-08-15
The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less
Causes and remedies for porosity in composite manufacturing
NASA Astrophysics Data System (ADS)
Fernlund, G.; Wells, J.; Fahrang, L.; Kay, J.; Poursartip, A.
2016-07-01
Porosity is a challenge in virtually all composite processes but in particular in low pressure processes such as out of autoclave processing of prepregs, where the maximum pressure is one atmosphere. This paper discusses the physics behind important transport phenomena that control porosity and how we can use our understanding of the underlying science to develop strategies to achieve low porosity for these materials and processes in an industrial setting. A three step approach is outlined that addresses and discusses: gas evacuation of trapped air, volatiles and off-gassing, and resin infiltration of evacuated void space.
Selbig, William R.; Buer, Nicolas
2018-05-11
Three permeable pavement surfaces - asphalt (PA), concrete (PC), and interlocking pavers (PIP) - were evaluated side-by-side to measure changes to the infiltrative capacity and water quality of stormwater runoff originating from a conventional asphalt parking lot in Madison, Wisconsin. During the 24-month monitoring period (2014-16), all three permeable pavements resulted in statistically significant reductions in the cumulative load of solids (total suspended solids and suspended sediment), total phosphorus, Escherichia coli (E. coli), and Enterococci. Most of the removal occurred through capture and retention in the void spaces of each permeable surface and aggregate base. The largest reduction in total suspended solids was for PC at 80 percent, followed by PIP and PA at 69 and 65 percent, respectively. Reductions (generally less than 50 percent) in total phosphorus also were observed, which might have been tempered by increases in the dissolved fraction observed in PIP and PA. Conversely, PC results indicated a slight reduction in dissolved phosphorus but failed to meet statistical significance. E. coli and Enterococci were reduced by about 80 percent for PC, almost twice the amount observed for PIP and PA.Results for the PIP and PC surfaces initially indicated higher pollutant load reduction than results for the PA surface. The efficiency of PIP and PC surfaces capturing sediment, however, led to a decline in infiltration rates that resulted in more runoff flowing over, not through, the permeable surface. This result led to a decline in treatment until the permeable surface was partially restored through maintenance practices, to which PIP responded more dramatically than PC or PA. Conversely, the PA surface was capable of infiltrating most of the influent runoff volume during the monitoring period and, thus, continued to provide some level of treatment. The combined effect of underdrain and overflow drainage resulted in similar pollutant treatment for all three permeable surfaces.Temperatures below each permeable surface generally followed changes in air temperature with a more gradual response observed in deeper layers. Therefore, permeable pavement may do little to mitigate heated runoff during summer. During winter, deeper layers remained above freezing even when air temperature was below freezing. Although temperatures were not high enough to melt snow or ice accumulated on the surface, temperatures below each permeable pavement did allow void spaces to remain open, which promoted infiltration of melted ice and snow as air temperatures rose above freezing. These open void spaces could potentially reduce the need for application of deicing agents in winter because melted snow and ice would infiltrate, thereby preventing refreezing of pooled water in what is known as the “black ice” effect.
Hardwick, Lisa M; Nail, Steven L; Jarman, James; Hasler, Kai; Hense, Thomas
2013-10-01
A scientific rationale is proposed for the establishment of acceptance criteria for leak rates in pharmaceutical freeze dryers. A method was developed to determine the quantity of air that could leak into any lyophilizer from the outside while still maintaining Class 100/Grade A microbial conditions. A lyophilizing product is assumed most vulnerable to microbial contamination during secondary drying, when mass transfer of water vapor from product to condenser is minimal. Using the void volume of the dryer, calculated from change in internal pressure when a known volume of air is introduced, and the potential maximum bioburden of the leaked air (based on measured values), calculations can determine the allowable leaked volume of air, the flow rate required to admit that volume in a given time frame, and the pressure rise that would result from the leak over a given testing period. For the dryers in this study, using worst-case air quality conditions, it was determined that a leak resulting in a pressure rise of 0.027 mbar over a 30 min period would allow the dryers to remain in secondary drying conditions for 62 h before the established action level of one colony forming unit for each cubic meter of air space would be reached. Copyright © 2013 Elsevier B.V. All rights reserved.
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
Determination of void volume in normal phase liquid chromatography.
