Science.gov

Sample records for air void content

  1. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  2. Compensation for air voids in photoacoustic computed tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Li, Lei; Wang, Lihong V.; Anastasio, Mark A.

    2016-03-01

    Most image reconstruction methods in photoacoustic computed tomography (PACT) assume that the acoustic properties of the object and the surrounding medium are homogeneous. This can lead to strong artifacts in the reconstructed images when there are significant variations in sound speed or density. Air voids represent a particular challenge due to the severity of the differences between the acoustic properties of air and water. In whole-body small animal imaging, the presence of air voids in the lungs, stomach, and gastrointestinal system can limit image quality over large regions of the object. Iterative reconstruction methods based on the photoacoustic wave equation can account for these acoustic variations, leading to improved resolution, improved contrast, and a reduction in the number of imaging artifacts. However, the strong acoustic heterogeneities can lead to instability or errors in the numerical wave solver. Here, the impact of air voids on PACT image reconstruction is investigated, and procedures for their compensation are proposed. The contributions of sound speed and density variations to the numerical stability of the wave solver are considered, and a novel approach for mitigating the impact of air voids while reducing the computational burden of image reconstruction is identified. These results are verified by application to an experimental phantom.

  3. A novel random void model and its application in predicting void content of composites based on ultrasonic attenuation coefficient

    NASA Astrophysics Data System (ADS)

    Lin, Li; Zhang, Xiang; Chen, Jun; Mu, Yunfei; Li, Ximeng

    2011-06-01

    A novel two-dimensional random void model (RVM) based on random medium theory and a statistical method is proposed to describe random voids in composite materials. The spatial autocorrelation function and statistical parameters are used to describe the large-scale heterogeneity from the composite matrix and the small-scale heterogeneities of elastic fluctuations from random voids, the values of which are determined by statistical data from microscopic observations of void morphology. A RVM for CFRP (carbon fiber reinforced polymer) composite specimens with void content of 0.03-4.62% is presented. It is found that the geometric morphology of voids from the RVM presents good matches to the microscopic images. Calculations of ultrasonic attenuation coefficients from the RVM at 5 MHz are much closer to the experiments than those from the previous deterministic model. Furthermore, the RVM can also cover abnormal coefficients from unusually large voids, which unpredictably occur during the composite preparation and have a detrimental effect on the strength and mechanical properties of the components. The significant enhancements in description of void morphology and quantitative correlation between void content and ultrasonic attenuation coefficient make this method a good candidate for predicting void content of composite materials non-destructively.

  4. Response of entrained air-void systems in cement paste to pressure

    NASA Astrophysics Data System (ADS)

    Frazier, Robert

    2011-12-01

    Scope and Method of Study: Determine the response of entrained air-void systems in fresh cement paste to applied pressures by utilizing micro-computed tomography. Compare results to those suggested by the ASTM C231 Type B pressure meter calibration equations. Findings and Conclusions: The results of this research suggest that although the Type B pressure meter assumptions are valid for the compression of individual voids, the volume of air-voids which dissolve under pressure is significant enough to register noticeable errors when using a synthetic air-entraining admixture with the Type B pressure meter test. Results currently suggest that air-void systems with a significant percentage of small voids present will have higher deviation from the Boyle's Law model used by the Type B pressure meter due to the dissolution of these air-voids.

  5. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    SciTech Connect

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  6. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  7. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  8. Assessment of Flatbed Scanner Method for Quality Assurance Testing of Air Content and Spacing Factor in Concrete

    NASA Astrophysics Data System (ADS)

    Nezami, Sona

    The flatbed scanner method for air void analysis of concrete is investigated through a comparison study with the standard ASTM C457 manual and Rapid Air 457 test methods. Air void parameters including air content and spacing factor are determined by image analysis of a large population of scanned samples through contrast enhancement and threshold determination procedures. It is shown that flatbed scanner method is giving comparable results to manual and Rapid Air 457 methods. Furthermore, a comparison of the air void chord length distributions obtained from the two methods of flatbed scanner and Rapid Air 457 has been implemented in this research. The effect of having different settings in the scanning process of scanner method is also investigated. Moreover, a threshold study has been performed that showed the flatbed scanner method can be employed in combination with manual and Rapid Air 457 methods as a time and cost saving strategy.

  9. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, D.A.; Rubin, J.

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. -from Authors

  10. Void Dynamics

    NASA Astrophysics Data System (ADS)

    Padilla, Nelson D.; Paz, Dante; Lares, Marcelo; Ceccarelli, Laura; Lambas, Diego Garcí A.; Cai, Yan-Chuan; Li, Baojiu

    2016-10-01

    Cosmic voids are becoming key players in testing the physics of our Universe.Here we concentrate on the abundances and the dynamics of voids as these are among the best candidatesto provide information on cosmological parameters. Cai, Padilla & Li (2014)use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interestingresult is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expellingaway from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this casebecomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and thisprovides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, arethe same for halo voids and for dark matter voids.Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessityof four parameters to describe the density profiles around voids given two distinct voidpopulations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids,and the combination of the latter with void density profiles allows the construction of modelvoid-galaxy cross-correlation functions with redshift space distortions. When these modelsare tuned to fit the measured correlation functions for voids and galaxies in the SloanDigital Sky Survey, small voids are found to be of the void-in-cloud type, whereas largerones are consistent with being void-in-void. This is a novel result that is obtaineddirectly from redshift space data around voids. These profiles can be used toremove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.

  11. Effect of initial oxygen content on the void swelling behavior of fast neutron irradiated copper

    SciTech Connect

    Zinkle, S.J.; Garner, F.A.

    1998-03-01

    Density measurements were performed on high purity copper specimens containing {le}10 wt.ppm and {approximately}120 wt.ppm oxygen following irradiation in FFTF MOTA 2B. Significant amounts of swelling were observed in both the oxygen-free and oxygen-doped specimens following irradiation to {approximately}17 dpa at 375 C and {approximately}47 dpa at 430 C. Oxygen doping up to 360 appm (90 wt.ppm) did not significantly affect the void swelling of copper for these irradiation conditions.

  12. The air content of Larsen Ice Shelf

    NASA Astrophysics Data System (ADS)

    Holland, Paul R.; Corr, Hugh F. J.; Pritchard, Hamish D.; Vaughan, David G.; Arthern, Robert J.; Jenkins, Adrian; Tedesco, Marco

    2011-05-01

    The air content of glacial firn determines the effect and attribution of observed changes in ice surface elevation, but is currently measurable only using labor-intensive ground-based techniques. Here a novel method is presented for using radar sounding measurements to decompose the total thickness of floating ice shelves into thicknesses of solid ice and firn air (or firn water). The method is applied to a 1997/98 airborne survey of Larsen Ice Shelf, revealing large spatial gradients in air content that are consistent with existing measurements and local meteorology. The gradients appear to be governed by meltwater-induced firn densification. We find sufficient air in Larsen C Ice Shelf for increased densification to account for its previously observed surface lowering, and the rate of lowering superficially agrees with published trends in melting. This does not preclude a contribution to the lowering from oceanic basal melting, but a modern repeat of the survey could conclusively distinguish atmosphere-led from ocean-led change. The technique also holds promise for the calibration of firn-density models, derivation of ice thickness from surface elevation measurements, and calculation of the sea-level contribution of changes in grounded-ice discharge.

  13. A study of the effect of fabrication variables on the void content and quality of fuel plates

    SciTech Connect

    Wiencek, T.C.

    1986-10-01

    The control of void content and quality of dispersion type fuel plates fabricated for research and test reactors are issues of concern to plate fabricators. These two variables were studied by examining the data for various geometries of fuel plates fabricated at ANL. It was found that the porosity of a fuel plate can be increased by: (1) decreasing the fuel particle size, (2) increasing the fuel particle surface roughness, (3) increasing the matrix strength, (4) decreasing the rolling temperature, (5) decreasing the final fuel zone thickness, and (6) increasing the volume percentage of the fuel. Porosity formation is controlled by bulk movement and deformation and/or fracture of particles. The most important factor is the flow stress of the matrix material. Lowering the flow stress will decrease the plate porosity. The percentage of plates with fuel-out-of-zone is a function of the fuel material and the loading. The highest percentage of plates with fuel-out-of-zone were those with U3Si2 which is at this time the most commonly used silicide fuel.

  14. Gas in void galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn Joyce

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, and provide an observational test for theories of cosmological structure formation. We investigate the neutral hydrogen properties (i.e. content, morphology, kinematics) of void galaxies, both individually and systematically, using a combination of observations and simulations, to form a more complete understanding of the nature of these systems. We investigate in detail the H I morphology and kinematics of two void galaxies. One is an isolated polar disk galaxy in a diffuse cosmological wall situated between two voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies. We also examine KK 246, the only confirmed galaxy located within the nearby Tully Void. It is a dwarf galaxy with an extremely extended H I disk and signs of an H I cloud with anomalous velocity. It also exhibits clear misalignment between the kinematical major and minor axes, and a general misalignment between the H I and optical major axes. The relative isolation and extreme underdense environment make these both very interesting cases for examining the role of gas accretion in galaxy evolution. To study void galaxies as a population, we have carefully selected a sample of 60 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS. We have imaged this new Void Galaxy Survey in H I at the Westerbork Synthesis Radio Telescope with a typical resolution of 8 kpc, probing a volume of 1.2 Mpc and 12,000 km s^-1 surrounding each galaxy. We reach H I mass limits of 2 x 10^8 M_sun and column density sensitivities of 5 x 10^19 cm^-2

  15. An experimental investigation on the effect of particle size on the thermal properties and void content of Solid Glass Microsphere filled epoxy Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Debasmita; Satapathy, Alok

    2016-02-01

    This paper investigates about the thermal characterization of Solid glass micro-sphere (SGM) filled epoxy composites. SGMs of different sizes are embedded in epoxy resin to fabricate composites by hand-layup technique. The composites for various SGM content ranging from 0 to about 35 vol % are thus fabricated and the effective thermal conductivities (keff ) of the composites are estimated. The theoretical values are then compared with keff values obtained from the experiment. This study shows that the incorporation of SGm results in an improvement in thermal insulation capability of the polymer. Further, the influence of size and content of SGMs in the extent of reduction of keff was studied. Also, the effect of void content on improving insulation capability of the composites was analysed.

  16. Measuring HOMO/LUMO gap of explosive film at air interface using ESFG: model for explosive at void surface

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Kohl, Ian; Kearney, Sean; Rupper, Stephen; Martin, Laura; Alam, Kathy; Knepper, Robert; Kay, Jeffery

    Vibrational broadband sum frequency generation has enabled measurements of heat transfer/disorder under shock compression on monolayer length scales (Carter, JPCA, 2008). At Sandia, we are extending this approach to examine shock-induced changes in the electronic structure of secondary explosives at surfaces using electronic sum frequency generation (ESFG)(Yamaguchi, JCP, 2008). Theoretical studies suggest explosives at voids and grain boundaries may have different reactivity than bulk material based on shifts in the bandgap at defects (Kuklja, Appl. Phys. A 2003). We seek to measure these electronic shifts for the first time using a thin film explosive samples as a model for the void surface. We will report electronic sum frequency data from vapour deposited thin film explosive compared to UV/Vis data of the bulk film at ambient pressures and discuss application of ESFG technique to samples under shock compression.

  17. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  18. The nature of voids - II. Tracing underdensities with biased galaxies

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.

    2015-11-01

    We study how the properties of cosmic voids depend on those of the tracer galaxy populations in which they are identified. We use a suite of halo occupation distribution mocks in a simulation, identify voids in these populations using the ZOBOV void finder and measure their abundances, sizes, tracer densities and dark matter content. To separate the effects of bias from those of sampling density, we do the same for voids traced by randomly downsampled subsets of the simulation dark matter particles. At the same sampling density, galaxy bias reduces the total number of voids by ˜50 per cent and can dramatically change their size distribution. The matter content of voids in biased and unbiased tracers also differs. Deducing void properties from simulation therefore requires the use of realistic galaxy mocks. We discuss how the void observables can be related to their matter content. In particular we consider the compensation of the total mass deficit in voids and find that the distinction between over- and undercompensated voids is not a function of void size alone, as has previously been suggested. However, we find a simple linear relationship between the average density of tracers in the void and the total mass compensation on much larger scales. The existence of this linear relationship holds independent of the bias and sampling density of the tracers. This provides a universal tool to classify void environments and will be important for the use of voids in observational cosmology.

  19. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    PubMed

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids. PMID:16520219

  20. Modeling cosmic void statistics

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.

    2016-10-01

    Understanding the internal structure and spatial distribution of cosmic voids is crucial when considering them as probes of cosmology. We present recent advances in modeling void density- and velocity-profiles in real space, as well as void two-point statistics in redshift space, by examining voids identified via the watershed transform in state-of-the-art ΛCDM n-body simulations and mock galaxy catalogs. The simple and universal characteristics that emerge from these statistics indicate the self-similarity of large-scale structure and suggest cosmic voids to be among the most pristine objects to consider for future studies on the nature of dark energy, dark matter and modified gravity.

  1. Illicit psychotropic substance contents in the air of Italy

    NASA Astrophysics Data System (ADS)

    Cecinato, Angelo; Balducci, Catia; Budetta, Valentina; Pasini, Antonello

    2010-06-01

    Two in-field campaigns were performed in 2009 to elucidate the contents of illicit psychotropic substances in airborne particulates of Italian cities. Twenty-eight localities of eight Italian regions were investigated in winter, and further eleven sites in June (14 regions in total), thanks to contribution of Regional Environmental Agencies. Cocaine was found almost everywhere, although some sites were rural or suburban. The maximum was recorded in Milan in winter (˜0.39 ng m -3), and "high" values (up to ˜0.16 ng m -3) in other Northern cities and in Rome. Besides cocaine, three cannabinoids will be monitored, namely Δ 9-tetrahydrocannabinol, cannabidiol and cannabinol. The three compounds often affected the air at lower extents than cocaine, and sometimes resulted absent. Cannabinol accounted for up to 90% of the total. The concentrations of illicit compounds were up to six times lower in June than in winter. This decrease was probably induced by the lowering of boundary layer height typical of winter, and by the oxidizing capacity of atmosphere, which is stronger in the warm season. Compared to n-alkanes, polynuclear aromatic compounds, nicotine, caffeine and airborne particulate, cocaine seemed to follow a peculiar behaviour; in fact, meaningful (≥0.80) Pearson (linear) regression coefficients were calculated from the corresponding concentrations only at local scale (e.g. Rome), and within just one season. Improvements of the method are needed to monitor illicit drug metabolites (e.g. benzoylecgonine, ecgonine methyl ester, 9-carboxy-11-nor-Δ 9-tetrahydrocannabinol), heroin and semi-volatile amphetamines.

  2. Old Stellar Populations of The VGS Void Galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, Burcu; Jarrett, Thomas; Jarrett, Tom; van de Weygaert, Rien; Kreckel, Kathryn; van der Hulst, Thijs; van Gorkom, Jacqueline

    2011-05-01

    Cosmic voids form an essential ingredient of the Cosmic Web and may harbour a systematically different population of galaxies. Largely unaffected by the complex processes modifying galaxies in high-density environments, the pristine and isolated void regions must hold important clues to the intrinsic process of formation and evolution of galaxies. The Void Galaxy Survey (VGS) is a multi-wavelength program to study 60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. An essential aspect for understanding the formation and evolution of void galaxies concerns their star formation history. The current IRAC proposal is meant to study the older stellar population of void galaxies to constrain their assembly history.

  3. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  4. Voids of dark energy

    SciTech Connect

    Dutta, Sourish; Maor, Irit

    2007-03-15

    We investigate the clustering properties of a dynamical dark energy component. In a cosmic mix of a pressureless fluid and a light scalar field, we follow the linear evolution of spherical matter perturbations. We find that the scalar field tends to form underdensities in response to the gravitationally collapsing matter. We thoroughly investigate these voids for a variety of initial conditions, explain the physics behind their formation, and consider possible observational implications. Detection of dark energy voids will clearly rule out the cosmological constant as the main source of the present acceleration.

  5. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  6. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  7. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  8. Natural radioactivity content in soil and indoor air of Chellanam.

    PubMed

    Mathew, S; Rajagopalan, M; Abraham, J P; Balakrishnan, D; Umadevi, A G

    2012-11-01

    Contribution of terrestrial radiation due to the presence of naturally occurring radionuclides in soil and air constitutes a significant component of the background radiation exposure to the population. The concentrations of natural radionuclides in the soil and indoor air of Chellanam were investigated with an aim of evaluating the environmental radioactivity level and radiation hazard to the population. Chellanam is in the suburbs of Cochin, with the Arabian Sea in the west and the Cochin backwaters in the east. Chellanam is situated at ∼25 km from the sites of these factories. The data obtained serve as a reference in documenting changes to the environmental radioactivity due to technical activities. Soil samples were collected from 30 locations of the study area. The activity concentrations of (232)Th, (238)U and (40)K in the samples were analysed using gamma spectrometry. The gamma dose rates were calculated using conversion factors recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR (2000)]. The ambient radiation exposure rates measured in the area ranged from 74 to 195 nGy h(-1) with a mean value of 131 nGy h(-1). The significant radionuclides being (232)Th, (238)U and (40)K, their activities were used to arrive at the absorbed gamma dose rate with a mean value of 131 nGy h(-1) and the radium equivalent activity with a mean value of 162 Bq kg(-1). The radon progeny levels varied from 0.21 to 1.4 mWL with a mean value of 0.6 mWL. The thoron progeny varied from 0.34 to 2.9 mWL with a mean value of 0.85 mWL. The ratio between thoron and radon progenies varied from 1.4 to 2.3 with a mean of 1.6. The details of the study, analysis and results are discussed.

  9. Air-sampled Filter Analysis for Endotoxins and DNA Content.

    PubMed

    Lang-Yona, Naama; Mazar, Yinon; Pardo, Michal; Rudich, Yinon

    2016-01-01

    Outdoor aerosol research commonly uses particulate matter sampled on filters. This procedure enables various characterizations of the collected particles to be performed in parallel. The purpose of the method presented here is to obtain a highly accurate and reliable analysis of the endotoxin and DNA content of bio-aerosols extracted from filters. The extraction of high molecular weight organic molecules, such as lipopolysaccharides, from sampled filters involves shaking the sample in a pyrogen-free water-based medium. The subsequent analysis is based on an enzymatic reaction that can be detected using a turbidimetric measurement. As a result of the high organic content on the sampled filters, the extraction of DNA from the samples is performed using a commercial DNA extraction kit that was originally designed for soils and modified to improve the DNA yield. The detection and quantification of specific microbial species using quantitative polymerase chain reaction (q-PCR) analysis are described and compared with other available methods. PMID:27023725

  10. Removal of introduced inorganic content from chipped forest residues via air classification

    DOE PAGES

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and inmore » a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.« less

  11. Removal of introduced inorganic content from chipped forest residues via air classification

    SciTech Connect

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and in a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.

  12. Effect of air moisture content on adhesion to dentine: a comparison of dental air/water syringe tips.

    PubMed

    Lau, A; Bennani, V; Chandler, N; Hanlin, S; Lowe, B

    2014-09-01

    This study aimed to evaluate the spray pattern and air moisture content produced by single-use syringe and multiple-use syringe tips. The drying efficacy was evaluated by analyzing the spray and by detecting the presence of moisture in the air blast through the tips. Single-use tips had a more consistent spray pattern and produced a moisture-free airflow compared to the multiple-use tips. The differences were statistically significant. Adhesion to dentine between tooth preparations dried with the two tips was evaluated using a tensile test. The differences were statistically insignificant. PMID:25831716

  13. Characterization of voids formed during liquid impregnation of nonwoven multifilament glass networks as related to composite processing

    NASA Technical Reports Server (NTRS)

    Mahale, Anant D.; Prudhomme, Robert K.; Rebenfeld, Ludwig

    1993-01-01

    A technique based on matching the refractive index of an invading liquid to that of a fiber mat was used to study entrapment of air ('voids') that occurs during forced in-plane radial flow into nonwoven multifilament glass networks. The usefulness of this technique is demonstrated in quantifying and mapping the air pockets. Experiments with a series of fluids with surface tensions varying from 28 x 10(exp -3) to 36 x 10(exp -3) N/m, viscosities from 45 x 10(exp -3) to 290 x 10(exp -3) Pa.s, and inlet flow rates from 0.15 x 10(exp -6) to 0.75 x 10(exp -6) m(exp 3)/s, showed that void content is a function of the capillary number characterizing the flow process. A critical value of capillary number, Ca = 2.5 x 10(exp -3), identifies a zone below which void content increases exponentially with decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. Similar experiments carried out on surface treated nonwoven mats spanning a range of equilibrium contact angles from 20 deg to 78 deg showed that there is a critical contact angle above which negligible entrapment is observed. Below this value, there is no apparent effect of contact angle on the void fraction - capillary number relationship described earlier. Studies on the effect of filament wettability, and fluid velocity and viscosity on the size of the entrapment (voids) were also carried out. These indicate that larger sized entrapments which envelop more than one pore are favored by a low capillary number in comparison to smaller, pore level bubbles. Experiments were carried out on deformed mats - imposing high permeability spots at regular intervals on a background of low permeability. The effect of these spatial fluctuations in heterogeneity of the mat on entrapment is currently being studied.

  14. Void galaxy properties depending on void filament straightness

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-08-01

    We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3172 filaments in 1055 voids by applying the filament finding algorithm utilizing minimal spanning tree (MST) which is an unique linear pattern into which connects all the galaxies in a void. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments with many member galaxies than in poor ones. We discuss a physical explanation to our findings and their cosmological implications.

  15. Stress Voiding During Wafer Processing

    SciTech Connect

    Yost, F.G.

    1999-03-01

    Wafer processing involves several heating cycles to temperatures as high as 400 C. These thermal excursions are known to cause growth of voids that limit reliability of parts cut from the wafer. A model for void growth is constructed that can simulate the effect of these thermal cycles on void growth. The model is solved for typical process steps and the kinetics and extent of void growth are determined for each. It is shown that grain size, void spacing, and conductor line width are very important in determining void and stress behavior. For small grain sizes, stress relaxation can be rapid and can lead to void shrinkage during subsequent heating cycles. The effect of rapid quenching from process temperatures is to suppress void growth but induce large remnant stress in the conductor line. This stress can provide the driving force for void growth during storage even at room temperature. For isothermal processes the model can be solved analytically and estimates of terminal void size a nd lifetime are obtained.

  16. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  17. Distinct effects of moisture and air contents on acoustic properties of sandy soil.

    PubMed

    Oshima, Takuya; Hiraguri, Yasuhiro; Okuzono, Takeshi

    2015-09-01

    Knowledge of distinct effects of moisture content and air volume on acoustic properties of soil is sought to predict the influence of human activities such as cultivation on acoustic propagation outdoors. This work used an impedance tube with the two-thickness method to investigate such effects. For a constant moisture weight percentage, the magnitude of the characteristic impedance became smaller and the absorption coefficient became higher with increase of the air space ratio. For a constant air space ratio, the absorption coefficient became larger and the magnitude of the propagation constant became smaller with increasing moisture weight percentage. PMID:26428823

  18. Void detecting device

    DOEpatents

    Nakamoto, Koichiro; Ohyama, Nobumi; Adachi, Kiyoshi; Kuwahara, Hajime

    1979-01-01

    A detector to be inserted into a flowing conductive fluid, e.g. sodium coolant in a nuclear reactor, comprising at least one exciting coil to receive an a-c signal applied thereto and two detecting coils located in the proximity of the exciting coil. The difference and/or the sum of the output signals of the detecting coils is computed to produce a flow velocity signal and/or a temperature-responsive signal for the fluid. Such flow velocity signal or temperature signal is rectified synchronously by a signal the phase of which is shifted substantially .+-. 90.degree. with respect to the flow velocity signal or temperature signal, thereby enabling the device to detect voids in the flowing fluid without adverse effects from flow velocity variations or flow disturbances occurring in the fluid.

  19. Investigation on the heavy-metal content of zinc-air button cells.

    PubMed

    Richter, Andrea; Richter, Silke; Recknagel, Sebastian

    2008-01-01

    Within the framework of a German government project (initiated by the Federal Environment Agency) to check the compliance of commercially available batteries with the German Battery Ordinance concerning their heavy metal contents, 18 different types of commercially available zinc-air button cells were analysed for their cadmium, lead and mercury contents. After microwave assisted dissolution with aqua regia, Cd and Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS), and Hg was determined using inductively coupled plasma optical emission spectrometry (ICP OES) and atomic absorption spectrometry. Cd contents were found to be much lower than the permitted limits; Pb contents were also found to be below the limits. Hg contents were found to be near the limits, and in one case the limit was exceeded. PMID:18280730

  20. Voids in massive neutrino cosmologies

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P.M. E-mail: villaescusa@oats.inaf.it E-mail: sutter@oats.inaf.it

    2015-11-01

    Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ{sub 8} and Ω{sub ν} is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.

  1. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  2. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

  3. Voids in modified gravity reloaded: Eulerian void assignment

    NASA Astrophysics Data System (ADS)

    Lam, Tsz Yan; Clampitt, Joseph; Cai, Yan-Chuan; Li, Baojiu

    2015-07-01

    We revisit the excursion set approach to calculate void abundances in chameleon-type modified gravity theories, which was previously studied by Clampitt, Cai & Li. We focus on properly accounting for the void-in-cloud effect, i.e. the growth of those voids sitting in overdense regions may be restricted by the evolution of their surroundings. This effect may change the distribution function of voids hence affect predictions on the differences between modified gravity (MG) and general relativity (GR). We show that the thin-shell approximation usually used to calculate the fifth force is qualitatively good but quantitatively inaccurate. Therefore, it is necessary to numerically solve the fifth force in both overdense and underdense regions. We then generalize the Eulerian-void-assignment method of Paranjape, Lam & Sheth to our modified gravity model. We implement this method in our Monte Carlo simulations and compare its results with the original Lagrangian methods. We find that the abundances of small voids are significantly reduced in both MG and GR due to the restriction of environments. However, the change in void abundances for the range of void radii of interest for both models is similar. Therefore, the difference between models remains similar to the results from the Lagrangian method, especially if correlated steps of the random walks are used. As Clampitt et al., we find that the void abundance is much more sensitive to MG than halo abundances. Our method can then be a faster alternative to N-body simulations for studying the qualitative behaviour of a broad class of theories. We also discuss the limitations and other practical issues associated with its applications.

  4. Testing Gravity using Void Profiles

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu

    2016-10-01

    We investigate void properties in f(R) models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawicki f(R) modified gravity (MG) models, the halo number density profiles of voids are not distinguishable from GR. In contrast, the same f(R) voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, the f(R) model parameter amplitudes fR0=10-5 and 10-4 may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8 σ for a volume of 1 (Gpc/h)3. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguish fR0=10-6 from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles in f(R) models are unique features that can be combined to break the degeneracy between fR0 and σ8.