Jiang, Ping; Wu, Di; Lucy, Charles A
2014-01-10
Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and optional repeating of void discrete modes. 1065.525 Section 1065.525 Protection of Environment... repeating of void discrete modes. (a) Start the engine using one of the following methods: (1) Start the... during one of the modes of a discrete-mode test, you may void the results only for that individual mode...
Stability limit of liquid water in metastable equilibrium with subsaturated vapors.
Wheeler, Tobias D; Stroock, Abraham D
2009-07-07
A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapair
A sharp interface model for void growth in irradiated materials
NASA Astrophysics Data System (ADS)
Hochrainer, Thomas; El-Azab, Anter
2015-03-01
A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.
Small-angle x-ray scattering in amorphous silicon: A computational study
NASA Astrophysics Data System (ADS)
Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim
2018-05-01
We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.
The void in the Sculptor group spiral galaxy NGC 247
NASA Astrophysics Data System (ADS)
Wagner-Kaiser, R.; De Maio, T.; Sarajedini, A.; Chakrabarti, S.
2014-10-01
The dwarf galaxy NGC 247, located in the Sculptor Filament, displays an apparent void on the north side of its spiral disc. The existence of the void in the disc of this dwarf galaxy has been known for some time, but the exact nature and cause of this strange feature has remained unclear. We investigate the properties of the void in the disc of NGC 247 using photometry of archival Hubble Space Telescope data to analyse the stars in and around this region. Based on a grid of isochrones from log(t) = 6.8 to 10.0, we assign ages using nearest-neighbour interpolation. Examination of the spatial variation of these ages across the galaxy reveals an age difference between stars located inside the void region and stars located outside this region. We speculate that the void in NGC 247 's stellar disc may be due to a recent interaction with a nearly dark subhalo that collided with the disc and could account for the long-lived nature of the void.
Code of Federal Regulations, 2010 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form duplicates...
40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Permit content and air permitting authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other...
40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Boat... content, percent by mass Typical organic HAP, percent by mass Aliphatic (Mineral Spirits 135, Mineral...
Ripperda, Christopher M; Kowalski, Joseph T; Chaudhry, Zaid Q; Mahal, Aman S; Lanzer, Jennifer; Noor, Nabila; Good, Meadow M; Hynan, Linda S; Jeppson, Peter C; Rahn, David D
2016-11-01
The rates reported for postoperative urinary retention following midurethral sling procedures are highly variable. Determining which patients have a higher likelihood of failing a voiding trial will help with preoperative counseling prior to a midurethral sling. The objective of the study was to identify preoperative predictors for failed voiding trial following an isolated midurethral sling. A retrospective, multicenter, case-control study was performed by including all isolated midurethral sling procedures performed between Jan. 1, 2010 to June 30, 2015, at 6 academic centers. We collected demographics, medical and surgical histories, voiding symptoms, urodynamic evaluation, and intraoperative data from the medical record. We excluded patients not eligible for attempted voiding trial after surgery (eg, bladder perforation requiring catheterization). Cases failed a postoperative voiding trial and were discharged with an indwelling catheter or taught intermittent self-catheterization; controls passed a voiding trial. We also recorded any adverse events such as urinary tract infection or voiding dysfunction up to 6 weeks after surgery. Bivariate analyses were completed using Mann-Whitney and Pearson χ 2 tests as appropriate. Multivariable stepwise logistic regression was used to determine predictors of failing a voiding trial. A total of 464 patients had an isolated sling (70.9% retropubic, 28.4% transobturator, 0.6% single incision); 101 (21.8%) failed the initial voiding trial. At follow-up visits, 90.4% passed a second voiding trial, and 38.5% of the remainder passed on the third attempt. For the bivariate analyses, prior prolapse or incontinence surgery was similar in cases vs controls (31% vs 28%, P = .610) as were age, race, body mass index, and operative time. Significantly more of the cases (32%) than controls (22%) had a Charlson comorbidity index score of 1 or greater (P = .039). Overactive bladder symptoms of urgency, frequency, and urgency incontinence were similar in both groups as was detrusor overactivity in those with a urodynamic evaluation (29% vs 22%, P = .136), but nocturia was reported more in the cases (50% vs 38%, P = .046). Mean (SD) bladder capacity was similar in both groups (406 [148] mL vs 388 [122] mL, P = .542) as was maximum flow rate with uroflowmetry and pressure flow studies. Cases were significantly more likely to have a voiding type other than detrusor contraction: 37% vs 25%, P = .027, odds ratio, 1.79 (95% confidence interval, 1.07-3.00). There was no difference in voiding trial failures between retropubic and transobturator routes (23.1% vs 18.9%, P = .329). Within 6 weeks of surgery, the frequency of urinary tract infection in cases was greater than controls (20% vs 6%, P < .001; odds ratio, 3.51 [95% confidence interval, 1.82-6.75]). After passing a repeat voiding trial, cases were more likely to present with acute urinary retention (10% vs 3%, P = .003; odds ratio, 4.00 [95% confidence interval, 1.61-9.92]). For multivariable analyses, increasing Charlson comorbidity index increased the risk of a voiding trial failure; apart from this, we did not identify other demographic information among the patients who did not undergo urodynamic evaluation that reliably forecasted a voiding trial failure. The majority of women will pass a voiding trial on the first attempt after an isolated midurethral sling. Current medical comorbidities are predictive of a voiding trial failure, whereas other demographic/examination findings are not. Patients failing the initial voiding trial are at an increased risk of postoperative urinary tract infection or developing acute retention after passing a subsequent voiding trial. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Bulunuz, Mizrap; Jarrett, Olga S.
2009-01-01
The purposes of this study were to examine initial content knowledge about properties of air by three cohorts of undergraduate and master's students studying elementary education and to determine forms of reasoning used to explain air phenomena and the effect of an intervention on content knowledge. Subjects were assessed using a 14-question test…
An investigation of the plastic fracture of AISI 4340 and 18 nickel - 200 grade maraging steels
NASA Technical Reports Server (NTRS)
Cox, T. B.; Low, J. R., Jr.
1974-01-01
The mechanisms of plastic fracture (dimpled rupture) in high-purity and commercial 18 Ni, 200 grade maraging steels and quenched and tempered AISI 4340 steels have been studied. Plastic fracture takes place in the maraging alloys through void initiation by fracture of titanium carbo-nitride inclusions and the growth of these voids until impingement results in coalescence and final fracture. The fracture of AISI 4340 steel at a yield strength of 200 ksi occurs by nucleation and subsequent growth of voids formed by fracture of the interface between manganese sulfide inclusions and the matrix. The growth of these inclusion-nucleated voids is interrupted long before coalescence by impingement, by the formation of void sheets which connect neighboring sulfide-nucleated voids.
Delaunay based algorithm for finding polygonal voids in planar point sets
NASA Astrophysics Data System (ADS)
Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.
2018-01-01
This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.
Influence of voids distribution on the deformation behavior of nanocrystalline palladium
NASA Astrophysics Data System (ADS)
Bachurin, D. V.
2018-07-01
Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.
Barlow, Andrew; Klima, Matej; Shashkov, Mikhail
2018-04-02
In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less
Voids and the Cosmic Web: cosmic depression & spatial complexity
NASA Astrophysics Data System (ADS)
van de Weygaert, Rien
2016-10-01
Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.
The cosmic web in CosmoGrid void regions
NASA Astrophysics Data System (ADS)
Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon
2016-10-01
We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, Andrew; Klima, Matej; Shashkov, Mikhail
In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less
NASA Astrophysics Data System (ADS)
Aoi, Y.; Tominaga, T.
2013-03-01
Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.
Long, Wu-Jian; Wei, Jing-Jie; Ma, Hongyan; Xing, Feng
2017-11-24
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.
Wei, Jing-Jie; Xing, Feng
2017-01-01
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content. PMID:29186810
Catalytically enhanced thermal decomposition of chemically grown silicon oxide layers on Si(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, F., E-mail: leroy@cinam.univ-mrs.fr; Passanante, T.; Cheynis, F.
2016-03-14
The thermal decomposition of Si dioxide layers formed by wet chemical treatment on Si(001) has been studied by low-energy electron microscopy. Independent nucleations of voids occur into the Si oxide layers that open by reaction at the void periphery. Depending on the voids, the reaction rates exhibit large differences via the occurrence of a nonlinear growth of the void radius. This non-steady state regime is attributed to the accumulation of defects and silicon hydroxyl species at the SiO{sub 2}/Si interface that enhances the silicon oxide decomposition at the void periphery.
Theory of void formation in dusty plasmas
NASA Astrophysics Data System (ADS)
Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.
2009-06-01
A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.