  5. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    SciTech Connect

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-08-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  6. The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; van Gorkom, Jacqueline H.; Beygu, Burcu; van de Weygaert, Rien; van der Hulst, J. M.; Aragon-Calvo, Miguel A.; Peletier, Reynier F.

    2016-10-01

    Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Hα, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.

  7. Testing Gravity using Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Falck, Bridget

    2016-01-01

    Though general relativity is well-tested on small (Solar System) scales, the late-time acceleration of the Universe provides strong motivation to test GR on cosmological scales. The difference between the small and large scale behavior of gravity is determined by the screening mechanism in modified gravity theories. Dark matter halos are often screened in these models, especially in models with Vainshtein screening, motivating a search for signatures of modified gravity in cosmic voids. We explore density, force, and velocity profiles of voids found in N-body simulations, using both dark matter particles and dark matter halos to identify the voids. The prospect of testing gravity using cosmic voids may be limited by the sparsity of halos as tracers of the density field.

  8. Measurement of the muon content in air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Veberič, Darko

    2016-07-01

    The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  9. Clustering and bias measurements of SDSS voids

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh; Sánchez, Carles

    2016-03-01

    Using a void catalogue from the Sloan Digital Sky Survey, we present the first measurements of void clustering and the corresponding void bias. Over the range 30-200 Mpc h-1, the void autocorrelation is detected at 5σ significance for voids of radius 15-20 Mpc h-1. We also measure the void-galaxy cross-correlation at higher signal to noise and compare the inferred void bias with the autocorrelation results. Void bias is constant with scale for voids of a given size, but its value falls from 5.6 ± 1.0 to below zero as the void radius increases from 15 to 30 Mpc h-1. The comparison of our measurements with carefully matched galaxy mock catalogues, with no free parameters related to the voids, shows that model predictions can be reliably made for void correlations. We study the dependence of void bias on tracer density and void size with a view to future applications. In combination with our previous lensing measurements of void mass profiles, these clustering measurements provide another step towards using voids as cosmological tracers.

  10. Comparison of void-measurement methods for carbon/epoxy composites. Final report

    SciTech Connect

    Ghiorse, S.R.

    1991-04-01

    This report studies four destructive measurement techniques for determining void volume fraction in CFRP composites. Two approaches to void measurement were taken: density determination/matrix digestion (DD/MD), and optical image analysis. Within each approach two techniques were studied. In the DD/MD approach, the water buoyancy technique WBY0 (see ASTM D 792) and density gradient technique (DGT) (see ASTM D 1505) were investigated. In the image analysis approach a Dapple Image Analyzer, and the more automated Omnimet Image Analyzer, techniques were investigated. It was found that true or absolute void content is quite difficult to measure regardless of the technique used. However, when making relative measurements between like specimens void content comparisons are reliable and practical to obtain. The WBT recorded consistently lower void content data than the DGT; it was also found to be less precise. For routine CFRP, void content determination, where relative comparisons are sufficient and high precision is not an issue, the WBT is recommended as it is practical to implement. When high precision is needed, the DGT is recommended. Image analysis methods produce highly localized data, but it is likely that they approximate true void content more closely than the DD/MD method because the void measurement, though actually a measure of void area, is direct. For more critical void content measurement where accuracy, as well as precision are required, a highly automated version of an image analysis technique, like the Omnimet, which scans a large number of cross sections is recommended. At present, this appears to be the best procedure available to determine true void content.

  11. Gas phase dispersion in compost as a function of different water contents and air flow rates

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhakar; Poulsen, Tjalfe G.

    2009-07-01

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  12. Void Nucleation, Growth and Coalescence in Irradiated Metals

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2008-01-11

    A novel computational treatment of dense, stiff, coupled reaction rate equations is introduced to study the nucleation, growth, and possible coalescence of cavities during neutron irradiation of metals. Radiation damage is modeled by the creation of Frenkel pair defects and helium impurity atoms. A multi-dimensional cluster size distribution function allows independent evolution of the vacancy and helium content of cavities, distinguishing voids and bubbles. A model with sessile cavities and no cluster-cluster coalescence can result in a bimodal final cavity size distribution with coexistence of small, high-pressure bubbles and large, low-pressure voids. A model that includes unhindered cavity diffusion and coalescence ultimately removes the small helium bubbles from the system, leaving only large voids. The terminal void density is also reduced and the incubation period and terminal swelling rate can be greatly altered by cavity coalescence. Temperature-dependent trapping of voids/bubbles by precipitates and alterations in void surface diffusion from adsorbed impurities and internal gas pressure may give rise to intermediate swelling behavior through their effects on cavity mobility and coalescence.

  13. The life and death of cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Elahi, Pascal; Falck, Bridget; Onions, Julian; Hamaus, Nico; Knebe, Alexander; Srisawat, Chaichalit; Schneider, Aurel

    2014-12-01

    We investigate the formation, growth, merger history, movement, and destruction of cosmic voids detected via the watershed transform code VIDE in a cosmological N-body dark matter Λ cold dark matter simulation. By adapting a method used to construct halo merger trees, we are able to trace individual voids back to their initial appearance and record the merging and evolution of their progenitors at high redshift. For the scales of void sizes captured in our simulation, we find that the void formation rate peaks at scale factor 0.3, which coincides with a growth in the void hierarchy and the emergence of dark energy. Voids of all sizes appear at all scale factors, though the median initial void size decreases with time. When voids become detectable they have nearly their present-day volumes. Almost all voids have relatively stable growth rates and suffer only infrequent minor mergers. Dissolution of a void via merging is very rare. Instead, most voids maintain their distinct identity as annexed subvoids of a larger parent. The smallest voids are collapsing at the present epoch, but void destruction ceases after scale factor 0.3. In addition, voids centres tend to move very little, less than 10-2 of their effective radii per ln a, over their lifetimes. Overall, most voids exhibit little radical dynamical evolution; their quiet lives make them pristine probes of cosmological initial conditions and the imprint of dark energy.

  14. Climate and air quality trade-offs in altering ship fuel sulfur content

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-08-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold ship fuel sulfur content compared to current global average of 2.7% elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced radiative flux perturbation (RFP) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the RFP to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. A small difference in radiative effect (global mean of 0.04 W m-2) in the coastal regions between Scenario 1 and the present-day scenario imply that shipping emission regulation in the existing emission control areas should not be removed in hope of climate cooling. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing

  15. Effects of Stress and Void-Void Interactions on Current-Driven Void Surface Evolution in Metallic Thin Films

    NASA Astrophysics Data System (ADS)

    Cho, Jaeseol; Gungor, M. Rauf; Maroudas, Dimitrios

    2006-03-01

    We report results of electromigration- and stress-induced migration and morphological evolution of voids in metallic thin films based on self-consistent numerical simulations. The analysis reveals the complex nature of void-void interactions and their implications for the evolution of metallic thin-film electrical resistance, providing interpretation for experimental measurements in interconnect lines. Interestingly, for two voids migrating in the same direction under certain conditions, we find that a smaller void does not always approach and coalesce with a larger one, while a larger void may approach and coalesce with a smaller one. In addition, we find that under certain electromechanical conditions, biaxially applied mechanical stress can cause substantial retardation of void motion, as measured by the constant speed of electromigration-induced translation of morphologically stable voids. This effect suggests the possibility for complete inhibition of current-driven void motion under stress.

  16. Quantifying the distribution of paste-void spacing of hardened cement paste using X-ray computed tomography

    SciTech Connect

    Yun, Tae Sup; Kim, Kwang Yeom; Choo, Jinhyun; Kang, Dong Hun

    2012-11-15

    The distribution of paste-void spacing in cement-based materials is an important feature related to the freeze-thaw durability of these materials, but its reliable estimation remains an unresolved problem. Herein, we evaluate the capability of X-ray computed tomography (CT) for reliable quantification of the distribution of paste-void spacing. Using X-ray CT images of three mortar specimens having different air-entrainment characteristics, we calculate the distributions of paste-void spacing of the specimens by applying previously suggested methods for deriving the exact spacing of air-void systems. This methodology is assessed by comparing the 95th percentile of the cumulative distribution function of the paste-void spacing with spacing factors computed by applying the linear-traverse method to 3D air-void system and reconstructing equivalent air-void distribution in 3D. Results show that the distributions of equivalent void diameter and paste-void spacing follow lognormal and normal distributions, respectively, and the ratios between the 95th percentile paste-void spacing value and the spacing factors reside within the ranges reported by previous numerical studies. This experimental finding indicates that the distribution of paste-void spacing quantified using X-ray CT has the potential to be the basis for a statistical assessment of the freeze-thaw durability of cement-based materials. - Highlights: Black-Right-Pointing-Pointer The paste-void spacing in 3D can be quantified by X-ray CT. Black-Right-Pointing-Pointer The distribution of the paste-void spacing follows normal distribution. Black-Right-Pointing-Pointer The spacing factor and 95th percentile of CDF of paste-void spacing are correlated.

  17. Constraints on Cosmology and Gravity from the Dynamics of Voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Pisani, Alice; Sutter, P. M.; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D.; Weller, Jochen

    2016-08-01

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ωm=0.281 ±0.031 in the Universe today, as well as the linear growth rate of structure f /b =0.417 ±0.089 at median redshift z ¯=0.57 , where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ɛ =1.003 ±0.012 , and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Manipulating ship fuel sulfur content and modeling the effects on air quality and climate

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Laakso, Anton; Schmidt, Anja; Kokkola, Harri; Kuokkanen, Tuomas; Kerminen, Veli-Matti; Lehtinen, Kari E. J.; Laakso, Lauri; Korhonen, Hannele

    2013-04-01

    Aerosol emissions from international shipping are known to cause detrimental health effects on people mainly via increased lung cancer and cardiopulmonary diseases. On the other hand, the aerosol particles from the ship emissions modify the properties of clouds and are believed to have a significant cooling effect on the global climate. In recent years, aerosol emissions from shipping have been more strictly regulated in order to improve air quality and thus decrease the mortality due to ship emissions. Decreasing the aerosol emissions from shipping is projected to decrease their cooling effect, which would intensify the global warming even further. In this study, we use a global aerosol-climate model ECHAM5.5-HAM2 to test if continental air quality can be improved while still retaining the cooling effect from shipping. The model explicitly resolves emissions of aerosols and their pre-cursor gases. The model also calculates the interaction between aerosol particles and clouds, and can thus predict the changes in cloud properties due to aerosol emissions. We design and simulate a scenario where ship fuel sulfur content is strictly limited to 0.1% near all coastal regions, but doubled in the open oceans from the current global mean value of 2.7% (geo-ships). This scenario is compared to three other simulations: 1) No shipping emissions at all (no-ships), 2) present-day shipping emissions (std-ships) and 3) a future scenario where sulfur content is limited to 0.1% in the coastal zones and to 0.5% in the open ocean (future-ships). Global mean radiative flux perturbation (RFP) in std-ships compared to no-ships is calculated to be -0.4 W m-2, which is in the range of previous estimates for present-day shipping emissions. In the geo-ships simulation the corresponding global mean RFP is roughly equal, but RFP is spatially distributed more on the open oceans, as expected. In future-ships the decreased aerosol emissions provide weaker cooling effect of only -0.1 W m-2. In

  20. On the universality of void density profiles

    NASA Astrophysics Data System (ADS)

    Ricciardelli, E.; Quilis, V.; Varela, J.

    2016-10-01

    The massive exploitation of cosmic voids for precision cosmology in the upcoming dark energy experiments, requires a robust understanding of their internal structure, particularly of their density profile. We show that the void density profile is insensitive to the void radius both in a catalogue of observed voids and in voids from a large cosmological simulation. However, the observed and simulated voids display remarkably different profile shapes, with the former having much steeper profiles than the latter. We ascribe such difference to the dependence of the observed profiles on the galaxy sample used to trace the matter distribution. Samples including low-mass galaxies lead to shallower profiles with respect to the samples where only massive galaxies are used, as faint galaxies live closer to the void centre. We argue that galaxies are biased tracers when used to probe the matter distribution within voids.

  1. Testing the spherical evolution of cosmic voids

    NASA Astrophysics Data System (ADS)

    Demchenko, Vasiliy; Cai, Yan-Chuan; Heymans, Catherine; Peacock, John A.

    2016-11-01

    We study the spherical evolution model for voids in ΛCDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as ΩΛ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than 30 h-1 Mpc, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.

  2. Formation Of Voids In Dusty Lorentzian Plasma

    SciTech Connect

    Bahamida, S.; Annou, K.; Annou, R.

    2008-09-07

    We study the possibility of formation of voids in Lorentzian plasmas containing of dust particles obeying to vortex-like velocity distribution. The size of the void is found to be ion spectral index dependent.

  3. Testing the spherical evolution of cosmic voids

    NASA Astrophysics Data System (ADS)

    Demchenko, Vasiliy; Cai, Yan-Chuan; Heymans, Catherine; Peacock, John A.

    2016-08-01

    We study the spherical evolution model for voids in ΛCDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as ΩΛ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than 30 h-1Mpc, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.

  4. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  5. Theory of dust voids in plasmas.

    PubMed

    Goree, J; Morfill, G E; Tsytovich, V N; Vladimirov, S V

    1999-06-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M=1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  6. The nature of voids - I. Watershed void finders and their connection with theoretical models

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.

    2015-12-01

    The statistical study of voids in the matter distribution promises to be an important tool for precision cosmology, but there are known discrepancies between theoretical models of voids and the voids actually found in large simulations or galaxy surveys. The empirical properties of observed voids are also not well understood. In this paper, we study voids in an N-body simulation, using the ZOBOV watershed algorithm. As in other studies, we use sets of subsampled dark matter particles as tracers to identify voids, but we use the full-resolution simulation output to measure dark matter densities at the identified locations. Voids span a wide range of sizes and densities, but there is a clear trend towards larger voids containing deeper density minima, a trend which is expected for all watershed void finders. We also find that the tracer density at void locations is usually smaller than the true density, and that this relationship depends on the sampling density of tracers. We show that fits given in the literature fail to match the observed density profiles of voids. The average enclosed density contrast within watershed voids varies widely with both the size of the void and the minimum density within it, but is always far from the shell-crossing threshold expected from theoretical models. Voids with deeper density minima also show much broader density profiles. We discuss the implications of these results for the excursion set approach to modelling such voids.

  7. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  8. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Astrophysics Data System (ADS)

    Dominguez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-12-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  9. A study of void effects on the interlaminar shear strength of unidirectional graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1990-01-01

    A study was conducted to evaluate the effect of voids on the interlaminar shear strength (ILSS) of a polyimide matrix composite system. The graphite/PRM-15 composite was chosen for study because of the extensive amount of experience that has been amassed in the processing of this material. Composite densities and fiber contents of more than thirty different laminates were measured along with ILSS. Void contents were calculated and the void geometry and distribution were noted using microscopic techniques such as those used in metallography. It was found that there was a good empirical correlation between ILSS and composite density. The most acceptable relationship between the ILSS and density was found to be a power equation which closely resembles theoretically derived expressions. An increase in scatter in the strength data was observed as the void content increased. In laminates with low void content, the void appears to be more segregated in one area of the laminate. It was found that void free composites could be processed in matched metal die molds at pressures greater than 1.4 and less than 6.9 MPa.

  10. Impact of sulfur content regulations of shipping fuel on coastal air quality

    NASA Astrophysics Data System (ADS)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Weigelt, Andreas; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2016-04-01

    Shipping traffic is a sector that faces an enormous growth rate and contributes substantially to the emissions from the transportation sector, but lacks regulations and controls. Shipping is not enclosed in the Kyoto Protocol. However, the International Maritime Organization (IMO) introduced sufhur limits for marine heavy fuels, nitrogen oxide limits for newly-built ship engines and established Emission Control Areas (ECA) in the North and Baltic Sea as well as around North America with the International Convention for the Prevention of Pollution from Ships (MARPOL 73/78 Annex VI). Recently, on the 1st of January 2015, the allowed sulfur content of marine fuels inside Sulfur Emission Control Areas has been significantly decreased from 1.0% to 0.1%. However, measurements of reactive trace gases and the chemical composition of the marine troposphere along shipping routes are sparse and up to now there is no regular monitoring system available. The project MeSmarT (measurements of shipping emissions in the marine troposphere) is a cooperation between the University of Bremen, the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz-Zentrum Geesthacht. This study aims to analyse the influence of shipping emissions on the coastal air quality by evaluating ground-based remote sensing measurements using the MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) technique. Measurements of the atmospheric trace gases nitrogen dioxide (NO2) and sulfur dioxide (SO2) have been carried out in the marine troposphere at the MeSmarT measurement sites in Wedel and on Neuwerk and on-board several ship cruises on the North and Baltic Sea. The capability of two-channel MAX-DOAS systems to do simultaneous measurements in the UV and visible spectral range has been used in the so called "onion-peeling" approach to derive spatial distributions of ship emissions and to analyse the movement of the exhausted

  11. A modelling study of the effects of neutral air winds on electron content at mid-latitudes in winter

    NASA Astrophysics Data System (ADS)

    Sethia, G. C.; Hargreaves, J. K.; Bailey, G. J.; Moffett, R. J.

    1984-05-01

    A modelling study of the effects of neutral air winds on the electron content of the mid-latitude ionosphere protonosphere in winter has been made. The theoretical models are based on solutions of time dependent momentum and continuity equations for oxygen and hydrogen ions. The computations are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.). It is found that the magnitude of the poleward neutral air wind velocity has a strong effect on the general magnitude of the electron content, but that the daily pattern of electron content variation is relatively insensitive to changes in the magnitude and phase of the wind pattern. These results are in contrast with the behavior reported previously (Sethia et al., 1983) for summer conditions. However, the night-time electron content is increased by advancing the phase of the neutral air wind and decreased by retarding it. It appears that day-to-day variations in the electron content pattern in winter cannot be explained as effects of changing neutral air winds, which again contrasts with the findings for summer. As in summer, the wind has a major effect on the filling of the protonosphere, but in opposite sense. It is argued that the effect of the neutral air wind on the ionospheric and the protonospheric electron contents depends on the duration of the poleward wind in relation to daylight and on whether or not the wind reverses direction whilst the ionosphere is sunlit.

  12. Measurements of the muon content of air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Valiño, I.; Pierre Auger Collaboration

    2015-08-01

    The Pierre Auger Observatory offers a unique window to study cosmic rays and particle physics at energies above 3 EeV (corresponding to a centre-of-mass energy of 75 TeV in proton-proton collisions) inaccessible to accelerator experiments. We discuss the different methods of estimating the number of muons in showers recorded at the Pierre Auger Observatory, which is an observable sensitive to primary mass composition and to properties of the hadronic interactions in the shower. The muon content, derived from data with these methods, is presented and compared to predictions from the post-LHC hadronic interaction models for different primary composition. We find that models do not reproduce well the Auger observations, displaying a deficit of muons at the ground. In the light of these results, a better understanding of ultra-high energy extensive air showers and hadronic interactions is crucial to determine the composition of ultra-high energy cosmic rays. We report on the upgrade plans of the Pierre Auger Observatory to achieve this science goal.

  13. Nocturia: The circadian voiding disorder

    PubMed Central

    Moon, Young Tae; Kim, Kyung Do

    2016-01-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  14. Nocturia: The circadian voiding disorder.

    PubMed

    Kim, Jin Wook; Moon, Young Tae; Kim, Kyung Do

    2016-05-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  15. Voiding dysfunction due to neurosyphilis.

    PubMed

    Garber, S J; Christmas, T J; Rickards, D

    1990-07-01

    Three patients with neurosyphilis presenting with urinary frequency, incontinence and voiding dysfunction were investigated. Unlike the previously reported finding of areflexia in tabes dorsalis, all 3 had hypocompliant detrusor hyper-reflexia with detrusor-sphincter dyssynergia and post-micturition residual urine. One patient also had bladder neck dyssynergia treated by bladder neck incision. The other 2 patients were initially managed by intermittent catheterisation but 1 ultimately underwent urinary diversion. The clinical relevance of these findings and the treatment of this condition are discussed.

  16. Large-scale clustering of cosmic voids

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  17. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  18. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application. PMID:22497159

  19. What Health-Related Information Flows through You Every Day? A Content Analysis of Microblog Messages on Air Pollution

    ERIC Educational Resources Information Center

    Yang, Qinghua; Yang, Fan; Zhou, Chun

    2015-01-01

    Purpose: The purpose of this paper is to investigate how the information about haze, a term used in China to describe the air pollution problem, is portrayed on Chinese social media by different types of organizations using the theoretical framework of the health belief model (HBM). Design/methodology/approach: A content analysis was conducted…

  20. Universal density profile for cosmic voids.

    PubMed

    Hamaus, Nico; Sutter, P M; Wandelt, Benjamin D

    2014-06-27

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  1. Universal Density Profile for Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Sutter, P. M.; Wandelt, Benjamin D.

    2014-06-01

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  2. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  3. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    PubMed

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand. PMID:27610841

  4. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    PubMed

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  5. Preventing distal voids during cementation of the femoral component in total hip arthroplasty.

    PubMed

    Berger, R A; Steel, M J; Schleiden, M; Rubash, H E

    1993-06-01

    Cement voids have been noted in close approximation to the unfilled hole in the distal end of the femoral prosthesis. These cement voids result from the displacement of cement by the expansion of air trapped in the distal prosthesis. Voids in the distal cement have been shown to lead to an increased incidence of cement failures. This potentially deleterious situation can easily be avoided by plugging the hole in the distal stem. This may be accomplished three ways: using a centralizer, using the plastic plug supplied with the prosthesis, or filling the hole with cement prior to implanting the prosthesis. PMID:8326315

  6. Voids in cosmological simulations over cosmic time

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  7. Analysis of chemistry textbook content and national science education standards in terms of air quality-related learning goals

    NASA Astrophysics Data System (ADS)

    Naughton, Wendy

    In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.

  8. Void evolution in polycarbonate at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Feng Chou, Kuo; Li, C. L.; Lee, Sanboh

    2011-08-01

    The void evolution in polycarbonate (PC) at elevated temperatures was investigated. Internal cylindrical cracks and voids were induced in PC by Nd-YAG laser irradiation. During the annealing at temperatures of 177-197 °C, the spherical void grows to a maximum size, which then decreases, and is finally leveling off. A model of void evolution based on the evaporation and condensation mechanisms for growth and shrinkage is proposed. The theoretical predictions are in good agreement with the experimental data. The activation energies of evaporation and condensation processes are determined to be 477.31 and 611.49 kJ/mol, respectively.

  9. Void growth by dislocation-loop emission

    NASA Astrophysics Data System (ADS)

    Ahn, D. C.; Sofronis, P.; Kumar, M.; Belak, J.; Minich, R.

    2007-03-01

    Experimental results from spall tests on aluminum reveal the presence of a dense dislocation structure in an annulus around a void that grew under the tensile pulse when a shock wave was reflected at the free surface of the specimen. The proposition is that dislocation emission from the void surface under load is a viable mechanism for void growth. To understand void growth in the absence of diffusive effects, the interstitial-loop emission mechanism under tensile hydrostatic stress is investigated. First, the micromechanics of pile-up formation when interstitial loops are emitted from a void under applied macroscopic loading is reviewed. Demand for surface energy expenditure upon void-surface change is taken into consideration. It is demonstrated that in face-centered cubic metals loop emission from voids with a radius of ˜10 nm is indeed energetically possible in the hydrostatic stress environment generated by shock loading. On the other hand, the levels of hydrostatic stress prevalent in common structural applications are not sufficient to drive loops at equilibrium positions above a ˜10 nm void. However, for voids larger than about 100 nm, the energetics of loop emission are easily met as a necessary condition even under the low stress environment prevalent in structural applications.

  10. Void evolution in polycarbonate at elevated temperatures

    SciTech Connect

    Chen, Y. H.; Li, C. L.; Lee, Sanboh; Kuo Feng Chou

    2011-08-15

    The void evolution in polycarbonate (PC) at elevated temperatures was investigated. Internal cylindrical cracks and voids were induced in PC by Nd-YAG laser irradiation. During the annealing at temperatures of 177-197 deg. C, the spherical void grows to a maximum size, which then decreases, and is finally leveling off. A model of void evolution based on the evaporation and condensation mechanisms for growth and shrinkage is proposed. The theoretical predictions are in good agreement with the experimental data. The activation energies of evaporation and condensation processes are determined to be 477.31 and 611.49 kJ/mol, respectively.

  11. Molecular Gas and Star Formation in Void Galaxies

    NASA Astrophysics Data System (ADS)

    Das, M.; Saito, T.; Iono, D.; Honey, M.; Ramya, S.

    2016-10-01

    We present the detection of molecular gas using CO(1-0) line emission and followup Hα imaging observations of galaxies located in nearby voids. The CO(1-0) observations were done using the 45m telescope of the Nobeyama Radio Observatory (NRO) and the optical observations were done using the Himalayan Chandra Telescope (HCT). Although void galaxies lie in the most underdense parts of our universe, a significant fraction of them are gas rich, spiral galaxies that show signatures of ongoing star formation. Not much is known about their cold gas content or star formation properties. In this study we searched for molecular gas in five void galaxies using the NRO. The galaxies were selected based on their relatively higher IRAS fluxes or Hα line luminosities. CO(1-0) emission was detected in four galaxies and the derived molecular gas masses lie between (1 - 8)×109 M⊙. The Hα imaging observations of three galaxies detected in CO emission indicates ongoing star formation and the derived star formation rates vary between from 0.2 - 1.0 M7odot; yr -1, which is similar to that observed in local galaxies. Our study shows that although void galaxies reside in underdense regions, their disks may contain molecular gas and have star formation rates similar to galaxies in denser environments.

  12. Use of electrical resistivity to detect underground mine voids in Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  13. Piezoelectric performance of fluor polymer sandwiches with different void structures

    NASA Astrophysics Data System (ADS)

    Lou, Kexing; Zhang, Xiaoqing; Xia, Zhongfu

    2012-06-01

    Film sandwiches, consisting of two outer layers of fluoroethylenepropylene and one middle layer of patterned porous polytetrafluoroethylene, were prepared by patterning and fusion bonding. Contact charging was conducted to render the films piezoelectric. The critical voltage to trigger air breakdown in the inner voids in the fabricated films was investigated. The piezoelectric d 33 coefficients were measured employing the quasistatic method and dielectric resonance spectrum. The results show that the critical voltage for air breakdown in the inner voids is associated with the void microstructure of the films. For the films with patterning factors of 0%, 25% and 44%, the critical values are 300, 230 and 230 kV/cm, respectively. With an increase in the patterning factor, both the piezoelectric d 33 coefficients determined from the dielectric resonance spectra and those determined from quasistatic measurements increase, which might be due to a decrease in Young's modulus for the films. The nonlinearity of d 33 becomes increasingly obvious as the patterning factor increases.

  14. Using aliphatic alcohols as gaseous tracers in determination of water contents and air-water interfacial areas in unsaturated sands

    NASA Astrophysics Data System (ADS)

    Sung, Menghau; Chen, Bi-Hsiang

    2011-11-01

    A new type of gaseous tracer utilizing nontoxic aliphatic alcohols for the determination of water content and air-water interfacial area is tested on unsaturated sands of low water content. Alcohol vapors are generated at room temperature and passed through the experimental sand column. Breakthrough curves (BTCs) of these vapors are obtained by monitoring their effluent concentrations using GC-FID. The retardation factor with respect to each vapor transport process is obtained by optimizing BTCs data using the CXTFIT program in the reverse problem mode. The water content and the interfacial area are subsequently calculated from their retardation factors by both equilibrium and nonequilibrium transport models. Experimental results indicate that the pentanol tracer is feasible in the determination of water content at conditions when the degree of water saturation is low. In the determination of air-water interfacial area, decanol is selected due to its interfacial adsorption characteristics. By comparing to interfacial areas from theoretical predictions as well as other conventional tarcer methods, the ones determined from the decanol tracer tests are found to be close to the true interfacial areas when the water content is low.

  15. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  16. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  17. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  18. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  19. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  20. Statistics and geometry of cosmic voids

    SciTech Connect

    Gaite, José

    2009-11-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.

  1. Void Fraction Instrument operation and maintenance manual

    SciTech Connect

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

  2. Pores and Void in Asclepiades’ Physical Theory

    PubMed Central

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  3. Pores and Void in Asclepiades' Physical Theory.

    PubMed

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades' theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus' theory. PMID:22984299

  4. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  5. Testing spherical evolution for modelling void abundances

    NASA Astrophysics Data System (ADS)

    Achitouv, Ixandra; Neyrinck, Mark; Paranjape, Aseem

    2015-08-01

    We compare analytical predictions of void volume functions to those measured from N-body simulations, detecting voids with the ZOBOV void finder. We push to very small, non-linear voids, below few Mpc radius, by considering the unsampled dark matter density field. We also study the case where voids are identified using haloes. We develop analytical formula for the void abundance of both the excursion set approach and the peaks formalism. These formulas are valid for random walks smoothed with a top-hat filter in real space, with a large class of realistic barrier models. We test the extent to which the spherical evolution approximation, which forms the basis of the analytical predictions, models the highly aspherical voids that occur in the cosmic web, and are found by a watershed-based algorithm such as ZOBOV. We show that the volume function returned by ZOBOV is quite sensitive to the choice of treatment of subvoids, a fact that has not been appreciated previously. For reasonable choices of subvoid exclusion, we find that the Lagrangian density δv of the ZOBOV voids - which is predicted to be a constant δv ≈ -2.7 in the spherical evolution model - is different from the predicted value, showing substantial scatter and scale dependence. This result applies to voids identified at z = 0 with effective radius between 1 and 10 h-1 Mpc. Our analytical approximations are flexible enough to give a good description of the resulting volume function; however, this happens for choices of parameter values that are different from those suggested by the spherical evolution assumption. We conclude that analytical models for voids must move away from the spherical approximation in order to be applied successfully to observations, and we discuss some possible ways forward.

  6. Interfacial area, velocity and void fraction in two-phase slug flow

    SciTech Connect

    Kojasoy, G.; Riznic, J.R.

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  7. Observation of voids and optical seizing of voids in silica glass with infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Toma, Tadamasa; Yamada, Kazuhiro; Nishii, Junji; Hayashi, Ken-ichi; Itoh, Kazuyoshi

    2000-11-01

    Many researchers have investigated the interaction of femtosecond laser pulses with a wide variety of materials. The structural modifications both on the surface and inside the bulk of transparent materials have been demonstrated. When femtosecond laser pulses are focused into glasses with a high numerical-aperture objective, voids are formed. We demonstrate that one can seize and move voids formed by femtosecond laser pulses inside silica glass and also merge two voids into one. We also present clear evidence that a void is a cavity by showing a scanning-electron-microscope image of cleft voids: we clove through the glass along a plane that includes the laser-ablated thin line on the surface and the voids formed inside. The optical seizing and merging of voids are important basic techniques for fabricate micro-optical dynamic devices, such as the rewritable 3-D optical storage.

  8. Prenatal Ambient Air Pollution, Placental Mitochondrial DNA Content, and Birth Weight in the INMA (Spain) and ENVIRONAGE (Belgium) Birth Cohorts

    PubMed Central

    Clemente, Diana B.P.; Casas, Maribel; Vilahur, Nadia; Begiristain, Haizea; Bustamante, Mariona; Carsin, Anne-Elie; Fernández, Mariana F.; Fierens, Frans; Gyselaers, Wilfried; Iñiguez, Carmen; Janssen, Bram G.; Lefebvre, Wouter; Llop, Sabrina; Olea, Nicolás; Pedersen, Marie; Pieters, Nicky; Santa Marina, Loreto; Souto, Ana; Tardón, Adonina; Vanpoucke, Charlotte; Vrijheid, Martine; Sunyer, Jordi; Nawrot, Tim S.

    2015-01-01

    Background: Mitochondria are sensitive to environmental toxicants due to their lack of repair capacity. Changes in mitochondrial DNA (mtDNA) content may represent a biologically relevant intermediate outcome in mechanisms linking air pollution and fetal growth restriction. Objective: We investigated whether placental mtDNA content is a possible mediator of the association between prenatal nitrogen dioxide (NO2) exposure and birth weight. Methods: We used data from two independent European cohorts: INMA (n = 376; Spain) and ENVIRONAGE (n = 550; Belgium). Relative placental mtDNA content was determined as the ratio of two mitochondrial genes (MT-ND1 and MTF3212/R3319) to two control genes (RPLP0 and ACTB). Effect estimates for individual cohorts and the pooled data set were calculated using multiple linear regression and mixed models. We also performed a mediation analysis. Results: Pooled estimates indicated that a 10-μg/m3 increment in average NO2 exposure during pregnancy was associated with a 4.9% decrease in placental mtDNA content (95% CI: –9.3, –0.3%) and a 48-g decrease (95% CI: –87, –9 g) in birth weight. However, the association with birth weight was significant for INMA (–66 g; 95% CI: –111, –23 g) but not for ENVIRONAGE (–20 g; 95% CI: –101, 62 g). Placental mtDNA content was associated with significantly higher mean birth weight (pooled analysis, interquartile range increase: 140 g; 95% CI: 43, 237 g). Mediation analysis estimates, which were derived for the INMA cohort only, suggested that 10% (95% CI: 6.6, 13.0 g) of the association between prenatal NO2 and birth weight was mediated by changes in placental mtDNA content. Conclusion: Our results suggest that mtDNA content can be one of the potential mediators of the association between prenatal air pollution exposure and birth weight. Citation: Clemente DB, Casas M, Vilahur N, Begiristain H, Bustamante M, Carsin AE, Fernández MF, Fierens F, Gyselaers W, Iñiguez C, Janssen BG

  9. VIDE: The Void IDentification and Examination toolkit

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N -body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at

  10. Antilensing: the bright side of voids.

    PubMed

    Bolejko, Krzysztof; Clarkson, Chris; Maartens, Roy; Bacon, David; Meures, Nikolai; Beynon, Emma

    2013-01-11

    More than half of the volume of our Universe is occupied by cosmic voids. The lensing magnification effect from those underdense regions is generally thought to give a small dimming contribution: objects on the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which together with conservation of surface brightness implies net reduction in photons received. This is predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that this standard effect is swamped at low redshifts by a relativistic Doppler term that is typically neglected. Contrary to the usual expectation, objects on the far side of a void are brighter than they would be otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full relativistic lensing convergence. There are also significant nonlinear corrections to the relativistic linear theory, which we show actually underpredicts the effect. We use exact solutions to estimate that these can be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the reported extra scatter of field supernovae located on the edge of voids compared to those in clusters. PMID:23383886

  11. Antilensing: The Bright Side of Voids

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof; Clarkson, Chris; Maartens, Roy; Bacon, David; Meures, Nikolai; Beynon, Emma

    2013-01-01

    More than half of the volume of our Universe is occupied by cosmic voids. The lensing magnification effect from those underdense regions is generally thought to give a small dimming contribution: objects on the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which together with conservation of surface brightness implies net reduction in photons received. This is predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that this standard effect is swamped at low redshifts by a relativistic Doppler term that is typically neglected. Contrary to the usual expectation, objects on the far side of a void are brighter than they would be otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full relativistic lensing convergence. There are also significant nonlinear corrections to the relativistic linear theory, which we show actually underpredicts the effect. We use exact solutions to estimate that these can be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the reported extra scatter of field supernovae located on the edge of voids compared to those in clusters.

  12. Measuring the Properties of Void Galaxies in Environmental COntext (ECO) using RESOLVE

    NASA Astrophysics Data System (ADS)

    Florez, Jonathan; Berlind, Andreas A.; Moffett, Amanda J.; Gonzalez, Roberto; Eckert, Kathleen D.; Kannappan, Sheila; Resolve

    2015-01-01

    We measure the environmental dependence of multiple galaxy properties inside the Environmental COntext survey focusing primarily on void galaxies for this project. We define void galaxies to be ~5% of galaxies having the lowest local density, where density is determined using the Nth nearest neighbor method. We examine the stellar mass, color, fractional stellar mass growth rate (FSMGR), fractional gas mass determined from a photometric gas fraction relation calibrated with the RESOLVE survey, and morphology distributions of the void galaxy population and compare them to those of galaxies in other large-scale structures (such as filaments or clusters). First, we show that our void galaxies typically have lower stellar masses than galaxies in denser environments, and they display the properties expected of a lower stellar mass population: they have late-types, are bluer, have higher FSMGR, and are more gas rich. Since color, star-formation, gas content, and morphology all correlate with stellar mass, we therefore move on to control for stellar mass and investigate the extent to which void galaxies are different at fixed mass. We show that void galaxies are indeed bluer and slightly more star forming at fixed stellar mass than galaxies in other environments. We also show that the ratio of blue early types to red early types is higher inside voids than in any other environment.

  13. Modeling of voids in colloidal plasmas.

    PubMed

    Akdim, M R; Goedheer, W J

    2002-01-01

    A two-dimensional fluid model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently, is used to study the behavior of voids, i.e., dust-free regions inside dust clouds. These voids appear in plasma crystal experiments performed under microgravity conditions. The ion drag force turns out to be the most promising driving force behind these voids. The contribution of the thermophoretic force, driven by the temperature gradient induced by gas heating from ion-neutral collisions, can be neglected in the quasineutral center of the plasma.

  14. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  15. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    PubMed Central

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  16. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  17. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-04-18

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling.

  18. Counting voids to probe dark energy

    NASA Astrophysics Data System (ADS)

    Pisani, Alice; Sutter, P. M.; Hamaus, Nico; Alizadeh, Esfandiar; Biswas, Rahul; Wandelt, Benjamin D.; Hirata, Christopher M.

    2015-10-01

    We show that the number of observed voids in galaxy redshift surveys is a sensitive function of the equation of state of dark energy. Using the Fisher matrix formalism, we find the error ellipses in the w0-wa plane when the equation of state of dark energy is assumed to be of the form wCPL(z )=w0+waz /(1 +z ) . We forecast the number of voids to be observed with the ESA Euclid satellite and the NASA WFIRST mission, taking into account updated details of the surveys to reach accurate estimates of their power. The theoretical model for the forecast of the number of voids is based on matches between abundances in simulations and the analytical prediction. To take into account the uncertainties within the model, we marginalize over its free parameters when calculating the Fisher matrices. The addition of the void abundance constraints to the data from Planck, HST and supernova survey data noticeably tighten the w0-wa parameter space. We, thus, quantify the improvement in the constraints due to the use of voids and demonstrate that the void abundance is a sensitive new probe for the dark energy equation of state.

  19. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  20. Cluster-Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster and Void

    NASA Astrophysics Data System (ADS)

    Sahlén, Martin; Zubeldía, Íñigo; Silk, Joseph

    2016-03-01

    Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density {{{Ω }}}{{m}} and power-spectrum normalization {σ }8. For the first time for voids, we constrain {{{Ω }}}{{m}}=0.21+/- 0.10 and {σ }8=0.95+/- 0.21 for a flat Λ CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies are also complementary in scale, density, and nonlinearity, and are of particular interest for testing modified-gravity models.

  1. Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents.

    PubMed

    Pampanin, Daniela M; Ballarin, Loriano; Carotenuto, Lucia; Marin, Maria G

    2002-03-01

    The Venus clam Chamelea gallina is fairly common along the western coasts of the Adriatic and is subjected to intense fishing. Since over the last 20 years extensive hypoxic and anoxic conditions have repeatedly damaged this natural resource, we decided to study the effects of anoxic stress on the functionality of clam haemocytes and the consequences on immune responses. Clams, exposed to air, close their valves and tissues become anoxic and metabolism processes switch to anaerobiosis. In these conditions, a significant decrease in the haematocrit value and in the percentage of acid phosphatase-positive haemocytes was observed, while the number of cells with beta-glucuronidase significantly increased after day 1. The above indices generally returned to control values when clams were re-immersed in seawater after 1 day of treatment. Clams exposed to air for 2 days and then re-immersed, attempted to recover in the subsequent 3 days. Animals had fully recovered on day 4. Three-day-exposed clams did not recover. Phagocytic and adhesion indices decreased significantly after the first day of air exposure. The change in frequency of three types of circulating cells (spreading, round, apoptotic) was also monitored.

  2. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  3. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  4. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  5. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  6. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  7. Effects of void band orientation and crystallographic anisotropy on void growth and coalescence

    NASA Astrophysics Data System (ADS)

    Nemcko, Michael J.; Li, Jing; Wilkinson, David S.

    2016-10-01

    The effects of void band orientation and crystallographic anisotropy on void growth and linkage have been investigated. 2D model materials were fabricated by laser drilling a band of holes into the gage section of sheet tensile samples using various orientation angles with respect to the tensile axis normal. Both copper and magnesium sheets have been studied in order to examine the role of crystallographic anisotropy on the void growth and linkage processes. The samples were pulled in uniaxial tension inside the chamber of an SEM, enabling a quantitative assessment of the growth and linkage processes. The void band orientation angle has a significant impact on the growth and linkage of the holes in copper. As the void band orientation angle is increased from 0° to 45°, the processes of coalescence and linkage are delayed to higher strain values. Furthermore, the mechanism of linkage changes from internal necking to one dominated by shear localization. In contrast, the void band orientation does not have a significant impact on the void growth and linkage processes in magnesium. Void growth in these materials occurs non-uniformly due to interactions between the holes and the microstructure. The heterogeneous nature of deformation in magnesium makes it difficult to apply a coalescence criterion based on the void dimensions. Furthermore, the strain at failure does not show a relationship with the void band orientation angle. Failure associated with twin and grain boundaries interrupts the plastic growth of the holes and causes rapid fracture. Therefore, the impact of the local microstructure outweighs the effects of the void band orientation angle in this material.

  8. Resin flow and void formation in an autoclave cure cycle

    NASA Astrophysics Data System (ADS)

    Lionetto, Francesca; Lucia, Massimo; Dell'Anna, Riccardo; Maffezzoli, Alfonso

    2016-05-01

    A finite element (FE) model able to evaluate both the evolution of resin flow, degree of reaction and void formation during autoclave cure cycles was developed. The model was implemented using a commercial epoxy matrix widely used in aeronautic field. The FE model also included a kinetic and rheological model whose input parameters were experimentally determined by Differential Scanning Calorimetry and rheological analysis. The FE model was able to predict the evolution of degree of reaction with very good agreement with the experimental data. Moreover, the predicted resin losses were lower than 3% of the overall composite resin content.

  9. Reliability Impact of Stockpile Aging: Stress Voiding

    SciTech Connect

    ROBINSON,DAVID G.

    1999-10-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution.

  10. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  11. Universal void density profiles from simulation and SDSS

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2016-10-01

    We discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation are self-similar, meaning that their average rescaled profile does not depend on the void size, or - within the range of the simulated catalogue - on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  12. The Cosmically Depressed: Life, Sociology and Identity of Voids

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; Platen, E.; Tigrak, E.; Hidding, J.; van der Hulst, J. M.; Aragón-Calvo, M. A.; Stanonik, K.; van Gorkom, J. H.

    2010-10-01

    In this contribution we review and discuss several aspects of Cosmic Voids, as a background for our void galaxy project (accompanying paper by Stanonik et al.). Voids are a major component of the large scale distribution of matter and galaxies in the Universe. Following a sketch of the general characteristics of void formation and evolution, we describe the influence of the environment on their development and structure and the characteristic hierarchical buildup of the cosmic void population. In order to be able to study the resulting tenuous void substructure and the galaxies populating the interior of voids, we subsequently set out to describe our parameter free tessellation-based watershed void finding technique. It allows us to trace the outline, shape and size of voids in galaxy redshift surveys. The application of this technique enables us to find galaxies in the deepest troughs of the cosmic galaxy distribution, and has formed the basis of our void galaxy program.

  13. Void fraction and bubble size in a simulated hydraulic jump

    NASA Astrophysics Data System (ADS)

    Witt, Adam; Gulliver, John; Shen, Lian

    2013-11-01

    Two- and three-dimensional numerical simulations of a hydraulic jump are carried out with the open source software package OpenFOAM using a Volume of Fluid numerical method and a realizable k- ɛ turbulence model. Time-averaged air-water properties are obtained over a 15 second sampling time. Void fraction profiles show good agreement with experimental values in the turbulent shear layer. Sauter mean diameter approaches experimental results in the turbulent shear layer, while showing grid dependence down to a uniform computational cell size of 0.625 mm. Three-dimensional results show a minor improvement in the prediction of entrained air compared to two-dimensional results at a multiple of 341 in increased computational time for the chosen grid. Relative error in bubble diameter is similar between two- and three-dimensional simulations. The results indicate a Volume of Fluid, realizable k- ɛ numerical model accurately predicts the void fraction profile when the Sauter mean diameter to grid size ratio surpasses 8. This research was supported by funding from the U.S. Department of Energy, the Hydro Research Foundation, the University of Minnesota and the University of Minnesota Supercomputing Institute.

  14. Void lattice formation as a nonequilibrium phase transition

    SciTech Connect

    Semenov, A. A.; Woo, C. H.

    2006-07-01

    The evolution of a void ensemble in the presence of one-dimensionally migrating self-interstitials is considered, consistently taking into account the nucleation of voids via the stochastic accumulation of vacancies. Including the stochastic fluctuations of the fluxes of mobile defects caused by the random nature of diffusion jumps and cascade initiation, the evolution of the void ensemble is treated using the Fokker-Planck equation approach. A system instability signaling a nonequilibrium phase transition is found to occur when the mean free path of the one-dimensionally moving self-interstitials becomes comparable with the average distance between the voids at a sufficiently high void-number density. Due to the exponential dependence of the void nucleation probability on the net vacancy flux, the nucleation of voids is much more favored at the void lattice positions. Simultaneously, voids initially nucleated at positions where neighboring voids are nonaligned will also shrink away. These two processes leave the aligned voids to form a regular lattice. The shrinkage of nonaligned voids is not a usual thermodynamic effect, but is a kinetic effect caused entirely by the stochastic fluctuations in point-defect fluxes received by the voids. It is shown that the shrinkage of the nonaligned voids, and thus the formation of the void lattice, occurs only if the effective fraction of one-dimensional interstitials is small, less than about 1%. The formation of the void lattice in this way can be accomplished at a void swelling of below 1%, in agreement with experimental observation. The dominance of void nucleation at void-lattice positions practically nullifies the effect of void coalescence induced by the one-dimensional self-interstitial transport.

  15. THE METALLICITY OF VOID DWARF GALAXIES

    SciTech Connect

    Kreckel, K.; Groves, B.; Croxall, K.; Pogge, R. W.; Van de Weygaert, R.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (M{sub r} > –16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  16. Lattice dependent motion of voids during electromigration

    SciTech Connect

    Sindermann, S. P.; Latz, A.; Dumpich, G.; Wolf, D. E.; Meyer zu Heringdorf, F.-J.

    2013-04-07

    The influence of the crystal lattice configuration to electromigration processes, e.g., void formation and propagation, is investigated in suitable test structures. They are fabricated out of self-assembled, bi-crystalline Ag islands, grown epitaxially on a clean Si(111) surface. The {mu}m-wide and approximately 100 nm thick Ag islands are a composition of a Ag(001) and a Ag(111) part. By focused ion beam milling, they are structured into wires with a single grain boundary, the orientation of which can be chosen arbitrarily. In-situ scanning electron microscopy (SEM) allows to capture an image sequence during electrical stressing and monitors the development of voids and hillocks in time. To visualize the position and motion of voids, we calculate void maps using a threshold algorithm. Most of the information from the SEM image sequence is compressed into one single image. Our present electromigration studies are based on in-situ SEM investigations for three different lattice configurations: Ag(001) (with electron current flow in [110] direction), Ag(111) (with electron current flow in [112] direction), and additionally 90 Ring-Operator rotated Ag(111) (with electron current flow in [110] direction). Our experimental results show that not only the formation and shape but also the motion direction of voids strongly depends on the crystal orientation.

  17. Cosmic Voids and Void Lensing in the Dark Energy Survey Science Verification Data

    DOE PAGES

    Sánchez, C.; Clampitt, J.; Kovacs, A.; Jain, B.; García-Bellido, J.; Nadathur, S.; Gruen, D.; Hamaus, N.; Huterer, D.; Vielzeuf, P.; et al

    2016-10-26

    Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ~50 Mpc/h or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-zmore » redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo- z scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius ~70 Mpc/h and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8 , we identify 87 voids with comoving radii spanning the range 18-120 Mpc/h, and carry out a stacked weak lensing measurement. With a significance of 4.4σ, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. In conclusion, it also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.« less

  18. Modelling of void reduction in two dimensional cantala fiber/recycled HDPE composites using FEM

    NASA Astrophysics Data System (ADS)

    Radityo, Cornelius H.; Raharjo, Wijang W.; Budiana, Eko P.; Bahtiar, Muhammad K.

    2016-03-01

    The presence of void effect on the decrease in the mechanical properties of composites so the controlling of voids needs to be done. The aim of this research is to simulate the controlling of voids in composites by setting the displacement of the upper plate of hot press. The simulation was described in two-dimensional design by ANSYS software. The comparison of fiber, matrix, and void were set of 45%, 45%, and 10% respectively, while the geometry of the fiber was the diameter of 0.12 mm and length of 2.5 mm. Displacements of upper plate were varied 0.1 mm, 0.1075 mm, 0.115 mm, 0.1225 and 0.13 mm. The simulation results showed that increasing the displacement upper plate would be followed by decreasing of void content. The displacement of the top plate of 0.13 mm caused voids in the composite to be minimum, a tensile stress on the fibers of 2393.13 kPa and a tensile stress on the matrix of 285.43 kPa.

  19. Effect of air-drying and oven-drying treatment on Cr(VI) content and Cr bond forms in soil.

    PubMed

    Cheng, Shu-Fen; Lai, Chi-Ying; Lin, Sheng-Jie; Huang, Chin-Yuan

    2014-01-01

    Air-drying and oven-drying are pretreatment processes often used before testing and analyzing various soil characteristics in the laboratory. This study selected three kinds of soil, including red soil, entisol, and alluvial soil, and examined the variation of the Cr(VI) content and Cr bond forms in these soils during air-drying and oven-drying. The results show that when the soil is air-dried in natural environment, the Cr(VI) content decreases with air-drying time. On day 10 of air-drying, the Cr(VI) content in these soils is 22.8∼47.9 % of the initial value. When the soil is oven-dried, the Cr(VI) concentration decays faster; on day 8, the Cr(VI) is no longer detected in these soil samples. When the Cr(VI)-contaminated soil is treated by air-drying and oven-drying, the Cr bond form converts into a more stable form. After oven-drying, the Cr mainly exists in Fe-Mn oxide form, organic bond form, and residual form. The air-drying and oven-drying pretreatment processes of soil reduce the Cr(VI) content and stabilize the Cr bond form. If the laboratory analytic results are applied to risk analysis or remediation strategy planning for chromium-contaminated soil, the toxicity, bioavailability, and mobility of Cr in soil may be underrated.

  20. Void-Free Lid for Food Packaging

    NASA Technical Reports Server (NTRS)

    Watson, C. D.; Farris, W. P.

    1986-01-01

    Flexible cover eliminates air pockets in sealed container. Universal food-package lid formed from flexible plastic. Partially folded, lid unfolded by depressing center portion. Height of flat portion of lid above flange thereby reduced. Pressure of food against central oval depression pops it out, forming dome that provides finger grip for mixing contents with water or opening lid. Therefore food stays fresh, allows compact stacking of partially filled containers, and resists crushing. Originally developed for packaging dehydrated food for use in human consumption on Space Shuttle missions. Other uses include home canning and commercial food packaging.

  1. [Monitoring of wokplace air and coveralls pollution with mercury, and its content of biologic materials in workers engaged into caustic soda production].

    PubMed

    Lisetskaya, L G; Meshakova, N M; Shayakhmetov, S F

    2015-01-01

    The article covers retrospective evaluation of workplace air pollution with mercury in caustic production, and mercury content of swabs from coveralls and of biologic materials in the workers under study. The highest mercury content of biologic materials (blood, hair) was seen in workers of electrolysis workshop and mercury-containing sludge regeneration workshop. The authors revealed correlation between individual value of exposure to mercury and mercury content of biologic materials.

  2. Voids in a neutrino-dominated universe

    NASA Technical Reports Server (NTRS)

    Zeng, Ning; White, Simon D. M.

    1991-01-01

    In a neutrino-dominated universe, galaxies are expected to form only in large-scale sheets and filaments. Most of space should be filled by low-density regions devoid of galaxies. In this paper, N-body simulations are used to estimate the size distribution for these regions for quantitative comparison with the observed voids in recent red-shift surveys. The theoretical distribution depends very weakly on the mode or epoch of galaxy formation. With very conservative assumptions, at best marginal consistency is found even for cosmological parameters as extreme as Omega(v) = 1 and H(0) = 100 km/s per/Mpc. Any significant reduction in either H(0) or Omega(v) leads to predicted void sizes much larger than those observed. This difficulty arises because the observed voids are rarely completely empty.

  3. Kinematics of the Local cosmic void

    NASA Astrophysics Data System (ADS)

    Nasonova, O. G.; Karachentsev, I. D.

    2011-03-01

    Available data on the distances and radial velocities of galaxies are systematized in order to study the distribution of peculiar velocities in neighborhoods of the Local cosmic void lying in the direction of the Aquila and Hercules constellations. A sample of 1056 galaxies is used, with distances measured in terms of the luminosity of the tip of the red giant branch (TRGB), the luminosity of the cepheids, the luminosity of type 1a supernovae, surface brightness fluctuations (SBF), and the Tully-Fisher relation. The amplitude of the outflow velocity of the galaxies is found to be ˜300 km/s. The average number density of galaxies inside the void is roughly a factor of five lower than the average outside it. The Local void population is characterized by lower luminosities and later morphological types, with medians of M B = - 15m.7 and T=8 (Sdm), respectively.