[Effects of land use type on diurnal dynamics of environment microclimate in Karst zone].
Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Zhang, Shou-Gong
2009-02-01
In June 2007, the diurnal dynamics of light intensity, air temperature, air relative humidity, soil temperature, and surface soil (0-5 cm) water content of five land use types in the typical Karst zone of Lingyun City in Guangxi Zhuang Autonomous Region were observed. The results showed that different land use types altered the composition, coverage, and height of aboveground vegetation, which in turn changed the environment microclimate to different degree. The microclimate quality was in the order of forestland > shrub land > grassland > farmland > rock land. On rock land, the light intensity, air temperature, air relative humidity, soil temperature, and soil water content were higher, and the diurnal variation of the five climatic factors was notable, with the microclimatic conditions changed towards drier and hotter. Compared with those on rock land, the light intensity on forestland, shrub land, grassland, and farmland decreased by 96.4%, 52.0%, 17.0% and 44.2%, air temperature decreased by 30.1%, 20.2%, 12.7% and 17.8%, air relative humidity increased by 129.2%, 57.2%, 18.0% and 41.2%, soil temperature decreased by 11.5%, 8%, 2.5% and 5.5%, and soil water content increased by 42.6%, 33.2%, 15.7% and 14.0%, respectively. The five climatic factors on forestland and shrub land had lesser fluctuation, with the microclimate tended to cool and wet. Light intensity, air temperature, and soil temperature correlated positively with each other, and had negative correlations with air relative humidity and soil water content. A positive correlation was observed between air temperature and soil water content.
NASA Technical Reports Server (NTRS)
Kozlowski, Danielle; Zavodsky, Bradley T.; Jedlovec, Gary J.
2011-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) Weather Forecasting Offices (WFO). As a part of the transition to operations process, SPoRT attempts to identify possible limitations in satellite observations and provide operational forecasters a product that will result in the most impact on their forecasts. One operational forecast challenge that some NWS offices face, is forecasting convection in data-void regions such as large bodies of water. The Atmospheric Infrared Sounder (AIRS) is a sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. This paper will demonstrate an approach to assimilate AIRS profile data into a regional configuration of the WRF model using its three-dimensional variational (3DVAR) assimilation component to be used as a proxy for the individual profiles.
Automatic correction of dental artifacts in PET/MRI
Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune. H.; Beyer, Thomas; Law, Ian; Højgaard, Liselotte; Darkner, Sune; Lauze, Francois
2015-01-01
Abstract. A challenge when using current magnetic resonance (MR)-based attenuation correction in positron emission tomography/MR imaging (PET/MRI) is that the MRIs can have a signal void around the dental fillings that is segmented as artificial air-regions in the attenuation map. For artifacts connected to the background, we propose an extension to an existing active contour algorithm to delineate the outer contour using the nonattenuation corrected PET image and the original attenuation map. We propose a combination of two different methods for differentiating the artifacts within the body from the anatomical air-regions by first using a template of artifact regions, and second, representing the artifact regions with a combination of active shape models and k-nearest-neighbors. The accuracy of the combined method has been evaluated using 25 F18-fluorodeoxyglucose PET/MR patients. Results showed that the approach was able to correct an average of 97±3% of the artifact areas. PMID:26158104
Enhancement of acoustical performance of hollow tube sound absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my
This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For testmore » sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.« less
Enhancement of acoustical performance of hollow tube sound absorber
NASA Astrophysics Data System (ADS)
Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd
2016-03-01
This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.
Rheological measurements in reduced gravity
NASA Astrophysics Data System (ADS)
Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.
1999-01-01
Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.
Ultrasonic evaluation of the strength of unidirectional graphite-polyimide composites
NASA Technical Reports Server (NTRS)
Vary, A.; Bowles, K. J.
1977-01-01
An acoustic-ultrasonic method is described that was successful in ranking unidirectional graphite-polyimide composite specimens according to variations in interlaminar shear strength. Using this method, a quantity termed the stress wave factor was determined. It was found that this factor increases directly with interlaminar shear strength. The key variables in this investigation were composite density, fiber weight fraction, and void content. The stress wave factor and other ultrasonic factors that were studied were found to provide a powerful means for nondestructive evaluation of mechanical strength properties.
Code of Federal Regulations, 2010 CFR
2018-04-01
... 19 Customs Duties 1 2018-04-01 2018-04-01 false Contents. § 122.114 Section § 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...