  4. From Voids to Yukawaballs And Back

    SciTech Connect

    Land, V.; Goedheer, W. J.

    2008-09-07

    When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.

  5. Void coalescence within periodic clusters of particles

    NASA Astrophysics Data System (ADS)

    Thomson, C. I. A.; Worswick, M. J.; Pilkey, A. K.; Lloyd, D. J.

    2003-01-01

    The effect of particle clustering on void damage rates in a ductile material under triaxial loading conditions is examined using three-dimensional finite element analysis. An infinite material containing a regular distribution of clustered particles is modelled using a unit cell approach. Three discrete particles are introduced into each unit cell while a secondary population of small particles within the surrounding matrix is represented using the Gurson-Tvergaard-Needleman (GTN) constitutive equations. Deformation strain states characteristic of sheet metal forming are considered; that is, deep drawing, plane strain and biaxial stretching. Uniaxial tensile stress states with varying levels of superimposed hydrostatic tension are also examined. The orientation of a particle cluster with respect to the direction of major principal loading is shown to significantly influence failure strains. Coalescence of voids within a first-order particle cluster (consisting of three particles) is a stable event while collapse of inter-cluster ligaments leads to imminent material collapse through void-sheeting.

  6. Precision cosmology defeats void models for acceleration

    SciTech Connect

    Moss, Adam; Zibin, James P.; Scott, Douglas

    2011-05-15

    The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, {sigma}{sub 8}. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.

  7. Optimizing Voided Piezoelectric Polymers For Acoustic Sensors

    NASA Astrophysics Data System (ADS)

    Arvelo, Juan I.

    2009-07-01

    Polymer piezoelectric materials offer lower density and more flexibility than piezoelectric ceramics for applications where rugged and lightweight acoustic sensors are required. This paper discusses constraints imposed by material stiffness and dielectric constants and aims to derive a generalized closed-form solution for optimizing charged foamed polymers. Optimized solutions are reached in the limits of very large and small void fraction and permittivity ratio. The permittivity ratio is the ratio of the dielectric constants of the polymer and the material that fills the voids. Demonstrations indicate that, in the oblique asymptote, the optimized void fraction becomes equivalent to the permittivity ratio. This effort was conducted under the auspices of the Undersea Warfare Business Area (UWBA) Independent Research & Development (IRAD) Board of the Johns Hopkins University Applied Physics Laboratory (JHU/APL).

  8. [Flora, distribution of vegetation and pollen content of the air: significance for allergics].

    PubMed

    Tsukanova, G; Laaidi, M

    2004-09-01

    The wealth of the flora of a given region cannot be seen in its airborne pollen list. Actually, for some plants there is a low probability that their pollens are recorded in the pollen counts (entomogamous plants, in particular). Moreover, the light microscopy reduces the possibilities of determination. In France, The Aerobiological Network of Surveillance (RNSA) retains 92 taxa at different levels (gender, family, group of families), and among them allergenic as well as non allergenic taxa. From the 130 families of the France flora, 63 are taken into account in the pollen studies, 57 taxa being determined at the gender level. The comparison between the surface occupied by the tree species in the French departments of Côte-d'Or and Saône-et-Loire, and the average airborne pollen concentrations showed that usually there is no correspondence between the abundance of a plant and the number of its pollen in the records. So the flora of a region does not give enough information allowing to know the taxonomic composition and the pollen quantities in the air, which is of particular importance for allergic people.

  9. Effect of radiation-induced segregation on void nucleation

    SciTech Connect

    Si-Ahmed, A.; Wolfer, W.G.

    1982-01-01

    The effect of segregation on void nucleation is investigated utilizing previous results for the capture efficiency of coated void. First, it is shown that any segregation, whether or not it leads to actual precipitation, leads to a modification of the bias factors for any sink. Small increases of either the lattice parameters or the elastic moduli result in reduced interstitial bias factors. Second, segregations to void embryos not only changes their capture efficiencies but also the surface energy. The effect of these changes on the void nucleation rate is studied in quantitative terms. When the segregation to voids results in an increase of the local lattice parameters by 0.4% or an increase of the shear modulus by 3%, the ultimate void nucleation rate is reached. Further increases no longer enhance void nucleation. Void nucleation without segregation effects would only be possible if the dislocation bias exceeds 50%. With segregation, void nucleation is not strongly dependent on the dislocation bias.

  10. The sparkling Universe: a scenario for cosmic void motions

    NASA Astrophysics Data System (ADS)

    Ceccarelli, Laura; Ruiz, Andrés N.; Lares, Marcelo; Paz, Dante J.; Maldonado, Victoria E.; Luparello, Heliana E.; Garcia Lambas, Diego

    2016-10-01

    Cosmic voids are prominent features of the Universe, encoding relevant information of the growth and evolution of structure through their dynamics. Here, we perform a statistical study of the global motion of cosmic voids using both a numerical simulation and observational data. Their relation to large-scale mass flows and the physical effects that drive those motions. We analyse the bulk motions of voids, finding void mean bulk velocities in the range 300-400 km s-1, depending on void size and the large-scale environment. Statistically, small voids move faster, and voids in relatively higher density environments have higher bulk velocities. Also, we find large-scale overdensities (underdensities) along (opposite to) the void motion direction, suggesting that void motions respond to a pull-push mechanism. Our analysis suggests that their relative motions are generated by large-scale density fluctuations. In agreement with linear theory, voids embedded in low (high) density regions mutually recede (attract) each other, providing the general mechanism to understand the bimodal behaviour of void motions. We have also inferred void motions in the Sloan Digital Sky Survey using linear theory, finding that their estimated motions are in qualitatively agreement with the results of the simulation. Our results suggest a scenario of galaxies and galaxy systems flowing away from void centres with the additional, and more relevant, contribution of the void bulk motion to the total velocity.

  11. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  12. The view from the boundary: a new void stacking method

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Cai, Yan-Chuan; Frenk, Carlos S.

    2016-04-01

    We introduce a new method for stacking voids and deriving their profile that greatly increases the potential of voids as a tool for precision cosmology. Given that voids are distinctly non-spherical and have most of their mass at their edge, voids are better described relative to their boundary rather than relative to their centre, as in the conventional spherical stacking approach. The boundary profile is obtained by computing the distance of each volume element from the void boundary. Voids can then be stacked and their profiles computed as a function of this boundary distance. This approach enhances the weak lensing signal of voids, both shear and convergence, by a factor of 2 when compared to the spherical stacking method. It also results in steeper void density profiles that are characterized by a very slow rise inside the void and a pronounced density ridge at the void boundary. The resulting boundary density profile is self-similar when rescaled by the thickness of the density ridge, implying that the average rescaled profile is independent of void size. The boundary velocity profile is characterized by outflows in the inner regions whose amplitude scales with void size, and by a strong inflow into the filaments and walls delimiting the void. This new picture enables a straightforward discrimination between collapsing and expanding voids both for individual objects as well as for stacked samples.

  13. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying.

  14. Air-coupled ultrasonic resonant spectroscopy for the study of the relationship between plant leaves' elasticity and their water content.

    PubMed

    Sancho-Knapik, Domingo; Calás, Hector; Peguero-Pina, Jose Javier; Ramos Fernández, Antonio; Gil-Pelegrín, Eustaquio; Gómez Álvarez-Arenas, Tomas E

    2012-02-01

    Air-coupled wideband ultrasonic piezoelectric transducers are used in the frequency range 0.3 to 1.3 MHz to excite and sense first-order thickness resonances in the leaves of four different tree species at different levels of hydration. The phase and magnitude spectra of these resonances are measured, and the inverse problem solved; that is, leaf thickness and density, ultrasound velocity, and the attenuation coefficient are obtained. The elastic constant in the thickness direction (c33) is then determined from density and velocity data. The paper focuses on the study of c33, which provides a unique, fast, and noninvasive ultrasonic method to determine leaf elasticity and leaf water content.

  15. Climatic and insolation control on the high-resolution total air content in the NGRIP ice core

    NASA Astrophysics Data System (ADS)

    Eicher, Olivier; Baumgartner, Matthias; Schilt, Adrian; Schmitt, Jochen; Schwander, Jakob; Stocker, Thomas F.; Fischer, Hubertus

    2016-10-01

    Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure and temperature, its record in polar ice cores was initially considered as a proxy for past ice sheet elevation changes. However, the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with a different insolation history. In our high-resolution record we also find a decrease of 4-6 % (4-5 mL kg-1) in TAC as a response to Dansgaard-Oeschger events (DO events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming but also shows a two-step decline that lasts for several centuries into the warm interstadial. The TAC response is larger than expected considering only changes in air density by local temperature and atmospheric pressure as a driver, pointing to a transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.

  16. Dynamic Void Growth and Shrinkage in Mg under Electron Irradiation

    SciTech Connect

    Xu, W. Z.; Zhang, Y. F.; Cheng, G. M.; Jian, W. W.; Millett, P. C.; Koch, C. C.; Mathaudhu, S. N.; Zhu, Y. T.

    2014-04-30

    We report in-situ atomic-scale investigation of void evolution, including growth, coalescence and shrinkage, under electron irradiation. With increasing irradiation dose, the total volume of voids increased linearly, while nucleation rate of new voids decreased slightly, and the total number of voids decreased. Some voids continued to grow while others shrank to disappear, depending on the nature of their interactions with nearby self-interstitial loops. For the first time, surface diffusion of adatoms was observed largely responsible for the void coalescence and thickening. These findings provide fundamental understanding to help with the design and modeling of irradiation-resistant materials.

  17. "Dark energy" in the Local Void

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  18. Healing Voids In Interconnections In Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas

    1989-01-01

    Unusual heat treatment heals voids in aluminum interconnections on integrated circuits (IC's). Treatment consists of heating IC to temperature between 200 degrees C and 400 degrees C, holding it at that temperature, and then plunging IC immediately into liquid nitrogen. Typical holding time at evaluated temperature is 30 minutes.

  19. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  20. Void fraction instrument acceptance test procedure

    SciTech Connect

    Pearce, K.L.

    1994-09-15

    This acceptance test procedure (ATP) was written to test the void fraction instrument (VFI) and verify that the unit is ready for field service. The procedure verifies that the mechanical and electrical features (not specifically addressed in the software ATP) and software alarms are operating as designed.

  1. Voids in Sonic Fill(TM) restorations compared to traditional incrementally-filled composite restorations

    NASA Astrophysics Data System (ADS)

    Abourezq, Ibraheem A.

    SonicFill(TM) is a new composite resin and delivery system designed to provide rapid filling of cavity preparations by decreasing viscosity through application of sonic energy. However, it may produce unwanted air voids in the final restoration due to the short filling time. Air voids compromise long-term performance by providing weak foci, discontinuity at cavosurface margins and at internal cavity walls, and potential crack propagation. This study assessed the locations, sizes, and numbers of voids in SonicFill restorations compared with traditional composite resin restorations in a set of extracted molars with mesio-occlusal-distal (MOD) cavity preparations. Fifty noncarious intact extracted third molars were collected randomly from a large collection of discarded anonymous tooth specimens. Standardized MOD cavity preparations were cut, and teeth were assigned randomly to one of two groups ( n = 25). The first group was restored with SonicFill composite in two steps. The second group was restored with Herculite Ultra(TM) using an multiple increment layering technique (1-2 mm per layer). Cross-sectional images of the filling were taken by digital microscope. A total of 196 voids were found in the 50 specimens: 97 in SonicFill restorations and 99 in conventional restorations. Mean number of voids in SonicFill restorations was 3.88 versus 3.96 for conventional restorations. Mean percentage of void area in SonicFill restorations was 0.588% versus 0.508% for conventional restorations. Unpaired t tests for these differences indicated no statistically significant differences (p =.931 and p =.629, respectively). One-way ANOVA tests for mean void count and mean void area percentage differences by three location zones for conventional and SonicFill restorations also indicated no significant differences among the groups. The bulk-fill SonicFill system does not result in increased or decreased numbers or ii area of voids within Class II MOD restorations compared with a

  2. Relationship between voids and interlaminar shear strength of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1991-01-01

    The effect of voids on the interlaminar shear strength of a polyimide matrix composite system is described. The AS4 graphite/PMR-15 composite was chosen for study because this system can be readily processed by using the standard specified cure cycle to produce void-free composites and because preliminary work in this study had shown that the processing parameters of this resin matrix system can be altered to produce cured composites of varying void contents. Thirty-eight 12-ply unidirectional composite panels were fabricated for this study. A significant range of void contents (0 to 10 percent) was produced. The panels were mapped, ultrasonically inspected, and sectioned into interlaminar shear, flexure, and fiber content specimens. The density of each specimen was measured and interlaminar shear and flexure strength measurements were then made. The fiber content was measured last. The results of these tests were evaluated by using ultrasonic results, photomicrographs, statistical methods, theoretical relationships derived by other investigators, and comparison of the test data with the Integrated Composite Analyzer (ICAN) computer program developed at the Lewis Research Center for predicting composite ply properties. The testing is described in as much detail as possible in order to help others make realistic comparisons.

  3. Ethanol and air quality: influence of fuel ethanol content on emissions and fuel economy of flexible fuel vehicles.

    PubMed

    Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J

    2014-01-01

    Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed.

  4. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  5. BetaVoid: molecular voids via beta-complexes and Voronoi diagrams.

    PubMed

    Kim, Jae-Kwan; Cho, Youngsong; Laskowski, Roman A; Ryu, Seong Eon; Sugihara, Kokichi; Kim, Deok-Soo

    2014-09-01

    Molecular external structure is important for molecular function, with voids on the surface and interior being one of the most important features. Hence, recognition of molecular voids and accurate computation of their geometrical properties, such as volume, area and topology, are crucial, yet most popular algorithms are based on the crude use of sampling points and thus are approximations even with a significant amount of computation. In this article, we propose an analytic approach to the problem using the Voronoi diagram of atoms and the beta-complex. The correctness and efficiency of the proposed algorithm is mathematically proved and experimentally verified. The benchmark test clearly shows the superiority of BetaVoid to two popular programs: VOIDOO and CASTp. The proposed algorithm is implemented in the BetaVoid program which is freely available at the Voronoi Diagram Research Center (http://voronoi.hanyang.ac.kr). PMID:24677176

  6. The Void Galaxy Survey: Morphology and Star Formation Properties of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, Burcu; Kreckel, Kathryn; van der Hulst, Thijs; Peletier, Reynier; Jarrett, Tom; van de Weygaert, Rien; van Gorkom, Jacqueline H.; Aragón-Calvo, Miguel

    2016-10-01

    We present the structural and star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Our aim is to study in detail the physical properties of these void galaxies and study the effect of the void environment on galaxy properties. We use Spitzer 3.6μ and B-band imaging to study the morphology and color of the VGS galaxies. For their star formation properties, we use Hα and GALEX near-UV imaging. We compare our results to a range of galaxies of different morphologies in higher density environments. We find that the VGS galaxies are in general disk dominated and star forming galaxies. Their star formation rates are, however, often less than 1 M⊙ yr-1. There are two early-type galaxies in our sample as well. In re versus MB parameter space, VGS galaxies occupy the same space as dwarf irregulars and spirals.

  7. Tank SY-101 void fraction instrument functional design criteria

    SciTech Connect

    McWethy, L.M.

    1994-10-18

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations.

  8. Assembly of filamentary void galaxy configurations

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2013-10-01

    We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution Λ cold dark matter simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently discovered by the Void Galaxy Survey inside a large void in the Sloan Digital Sky Survey galaxy redshift survey. H I data revealed these galaxies to be embedded in a common elongated envelope, possibly embedded in intravoid filament. In the CosmoGrid simulation we look for systems similar to VGS_31 in mass, size and environment. We find a total of eight such systems. For these systems, we study the distribution of neighbour haloes, the assembly and evolution of the main haloes and the dynamical evolution of the haloes, as well as the evolution of the large-scale structure in which the systems are embedded. The spatial distribution of the haloes follows that of the dark matter environment. We find that VGS_31-like systems have a large variation in formation time, having formed between 10 Gyr ago and the present epoch. However, the environments in which the systems are embedded evolved to resemble each other substantially. Each of the VGS_31-like systems is embedded in an intravoid wall, that no later than z = 0.5 became the only prominent feature in its environment. While part of the void walls retain a rather featureless character, we find that around half of them are marked by a pronounced and rapidly evolving substructure. Five haloes find themselves in a tenuous filament of a few h-1 Mpc long inside the intravoid wall. Finally, we compare the results to observed data from VGS_31. Our study implies that the VGS_31 galaxies formed in the same (proto)filament, and did not meet just recently. The diversity amongst the simulated halo systems indicates that VGS_31 may not be typical for groups of galaxies in voids.

  9. Neural stimulation for chronic voiding dysfunctions.

    PubMed

    Elabbady, A A; Hassouna, M M; Elhilali, M M

    1994-12-01

    Neural stimulation of the sacral nerve roots could become an acceptable and promising modality in controlling variable forms of difficult voiding dysfunctions. A total of 50 patients who presented with various forms of voiding dysfunction underwent initial screening by percutaneous nerve evaluation of the S3 nerve root guided by movements of the levator ani and toes. Only 17 patients demonstrated a satisfactory response to percutaneous nerve evaluation and subsequent subchronic wire testing for 4 to 5 days, and they were eligible to enter the study. The studied patients (13 women and 4 men) were classified into 2 groups according to presentation. Group 1 included 8 patients who presented mainly with nonobstructive chronic urinary retention. All 8 patients were on intermittent self-catheterization except 1 with a suprapubic tube. The 9 patients in group 2 mainly presented with other forms of voiding dysfunctions, including pain (suprapubic and perineal), frequency and/or urgency. All patients were neurologically free, and had failed pharmacological and surgical attempts to correct the problems. In both groups radiological and ultrasound evaluations of the urinary tract as well as cystourethroscopy were within normal limits. Urodynamic studies were performed preoperatively and postoperatively. Unilateral S3 foramen implantation was performed on the selected side in all patients. Followup ranged from 3 to 52 months. All patients were followed preoperatively and postoperatively by voiding and itemized symptom score diary as well as a quality of life questionnaire. Each symptom and question were given certain grades that reflect the severity or importance to the patient. The symptom scores and the quality of life questionnaires were analyzed preoperatively and postoperatively. In group 1 voided volume (expressed as a percentage of total bladder capacity) was significantly increased at 6 months (23 +/- 7.5% preoperatively versus 81.9 +/- 7.7% postoperatively, p < 0

  10. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the...

  11. Extended void merging tree algorithm for self-similar models

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    2014-02-01

    In hierarchical evolution, voids exhibit two different behaviours related with their surroundings and environments, they can merge or collapse. These two different types of void processes can be described by the two-barrier excursion set formalism based on Brownian random walks. In this study, the analytical approximate description of the growing void merging algorithm is extended by taking into account the contributions of voids that are embedded into overdense region(s) which are destined to vanish due to gravitational collapse. Following this, to construct a realistic void merging model that consists of both collapse and merging processes, the two-barrier excursion set formalism of the void population is used. Assuming spherical voids in the Einstein-de Sitter Universe, the void merging algorithm which allows us to consider the two main processes of void hierarchy in one formalism is constructed. In addition to this, the merger rates, void survival probabilities, void size distributions in terms of the collapse barrier and finally, the void merging tree algorithm in the self-similar models are defined and derived.

  12. Void Coalescence Processes Quantified Through Atomistic and Multiscale Simulation

    SciTech Connect

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2007-01-12

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process. We also discuss a technique for optimizing the calculation of fine-scale information on the fly for use in a coarse-scale simulation, and discuss the specific case of a fine-scale model that calculates void growth explicitly feeding into a coarse-scale mechanics model to study damage localization.

  13. An Observational Detection of the Bridge Effect of Void Filaments

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-12-01

    The bridge effect of void filaments is a phrase coined by Park & Lee to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into void galaxies. Analyzing the Sloan void catalog constructed by Pan et al., we identify the filamentary structures in void regions and determine the specific size of each void filament as a measure of its straightness. To avoid possible spurious signals caused by Malmquist bias, we consider only those void filaments whose redshifts are in the range 0≤slant z≤slant 0.02 and find a clear tendency that the void galaxies located in the straighter filaments are on average more luminous, which is in qualitative agreement with the numerical prediction. It is also shown that the strength of correlation increases with the number of member galaxies in the void filaments, which can be understood physically on the grounds that the more stretched filaments can connect the dense surroundings even to galaxies located deep in the central parts of the voids. This observational evidence may provide a key clue to the puzzling issue of why the void galaxies have higher specific star formation rates and bluer colors than their wall counterparts.

  14. In situ determination of rheological properties and void fraction: Hanford Waste Tank 241-SY-103

    SciTech Connect

    Shepard, C.L.; Stewart, C.W.; Alzheimer, J.M.; Terrones, G.; Chen, G.; Wilkins, N.E.

    1995-11-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-103. The two instruments were deployed through risers 17C and 22A in July and August 1995 to gather data on the gas content and rheology of the waste. The results indicate that the nonconvective sludge layer contains up to 12% void and an apparent viscosity of 104 to 105 cP with a yield strength less than 210 Pa. The convective layer measured zero void and had no measurable yield strength. Its average viscosity was about 45 cP, and the density was less than 1.5 g/cc. The average void fraction was 0.047 {plus_minus} 0.015 at riser 17C and 0.091 {plus_minus} 0.015 at riser 22A. The stored gas volume based on these void fraction measurements is 213 {plus_minus} 42 M{sup 3} at 1 atmosphere.

  15. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    PubMed Central

    2013-01-01

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502

  16. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    PubMed

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  17. Statistics of voids in hierarchical universes

    NASA Technical Reports Server (NTRS)

    Fry, J. N.

    1986-01-01

    As one alternative to the N-point galaxy correlation function statistics, the distribution of holes or the probability that a volume of given size and shape be empty of galaxies can be considered. The probability of voids resulting from a variety of hierarchical patterns of clustering is considered, and these are compared with the results of numerical simulations and with observations. A scaling relation required by the hierarchical pattern of higher order correlation functions is seen to be obeyed in the simulations, and the numerical results show a clear difference between neutrino models and cold-particle models; voids are more likely in neutrino universes. Observational data do not yet distinguish but are close to being able to distinguish between models.

  18. Process Yields Strong, Void-Free Laminates

    NASA Technical Reports Server (NTRS)

    Bryant, L. E.; Covington, E. W., III; Dale, W. J.; Hall, E. T., Jr; Justice, J. E.; Taylor, E. C.; Wilson, M. L.

    1983-01-01

    Need for lightweight materials as structural components for future space transportation systems stimulated development of systematic method for manufacturing a polyimide/graphite composite. Laminates manufactured by process are void-free, exhibit excellent thermo-oxidative stability up to 315 degrees C (600 degrees F) and are 40 percent lighter than aluminum. Process is precise, repeatable, and ideally suited for researchers and small-lot producers of composite materials.

  19. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  20. Urodynamic assessment of voiding dysfunction and dysfunctional voiding in girls and women.

    PubMed

    Everaert, K; Van Laecke, E; De Muynck, M; Peeters, H; Hoebeke, P

    2000-01-01

    Voiding dysfunction is defined as impaired bladder emptying, and presents with a mixture of lower urinary tract symptoms. Dysfunctional voiding is a condition in which there is a lack of coordination between the sphincter and detrusor during emptying in a patient without overt uropathy or neuropathy. Assessment of voiding dysfunction is important in women and girls in the prevention and treatment of urinary incontinence, retention, urinary tract infection and subsequent kidney damage. Accurate diagnosis is essential in order to select the correct treatment. Screening can be done by history-taking: symptom scores can help to guide the screening. More objective measures are uroflowmetry, ultrasonography and video-urodynamics. The latter is the gold standard for the diagnosis of voiding dysfunction and consists of simultaneous registration of pressure in the bladder and rectum and external sphincter behavior, either by electromyographic recording of pelvic floor activity or by pressure recording at the external sphincter, during the whole bladder cycle of filling and emptying. On fluoroscopy the bladder can be visualized throughout the filling and emptying phase. In dysfunctional voiding, hypertonicity and instability of the external urethral sphincter during filling cystometry and impaired external sphincter relaxation during emptying are pathognomonic findings. Pressure-flow analysis reveals no obstruction and the detrusor contractility is low.

  1. Void Coalescence Processes Quantified through Atomistic and Multiscale Simulation

    SciTech Connect

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2005-12-31

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process.

  2. The sparkling Universe: the coherent motions of cosmic voids

    NASA Astrophysics Data System (ADS)

    Lambas, Diego García; Lares, Marcelo; Ceccarelli, Laura; Ruiz, Andrés N.; Paz, Dante J.; Maldonado, Victoria E.; Luparello, Heliana E.

    2016-01-01

    We compute the bulk motions of cosmic voids, using a Λ cold dark matter numerical simulation considering the mean velocities of the dark matter inside the void itself and that of the haloes in the surrounding shell. We find coincident values of these two measures in the range ˜300-400 km s-1, not far from the expected mean peculiar velocities of groups and galaxy clusters. When analysing the distribution of the pairwise relative velocities of voids, we find a remarkable bimodal behaviour consistent with an excess of both systematically approaching and receding voids. We determine that the origin of this bimodality resides in the void large-scale environment, since once voids are classified into void-in-void (R-type) or void-in-cloud (S-type), R-types are found mutually receding away, while S-types approach each other. The magnitude of these systematic relative velocities account for more than 100 km s-1, reaching large coherence lengths of up to 200 h-1 Mpc . We have used samples of voids from the Sloan Digital Sky Survey Data Release 7 and the peculiar velocity field inferred from linear theory, finding fully consistent results with the simulation predictions. Thus, their relative motion suggests a scenario of a sparkling universe, with approaching and receding voids according to their local environment.

  3. A cosmic watershed: the WVF void detection technique

    NASA Astrophysics Data System (ADS)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2007-09-01

    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the cosmic web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the watershed void finder (WVF), is based upon the watershed transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study contains a detailed description of the WVF. We demonstrate how it is able to trace and identify, relatively parameter free, voids and their surrounding (filamentary and planar) boundaries. We test the technique on a set of kinematic Voronoi models, heuristic spatial models for a cellular distribution of matter. Comparison of the WVF segmentations of low-noise and high-noise Voronoi models with the quantitatively known spatial characteristics of the intrinsic Voronoi tessellation shows that the size and shape of the voids are successfully retrieved. WVF manages to even reproduce the full void size distribution function.

  4. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  5. The Void Galaxy Survey: photometry, structure and identity of void galaxies

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Peletier, R. F.; van der Hulst, J. M.; Jarrett, T. H.; Kreckel, K.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-09-01

    We analyze photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6μm and 4.5μm Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the SDSS DR7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from {M_B=-15.5} to {M_B=-20}, while at the 3.6μm band their magnitudes range from {M_{3.6}=-18} to {M_{3.6}=-24}. Their B-[3.6] colour and structural parameters indicate these are star forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than 3 × 1010 M⊙. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their Sérsic indices are nearly all smaller than n = 2 in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.

  6. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    SciTech Connect

    Hursin, M.; Koeberl, O.; Perret, G.

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

  7. Void fraction system computer software design description

    SciTech Connect

    Gimera, M.

    1995-02-15

    This document describes the software that controls the void fraction instrument. The format of the document may differ from typical Software Design Reports because it was created with a graphical programming language. Hardware is described in Section 2. The purpose of this document is describe the software, so the hardware description is brief. Software is described in Section 3. LabVIEW was used to develop the viscometer software, so Section 3 begins with an introduction to LabVIEW. This is followed by a description of the main program. Finally each Westinghouse developed subVI (sub program) is discussed.

  8. Surgical Management of Male Voiding Dysfunction.

    PubMed

    Mandeville, Jessica; Mourtzinos, Arthur

    2016-06-01

    Benign prostatic hypertrophy (BPH) is a common cause of voiding dysfunction. BPH may lead to bladder outlet obstruction and resultant troublesome lower urinary tract symptoms. Initial management of BPH and bladder outlet obstruction is typically conservative. However, when symptoms are severe or refractory to medical therapy or when urinary retention, bladder stone formation, recurrent urinary tract infections, or upper urinary tract deterioration occur, surgical intervention is often necessary. Numerous options are available for surgical management of BPH ranging from simple office-based procedures to transurethral operative procedures and even open and robotic surgeries. This article reviews the current, most commonly used techniques available for surgical management of BPH. PMID:27261790

  9. Detection of underground voids in Ohio by use of geophysical methods

    USGS Publications Warehouse

    Munk, Jens; Sheets, R.A.

    1997-01-01

    Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio

  10. THE ORIENTATION OF DISK GALAXIES AROUND LARGE COSMIC VOIDS

    SciTech Connect

    Varela, Jesus; Betancort-Rijo, Juan; Trujillo, Ignacio; Ricciardelli, Elena

    2012-01-10

    Using a large sample of galaxies from the the seventh data release of the Sloan Digital Sky Survey (SDSS-DR7), we have analyzed the alignment of disk galaxies around cosmic voids. We have constructed a complete sample of cosmic voids (devoid of galaxies brighter than M{sub r} - 5log h = -20.17) with radii larger than 10 h{sup -1} Mpc up to redshift 0.12. Disk galaxies in shells around these voids have been used to look for particular alignments between the angular momentum of the galaxies and the radial direction of the voids. We find that disk galaxies around voids larger than {approx}> 15 h{sup -1} Mpc within distances not much larger than 5 h{sup -1} Mpc from the surface of the voids present a significant tendency to have their angular momenta aligned with the void's radial direction with a significance {approx}> 98.8% against the null hypothesis. The strength of this alignment is dependent on the void's radius and for voids with a radius {approx}< 15 h{sup -1} Mpc the distribution of the orientation of the galaxies is compatible with a random distribution. Finally, we find that this trend observed in the alignment of galaxies is similar to the one observed for the minor axis of dark matter halos around cosmic voids found in cosmological simulations, suggesting a possible link in the evolution of both components.

  11. Tensor anisotropy as a tracer of cosmic voids

    NASA Astrophysics Data System (ADS)

    Bustamante, Sebastian; Forero-Romero, Jaime E.

    2015-10-01

    We present a new method to find voids in cosmological simulations based on the tidal and the velocity shear tensors definitions of the cosmic web. We use the fractional anisotropy (FA) computed from the eigenvalues of each web scheme as a void tracer. We identify voids using a watershed transform based on the local minima of the FA field without making any assumption on the shape or structure of the voids. We test the method on the Bolshoi simulation and report on the abundance and radial averaged profiles for the density, velocity and FA. We find that voids in the velocity shear web are smaller than voids in the tidal web, with a particular overabundance of very small voids in the inner region of filaments/sheets. We classify voids as subcompensated/overcompensated depending on the absence/presence of an overdense matter ridge in their density profile, finding that close to 65 and 35 per cent of the total population are classified into each category, respectively. Finally, we find evidence for the existence of universal profiles from the radially averaged profiles for density, velocity and FA. This requires that the radial coordinate is normalized to the effective radius of each void. Put together, all these results show that the FA is a reliable tracer for voids, which can be used in complementarity to other existing methods and tracers.

  12. Nanometer voids prevent crack growth in polymer thin films

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hideaki; Dutriez, Cedric; Satoh, Kotaro; Kamigaito, Masami

    2007-03-01

    Macroscopic voids initiate cracks and cause catastrophic failure in brittle materials. The effect of micrometer voids in the mechanical properties of polymeric materials was studied in 1980's and 90's with the expectation that such small voids may initiate crazing, the toughening mechanism in polymer solids, similar to dispersed rubber particles widely used in industry. However, the micrometer voids showed only limited resistance against crack growth, and it was concluded that much smaller voids are necessary for the drastic change in mechanical properties. We have recently succeeded the nondestructive introduction of nanometer voids (30--70 nm) in polymeric materials using block copolymer template and carbon dioxide (CO2) by partitioning CO2 in CO2-philic nanodomains of block copolymers. The reduction of Young's modulus with such nanometer voids was minimal (2 to 1 GPa) due to the (short-range) ordered spherical voids. While the unprocessed copolymer films failed in brittle manner at around 2 % of tensile strain, the processed copolymer films with nanometer voids did not break up to at least 60 %. A microscopic observation under strain of the crack tip revealed that the nanometer voids were deformed under strain and directly converted into the networked fibrils near the crack tip similar to crazing and thus prevented the crack growth.

  13. Electrical Resistivity Monitoring of Voids: Results of Dynamic Modeling Experiments

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Singha, K.

    2006-05-01

    Remote, non-invasive detection of voids is a challenging problem for environmental and engineering investigations in karst terrain. Many geophysical methods including gravity, electrical, electromagnetic, magnetic, and seismic have potential to detect voids in the subsurface; lithologic heterogeneity and method- specific sources of noise, however, can mask the geophysical signatures of voids. New developments in automated, autonomous geophysical monitoring technology now allow for void detection using differential geophysics. We propose automated collection of electrical resistivity measurements over time. This dynamic approach exploits changes in subsurface electrical properties related to void growth or water-table fluctuation in order to detect voids that would be difficult or impossible to detect using static imaging approaches. We use a series of synthetic modeling experiments to demonstrate the potential of difference electrical resistivity tomography for finding (1) voids that develop vertically upward under a survey line (e.g., an incipient sinkhole); (2) voids that develop horizontally toward a survey line (e.g., a tunnel); and (3) voids that are influenced by changing hydrologic conditions (e.g., void saturation and draining). Synthetic datasets are simulated with a 3D finite-element model, but the inversion assumes a 2D forward model to mimic conventional practice. The results of the synthetic modeling experiments provide insights useful for planning and implementing field-scale monitoring experiments using electrical methods.

  14. Unambiguous voids in Allende chondrules and refractory inclusions

    SciTech Connect

    Murray, J.; Boesenberg, J.S.; Ebel, D.S.

    2003-03-26

    Void space can be caused by thin section preparation. 3-dimensional tomographic analysis, prior to sectioning, shows that several very different types of voids are abundant in Allende meteorite inclusions. Formation models are proposed for each type. Void spaces in the components of chondritic meteorites have received little attention, perhaps due to ambiguities attendant upon their very existence, and also their origin. Computer-aided microtomography allows the 3-dimensional imaging and analysis of void spaces within solid objects. Several striking examples of void spaces, apparently enclosed by solid material, resulted from our observations of large chondrules and CAIs from the Allende (CV3) meteorite. These voids are 'unambiguous' because their existence cannot be ascribed to plucking during sample preparation, as would be the case in traditional 2-dimensional thin section petrography. Although we focus on large objects in Allende, preliminary observations indicate that void spaces are prevalent in chondrules and refractory inclusions in many meteorites. Voids remain ambiguous, however, because their structure and appearance vary between chondrules and CAIs, suggesting there may be different causes of void formation in particular objects. Some voids appear to have formed as a result of dilation during cooling. Others are evidence of hydrothermal leaching on the parent body followed by partial chemical replacement. Alternatively, vapor-mediated leaching and replacement may have occurred in the nebula. Yet another possibility is internal brecciation caused by impact, while the object was still free floating in the nebula, and perhaps still partially molten.

  15. Voiding Dysfunction after Total Mesorectal Excision in Rectal Cancer

    PubMed Central

    Kim, Jae Heon; Noh, Tae Il; Oh, Mi Mi; Park, Jae Young; Lee, Jeong Gu; Um, Jun Won; Min, Byung Wook

    2011-01-01

    Purpose The aim of this study was to assess the voiding dysfunction after rectal cancer surgery with total mesorectal excision (TME). Methods This was part of a prospective study done in the rectal cancer patients who underwent surgery with TME between November 2006 and June 2008. Consecutive uroflowmetry, post-voided residual volume, and a voiding questionnaire were performed at preoperatively and postoperatively. Results A total of 50 patients were recruited in this study, including 28 male and 22 female. In the comparison of the preoperative data with the postoperative 3-month data, a significant decrease in mean maximal flow rate, voided volume, and post-voided residual volume were found. In the comparison with the postoperative 6-month data, however only the maximal flow rate was decreased with statistical significance (P=0.02). In the comparison between surgical methods, abdominoperineal resection patients showed delayed recovery of maximal flow rate, voided volume, and post-voided residual volume. There was no significant difference in uroflowmetry parameters with advances in rectal cancer stage. Conclusions Voiding dysfunction is common after rectal cancer surgery but can be recovered in 6 months after surgery or earlier. Abdominoperineal resection was shown to be an unfavorable factor for postoperative voiding. Larger prospective study is needed to determine the long-term effect of rectal cancer surgery in relation to male and female baseline voiding condition. PMID:22087426

  16. New Statistical Perspective to Link Void Distributions with Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Russell, Esra; Pycke, Jean-Renaud

    2016-07-01

    Voids dominate the total observed volume of the large scale structure and they are very sensitive to their environments which can strongly affect their shape as well their distributions. Therefore the void size distribution functions may play an important role to understand the dynamical processes affecting the structure formation of the Universe Here, using cosmic void data sets of Sutter et al. (2012) generated by galaxy mock catalogs which are tuned to three SDSS main samples, we obtain the size distribution of voids as a three parameter redshift independent log-normal void probability function. We find that the shape of the three parameter void distribution from the mock data samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity of void size and galaxy mass distributions may possibly indicate evidence of large scale nonlinear mechanisms affecting both voids and galaxies, such as large scale accretion and tidal effects. Taking into account that all voids we study are generated by galaxy mock catalogs and they show hierarchical structures at different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  17. A SIMPLE GRAVITATIONAL LENS MODEL FOR COSMIC VOIDS

    SciTech Connect

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu

    2015-05-10

    We present a simple gravitational lens model to illustrate the ease of using the embedded lensing theory when studying cosmic voids. It confirms the previously used repulsive lensing models for deep voids. We start by estimating magnitude fluctuations and weak-lensing shears of background sources lensed by large voids. We find that sources behind large (∼90 Mpc) and deep voids (density contrast about −0.9) can be magnified or demagnified with magnitude fluctuations of up to ∼0.05 mag and that the weak-lensing shear can be up to the ∼10{sup −2} level in the outer regions of large voids. Smaller or shallower voids produce proportionally smaller effects. We investigate the “wiggling” of the primary cosmic microwave background (CMB) temperature anisotropies caused by intervening cosmic voids. The void-wiggling of primary CMB temperature gradients is of the opposite sign to that caused by galaxy clusters. Only extremely large and deep voids can produce wiggling amplitudes similar to galaxy clusters, ∼15 μK by a large void of radius ∼4° and central density contrast −0.9 at redshift 0.5 assuming a CMB background gradient of ∼10 μK arcmin{sup −1}. The dipole signal is spread over the entire void area, and not concentrated at the lens center as it is for clusters. Finally, we use our model to simulate CMB sky maps lensed by large cosmic voids. Our embedded theory can easily be applied to more complicated void models and used to study gravitational lensing of the CMB, to probe dark matter profiles, to reduce the lensing-induced systematics in supernova Hubble diagrams, and to study the integrated Sachs–Wolfe effect.

  18. Breather mechanism of the void ordering in crystals under irradiation

    NASA Astrophysics Data System (ADS)

    Dubinko, Vladimir

    2009-09-01

    The void ordering has been observed in very different radiation environments ranging from metals to ionic crystals. In the present paper the ordering phenomenon is considered as a consequence of the energy transfer along the close packed directions provided by self-focusing discrete breathers. The self-focusing breathers are energetic, mobile and highly localized lattice excitations that propagate great distances in atomic-chain directions in crystals. This points to the possibility of atoms being ejected from the void surface by the breather-induced mechanism, which is similar to the focuson-induced mechanism of vacancy emission from voids proposed in our previous paper. The main difference between focusons and breathers is that the latter are stable against thermal motion. There is evidence that breathers can occur in various crystals, with path lengths ranging from 104 to 107 unit cells. Since the breather propagating range can be larger than the void spacing, the voids can shield each other from breather fluxes along the close packed directions, which provides a driving force for the void ordering. Namely, the vacancy emission rate for "locally ordered" voids (which have more immediate neighbors along the close packed directions) is smaller than that for the "interstitial" ones, and so they have some advantage in growth. If the void number density is sufficiently high, the competition between them makes the "interstitial" voids shrink away resulting in the void lattice formation. The void ordering is intrinsically connected with a saturation of the void swelling, which is shown to be another important consequence of the breather-induced vacancy emission from voids.

  19. A New Statistical Perspective on the Cosmic Void Distribution

    NASA Astrophysics Data System (ADS)

    Pycke, J.-R.; Russell, E.

    2016-04-01

    In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  20. Changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) during storage as influenced by temperature and air oxygen.

    PubMed

    Goffman, F D; Möllers, C

    2000-05-01

    The changes in tocopherol and plastochromanol-8 contents in seeds and oil of oilseed rape (Brassica napus L.) were studied during a storage period of 24 weeks at different incubation temperatures and exposure to air oxygen (open and closed flasks). In the extracted oil, total tocopherol content remained unaltered at 5 and 20 degrees C throughout the 24 weeks of storage. At 40 degrees C, a beginning degradation was observed already after 4 weeks in both open and closed flasks; the alpha-tocopherol content was affected most, followed by gamma-tocopherol and plastochromanol-8. After 16 weeks at 40 degrees C, the total tocopherol content in the oil was reduced by more than 90%. In intact seeds, no tocopherol degradation was observed; only the seeds incubated at 40 degrees C and in open flasks showed slightly lower tocopherol contents. However, the analysis of the tocopherol composition in the stored seeds showed a decrease in the alpha-tocopherol content and an increase in the gamma-tocopherol content, which resulted in a decreasing alpha-/gamma-tocopherol ratio. This trend was most apparent at 40 degrees C and after 24 weeks of storage. A reduction of plastochromanol-8 occurred only at 40 degrees C and was more pronounced in open flasks. At 40 degrees C and in closed flasks a gradual increase in the content of alpha-tocotrienol was observed, a compound normally not accumulated in rapeseed. PMID:10820066

  1. Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs.

    PubMed

    Rawson, A; Tiwari, B K; Tuohy, M G; O'Donnell, C P; Brunton, N

    2011-09-01

    The effect of ultrasound and blanching pretreatments on polyacetylene (falcarinol, falcarindiol and falcarindiol-3-acetate) and carotenoid compounds of hot air and freeze dried carrot discs was investigated. Ultrasound pretreatment followed by hot air drying (UPHD) at the highest amplitude and treatment time investigated resulted in higher retention of polyacetylenes and carotenoids in dried carrot discs than blanching followed by hot air drying. Freeze dried samples had a higher retention of polyacetylene and carotenoid compounds compared to hot air dried samples. Color parameters were strongly correlated with carotenoids (p<0.05). This study shows that ultrasound pretreatment is a potential alternative to conventional blanching treatment in the drying of carrots.

  2. A Void Diffusion Model of Granular Flow

    NASA Astrophysics Data System (ADS)

    Rudra, Jayanta; Vieth, Paul

    2009-03-01

    In an earlier paper^1 we derived a nonlinear diffusion equation to describe the dynamics in granular flow based on a Diffusion Void Model (DVM). The equation was successfully used to describe the flow of a homogeneous granular material through the hole of a container under gravity. It also properly described similar flow in the presence of a flat horizontal barrier placed above the hole. Recently, however, we have found out that the above nonlinear equation does not lead to correct static equilibrium. For example, the stability of the free surface of a granular aggregate cannot be described by the equation. The equation also fails to describe, say, how an unstable vertical column of a granular material will change to a stable λ-shaped pile at the angle of repose. In this paper work we derive an equation using an appropriate current density of voids that can explain all the observed dynamical characteristics of a simple granular state. ^1Jayanta K. Rudra and D. C. Hong, Phys. Rev. E47, R1459(1993).

  3. Early voiding dysfunction associated with prostate brachytherapy.

    PubMed

    Wagner; Nag; Young; Bahnson

    2000-12-15

    Introduction: Transperineal prostate brachytherapy is gaining popularity as a treatment for clinically localized carcinoma of the prostate. Very little prospective data exists addressing the issue of complications associated with this procedure. We present an analysis of the early voiding dysfunction associated with prostate brachytherapy. Materials and Methods: Forty-six consecutive patients who underwent Palladium-103 (Pd-103) seed placement for clinically localized prostate carcinoma were evaluated prospectively for any morbidity associated with the procedure. Twenty-three patients completed an International Prostate Symptom Score (IPSS) questionnaire preoperatively, at their first postoperative visit, and at their second postoperative visit. The total IPSS, each of the seven individual components, and the "bother" score were evaluated separately for each visit, and statistical significance was determined. Results: Urinary retention occurred in 7/46 patients (15%). Of these, 5 were able to void spontaneously after catheter removal. One patient is maintained with a suprapubic tube, and one patient is currently on continuous intermittent catheterization. Baseline IPSS was 7.1 and this went to 20.0 at the first postoperative visit (p<0.001). By the second postoperative visit, the IPSS was 8.0. Conclusions: In our experience, prostate brachytherapy for localized carcinoma of the prostate is associated with a 15% catheterization rate and a significant increase in the IPSS (7.1 to 20.0). This increase in the IPSS seems to be self-limited. Patients need to be educated on these issues prior to prostate brachytherapy. PMID:11113369

  4. Experimental study of void behavior in a suppression pool of a boiling water reactor during the blowdown period of a loss of coolant accident

    NASA Astrophysics Data System (ADS)

    Rassame, Somboon

    The possible failure of an Emergency Core Cooling System (ECCS) train due to a large amount of entrained gas in the ECCS pump suction piping in a Loss of Coolant Accident (LOCA) is one of the potential engineering problems faced in a Boiling Water Reactor (BWR) power plant. To analyze potential gas intrusion into the ECCS pump suction piping, the study of void behavior in the Suppression Pool (SP) during the LOCA is necessary. The void fraction distribution and void penetration are considered as the key parameters in the problem analysis. Two sets of experiments, namely, steady-state tests and transient tests were conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR application (PUMA-E) to study void behavior in the SP during the blowdown. The design of the test apparatus used is based on the scaling analysis from a prototypical BWR containment (MARK-I) with consideration of the downcomer size, the SP water level, and the downcomer water submergence depth. Several instruments were installed to obtain the required experimental data, such as inlet gas volumetric flow, void fraction, pressure, and temperature. For the steady-state tests, the air was injected through a downcomer pipe in the SP in order to simulate the physical phenomena in the SP during the initial blowdown of LOCA. Thirty tests were performed with two different downcomer sizes (0.076 and 0.102 m), various air volumetric flow rates or flux (0.003 to 0.153 m3/s or 0.5 to 24.7 m/s), initial downcomer void conditions (fully filled with water, partially void, and completely void) and air velocity ramp rates (one to two seconds). Two phases of the experiment were observed, namely, the initial phase and the quasi-steady phase. The initial phase produced the maximum void penetration depth; and the quasi-steady phase showed less void penetration with oscillation in the void penetration. The air volumetric flow rate was found to have a minor effect on the void fraction

  5. Real-space density profile reconstruction of stacked voids

    NASA Astrophysics Data System (ADS)

    Pisani, Alice; Sutter, P.; Lavaux, G.; Wandelt, B.

    2016-10-01

    Modern surveys allow us to access to high quality large scale structure measurements. In this framework, cosmic voids appear as a new potential probe of Cosmology. We discuss the use of cosmic voids as standard spheres and their capacity to constrain new physics, dark energy and cosmological models. We introduce the Alcock-Paczyński test and its use with voids. We discuss the main difficulties in treating with cosmic voids: redshift-space distortions, the sparsity of data, and peculiar velocities. We present a method to reconstruct the spherical density profiles of void stacks in real space, without redshift-space distortions. We show its application to a toy model and a dark matter simulation; as well as a first application to reconstruct real cosmic void stacks density profiles in real space from the Sloan Digital Sky Survey.

  6. Void alignment and density profile applied to measuring cosmological parameters

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang

    2015-12-01

    We study the orientation and density profiles of the cosmological voids with Sloan Digital Sky Survey (SDSS; Ahn et al.) 10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this paper, we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.

  7. Ductile damage of porous materials with two populations of voids

    NASA Astrophysics Data System (ADS)

    Vincent, Pierre-Guy; Monerie, Yann; Suquet, Pierre

    2008-01-01

    This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains two populations of voids of well separated size. The problem addressed here is the prediction of the effective flow surface of a Gurson material containing randomly oriented oblate voids. The case of spherical voids is considered first and the variational approach of Gurson is generalized by adding a compressible component to his original velocity field. The case of aligned oblate voids is then considered and a suitable generalization of a velocity field due to Gologanu et al. (ASME J. Engrg. Mater. Technol. 116 (1994) 290-297) is proposed. The extension to randomly oriented voids is achieved by averaging over all orientations. In each case, rigorous upper bounds and approximate estimates are derived and compared (in the case of spherical voids) with Finite Element simulations. To cite this article: P.-G. Vincent et al., C. R. Mecanique 336 (2008).

  8. Void deformation and breakup in shearing silica glass.

    PubMed

    Chen, Yi-Chun; Nomura, Ken-ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2009-07-17

    We study shear deformation and breakup of voids in silica glass using molecular dynamics simulations. With an increase in the shear strain, two kinds of defects--threefold-coordinated silicon and nonbridging oxygen atoms--appear as spherical voids deform elastically into ellipsoidal shapes. For shear strains epsilon>15%, nanocracks appear on void surfaces and voids deform plastically into a threadlike structure. Nanocracks are nucleated by the migration of threefold-coordinated Si and nonbridging O on -Si-O-Si-O- rings. For epsilon>40%, the threadlike structures break up into several fragments. PMID:19659293

  9. Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.

  10. Postmortem volumetric CT data analysis of pulmonary air/gas content with regard to the cause of death for investigating terminal respiratory function in forensic autopsy.

    PubMed

    Sogawa, Nozomi; Michiue, Tomomi; Ishikawa, Takaki; Kawamoto, Osamu; Oritani, Shigeki; Maeda, Hitoshi

    2014-08-01

    Postmortem CT (PMCT) is useful to investigate air/gas distribution and content in body cavities and viscera. The present study investigated the procedure to estimate total lung air/gas content and aeration ratio as possible indices of terminal respiratory function, using three-dimensional (3-D) PMCT data analysis of forensic autopsy cases without putrefactive gas formation (within 3 days postmortem, n=75), and analyzed the volumetric data with regard to the cause of death. When 3-D bilateral lung images were reconstructed using an image analyzer, combined lung volume was larger in drowning (n=12) than in alcohol/sedative-hypnotic intoxication (n=8) and sudden cardiac death (SCD; n=10), and intermediate in other cases, including mechanical asphyxiation (n=12), fire fatalities due to burns (n=6) and carbon monoxide intoxication (n=7), fatal methamphetamine abuse (n=7), hyperthermia (heatstroke; n=6) and fatal hypothermia (cold exposure; n=7). Air/gas content of the lung as detected using HU interval between -2000 and -400 ('effective' lung aeration areas) and between -2000 and -191 (total lung aeration areas) as well as the ratios to total lung volume ('effective' and total lung aeration ratios, respectively) was higher in mechanical asphyxiation, drowning, fatal burns and hypothermia (cold exposure) than in SCD, and was intermediate in other cases. 'Effective' and total lung aeration ratios may be useful for comparisons between specific causes of death to discriminate between hypothermia (cold exposure) and drug intoxication, and between SCD and other causes of death, respectively. These findings provide interesting insights into potential efficacy of PMCT data analyses of lung volume and CT density as well as lung air/gas content and aeration ratio with regard to the cause of death, as possible indicators of terminal respiratory function, as part of virtual autopsy of the viscera in situ.

  11. Void swelling in high dose ion-irradiated reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Monterrosa, Anthony M.; Zhang, Feifei; Huang, Hao; Yan, Qingzhi; Jiao, Zhijie; Was, Gary S.; Wang, Lumin

    2015-07-01

    To determine the void swelling resistance of reduced-activation ferritic-martensitic steels CNS I and CNS II at high doses, ion irradiation was performed up to 188 dpa (4.6 × 1017 ion/cm2) at 460 °C using 5 MeV Fe++ ions. Helium was pre-implanted at levels of 10 and 100 appm at room temperature to investigate the role of helium on void swelling. Commercial FM steel T91 was also irradiated in this condition and the swelling results are of included in this paper as a reference. Voids were observed in all conditions. The 9Cr CNS I samples implanted with 10 appm helium exhibited lower swelling than 9Cr T91 irradiated at the same condition. The 12Cr CNS II with 10 and 100 appm helium showed significantly lower swelling than CNS I and T91. The swelling rate for CNS I and CNS II were determined to be 0.02%/dpa and 0.003%/dpa respectively. Increasing the helium content from 10 to 100 appm shortened the incubation region and increased the void density but had no effect on the swelling rates.

  12. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity. PMID:19468951

  13. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  14. Formation of Voids from Negative Density Perturbations

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. N.; Opher, R.