Code of Federal Regulations, 2010 CFR
2015-04-01
... 19 Customs Duties 1 2015-04-01 2015-04-01 false Contents. § 122.114 Section § 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...
High-resolution electron microscope observation of voids in amorphous Ge.
NASA Technical Reports Server (NTRS)
Donovan, T. M.; Heinemann, K.
1971-01-01
Electron micrographs have been obtained which clearly show the existence of a void network in amorphous Ge films formed at substrate temperatures of 25 and 150 C, and the absence of a void network in films formed at higher substrate temperatures of 200 and 250 C. These results correlate quite well with density measurements and predictions of void densities by indirect methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, A M
2001-05-01
In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less
Li, Ka; Yan, Jun; Yang, Qiang; Li, Zhenfeng; Li, Jianmin
2015-01-28
For osteoporosis or spinal metastases, percutaneous vertebroplasty is effective in pain relief and improvement of mobility. However, the complication rate (cement extravasation and fat embolisms) is relatively higher in the treatment of spinal metastases. The presence of tumor tissue plays a significant role in intravertebral pressure and cement distribution and thereby affects the occurrence of complications. We investigated the effect of void creation prior to vertebroplasty on intravertebral pressure and cement distribution in spinal metastases. Eighteen vertebrae (T8-L4) from five cadaveric spines were randomly allocated for two groups (group with and without void) of nine vertebrae each. Defect was created by removing a central core of cancellous bone in the vertebral body and then filling it with 30% or 100% fresh muscle paste by volume to simulate void creation or no void creation, respectively. Then, 20% bone cement by volume of the vertebral body was injected into each specimen through a unipedicular approach at a rate of 3 mL/min. The gender of the donor, vertebral body size, bone density, cement volume, and intravertebral pressure were recorded. Then, computed tomography scans and cross sections were taken to evaluate the cement distribution in vertebral bodies. No significant difference was found between the two groups in terms of the gender of the donor, vertebral body size, bone density, or bone cement volume. The average maximum intravertebral pressure in the group with void creation was significantly lower than that in the group without void creation (1.20 versus 5.09 kPa, P = 0.001). Especially during the filling of void, the difference was more pronounced. Void creation prior to vertebroplasty allowed the bone cement to infiltrate into the lytic defect. In vertebroplasty for spinal metastases, void creation produced lower intravertebral pressure and facilitated cement filling. To reduce the occurrence of complication, it may be an alternative to eliminate the tumor tissue to create a void prior to cement injection.
NASA Astrophysics Data System (ADS)
Karabulut, Savas; Cengiz Cinku, Mualla; Tezel, Okan; Dedecan, Hasan; Oygo, Azat
2016-04-01
The Yarımburgaz cave which is located in the city of Istanbul, NW Turkey plays an important host to the first human culture and preserve significant archaeological and paleontological resources. The cave was formed as a result of a subterranean stream erosion on the limestones of the Eocene Kırklareli formation. It has been reported that a double cave with upper and lower entrance chambers exist, although no geophysical research was conducted to detect the cave's trunk passages and the extend of the sediment fill inside the cave. The aim of this study was to test the preferred order for detection the response to different geophysical methods applied on the cave. We therefore carried out an a series of geophysical study to determine the size, position, and depth of sinkholes inside the caves. Integrated methodological approaches including multichannel analysis of surface wave (MASW) 2- microtremor array method, 3-single station microtremor measurements, 4- electrical tomography (ET) measuruments and 5-microgravity imaging showed that the geophysical response was succesfully applied. Based upon the flow-chart we concluded that the microgravity survey should be applied as a first step to detect the air-filled void and the geometry of the cave. The electric tomography method was well applied showing high resistivity values across the voids. The surface wave method showed that the low-velocity zones are detected in various locations of the cave. In addition we the results of MASW and ReMi methods showed clearly the density variation in the lateral direction. Fundamental frequency value above void decraese according the properties of geological units in lateral directional, especially when they are engineering rock like limestone.
Experimental study on interfacial area transport in downward two-phase flow
NASA Astrophysics Data System (ADS)
Wang, Guanyi
In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter-group void transfer.
Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.
Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong
2016-03-01
This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application. © The Author(s) 2015.
PRECISION COSMOGRAPHY WITH STACKED VOIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavaux, Guilhem; Wandelt, Benjamin D.