    1990-11-01

    RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY

  15. Reconciling the local void with the CMB

    SciTech Connect

    Nadathur, Seshadri; Sarkar, Subir

    2011-03-15

    In the standard cosmological model, the dimming of distant Type Ia supernovae is explained by invoking the existence of repulsive ''dark energy'' which is causing the Hubble expansion to accelerate. However, this may be an artifact of interpreting the data in an (oversimplified) homogeneous model universe. In the simplest inhomogeneous model which fits the SNe Ia Hubble diagram without dark energy, we are located close to the center of a void modeled by a Lemaitre-Tolman-Bondi metric. It has been claimed that such models cannot fit the cosmic microwave background (CMB) and other cosmological data. This is, however, based on the assumption of a scale-free spectrum for the primordial density perturbation. An alternative physically motivated form for the spectrum enables a good fit to both SNe Ia (Constitution/Union2) and CMB (WMAP 7-yr) data, and to the locally measured Hubble parameter. Constraints from baryon acoustic oscillations and primordial nucleosynthesis are also satisfied.

  16. The void galaxy survey: Star formation properties

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-05-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and H I masses to measure the specific SFRs (SFR/M*) and star formation efficiencies ({SFR/{M }_H I}). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, `the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and H I mass are similar to those of the galaxies in these field regions. Their SFR α is slightly elevated than the galaxies in the field for a given total H I mass. In the global star formation picture presented by Kennicutt-Schmidt, VGS galaxies fall into the regime of low average star formation and correspondingly low H I surface density. Their mean {SFR α /{M}_{H I} and SFR α/M* are of the order of 10- 9.9 yr- 1. We conclude that while the large-scale underdense environment must play some role in galaxy formation and growth through accretion, we find that even with respect to other galaxies in the more mildly underdense regions, the increase in star formation rate is only marginal.

  17. Non-invasive measurement of void fraction and liquid temperature in microchannel flow boiling

    NASA Astrophysics Data System (ADS)

    Fogg, David; David, Milnes; Goodson, Kenneth

    2009-04-01

    Past thermometry research for two-phase microfluidic systems made much progress regarding wall temperature distributions, yet the direct measurement of fluid temperature has received little attention. This paper uses a non-invasive two-dye/two-color fluorescent technique to capture fluid temperature along with local liquid fraction in a two-phase microflow generated by injecting air into a heated microchannel. The fluorescent emission of Rhodamine 110 and Rhodamine B, measured with photodiodes, is used to obtain local liquid temperature (±3°C) and void fraction (±2% full-scale) over a temperature range from 45 to 100°C. Arrays of these sensors can significantly expand the set of measurable flow parameters to include bubble/slug frequency, size, velocity, and growth rates in addition to mapping the local liquid temperature and void fraction.

  18. Luminosity distance in 'Swiss cheese' cosmology with randomized voids. I. Single void size

    SciTech Connect

    Vanderveld, R. Ali; Flanagan, Eanna E.; Wasserman, Ira

    2008-10-15

    Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In 'Swiss cheese' models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaitre-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energy or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.

  19. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. I. Single void size

    NASA Astrophysics Data System (ADS)

    Vanderveld, R. Ali; Flanagan, Éanna É.; Wasserman, Ira

    2008-10-01

    Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In “Swiss cheese” models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaître-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energy or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.

  20. Lensing measurements of the mass distribution in SDSS voids

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh

    2015-12-01

    We measure weak lensing mass profiles of voids from a volume-limited sample of SDSS Luminous Red Galaxies (LRGs). We find voids using an algorithm designed to maximize the lensing signal by dividing the survey volume into 2D slices, and then finding holes in this 2D distribution of LRGs. We perform a stacked shear measurement on about 20 000 voids with radii between 15 and 55 Mpc h-1, and redshifts between 0.16 and 0.37. We measure the characteristic radial shear signal of voids with a signal to noise of 7. The mass profile corresponds to a fractional underdensity of about -0.4 inside the void radius and a slow approach to the mean density indicating a partially compensated void structure. We compare our measured shape and amplitude with the predictions of Krause et al. Voids in the galaxy distribution have been extensively modelled using simulations and measured in the SDSS. We discuss how the addition of void mass profiles can enable studies of galaxy formation and cosmology.

  1. High gain durable anti-reflective coating with oblate voids

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  2. High Frequency Sacral Root Nerve Block Allows Bladder Voiding

    PubMed Central

    Boger, Adam S.; Bhadra, Narendra; Gustafson, Kenneth J

    2013-01-01

    1) Aims Dyssynergic reflexive external urethral sphincter (EUS) activity following spinal cord injury can prevent bladder voiding, resulting in significant medical complications. Irreversible sphincterotomies or neurotomies can prevent EUS activation and allow bladder voiding, but may cause incontinence or loss of sacral reflexes. We investigated whether kilohertz frequency (KF) electrical conduction block of the sacral roots could prevent EUS activation and allow bladder voiding. 2) Methods The S2 sacral nerve roots were stimulated bilaterally to generate bladder pressure in 6 cats. One S1 nerve root was stimulated proximally (20 Hz biphasic pulse trains) to evoke EUS pressure, simulating worst-case dyssynergic EUS reflexes. KF waveforms (12.5 kHz biphasic square wave) applied to an electrode implanted distally on the S1 nerve root blocked nerve conduction, preventing the increase in EUS pressure and allowing voiding. 3) Results Applying KF waveforms increased bladder voiding in single, limited-duration trials from 3 ± 6% to 59 ± 12%. Voiding could be increased to 82 ± 9% of the initial bladder volume by repeating or increasing the duration of the trials. 4) Conclusions Sacral nerve block can prevent EUS activation and allow complete bladder voiding, potentially eliminating the need for a neurotomy. Eliminating neurotomy requirements could increase patient acceptance of bladder voiding neuroprostheses, increasing patient quality of life and reducing the cost of patient care. PMID:22473837

  3. The relationship between void waves and flow regime transition

    SciTech Connect

    Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.

    1992-12-31

    The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.

  4. Warmth elevating the depths: shallower voids with warm dark matter

    NASA Astrophysics Data System (ADS)

    Yang, Lin F.; Neyrinck, Mark C.; Aragón-Calvo, Miguel A.; Falck, Bridget; Silk, Joseph

    2015-08-01

    Warm dark matter (WDM) has been proposed as an alternative to cold dark matter (CDM), to resolve issues such as the apparent lack of satellites around the Milky Way. Even if WDM is not the answer to observational issues, it is essential to constrain the nature of the dark matter. The effect of WDM on haloes has been extensively studied, but the small-scale initial smoothing in WDM also affects the present-day cosmic web and voids. It suppresses the cosmic `sub-web' inside voids, and the formation of both void haloes and subvoids. In N-body simulations run with different assumed WDM masses, we identify voids with the ZOBOV algorithm, and cosmic-web components with the ORIGAMI algorithm. As dark-matter warmth increases (i.e. particle mass decreases), void density minima grow shallower, while void edges change little. Also, the number of subvoids decreases. The density field in voids is particularly insensitive to baryonic physics, so if void density profiles and minima could be measured observationally, they would offer a valuable probe of the nature of dark matter. Furthermore, filaments and walls become cleaner, as the substructures in between have been smoothed out; this leads to a clear, mid-range peak in the density PDF.

  5. Measuring the growth rate of structure around cosmic voids

    NASA Astrophysics Data System (ADS)

    Hawken, A. J.; Michelett, D.; Granett, B.; Iovino, A.; Guzzo, L.

    2016-10-01

    Using an algorithm based on searching for empty spheres we identified 245 voids in the VIMOS Public Extragalactic Redshift Survey (VIPERS). We show how by modelling the anisotropic void-galaxy cross correlation function we can probe the growth rate of structure.

  6. Void nucleation in spheroidized steels during tensile deformation

    SciTech Connect

    Fisher, Jr, J R

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy.

  7. The Local Void: for or against ΛCDM?

    NASA Astrophysics Data System (ADS)

    Xie, Lizhi; Gao, Liang; Guo, Qi

    2014-06-01

    The emptiness of the Local Void has been put forward as a serious challenge to the current standard paradigm of structure formation in Λ cold dark matter (CDM). We use a high-resolution cosmological N-body simulation, the Millennium-II run, combined with a sophisticated semi-analytic galaxy formation model, to explore statistically whether the Local Void is allowed within our current knowledge of galaxy formation in ΛCDM. We find that about 14 per cent of the Local Group analogue systems (11 of 77) in our simulation are associated with nearby low-density regions having size and `emptiness' similar to those of the observed Local Void. This suggests that, rather than a crisis of the ΛCDM, the emptiness of the Local Void is indeed a success of the standard ΛCDM theory. The paucity of faint galaxies in such voids results from a combination of two factors: a lower amplitude of the halo mass function in the voids than in the field, and a lower galaxy formation efficiency in the void haloes due to halo assembly bias effects. While the former is the dominated factor, the later also plays a sizeable role. The halo assembly bias effect results in a stellar mass fraction 25 per cent lower for void galaxies when compared to field galaxies with the same halo mass.

  8. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    SciTech Connect

    Das, M.; Honey, M.; Saito, T.; Iono, D.; Ramya, S.

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  9. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  10. The cosmic web in CosmoGrid void regions

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-10-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

  11. Dust-void formation in a dc glow discharge.

    PubMed

    Fedoseev, A V; Sukhinin, G I; Dosbolayev, M K; Ramazanov, T S

    2015-08-01

    Experimental investigations of dusty plasma parameters of a dc glow discharge were performed in a vertically oriented discharge tube. Under certain conditions, dust-free regions (voids) were formed in the center of the dust particle clouds that levitated in the strong electric field of a stratified positive column. A model for radial distribution of dusty plasma parameters of a dc glow discharge in inert gases was developed. The behavior of void formation was investigated for different discharge conditions (type of gas, discharge pressure, and discharge current) and dust particle parameters (particle radii and particle total number). It was shown that it is the ion drag force radial component that leads to the formation of voids. Both experimental and calculated results show that the higher the discharge current the wider dust-free region (void). The calculations also show that more pronounced voids are formed for dust particles with larger radii and under lower gas pressures.

  12. Distinguishing f(R) gravity with cosmic voids

    NASA Astrophysics Data System (ADS)

    Zivick, P.; Sutter, P. M.

    2016-10-01

    We use properties of void populations identified in N-body simulations to forecast the ability of upcoming galaxy surveys to differentiate models of f(R) gravity from \\lcdm cosmology. We analyze simulations designed to mimic the densities, volumes, and clustering statistics of upcoming surveys, using the public {\\tt VIDE} toolkit. We examine void abundances as a basic probe at redshifts 1.0 and 0.4. We find that stronger f(R) coupling strengths produce voids up to ~20% larger in radius, leading to a significant shift in the void number function. As an initial estimate of the constraining power of voids, we use this change in the number function to forecast a constraint on the coupling strength of Δ fR0 = 10-5.

  13. Effects of voids on delamination behavior under static and fatigue mode I and mode II

    NASA Astrophysics Data System (ADS)

    Abdelal, Nisrin Rizek

    Composite materials have become materials of choice for wind turbine blade manufacturing due to their high specific stiffness, strength and fatigue life. Glass fiber composites are used extensively in light-weight structural components for wind turbines, aircrafts, marine craft and high performance automobile because glass fiber is inexpensive and usually provides high strength to weight ratio and good in-plane mechanical properties. The high cycle fatigue resistance of composite materials used in wind turbine blades has been recognized as a major uncertainty in predicting the reliability of wind turbines over their design lifetime. Blades are expected to experience 108 to 109 fatigue cycles over a 20 to 30 year lifetime. Delamination or interlaminar failure is a serious failure mode observed in composite structures. Even partial delamination will lead to a loss of local stiffness, which can preclude buckling failure. Manufacturing process defects such as voids and fiber waviness degrade the fatigue life and delamination resistance of the blade's composite. This research describes the effect of voids on static and fatigue interlaminar fracture behavior under mode I and mode II loading of wind turbine glass fiber composites. Samples with different void volume fractions in the 0.5%-7% range were successfully obtained by varying the vacuum in the hand layup vacuum bagging manufacturing process. Void content was characterized using four different methods; ultrasonic scanning, epoxy burn off, serial sectioning and X-Ray computed tomography. The effect of voids on both mode I and mode II interlaminar fracture toughness under static and fatigue loading was investigated. Finally, fractographic analysis (using optical and scanning electron microscopy) was conducted. The results showed that voids leads to slight reduction in static modes I and II interlaminar fracture toughness. In addition, voids lead to a decrease in modes I and II maximum cyclic strain energy release

  14. Measuring baryon acoustic oscillations from the clustering of voids

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  15. Numerical method for estimating void spaces of rock joints and the evolution of void spaces under different contact states

    NASA Astrophysics Data System (ADS)

    Xia, Caichu; Gui, Yang; Wang, Wei; Du, Shigui

    2014-12-01

    To determine the void spaces of rock joints under different normal stresses and shear displacements, we mainly introduce a numerical method which was developed based on equivalent void space derived from composite topography. The new method requires the 3D surface data of rock joints, and the normal closure data of the compression test under different shear displacements, while in conventional methods, some disparate materials are inserted between the joint surfaces or special equipments are needed for the measurement of the void space of rock joints without shearing occurs. To apply the technique, a modified 3D box counting method that considers the self-affine fractal property of void spaces was employed to calculate the 3D fractal dimension of the void space. Specially designed experiment was conducted on a cylindrical specimen of artificial joints to explore aperture distribution, and the correlations between void space characteristics, 3D fractal dimension and mean aperture, and normal stress under different shear displacements. The present study focuses on the introduction of the new method for estimating void spaces of rock joints, while the void spaces model obtained contains the combined surfaces roughness and aperture information of rock joints under different normal loads and shear displacements is promising in investigating the mechanical and hydraulic properties during the loading process.

  16. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    A major hazards in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. In this paper, we present the results of a study to demonstrate a variety of seismic techniques to detect the presence of a karst analog in form of a vertical water-collection shaft located on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We used the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two

  17. The spreading of a void on a facet during electromigration

    SciTech Connect

    Chu, X.; Bauer, C.L.; Mullins, W.W.; Klinger, L.M.

    1997-07-01

    A void of cross sectional area A may spread perpendicular to the applied electric field E{sub a} during electromigration because its leading surface develops a facet whose advance is limited by the supply of steps. If the facet is immobile (no step source) and the remaining surface is free to move, and if E{sub a}A is less than a threshold value, then the void assumes a stationary elongated shape dictated by a balance between capillarity and electric field. If E{sub a}A exceeds the threshold value, however, a balance is no longer possible, and the void spreads along the facet without arrest. If the facet has limited mobility, a balance is possible for all values of E{sub a}A, resulting in an elongated moving steady-state shape. The treatment simplifies the void shape as rectangular but preserves the essential features of capillarity and surface electromigration. The authors argue that the motion of a facet on a void along the outward normal requires defects (e.g., intersecting screw dislocations) that act as step sources since homogeneous nucleation of steps on the facet is expected to be negligible. Since voids in fine-line interconnects are often observed to be partially faceted, restricted void motion and resultant spreading which depend sensitively on crystallographic features, such as defect structure and grain orientation, may indeed limit the lifetime of fine-line interconnects in electronic devices.

  18. Partial discharges within two spherical voids in an epoxy resin

    NASA Astrophysics Data System (ADS)

    Illias, H. A.; Chen, G.; Bakar, A. H. A.; Mokhlis, H.; Tunio, M. A.

    2013-08-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions.

  19. On nonlinear excitation of voids in dusty plasmas

    SciTech Connect

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-09-15

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment.

  20. Void nucleation at elevated temperatures under cascade-damage irradiation

    NASA Astrophysics Data System (ADS)

    Semenov, A. A.; Woo, C. H.

    2002-07-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10-4-10-2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory.

  1. Theory of Electromigration of Faceted Voids in Aluminum Interconnects

    NASA Astrophysics Data System (ADS)

    Wickham, Lisa K.; Sethna, James P.

    1996-03-01

    Void--induced breakage of micron--sized aluminum wires is an important cause of failure in V.L.S.I. circuits. As an electromigration void travels through a grain in such a wire, a corresponding flux of atoms must leave the front face of the void and move to its other side. We give estimated upper bounds on this flux as a function of current density, temperature, various diffusion barriers, and surface step density. To learn about step density, we discuss ways in which the field changes equilibrium void shape and influences step nucleation rates. We conclude that the field enhances faceting on the leading void face, and find evidence for such behavior in previous experiments. In contrast, diffusion barriers from recent density functional calculations produce particle fluxes from our estimates which fall far below that given by observed void velocities, unless the step density on the leading void face is nearly one. We discuss strain, local heating, and impurity effects which might be responsible for enhanced mobility in real interconnects.

  2. Local void and slip model used in BODYFIT-2PE

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE.

  3. The effect of crumb rubber particle size to the optimum binder content for open graded friction course.

    PubMed

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  4. Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.

  5. Influence of voids on the strength of wrought materials

    NASA Technical Reports Server (NTRS)

    Shaw, M. C.; Pai, D. M.

    1985-01-01

    Three-dimensional voids, which are present in most materials, may be satisfactorily modelled by two-dimensional holes (i.e., cylindrical voids) in sheet metal. In this study, the influence of certain orientations and shapes of voids upon the mechanical properties and fracture behavior of certain ductile materials has been studied. The presence of voids is found to exert a negligible influence on the ultimate tensile strength, owing to plastic flow neutralizing the stress intensification present before yielding occurs. The shape and orientation of the defects, however, are seen to play an important role relative to strain at fracture. The maximum intensified tensile stress criterion which holds for brittle materials is found to apply to ductile materials as well.

  6. Void Closure in Complex Plasmas under Microgravity Conditions.

    PubMed

    Lipaev, A M; Khrapak, S A; Molotkov, V I; Morfill, G E; Fortov, V E; Ivlev, A V; Thomas, H M; Khrapak, A G; Naumkin, V N; Ivanov, A I; Tretschev, S E; Padalka, G I

    2007-06-29

    We describe the first observation of a void closure in complex plasma experiments under microgravity conditions performed with the Plasma-Kristall (PKE-Nefedov) facility on board the International Space Station. The void--a grain-free region in the central part of the discharge where the complex plasma is generated--has been formed under most of the plasma conditions and thought to be an inevitable effect. However, we demonstrate in this Letter that an appropriate tune of the discharge parameters allows the void to close. This experimental achievement along with its theoretical interpretation opens new perspectives in engineering new experiments with large quasi-isotropic void-free complex plasma clouds in microgravity conditions.

  7. Modeling Void Nucleation in Metals at High Strain-rates

    NASA Astrophysics Data System (ADS)

    Belak, J.; Bales, G. S.; Glosli, J.

    1997-08-01

    Isotropic tension is simulated in nanoscale polycrystalline metals using large-scale molecular dynamics. The nanocrystalline metal is fabricated on the computer by growing randomly oriented grains from random positions or lattice positions in the simulation cell. Constant volume strain rates of 10^7 - 10^9 are considered for systems ranging from 10^5 - 10^7 atoms using an EAM interatomic potential. The spacing between voids for room temperature simulations is found to scale approximately as l ~ 0.005 * Cs / dotɛ, where Cs is the sound speed and dotɛ is the strain rate. The growth of small voids is simulated by cutting a void out of the simulation cell and repeating the isotropic expansion. Results are presented for several microstructures and void sizes and compared to macroscopic models.

  8. Void control in the crystallization of lithium fluoride

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Perry, William D.

    1991-01-01

    The effect of tungsten-coated graphite fibers on the radiant heat transfer characteristics of salt-fiber composites was studied by measuring the onset of melting as a function of applied furnace power. As the fiber concentration was increased from 0 to 5.40 percent fiber by weight, the furnace temperature required to melt the lithium fluoride also increased. Upon cooling, each of the crystalline salt-fiber composites were cut open with a diamond saw to expose the void. Optical photographs of the voids revealed a trend in void location and size, with the largest void, and the least change in the outer dimension of the boule upon cooling, occurring in the sample with the most fiber.

  9. Voids in neutron-irradiated metals and alloys

    SciTech Connect

    Hendricks, R.W.

    1980-01-01

    Small-angle x-ray and neutron scattering are powerful analytical tools for investigating long-range fluctuations in electron (x-rays) or magnetic moment (neutrons) densities in materials. In recent years they have yielded valuable information about voids, void size distributions, and swelling in aluminum, aluminum alloys, copper, molybdenum, nickel, nickel-aluminum, niobium and niobium alloys, stainless steels, graphite and silicon carbide. In the case of aluminum, information concerning the shape of the voids and the ratio of specific surface energies was obtained. The technique of small-angle scattering and its application to the study of voids is reviewed in the paper. Emphasis is placed on the conditions which limit the applicability of the technique, on the interpretation of the data, and on a comparison of the results obtained with companion techniques such as transmission electron microscopy and bulk density. 8 figures, 41 references.

  10. Void Closure in Complex Plasmas under Microgravity Conditions

    SciTech Connect

    Lipaev, A. M.; Molotkov, V. I.; Fortov, V. E.; Khrapak, A. G.; Naumkin, V. N.; Khrapak, S. A.; Morfill, G. E.; Ivlev, A. V.; Thomas, H. M.; Ivanov, A. I.; Tretschev, S. E.; Padalka, G. I.

    2007-06-29

    We describe the first observation of a void closure in complex plasma experiments under microgravity conditions performed with the Plasma-Kristall (PKE-Nefedov) facility on board the International Space Station. The void--a grain-free region in the central part of the discharge where the complex plasma is generated--has been formed under most of the plasma conditions and thought to be an inevitable effect. However, we demonstrate in this Letter that an appropriate tune of the discharge parameters allows the void to close. This experimental achievement along with its theoretical interpretation opens new perspectives in engineering new experiments with large quasi-isotropic void-free complex plasma clouds in microgravity conditions.

  11. Late Quaternary continental and marine sediments of northeastern Buenos Aires province (Argentina): Fossil content and paleoenvironmental interpretation

    NASA Astrophysics Data System (ADS)

    Fucks, Enrique; Aguirre, Marina; Deschamps, Cecilia M.

    2005-10-01

    Abundant invertebrate and vertebrate fossil remains that exhibit excellent preservation and were collected from deposits of both continental and marine origins at Pilar (Buenos Aires, Argentina) add paleoenvironmental data from the northeastern Buenos Aires province area linked to sea-level oscillations and climate variability since approximately 120 ka BP (marine oxygen isotope stage [MOIS] 5e). Two new fossiliferous localities discovered in the Luján River Valley allow for detailed geological studies and new dating of molluscan shells and bones. The studies suggest salinity changes during the Last Interglacial (8 m above m.s.l., min. 14C>40 ka) and the mid-Holocene transgression (5 m above m.s.l., 7-3 14C ka BP) compared with the modern pattern along the adjacent littoral (Río de la Plata). The marine sequences represent the innermost boundary of the sea-level transgression in that area and contain a biogenic record (bivalves, gastropods, forams, ostracods) that indicates marginal marine environments (higher salinity than at present). Vertebrates and molluscs from the continental sequence suggest a freshwater habitat in which remains of marine fish must be allochthonous, probably incorporated by postmortem fluvial transport to the final depositional environment.

  12. Void morphology in polyethylene/carbon black composites

    SciTech Connect

    Marr, D.W.M.; Wartenberg, M.; Schwartz, K.B.

    1996-12-31

    A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-rayscattering (SAXS) developed by W.Wu{sup 12} and applied to particulate reinforced composites.

  13. Excursion sets and non-Gaussian void statistics

    SciTech Connect

    D'Amico, Guido; Musso, Marcello; Paranjape, Aseem; Norena, Jorge

    2011-01-15

    Primordial non-Gaussianity (NG) affects the large scale structure (LSS) of the Universe by leaving an imprint on the distribution of matter at late times. Much attention has been focused on using the distribution of collapsed objects (i.e. dark matter halos and the galaxies and galaxy clusters that reside in them) to probe primordial NG. An equally interesting and complementary probe however is the abundance of extended underdense regions or voids in the LSS. The calculation of the abundance of voids using the excursion set formalism in the presence of primordial NG is subject to the same technical issues as the one for halos, which were discussed e.g. in Ref. [51][G. D'Amico, M. Musso, J. Norena, and A. Paranjape, arXiv:1005.1203.]. However, unlike the excursion set problem for halos which involved random walks in the presence of one barrier {delta}{sub c}, the void excursion set problem involves two barriers {delta}{sub v} and {delta}{sub c}. This leads to a new complication introduced by what is called the 'void-in-cloud' effect discussed in the literature, which is unique to the case of voids. We explore a path integral approach which allows us to carefully account for all these issues, leading to a rigorous derivation of the effects of primordial NG on void abundances. The void-in-cloud issue, in particular, makes the calculation conceptually rather different from the one for halos. However, we show that its final effect can be described by a simple yet accurate approximation. Our final void abundance function is valid on larger scales than the expressions of other authors, while being broadly in agreement with those expressions on smaller scales.

  14. Void Points, Rosettes, and a Brief History of Planetary Astronomy

    NASA Astrophysics Data System (ADS)

    Kosso, Peter

    2013-12-01

    Almost all models of planetary orbits, from Aristotle through Newton, include void points, empty points in space that have an essential role in defining the orbit. By highlighting the role of these void points, as well as the rosette pattern of the orbit that often results, I bring out different features in the history of planetary astronomy and place a different emphasis on its revolutionary changes, different from those rendered in terms of epicycles or the location of the earth.

  15. Role of subcutaneous apomorphine in parkinsonian voiding dysfunction.

    PubMed

    Christmas, T J; Kempster, P A; Chapple, C R; Frankel, J P; Lees, A J; Stern, G M; Milroy, E J

    Ten patients with Parkinson's disease and urinary symptoms underwent urodynamic assessments before and after subcutaneous administration of the dopamine receptor agonist apomorphine. Voiding efficiency improved after apomorphine injection, with an increase in mean and maximum flow rates in nine patients and reduction in post-micturition residual volume in six. Although the effect on detrusor behaviour was variable, subcutaneous apomorphine may be of use in both the assessment and treatment of voiding dysfunction in patients with Parkinson's disease.

  16. Use of biofeedback in treatment of psychogenic voiding dysfunction.

    PubMed

    Christmas, T J; Noble, J G; Watson, G M; Turner-Warwick, R T

    1991-01-01

    A young man with psychologic problems and a long history of social inadequacy presented with voiding dysfunction. Videocystometrography revealed a normal filling phase and normal initiation of voiding interrupted by considerable straining by the patient and marked sphincter electromyographic (EMG) activity. Temporary amelioration was achieved by infiltration of the sphincter with lignocaine hydrochloride and by biofeedback therapy. In such cases optimal results are expected from long-term behavioral therapy.

  17. Correction for dynamic bias error in transmission measurements of void fraction

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-12-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  18. Weak lensing by voids in modified lensing potentials

    SciTech Connect

    Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: m.c.cautun@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2015-08-01

    We study lensing by voids in Cubic Galileon and Nonlocal gravity cosmologies, which are examples of theories of gravity that modify the lensing potential. We find voids in the dark matter and halo density fields of N-body simulations and compute their lensing signal analytically from the void density profiles, which we show are well fit by a simple analytical formula. In the Cubic Galileon model, the modifications to gravity inside voids are not screened and they approximately double the size of the lensing effects compared to GR. The difference is largely determined by the direct effects of the fifth force on lensing and less so by the modified density profiles. For this model, we also discuss the subtle impact on the force and lensing calculations caused by the screening effects of haloes that exist in and around voids. In the Nonlocal model, the impact of the modified density profiles and the direct modifications to lensing are comparable, but they boost the lensing signal by only ≈ 10%, compared with that of GR. Overall, our results suggest that lensing by voids is a promising tool to test models of gravity that modify lensing.

  19. Irradiation creep relaxation of void swelling-driven stresses

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-01-01

    Swelling-driven-creep test specimens are used to measure the compressive stresses that develop due to constraint of irradiation void swelling. These specimens use a previously non-irradiated 20% CW Type 316 stainless steel holder to axially restrain two Type 304 stainless steel tubular specimens that were previously irradiated in the US Experimental Breeder Reactor (EBR-II) at 490 °C. One specimen was previously irradiated to fluence levels in the void nucleation regime (9 dpa) and the other in the quasi-steady void growth regime (28 dpa). A lift-off compliance measurement technique was used post-irradiation to determine compressive stresses developed during reirradiation of the two specimen assemblies in Row 7 of EBR-II at temperatures of 547 °C and 504 °C, respectively, to additional damage levels each of about 5 dpa. Results obtained on the higher fluence swelling-driven-creep specimen show that compressive stress due to constraint of swelling retards void swelling to a degree that is consistent with active load uniaxial compression specimens that were irradiated as part of a previously reported multiaxial in-reactor creep experiment. Swelling results obtained on the lower fluence swelling-driven creep specimen show a much larger effect of compressive stress in reducing swelling, demonstrating that the larger effect of stress on swelling is on void nucleation as compared to void growth. Test results are analyzed using a recently proposed multiaxial creep-swelling model.

  20. Void Growth in Single and Bicrystalline Metals: Atomistic Calculations

    NASA Astrophysics Data System (ADS)

    Traiviratana, Sirirat; Bringa, Eduardo M.; Benson, David J.; Meyers, Marc A.

    2007-12-01

    MD simulations in monocrystalline and bicrystalline copper were carried out with LAMMPS to reveal void growth mechanisms. The specimens were subjected to both tensile uniaxial and hydrostatic strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. However, these shear loops develop along two slip planes (and not one, as previously thought), in a heretofore unidentified mechanism of cooperative growth. The emission of dislocations from voids is the first stage, and their reaction and interaction is the second stage. These loops, forming initially on different {111} planes, join at the intersection, the Burgers vector of the dislocations being parallel to the intersection of two {111} planes: a <110> direction. Thus, the two dislocations cancel at the intersection and a biplanar shear loop is formed. The expansion of the loops and their cross slip leads to the severely work hardened layer surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress response to emitted dislocations was observed, in disagreement with the Gurson model[1] which is scale independent. Calculations were also carried out for a void at the interface between two grains.

  1. A Least-Squares Transport Equation Compatible with Voids

    SciTech Connect

    Hansen, Jon; Peterson, Jacob; Morel, Jim; Ragusa, Jean; Wang, Yaqi

    2014-12-01

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations

  2. The non-destructive measurement of soil water content of upper part of the cave using soft component of air shower

    NASA Astrophysics Data System (ADS)

    Taketa, A.; Tanaka, H. K. M.; Okubo, S.

    2012-04-01

    We have developed a new radiographic method to measure the time variation of the water content of the soil with soft component of air shower. Air shower produced by a primary cosmic ray consists of hard component and soft component. Hard component is mainly consists of muon, and soft components is consists of electron, positron and photon. The penetration power of soft component is weaker than that of hard component, so soft component is suitable for small scale structure thinner than 2 kg/cm2 equivalent to 20m thick water, like buildings and small hills. But it requires particle identification which means distinguishing hard component and soft component. Particle identification can be done with strong magnets and dense detectors, but it is very hard to use that kind of detector for radiography because of their weight and cost. We established the cheap and effective method to distinguish soft component and hard component statistically. We also performed measurements in Arimura observation pit of Mt. Sakurajima, Japan. As a result of this observation, we found there is an anti-correlation between soft component flux and rainfall. If the water content of the soil became larger, the amount of absorption increases. So this result can be interpreted as detecting the increase of the water content by soft component flux. This method can be applied for the quantitive compensation of the measurement data like absolute gravitymeter data and tiltmeter data which is easy to receive turbulence by rain. It is also expected that the quantitive compensation leads to the improvement in accuracy of diastrophism measurement and the improvement in presumed accuracy of magma movement inside a volcano. We will report this newly developed radiography method using soft component for small scale structure in detail and the result of measurement. Further improvement and possible application are also discussed.

  3. Void probability as a function of the void's shape and scale-invariant models

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1991-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  4. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  5. Void Management in MEPHISTO and Other Space Experiments

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Johnston, J. Christopher; Wei, Bingbo

    1998-01-01

    The second flight of NASA's Shuttle Flight experiment program known as MEPHISTO suffered from a void in the liquid portion of the sample, even though a piston arrangement was in place to keep the ampoule filled. In preparations for the next flight of the MEPHISTO furnace an animated computer program, called MEPHISTO Volume Visualizer (MVV), was written to help avoid the formation of unwanted voids. A piston system on MEPHISTO has the ability to move approximately 5 mm in compression, to accommodate expansion of the solid during heating; then from the completely compressed position, the piston can move up to 25 mm in towards the sample, effectively making the ampoule smaller and hopefully eliminating any voids. Due to the nature of the piston design and ampoule and sample arrangement, the piston has gotten stuck during normal directional solidification; this creates the risk of a void. To eliminate such a void, the liquid in the hot zones of the furnace can be heated, thereby expanding the liquid and consuming any void. The problem with this approach is that if the liquid is heated too much an overpressure could result, breaking the ampoule and ending the experiment catastrophically. The MVV has been found to be a useful tool in the assessment of the risks associated with the formation of a void and the additional heating of the liquid in the hot zone of this Bridgman type furnace. The MVV software will be discussed and copies available; it is written in the Delphi 2 programming language and runs under Windows 95 and NT. The strategies used in other flight experiments, such as the Isothermal Dendritic Growth Experiment, will also be presented.

  6. Foliar abscisic acid content underlies genotypic variation in stomatal responsiveness after growth at high relative air humidity

    PubMed Central

    Giday, Habtamu; Fanourakis, Dimitrios; Kjaer, Katrine H.; Fomsgaard, Inge S.; Ottosen, Carl-Otto

    2013-01-01

    Background and Aims Stomata formed at high relative air humidity (RH) respond less to abscisic acid (ABA), an effect that varies widely between cultivars. This study tested the hypotheses that this genotypic variation in stomatal responsiveness originates from differential impairment in intermediates of the ABA signalling pathway during closure and differences in leaf ABA concentration during growth. Methods Stomatal anatomical features and stomatal responsiveness to desiccation, feeding with ABA, three transduction elements of its signalling pathway (H2O2, NO, Ca2+) and elicitors of these elements were determined in four rose cultivars grown at moderate (60 %) and high (90 %) RH. Leaf ABA concentration was assessed throughout the photoperiod and following mild desiccation (10 % leaf weight loss). Key Results Stomatal responsiveness to desiccation and ABA feeding was little affected by high RH in two cultivars, whereas it was considerably attenuated in two other cultivars (thus termed sensitive). Leaf ABA concentration was lower in plants grown at high RH, an effect that was more pronounced in the sensitive cultivars. Mild desiccation triggered an increase in leaf ABA concentration and equalized differences between leaves grown at moderate and high RH. High RH impaired stomatal responses to all transduction elements, but cultivar differences were not observed. Conclusions High RH resulted in decreased leaf ABA concentration during growth as a result of lack of water deficit, since desiccation induced ABA accumulation. Sensitive cultivars underwent a larger decrease in leaf ABA concentration rather than having a higher ABA concentration threshold for inducing stomatal functioning. However, cultivar differences in stomatal closure following ABA feeding were not apparent in response to H2O2 and downstream elements, indicating that signalling events prior to H2O2 generation are involved in the observed genotypic variation. PMID:24163176

  7. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    NASA Astrophysics Data System (ADS)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  8. SIMULATED VOID GALAXIES IN THE STANDARD COLD DARK MATTER MODEL

    SciTech Connect

    Kreckel, Kathryn; Ryan Joung, M.; Cen Renyue

    2011-07-10

    We analyze a (120 h{sup -1} Mpc){sup 3} adaptive mesh refinement hydrodynamic simulation that contains a higher resolution 31 x 31 x 35 h{sup -3} Mpc subvolume centered on a {approx}30 Mpc diameter void. Our detailed {approx}1 kpc resolution allows us to identify 1300 galaxies within this void to a limiting halo mass of {approx}10{sup 10} M{sub sun}. Nearly 1000 galaxies are found to be in underdense regions, with 300 galaxies residing in regions less than half the mean density of the simulation volume. We construct mock observations of the stellar and gas properties of these systems and reproduce the range of colors and luminosities observed in the Sloan Digital Sky Survey for nearby (z < 0.03) galaxies. We find no trends with density for the most luminous (M{sub r} < -18) galaxies, however our dwarf void galaxies (M{sub r} > -16), though they are less reliably resolved, typically appear bluer, with higher rates of star formation and specific star formation and lower mean stellar ages than galaxies in average density environments. We find a significant population of low-luminosity (M{sub r} {approx} -14) dwarf galaxies that is preferentially located in low-density regions and specifically in the void center. This population may help to reduce, but not remove, the discrepancy between the predicted and observed number of void galaxies.

  9. The Star Formation Properties of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moorman, Crystal; Vogeley, Michael S.

    2016-01-01

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on time scales of 10 Myr and 100 Myr, using Ha emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable S/N HI detections from ALFALFA. For the HI detected sample, SSFRs are similar regardless of large-scale environment. Investigating only the HI detected dwarf galaxies reveals a trend towards higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit HI mass, known as the star formation efficiency (SFE) of a galaxy, as a function of environment. For the overall HI detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies again reveals a trend towards higher SFEs in voids. These results suggest that void environments provide a nurturing environment for dwarf galaxy evolution.

  10. Surveying for Dwarf Galaxies Within Void FN8

    NASA Astrophysics Data System (ADS)

    McNeil, Stephen R.

    2016-06-01

    The dwarf galaxy population in low density volumes, or voids, is a test of galaxy formation models and how they treat dark matter; some models say dwarf galaxies cannot be in void centers while others say they can. Since it appears many dwarf galaxies are H-alpha emitters, a well-designed deep survey through a nearby void center will either find nothing, and thus constrain the population there to be at some percentage below the mean, or it will find H-alpha emitters and significantly challenge several otherwise successful theories. Either result is a significant step in better understanding galaxy formation and large-scale structure. In 2013, a redshifted H-alpha imaging survey was begun for dwarf galaxies with ‑14.0 ≤ Mr ≤ ‑12.0 in the heart and back of the void FN8. Our first results have been surprising, furnishing significantly more candidate objects than anticipated. Through the Gemini Fast Turnaround Program, seven spectrum have been obtained, with one spectrum being a strong candidate for habitation within the center of the void.

  11. On the origin of the voids in the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Hoffman, Y.; Shaham, J.

    1982-11-01

    The distribution of galaxies on scales larger than approximately 10 Mpc/h seems to be characterized by large voids, (20-40) Mpc/h in diameter and of amplitude delta approximately -(0.7-0.8). It was previously argued that the mere existence of such voids poses a severe problem to all dissipationless clustering theories. Here it is shown that the voids may, in fact, be a natural outcome of a dissipationless clustering scenario if both adiabatic and isothermal density perturbations exist primordially. When the nonlinear evolution of spherical voids of this type is followed for adiabatic perturbations with an index n greater than -1, it is seen that they become surrounded by a shell of positive density contrast. Their structure is insensitive to Omega 0 while their dynamics is quite sensitive to it. The maximum peculiar velocity (relative to Hubble flow) within the void is found to be: v(p)/v(H) approximately (0.4-0.5) for Omega 0 = 1.0, approximately (0.2-0.25) for Omega 0 = 0.45, and approximately equal to or less than 0.09 for Omega 0 = 0.1.

  12. An analytical model for porous single crystals with ellipsoidal voids

    NASA Astrophysics Data System (ADS)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  13. The persistent percolation of single-stream voids

    NASA Astrophysics Data System (ADS)

    Falck, B.; Neyrinck, M. C.

    2015-07-01

    We study the nature of voids defined as single-stream regions that have not undergone shell-crossing. We use ORIGAMI to determine the cosmic web morphology of each dark matter particle in a suite of cosmological N-body simulations, which explicitly calculates whether a particle has crossed paths with others along multiple sets of axes and does not depend on a parameter or smoothing scale. The theoretical picture of voids is that of expanding underdensities with borders defined by shell-crossing. We find instead that locally underdense single-stream regions are not bounded on all sides by multi-stream regions, thus they percolate, filling the simulation volume; we show that the set of multi-stream particles also percolates. This percolation persists to high resolution, where the mass fraction of single-stream voids is low, because the volume fraction remains high; we speculate on the fraction of collapsed mass in the continuum limit of infinite resolution. By introducing a volume threshold parameter to define underdense void `cores', we create a catalogue of ORIGAMI voids which consist entirely of single-stream particles and measure their percolation properties, volume functions, and average densities.

  14. Long term analysis of the biomass content in the feed of a waste-to-energy plant with oxygen-enriched combustion air.

    PubMed

    Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut

    2011-10-01

    Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.

  15. An initial assessment of spatial relationships between respiratory cases, soil metal content, air quality and deprivation indicators in Glasgow, Scotland, UK: relevance to the environmental justice agenda.

    PubMed

    Morrison, S; Fordyce, F M; Scott, E Marian

    2014-04-01

    There is growing interest in links between poor health and socio-environmental inequalities (e.g. inferior housing, crime and industrial emissions) under the environmental justice agenda. The current project assessed associations between soil metal content, air pollution (NO2/PM10) and deprivation and health (respiratory case incidence) across Glasgow. This is the first time that both chemical land quality and air pollution have been assessed citywide in the context of deprivation and health for a major UK conurbation. Based on the dataset 'averages' for intermediate geography areas, generalised linear modelling of respiratory cases showed significant associations with overall soil metal concentration (p = 0.0367) and with deprivation (p < 0.0448). Of the individual soil metals, only nickel showed a significant relationship with respiratory cases (p = 0.0056). Whilst these associations could simply represent concordant lower soil metal concentrations and fewer respiratory cases in the rural versus the urban environment, they are interesting given (1) possible contributions from soil to air particulate loading and (2) known associations between airborne metals like nickel and health. This study also demonstrated a statistically significant correlation (-0.213; p < 0.05) between soil metal concentration and deprivation across Glasgow. This highlights the fact that despite numerous regeneration programmes, the legacy of environmental pollution remains in post-industrial areas of Glasgow many decades after heavy industry has declined. Further epidemiological investigations would be required to determine whether there are any causal links between soil quality and population health/well-being. However, the results of this study suggest that poor soil quality warrants greater consideration in future health and socio-environmental inequality assessments.

  16. Heavy Metal Content in Airborne Dust of Childhood Leukemia Cluster Areas: Even Small Towns Have Air Pollutants

    NASA Astrophysics Data System (ADS)

    Sheppard, P. R.; Witten, M. L.

    2004-12-01

    Currently in the US, there are at least two ongoing clusters of childhood leukemia, where the incidence rate over the last several years has exceeded the national norm. In Fallon, Nevada, a town of 8,000 people, 16 children have been diagnosed with leukemia since 1995, three of whom have died. In Sierra Vista, Arizona, a town of 38,000 people, 12 children have been diagnosed since 1998, two of whom have died. A possible third cluster of childhood leukemia and other cancers is being monitored in Elk Grove, California, a suburb of Sacramento. For the purpose of characterizing the heavy metal content of airborne dust of these three communities, total suspended particulate samples were collected from each town as well as from nearby towns that could be considered as control comparisons. Sampling was done using portable high-volume blowers and glass- or quartz-fiber filter media. Filters were measured for elemental concentrations using inductively coupled plasma mass spectroscopy. To date, our most notable results are from the Nevada region. Compared to other control towns in the region, Fallon had significantly more tungsten in its airborne dust. Uranium was also higher in dust of Fallon than in other control towns. Uranium is a known health hazard, though it is not necessarily specifically related to childhood leukemia. The role of tungsten in childhood leukemia has not been widely studied. However, other research has identified tungsten exposure as an environmental concern in Fallon. A CDC study of human tissue samples from Fallon has shown high tungsten levels in people of Fallon, and a USGS study of drinking water in Fallon also has shown high tungsten there. Tree-ring research on selected trees has shown high tungsten values in recent rings compared to earlier rings. While these multiple indications of tungsten in the Fallon environment do not directly lead to the conclusion that tungsten causes leukemia, they do combine to suggest that biomedical research on the

  17. Testing cosmic geometry without dynamic distortions using voids

    SciTech Connect

    Hamaus, Nico; Sutter, P.M.; Lavaux, Guilhem; Wandelt, Benjamin D. E-mail: sutter@iap.fr E-mail: wandelt@iap.fr

    2014-12-01

    We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.

  18. Voids as a precision probe of dark energy

    SciTech Connect

    Biswas, Rahul; Alizadeh, Esfandiar; Wandelt, Benjamin D.

    2010-07-15

    The shapes of cosmic voids, as measured in spectroscopic galaxy redshift surveys, constitute a promising new probe of dark energy (DE). We forecast constraints on the DE equation of state and its variation from current and future surveys and find that the promise of void shape measurements compares favorably to that of standard methods such as supernovae and cluster counts even for currently available data. Owing to the complementary nature of the constraints, void shape measurements improve the Dark Energy Task Force figure of merit by 2 orders of magnitude for a future large scale experiment such as EUCLID when combined with other probes of dark energy available on a similar time scale. Modeling several observational and theoretical systematics has only moderate effects on these forecasts. We discuss additional systematics which will require further study using simulations.

  19. Quantifying Void Ratio Variation in Sand using Computed Tomography

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Batiste, Susan N.; Swanson, Roy A.; Sture, Stein; Costes, Nicholas C.; Lankton, Mark R.

    1999-01-01

    A series of displacement-controlled, conventional, drained axisymmetric (triaxial) experiments were conducted on dry Ottawa sand specimens at very low effective confining stresses in a microgravity environment aboard the Space Shuttle during the NASA STS-89 mission. Post-flight analysis included studying the internal fabric and failure patterns of these specimens using Computed Tomography (CT). The CT scans of three specimens subjected to different compression levels (uncompressed specimen, a specimen compressed to 3.3% nominal axial strain (epsilon(sub a)), and a specimen compressed to 25% epsilon(sub a)) are presented to investigate the evolution of instability patterns and to quantify void ratio variation. The progress of failure is described and discussed. Also, specimens' densities were calibrated using standard ASTM procedures and void ratio spatial variation was calculated and represented by contour maps and histograms. The CT technique demonstrated good ability to detect specimen inhomogeneities, localization patterns, and quantifying void ratio variation within sand specimens.

  20. Voronoi and void statistics for superhomogeneous point processes.

    PubMed

    Gabrielli, Andrea; Torquato, Salvatore

    2004-10-01

    We study the Voronoi and void statistics of superhomogeneous (or hyperuniform) point patterns in which the infinite-wavelength density fluctuations vanish. Superhomogeneous or hyperuniform point patterns arise in one-component plasmas, primordial density fluctuations in the Universe, and jammed hard-particle packings. We specifically analyze a certain one-dimensional model by studying size fluctuations and correlations of the associated Voronoi cells. We derive exact results for the complete joint statistics of the size of two Voronoi cells. We also provide a sum rule that the correlation matrix for the Voronoi cells must obey in any space dimension. In contrast to the conventional picture of superhomogeneous systems, we show that infinitely large Voronoi cells or voids can exist in superhomogeneous point processes in any dimension. We also present two heuristic conditions to identify and classify any superhomogeneous point process in terms of the asymptotic behavior of the void size distribution. PMID:15600395

  1. Tunnel and Subsurface Void Detection and Range to Target Measurement

    SciTech Connect

    Phillip B. West

    2009-06-01

    Engineers and technicians at the Idaho National Laboratory invented, designed, built and tested a device capable of detecting and measuring the distance to, an underground void, or tunnel. Preliminary tests demonstrated positive detection of, and range to, a void thru as much as 30 meters of top-soil earth. Device uses acoustic driving point impedance principles pioneered by the Laboratory for well-bore physical properties logging. Data receipts recorded by the device indicates constructive-destructive interference patterns characteristic of acoustic wave reflection from a downward step-change in impedance mismatch. Prototype tests demonstrated that interference patterns in receipt waves could depict the patterns indicative of specific distances. A tool with this capability can quickly (in seconds) indicate the presence and depth/distance of a void or tunnel. Using such a device, border security and military personnel can identify threats of intrusion or weapons caches in most all soil conditions including moist and rocky.

  2. Detecting the integrated Sachs-Wolfe effect with stacked voids

    NASA Astrophysics Data System (ADS)

    Ilić, Stéphane; Langer, Mathieu; Douspis, Marian

    2013-08-01

    The stacking of cosmic microwave background (CMB) patches has been recently used to detect the integrated Sachs-Wolfe effect (iSW). When focusing on the locations of superstructures identified in the Sloan Digital Sky Survey (SDSS), Granett et al. (2008a, ApJ, 683, L99, Gr08) found a signal with strong significance and an amplitude reportedly higher than expected within the ΛCDM paradigm. We revisit the analysis using our own robust protocol, and extend the study to the two most recent and largest catalogues of voids publicly available. We quantify and subtract the level of foreground contamination in the stacked images and determine the contribution on the largest angular scales from the first multipoles of the CMB. We obtain the radial temperature and photometry profiles from the stacked images. Using a Monte Carlo approach, we computed the statistical significance of the profiles for each catalogue and identified the angular scale at which the signal-to-noise ratio (S/N) is maximum. We essentially confirm the signal detection reported by Gr08, but for the other two catalogues, a rescaling of the voids to the same size on the stacked image is needed to find any significant signal (with a maximum at ~2.4σ). This procedure reveals that the photometry peaks at unexpectedly large angles in the case of the Gr08 voids, in contrast to voids from other catalogues. Conversely, the photometry profiles derived from the stacked voids of these other catalogues contain small central hot spots of uncertain origin. We also stress the importance of a posteriori selection effects that might arise when intending to increase the S/N, and we discuss the possible impact of void overlap and alignment effects. We argue that the interpretation in terms of an iSW effect of any detected signal via the stacking method is far from obvious.

  3. Voiding trial outcome following pelvic floor repair without incontinence procedures

    PubMed Central

    Wang, Rui; Won, Sara; Haviland, Miriam J.; Bargen, Emily Von; Hacker, Michele R.; Li, Janet

    2016-01-01

    Introduction and hypothesis Our aim was to identify predictors of postoperative voiding trial failure among patients who had a pelvic floor repair without a concurrent incontinence procedure in order to identify low-risk patients in whom postoperative voiding trials may be modified. Methods We conducted a retrospective cohort study of women who underwent pelvic floor repair without concurrent incontinence procedures at two institutions from 1 November 2011 through 13 October 2013 after abstracting demographic and clinical data from medical records. The primary outcome was postoperative retrograde voiding trial failure. We used modified Poisson regression to calculate the risk ratio (RR) and 95 % confidence interval (CI). Results Of the 371 women who met eligibility criteria, 294 (79.2 %) had complete data on the variables of interest. Forty nine (16.7%) failed the trial, and those women were less likely to be white (p = 0.04), more likely to have had an anterior colporrhaphy (p = 0.001), and more likely to have had a preoperative postvoid residual (PVR) ≥150 ml (p = 0.001). After adjusting for race, women were more likely to fail their voiding trial if they had a preoperative PVR of ≥150 ml (RR: 1.9; 95 % CI: 1.1–3.2); institution also was associated with voiding trial failure (RR: 3.0; 95 % CI: 1.6–5.4). Conclusions Among our cohort, postoperative voiding trial failure was associated with a PVR of ≥150 ml and institution at which the surgery was performed. PMID:26886553

  4. Towards understanding the structure of voids in the cosmic web

    NASA Astrophysics Data System (ADS)

    Einasto, J.; Suhhonenko, I.; Hütsi, G.; Saar, E.; Einasto, M.; Liivamägi, L. J.; Müller, V.; Starobinsky, A. A.; Tago, E.; Tempel, E.

    2011-10-01

    Context. According to the modern cosmological paradigm, cosmic voids form in low density regions between filaments of galaxies and superclusters. Aims: Our goal is to see how density waves of different scale combine to form voids between galaxy systems of various scales. Methods: We perform numerical simulations of structure formation in cubes of size 100, and 256 h-1Mpc, with resolutions 2563 and 5123 particles and cells. To understand the role of density perturbations of various scale, we cut power spectra on scales from 8 to 128 h-1Mpc, using otherwise in all cases identical initial random realisations. Results: We find that small haloes and short filaments form all over the simulation box, if perturbations only on scales as large as 8 h-1Mpc are present. We define density waves of scale ≥ 64 h-1Mpc as large, waves of scale ≃ 32 h-1Mpc as medium scale, and waves of scale ≃ 8 h-1Mpc as small scale, within a factor of two. Voids form in regions where medium- and large-scale density perturbations combine in negative parts of the waves because of the synchronisation of phases of medium- and large-scale density perturbations. In voids, the growth of potential haloes (formed in the absence of large-scale perturbations) is suppressed by the combined negative sections of medium- and large-scale density perturbations, so that their densities are less than the mean density, and thus during the evolution their densities do not increase. Conclusions: The phenomenon of large multi-scale voids in the cosmic web requires the presence of an extended spectrum of primordial density perturbations. The void phenomenon is due to the action of two processes: the synchronisation of density perturbations of medium and large scales, and the suppression of galaxy formation in low-density regions by the combined action of negative sections of medium- and large-scale density perturbations.

  5. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    SciTech Connect

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Yip, C.-W.; Kovac, K.; Peebles, P. J. E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, with one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.

  6. Interaction of voids and nanoductility in silica glass.

    PubMed

    Chen, Yi-Chun; Lu, Zhen; Nomura, Ken-Ichi; Wang, Weiqiang; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2007-10-12

    Multimillion-to-billion-atom molecular dynamics simulations are performed to investigate the interaction of voids in silica glass under hydrostatic tension. Nanometer size cavities nucleate in intervoid ligaments as a result of the expansion of Si-O rings due to a bond-switching mechanism, which involves bond breaking between Si-O and bond formation between that Si and a nonbridging O. With further increase in strain, nanocracks form on void surfaces and ligaments fracture through the growth and coalescence of ligament nanocavities in a manner similar to that observed in ductile metallic alloys. PMID:17995183

  7. Dimensionality effects in void-induced explosive sensitivity

    DOE PAGES

    Herring, Stuart Davis; Germann, Timothy Clark; Gronbech-Jensen, Niels

    2016-07-06

    Here, the dimensionality of defects in high explosives controls their heat generation and the expansion of deflagrations from them. We compare the behaviour of spherical voids in three dimensions to that of circular voids in two dimensions. The behaviour is qualitatively similar, but the additional focusing along the extra transverse dimension significantly reduces the piston velocity needed to initiate reactions. However, the reactions do not grow as well in three dimensions, so detonations require larger piston velocities. Pressure exponents are seen to be similar to those for the two-dimensional system.