2012-08-01
We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. Wemore » establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.« less
Tu, Hongjian; Cao, Nailong; Gu, Baojun; Si, Jiemin; Chen, Zhong; Andersson, Karl-Erik
2015-07-01
To examine the effects of the serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) on micturition in rats with diabetes mellitus (DM). Female Sprague-Dawley rats (n = 16) were divided into two groups: rats with Type 1 DM and age-matched control rats. DM was induced by i.p. injection of streptozotocin (65 mg/kg) and detailed cystometrogram (CMG) studies were performed 8 weeks post-injection in all rats under urethane anaesthesia. The selective 5-HT2A antagonist ketanserin was administered after each DOI dose-response curve was plotted. All drugs were administered i.v. Compared with controls, comprehensive urodynamic studies showed that DM rats had a higher bladder capacity and post-void residual urine volume (PVR), and a markedly lower voiding efficiency. In DM rats, DOI (0.01-0.3 mg/kg) induced significant dose-dependent increases in micturition volume and reductions in PVR, resulting in greater voiding efficiency. CMG measurements showed a dose-dependent increase in high-frequency oscillation (HFO) activity, evidenced by an increased duration of HFOs per voiding. This correlated with the improved voiding efficiency. Ketanserin (0.1 mg/kg) partially or completely reversed the DOI-induced changes. The HFOs observed in the present study seem to correlate with external urethral sphincter bursting activity during voiding. Bladder voiding efficiency was reduced in DM rats. The 5-HT2A receptor agonist can enhance HFO activity and improves voiding efficiency, and so may represent a new strategy to improve voiding efficiency after DM in experimental studies. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.
Overview of the Epidemiology of Lower Urinary Tract Dysfunction in South Korea
2016-01-01
This review assessed the epidemiology of voiding dysfunctions in South Korea. Comprehensive understanding of this epidemiology is crucial because the senior population and the social burden are increasing because of voiding dysfunctions is growing. We searched the medical records using several terms related to voiding dysfunction: benign prostatic hyperplasia, urinary incontinence, lower urinary tract symptoms, overactive bladder, and nocturia. We then estimated the prevalence of voiding dysfunctions in South Korea; our data were comparable with those from other countries, with slight differences. The ranges of incidences varied widely between studies, mostly because investigators defined disorders differently. Voiding dysfunction greatly affects healthcare costs and individual quality of life; therefore, more proper and valuable epidemiologic data are needed. In addition, efforts to unify the definitions of various voiding dysfunctions and progress in investigational methodologies using multimedia are warranted. PMID:27377940
Thermal analysis of void cavity for heat pipe receiver under microgravity
NASA Astrophysics Data System (ADS)
Gui, Xiaohong; Song, Xiange; Nie, Baisheng
2017-04-01
Based on theoretical analysis of PCM (Phase Change Material) solidification process, the model of improved void cavity distribution tending to high temperature region is established. Numerical results are compared with NASA (National Aeronautics and Space Administration) results. Analysis results show that the outer wall temperature, the melting ratio of PCM and the temperature gradient of PCM canister, have great difference in different void cavity distribution. The form of void distribution has a great effect on the process of phase change. Based on simulation results under the model of improved void cavity distribution, phase change heat transfer process in thermal storage container is analyzed. The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.
Reliability of void detection in structural ceramics using scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.
1985-01-01
The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.
Force field inside the void in complex plasmas under microgravity conditions
NASA Astrophysics Data System (ADS)
Kretschmer, M.; Khrapak, S. A.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.
2005-05-01
Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the “trampoline effect”). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.
Murine social stress results in long lasting voiding dysfunction.
Butler, Stephan; Luz, Sandra; McFadden, Kile; Fesi, Joanna; Long, Christopher; Spruce, Lynn; Seeholzer, Steven; Canning, Douglas; Valentino, Rita; Zderic, Stephen
2018-01-01
Repeated exposure to social stress shifts the voiding phenotype in male mice leading to bladder wall remodeling and is associated with increased expression of the stress neuropeptide, corticotropin-releasing factor (CRF) in Barrington's nucleus neurons. In these studies, we set out to determine if the voiding phenotype could recover upon removal from the stressor. Male mice were exposed for 1h daily to an aggressor and the voiding phenotype was assessed at one month followed by randomization to three groups. One group underwent immediate sacrifice. Two groups were allowed a one month recovery from the social stress exposure with or without the addition of fluoxetine (1.2mg/ml) in their drinking water and repeat voiding patterns were measured prior to sacrifice. Social stress significantly increased bladder mass, bladder mass corrected for body weight, voided volumes, and decreased urinary frequency. The abnormal voiding phenotype persisted after a 1month recovery with no effect from the addition of fluoxetine. CRF mRNA in Barrington's nucleus was increased by social stress and remained elevated following recovery with no effect from the addition of fluoxetine. The mRNA and protein expression for the alpha 1 chains of type 1 and type III collagen was unchanged across all groups suggesting that changes in the extracellular matrix of the bladder are not responsible for the voiding phenotype. This persisting voiding dysfunction correlates with the persistent elevation of CRF mRNA expression in Barrington's nucleus. Copyright © 2017. Published by Elsevier Inc.
Clinical Evaluation of Different Pre-impression Preparation Procedures of Dental Arch
Arora, Nitin; Arora, Monika; Gupta, Naveen; Agarwal, Manisha; Verma, Rohit; Rathod, Pankaj
2015-01-01
Background: Bubbles and voids on the occlusal surface impede the actual intercuspation and pre-impression preparation aims to reduce the incidence of air bubbles and voids as well as influences the quality of occlusal reproduction and actual clinical intercuspation in the articulator. The study was undertaken to determine the influence of different pre-impression preparation procedures of antagonistic dental arch on the quality of the occlusal reproduction of the teeth in irreversible hydrocolloid impressions and to determine most reliable pre-impression preparation method to reduce the incidence of air bubbles. Materials and Methods: A total of 20 subjects were selected having full complement of mandibular teeth from second molar to second molar with well demarcated cusp height. 200 impressions were made with irreversible hydrocolloid material. The impressions were divided into five groups of 40 impressions each and each group had one specific type of pre-impression preparation. All the impressions were poured in die stone. A stereomicroscope with graduated eyepiece was used to count the number of bubbles on the occlusal surface of premolars and molars. The mean and standard deviations were calculated for each group. Mann–Whitney U-test was applied to find the significant difference between different groups. Results: Least bubbles were found in the group in which oral cavity was dried by saliva ejector and fluid hydrocolloid was finger painted onto the occlusal surfaces immediately before the placement of impression tray in the mouth. Conclusion: It was found that finger painting the tooth surfaces with fluid hydrocolloid immediately before the placement of loaded impression tray in the mouth was the most reliable method. The oral cavity can be cleared more easily of excess saliva by vacuum suction rather than by use of an astringent solution. PMID:26229376
Clinical Evaluation of Different Pre-impression Preparation Procedures of Dental Arch.
Arora, Nitin; Arora, Monika; Gupta, Naveen; Agarwal, Manisha; Verma, Rohit; Rathod, Pankaj
2015-07-01
Bubbles and voids on the occlusal surface impede the actual intercuspation and pre-impression preparation aims to reduce the incidence of air bubbles and voids as well as influences the quality of occlusal reproduction and actual clinical intercuspation in the articulator. The study was undertaken to determine the influence of different pre-impression preparation procedures of antagonistic dental arch on the quality of the occlusal reproduction of the teeth in irreversible hydrocolloid impressions and to determine most reliable pre-impression preparation method to reduce the incidence of air bubbles. A total of 20 subjects were selected having full complement of mandibular teeth from second molar to second molar with well demarcated cusp height. 200 impressions were made with irreversible hydrocolloid material. The impressions were divided into five groups of 40 impressions each and each group had one specific type of pre-impression preparation. All the impressions were poured in die stone. A stereomicroscope with graduated eyepiece was used to count the number of bubbles on the occlusal surface of premolars and molars. The mean and standard deviations were calculated for each group. Mann-Whitney U-test was applied to find the significant difference between different groups. Least bubbles were found in the group in which oral cavity was dried by saliva ejector and fluid hydrocolloid was finger painted onto the occlusal surfaces immediately before the placement of impression tray in the mouth. It was found that finger painting the tooth surfaces with fluid hydrocolloid immediately before the placement of loaded impression tray in the mouth was the most reliable method. The oral cavity can be cleared more easily of excess saliva by vacuum suction rather than by use of an astringent solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Chopra, O. K.; Soppet, W. K.
2010-02-16
Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier testsmore » with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.« less