  8. Studies of selected voids. Surface photometry of faint galaxies in the direction of 1600+18 in Hercules void.

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi

    Surface photometry, coordinates, magnitudes m(B), diameters, position angles and some morphological parameters are presented for ca. 1850 faint galaxies in a field of one square degree centered at 1600+18 (1950) (Hercules void). The distribution of the magnitudes of the galaxies in this direction is compared with ''Log Normal'' and ''Gauss'' ones and with similar results from SDDS studies of galaxies. Some candidates for primeval galaxies -- 38 large Low surface brightness galaxies were detected in the direction of the void. Major axes luminosity profiles are analyzed. Comparison between two different methods for automatic selection and classification -- a new package, based on MIDAS INVENTORY and SExtractor packages have been made.

  9. Comparison results of MOPITT, AIRS and IASI data with ground-based spectroscopic measurements of CO and CH4 total contents

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Elansky, Nikolai; Shtabkin, Yury; Skorokhod, Andrey; Grechko, Eugeny; Pankratova, Natalia; Safronov, Alexandr

    2016-04-01

    A comparative analysis of satellite and ground-based spectroscopic measurements of CO and CH4 total content (CO TC) in the atmosphere in the background and polluted conditions (stations of OIAP RAS and NDACC) for the 2010-2015 time-period. The significant correlation between satellite and ground-based CO TC data for all satellite sensors in background conditions was obtained. Also the empirical private transient relationships between satellite CO MOPITT v6 Joint, AIRS v6, IASI MeTop-A products and the data of solar-tracking ground-based spectrometers are analyzed. Significant correlation between satellite and ground-based data of CO TC was obtained for all satellite sensors if measurements were carried out over unpolluted areas (2010-2014). It was shown that for polluted areas IASI MetOp-A and AIRSv6 data underestimate the actual value of CO TC by the factor of 1.5÷ 2.8. The average correlation between satellite and ground-based data increased significantly for the case if the measurement days, when the height of the planetary boundary layer (PBL) was less than 400-500 meters, were excluded from the comparison. This result was obtained for all of the selected sensors and observational sites. To improve the representativeness of the satellite CO TC data for polluted areas it could be recommended to exclude the days with low height of the PBL from the analysis of spatio-temporal variations and subsequent data assimilation (as example for the CO emissions estimating from powerful surface sources). Best correlation (R2≥0.5) in diurnal CH4 TC with ground-based data was found for AIRS v6. This work has supported by the Russian Scientific Foundation under grant №14-47-00049 and partially by the Russian Foundation for Basic Research (grant № 13-05-41395).

  10. Effects of season and low-level air pollution on physiology and element content of lichens from the U.S. Pacific Northwest.

    PubMed

    Ra, H S Y; Geiser, L H; Crang, R F E

    2005-05-01

    Lichens were collected from three low-elevation sites in the western Cascade Range: HJ Andrews, OR (clean) and Bull Run, OR, and Pack Forest, WA (moderately enhanced nitrogen and sulfur deposition). The latter sites were within 50 km of Portland and Seattle/Centralia urban-industrial areas, respectively. Tissue concentrations of sulfur, nitrogen, and other macronutrients; rates of net carbon uptake; concentrations of photosynthetic pigments; and thallus density were correlated with season and seasonal changes in Platismatia glauca. Ion concentrations in precipitation and total wet deposition were measured from natural settings. Concentrations of depositional ions in precipitation, including NO3- and NH4+, were generally highest at Bull Run and Pack Forest; SO4(2-) concentrations and acidity were highest at Pack Forest. Total wet deposition was higher in the winter rainy season than the dry summer season at all three sites. Lichens adapted physiologically and morphologically to the higher light intensity and the warm, dry climate of summer through decreased optimal water content for CO2 uptake, increased concentrations of carotenoids and increased thallus density. Compared to the clean site, the sites with enhanced deposition were associated in P. glauca with year-round higher tissue concentrations of N, S, K, and Na; higher concentrations of total chlorophyll and carotenoids; higher OD435/415 ratios; higher CO2 uptake and lower thallus density in summer; and a general absence of other sensitive lichens. These results indicate that moderate levels of fertilizing air pollutants can stimulate carbon uptake and provide protection against chlorophyll degradation in air pollution-tolerant lichens of the Pacific Northwest, especially during the dry summer season.

  11. Answers from the Void: VIDE and its Applications

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Hamaus, N.; Pisani, A.; Lavaux, G.; Wandelt, B. D.

    2016-10-01

    We discuss various applications ofvide, the Void IDentification and Examination toolkit, anopen-source Python/C++ code for finding cosmic voids in galaxy redshift surveysand $N$-body simulations.Based on a substantially enhanced version of ZOBOV, vide not only finds voids, but alsosummarizes their properties, extracts statisticalinformation, and providesa Python-based platform for more detailed analysis, such asmanipulating void catalogs and particle members, filtering, plotting,computing clustering statistics, stacking, comparing catalogs, andfitting density profiles.vide also provides significant additional functionality forpre-processing inputs: for example, vide can work with volume- ormagnitude-limited galaxy samples with arbitrary survey geometries,or darkmatter particles or halo catalogs in a variety of common formats.It can also randomly subsample inputsand includes a Halo Occupation Distribution model forconstructing mock galaxy populations.vide has been used for a wide variety of applications, fromdiscovering a universal density profile to estimatingprimordial magnetic fields, andis publicly available athttp://bitbucket.org/cosmicvoids/vide\\_publicandhttp://www.cosmicvoids.net.

  12. Voids in Jovian magnetosphere revisited - Evidence of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Khurana, K. K.; Kivelson, M. G.; Walker, R. J.; Armstrong, T. P.

    1987-01-01

    The Voyager 2 Plasma Science Instrument (PLS) measuring cold plasma number density observed about a dozen 'voids', lasting from a few minutes to 20 min, in the vicinity of the Ganymede-orbit crossing, when the low-energy ion and electron fluxes recorded fell to very low levels. Original interpretations associated these 'voids' with Ganymede wake effects. In the present study, the PLS data are reexamined, in conjunction with data from the magnetic field experiment and the low-energy charged particle (LECP) experiment. The LECP data showed that the PLS voids were accompanied by large enhancements of the flux of energetic electrons and ions, while the magnetic data exhibited no systematic signatures. It is suggested that increased energetic electron fluxes in the void regions intermittently charged the spacecraft negatively to values between a few kV and a few tens of kV, and that spacecraft charging could have produce dropouts in the measured cold ion and electron fluxes and enhancements in the measured fluxes of hot particles consistent with the observations.

  13. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    SciTech Connect

    Stanonik, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Peebles, P. J. E.

    2009-05-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an H I survey of SDSS void galaxies, with no optical counterpart to the H I polar disk. Yet the H I mass in the disk is comparable to the stellar mass in the galaxy. This suggests slow accretion of the H I material at a relatively recent time. There is also a hint of a warp in the outer parts of the H I disk. The central, stellar disk appears relatively blue, with faint near-UV emission, and is oriented (roughly) parallel to the surrounding wall, implying gas accretion from the voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies.

  14. The Effect of Random Voids in the Modified Gurson Model

    NASA Astrophysics Data System (ADS)

    Fei, Huiyang; Yazzie, Kyle; Chawla, Nikhilesh; Jiang, Hanqing

    2012-02-01

    The porous plasticity model (usually referred to as the Gurson-Tvergaard-Needleman model or modified Gurson model) has been widely used in the study of microvoid-induced ductile fracture. In this paper, we studied the effects of random voids on the porous plasticity model. Finite-element simulations were conducted to study a copper/tin/copper joint bar under uniaxial tension using the commercial finite-element package ABAQUS. A randomly distributed initial void volume fraction with different types of distribution was introduced, and the effects of this randomness on the crack path and macroscopic stress-strain behavior were studied. It was found that consideration of the random voids is able to capture more detailed and localized deformation features, such as different crack paths and different ultimate tensile strengths, and meanwhile does not change the macroscopic stress-strain behavior. It seems that the random voids are able to qualitatively explain the scattered observations in experiments while keeping the macroscopic measurements consistent.

  15. Liquid crystals detect voids in fiber glass laminates

    NASA Technical Reports Server (NTRS)

    Hollar, W. T.

    1967-01-01

    Liquid crystal solution nondestructively detects voids or poor bond lines in fiber glass laminates. A thin coating of the solution is applied by spray or brush to the test article surface, and when heated indicates the exact location of defects by differences in color.

  16. Kinetic Monte Carlo simulations of void lattice formation during irradiation

    NASA Astrophysics Data System (ADS)

    Heinisch, H. L.; Singh, B. N.

    2003-11-01

    Over the last decade, molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed production bias model (PBM) of microstructure evolution under irradiation has been structured specifically to take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role that crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and self-interstitial atom (SIA) clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.

  17. A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters

    PubMed Central

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost “open hardware” platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSEtraining = 2.63; RMSEvalidation = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  18. Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content

    NASA Astrophysics Data System (ADS)

    Saenko, Oleg A.; Yang, Duo; Gregory, Jonathan M.; Spence, Paul; Myers, Paul G.

    2015-08-01

    We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the "thermal" (near-surface air temperature) and "wind" (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the "thermal" forcing, whereas it is more due to the "wind" forcing in the North Pacific; in the Southern Ocean, the "thermal" and "wind" forcing have a comparable influence. In the ocean adjacent to Antarctica the "thermal" forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the "wind" forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the "thermal" and "wind" forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the "thermal" forcing.

  19. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters.

    PubMed

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-10-21

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost "open hardware" platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSE(training) = 2.63; RMSE(validation) = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies.

  20. A constitutive model for elastoplastic solids containing primary and secondary voids

    NASA Astrophysics Data System (ADS)

    Fabrègue, D.; Pardoen, T.

    In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional

  1. In Situ Void Fraction and Gas Volume in Hanford Tank 241-SY-101 as Measured with the Void Fraction Instrument

    SciTech Connect

    CW Stewart; G Chen; JM Alzheimer; PA Meyer

    1998-11-10

    The void fraction instrument (WI) was deployed in Tank 241-SY-101 three times in 1998 to confm and locate the retained gas (void) postulated to be causing the accelerating waste level rise observed since 1995. The design, operation, and data reduction model of the WI are described along with validation testing and potential sources of uncertainty. The test plans, field observations and void measurements are described in detail, including the total gas volume calculations and the gas volume model. Based on 1998 data, the void fraction averaged 0.013 i 0.001 in the mixed slurry and 0.30 ~ 0.04 in the crust. This gives gas volumes (at standard pressure and temperature) of 87 t 9 scm in the slurry and 138 ~ 22 scm in the crust for a total retained gas volume of221 *25 scm. This represents an increase of about 74 scm in the crust and a decrease of about 34 scm in the slurry from 1994/95 results. The overall conclusion is that the gas retention is occurring mainly in the crust layer and there is very little gas in the mixed slurry and loosely settled layers below. New insights on crust behavior are also revealed.

  2. Effect of water vapour condensation on the radon content in subsurface air in a hypogeal inactive-volcanic environment in Galdar cave, Spain

    NASA Astrophysics Data System (ADS)

    Fernandez-Cortes, A.; Benavente, D.; Cuezva, S.; Cañaveras, J. C.; Alvarez-Gallego, M.; Garcia-Anton, E.; Soler, V.; Sanchez-Moral, S.

    2013-08-01

    Fluctuations of trace gas activity as a response to variations in weather and microclimate conditions were monitored over a year in a shallow volcanic cave (Painted Cave, Galdar, Canary Islands, Spain). 222Rn concentration was used due to its greater sensitivity to hygrothermal variations than CO2 concentration. Radon concentration in the cave increases as effective vapour condensation within the porous system of the rock surfaces inside the cave increases due to humidity levels of more than 70%. Condensed water content in pores was assessed and linked to a reduction in the direct passage of trace gases. Fluctuations in radon activity as a response to variations in weather and microclimate conditions were statistically identified by clustering entropy changes on the radon signal and parameterised to predict radon concentration anomalies. This raises important implications for other research fields, including the surveillance of shallow volcanic and seismic activity, preventive conservation of cultural heritage in indoor spaces, indoor air quality control and studies to improve understanding of the role of subterranean terrestrial ecosystems as reservoirs and/or temporary sources of trace gases.

  3. Rapid assessment of methanotrophic capacity of compost-based materials considering the effects of air-filled porosity, water content and dissolved organic carbon.

    PubMed

    Mancebo, Uriel; Hettiaratchi, J Patrick A

    2015-02-01

    Since the global warming potential of CH4 is 25 times that of CO2 on a 100-year time horizon, the development of methanotrophic applications for the conversion of CH4 to CO2 is emerging as an area of interest for researchers and practicing engineers. Compost exhibits most of the characteristics required for methanotroph growth media and has been used in several projects. This paper presents results from a study that was undertaken to assess the influence of physical and chemical characteristics of compost-based materials on the biological oxidation of CH4 when used in methane biofilters. The results showed that easily-measurable parameters, such as air filled porosity, water content and dissolved organic carbon, are correlated with maximum CH4 removal rates. The results obtained were used to develop an empirical relationship that could be regarded as a rapid assessment tool for the estimation of the performance of compost-based materials in engineered methanotrophic applications. PMID:25484123

  4. Hypobaric Conditions Within Rock Void Spaces on Mars will Likely Inhibit the Replication of Terrestrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Schuerger, A. C.; Britt, D.

    2011-03-01

    Internal void spaces within rocks outgas rapidly under simulated martian conditions. Water activity and pressure within rock void spaces are not sufficient to permit the replication of terrestrial microorganisms from spacecraft on Mars.

  5. Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.

    1991-01-01

    Surface collapse over abandoned subsurface coal mines is a problem in many parts of the world. High-resolution P-wave reflection seismology was successfully used to evaluate the risk of an active sinkhole to a main north-south railroad line in an undermined area of southeastern Kansas, USA. Water-filled cavities responsible for sinkholes in this area are in a 0.6 m thick coal seam, 7 m deep. Dominant reflection frequencies in excess of 200 Hz enabled reflections from the coal seam to be discerned from the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the "room and pillar" mining technique practiced in this area near the turn of the century. The seismic survey showed that the apparent active sinkhole was not the result of reactivated subsidence but probably erosion. ?? 1991.

  6. Self-similarity and universality of void density profiles in simulation and SDSS data

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2015-06-01

    The stacked density profile of cosmic voids in the galaxy distribution provides an important tool for the use of voids for precision cosmology. We study the density profiles of voids identified using the ZOBOV watershed transform algorithm in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. We compare different methods for reconstructing density profiles scaled by the void radius and show that the most commonly used method based on counts in shells and simple averaging is statistically flawed as it underestimates the density in void interiors. We provide two alternative methods that do not suffer from this effect; one based on Voronoi tessellations is also easily able to account from artefacts due to finite survey boundaries and so is more suitable when comparing simulation data to observation. Using this method, we show that the most robust voids in simulation are exactly self-similar, meaning that their average rescaled profile does not depend on the void size. Within the range of our simulation, we also find no redshift dependence of the mean profile. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The mean profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  7. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3045 Resorbable calcium salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device...

  8. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3045 Resorbable calcium salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device...

  9. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  10. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  11. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  12. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  13. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  14. On the void explanation of the Cold Spot

    NASA Astrophysics Data System (ADS)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.; Vielva, P.

    2016-07-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω, the ISW contribution due to the presence of the void does not reproduce the properties of the CS.

  15. Shock wave induced damage of a protein by void collapse

    DOE PAGES

    Lau, Edmond Y.; Berkowitz, Max L.; Schwegler, Eric R.

    2016-01-05

    In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shockwaves on a membrane bound ion channel. A planar shockwave was found to compress the ion channel upon impact but the protein geometry resembles the initial structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shockwave proved to be much more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significantmore » structural changes to the protein even at low particle velocities that are not able to directly cause poration of the membrane.« less

  16. The ISW imprints of voids and superclusters on the CMB

    NASA Astrophysics Data System (ADS)

    Hotchkiss, S.; Nadathur, S.; Gottlöber, S.; Iliev, I. T.; Knebe, A.; Watson, W. A.; Yepes, G.

    2016-10-01

    We examine the stacked integrated Sachs-Wolfe (ISW) imprints on the CMB along the lines of sight of voids and superclusters in galaxy surveys, using the Jubilee ISW simulation and mock luminous red galaxy (LRG) catalogues. We show that the expected signal in the concordance \\Lam CDM model is much smaller than the primary anisotropies arising at the last scattering surface and therefore any currently claimed detections of such an imprint cannot be caused by the ISW effect in \\Lam CDM. We look for the existence of such a signal in the Planck CMB using a catalogue of voids and superclusters from the Sloan Digital Sky Survey (SDSS), but find a result completely consistent with \\Lam CDM - i.e., a null detection.

  17. A new least-squares transport equation compatible with voids

    SciTech Connect

    Hansen, J. B.; Morel, J. E.

    2013-07-01

    We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)

  18. Stem cell therapy for voiding and erectile dysfunction

    PubMed Central

    Vaegler, Martin; Lenis, Andrew T; Daum, Lisa; Renninger, M; Bastian, Amend; Stenzl, Arnulf; Damaser, Margot S; Sievert, Karl-Dietrich

    2013-01-01

    Voiding dysfunction comprises a variety of disorders, including stress urinary incontinence and overactive bladder, and affects millions of men and women worldwide. Erectile dysfunction (ED) also decreases quality of life for millions of men, as well as for their partners. Advanced age and diabetes are common comorbidities that can exacerbate and negatively impact upon the development of these disorders. Therapies that target the pathophysiology of these conditions to halt progression are not currently available. However, stem cell therapy could fill this therapeutic void. Stem cells can reduce inflammation, prevent fibrosis, promote angiogenesis, recruit endogenous progenitor cells, and differentiate to replace damaged cells. Adult multipotent stem cell therapy, in particular, has shown promise in case reports and preclinical animal studies. Stem cells have also enabled advances in urological tissue engineering by facilitating ex vivo construction of bladder wall and urethral tissue (using a patient's own cells) prior to transplantation. More recent studies have focused on bioactive factor secretion and homing of stem cells. In the future, clinicians are likely to utilize allogeneic stem cell sources, intravenous systemic delivery, and ex vivo cell enhancement to treat voiding dysfunction and ED. PMID:22710667

  19. Using Digital Radiography To Image Liquid Nitrogen in Voids

    NASA Technical Reports Server (NTRS)

    Cox, Dwight; Blevins, Elana

    2007-01-01

    Digital radiography by use of (1) a field-portable x-ray tube that emits low-energy x rays and (2) an electronic imaging x-ray detector has been found to be an effective technique for detecting liquid nitrogen inside voids in thermal-insulation panels. The technique was conceived as a means of investigating cryopumping (including cryoingestion) as a potential cause of loss of thermal insulation foam from space-shuttle external fuel tanks. The technique could just as well be used to investigate cryopumping and cryoingestion in other settings. In images formed by use of low-energy x-rays, one can clearly distinguish between voids filled with liquid nitrogen and those filled with gaseous nitrogen or other gases. Conventional film radiography is of some value, but yields only non-real-time still images that do not show time dependences of levels of liquids in voids. In contrast, the present digital radiographic technique yields a succession of images in real time at a rate of about 10 frames per second. The digitized images can be saved for subsequent analysis to extract data on time dependencies of levels of liquids and, hence, of flow paths and rates of filling and draining. The succession of images also amounts to a real-time motion picture that can be used as a guide to adjustment of test conditions.

  20. The distribution of IRAS galaxies towards the Bootes void

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Huchra, John

    1988-01-01

    A redshift survey was completed for 342 galaxies detected by the IRAS in the direction of the Bootes void discovered by Kirshner et al. The number density of IRAS galaxies is well determined from the shallower full-sky redshift survey of Strauss et al. Four IRAS galaxies are found within the void as defined by Kirshner et al., of which three are part of a complete sample, implying a density depression of a factor of 4. The underdense region continues to a distance of at least 4000 km/s from the nominal center of the void. Three of the IRAS galaxies studied in this paper were previously unknown. These galaxies have emission-line spectra characteristic of H II regions, and red continuum magnitudes ranging from 16 to 17.5 mag, and thus are bright enough to have been detected in a wide-angle redshift survey as deep as that of Kirshner et al. The luminosity function derived from this sample is in good agreement with that of Lawrence et al.

  1. Nebular metallicities in two isolated local void dwarf galaxies

    SciTech Connect

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  2. Void-containing materials with tailored Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Goussev, Olga A.; Richner, Peter; Rozman, Michael G.; Gusev, Andrei A.

    2000-10-01

    Assuming square, hexagonal, and random packed arrays of nonoverlapping identical parallel cylindrical voids dispersed in an aluminum matrix, we have calculated numerically the concentration dependence of the transverse Poisson's ratios. It was shown that the transverse Poisson's ratio of the hexagonal and random packed arrays approached 1 upon increasing the concentration of voids while the ratio of the square packed array along the principal continuation directions approached 0. Experimental measurements were carried out on rectangular aluminum bricks with identical cylindrical holes drilled in square and hexagonal packed arrays. Experimental results were in good agreement with numerical predictions. We then demonstrated, based on the numerical and experimental results, that by varying the spatial arrangement of the holes and their volume fraction, one can design and manufacture voided materials with a tailored Poisson's ratio between 0 and 1. In practice, those with a high Poisson's ratio, i.e., close to 1, can be used to amplify the lateral responses of the structures while those with a low one, i.e., close to 0, can largely attenuate the lateral responses and can therefore be used in situations where stringent lateral stability is needed.

  3. A method for determining void arrangements in inverse opals.

    PubMed

    Blanford, C F; Carter, C B; Stein, A

    2004-12-01

    The periodic arrangement of voids in ceramic materials templated by colloidal crystal arrays (inverse opals) has been analysed by transmission electron microscopy. Individual particles consisting of an approximately spherical array of at least 100 voids were tilted through 90 degrees along a single axis within the transmission electron microscope. The bright-field images of these particles at high-symmetry points, their diffractograms calculated by fast Fourier transforms, and the transmission electron microscope goniometer angles were compared with model face-centred cubic, body-centred cubic, hexagonal close-packed, and simple cubic lattices in real and reciprocal space. The spatial periodicities were calculated for two-dimensional projections. The systematic absences in these diffractograms differed from those found in diffraction patterns from three-dimensional objects. The experimental data matched only the model face-centred cubic lattice, so it was concluded that the packing of the voids (and, thus, the polymer spheres that composed the original colloidal crystals) was face-centred cubic. In face-centred cubic structures, the stacking-fault displacement vector is a/6<211> . No stacking faults were observed when viewing the inverse opal structure along the orthogonal <110>-type directions, eliminating the possibility of a random hexagonally close-packed structure for the particles observed. This technique complements synchrotron X-ray scattering work on colloidal crystals by allowing both real-space and reciprocal-space analysis to be carried out on a smaller cross-sectional area.

  4. Global representation of tropical cyclone-induced ocean thermal changes using Argo data - Part 2: Estimating air-sea heat fluxes and ocean heat content changes

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Zhu, J.; Sriver, R. L.

    2014-12-01

    We use Argo temperature data to examine changes in ocean heat content (OHC) and air-sea heat fluxes induced by tropical cyclones (TC)s on a global scale. A footprint technique that analyzes the vertical structure of cross-track thermal responses along all storm tracks during the period 2004-2012 is utilized (see part I). We find that TCs are responsible for 1.87 PW (11.05 W m-2 when averaging over the global ocean basin) of heat transfer annually from the global ocean to the atmosphere during storm passage (0-3 days) on a global scale. Of this total, 1.05 ± 0.20 PW (4.80 ± 0.85 W m-2) is caused by Tropical storms/Tropical depressions (TS/TD) and 0.82 ± 0.21 PW (6.25 ± 1.5 W m-2) is caused by hurricanes. Our findings indicate that ocean heat loss by TCs may be a substantial missing piece of the global ocean heat budget. Net changes in OHC after storm passage is estimated by analyzing the temperature anomalies during wake recovery following storm events (4-20 days after storm passage) relative to pre-storm conditions. Results indicate the global ocean experiences a 0.75 ± 0.25 PW (5.98 ± 2.1W m-2) net heat gain annually for hurricanes. In contrast, under TS/TD conditions, ocean experiences 0.41 ± 0.21 PW (1.90 ± 0.96 W m-2) net ocean heat loss, suggesting the overall oceanic thermal response is particularly sensitive to the intensity of the event. The net ocean heat uptake caused by all storms is 0.34 PW.

  5. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf. PMID:26521001

  6. Effects of surface energy anisotropy on void evolution during irradiation: A phase-field model

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Wang, N.; Ji, Y. Z.; Song, P. C.; Zhang, C.; Yang, Z. G.; Chen, L. Q.

    2016-10-01

    A phase-field model is employed to investigate the effects of surface energy anisotropy on void evolution during irradiation. By incorporating a simple orientation dependent surface energy with sharp cusps on given crystallographic orientations, experimentally observed void shape with facets and rounded corners is captured. When applied to polycrystalline materials, grain dependent void morphologies are predicted, and the simulation results are qualitatively similar to reported void morphologies in irradiated copper. In addition, the formation of void denuded zones and vacancy depleted zones adjacent to the grain boundaries (GBs) in bicrystalline and polycrystalline structures are studied.

  7. Recovery and characterization of Balanites aegyptiaca Del. kernel proteins. Effect of defatting, air classification, wet sieving and aqueous ethanol treatment on solubility, digestibility, amino acid composition and sapogenin content.

    PubMed

    Mohamed, A M; Wolf, W; Spiess, W E

    2000-02-01

    In order to find alternative protein sources in African regions where protein deficiency in nutrition is prevailing, solubility, in-vitro digestibility, amino acid composition and chemical score of Balanites aegyptiaca Del. kernel proteins were investigated as a function of different processing steps including defatting, air classification, wet sieving and aqueous ethanol treatment. Air classification delivered a fine fraction of 58.1% of the total protein. Applying a wet sieving process, a protein concentrate of 72.9% protein content was achieved but the recovery was very low (35.6%). However, in case of isoelectric precipitation followed by aqueous ethanol treatment both protein content (78.2%) and recovery (53.7%) were high. Data concerning the chemical score revealed, that lysine content of the defatted kernel flour amounted to 74.2% of the recommended FAO/WHO standard level. In-vitro protein digestibility was found to be higher than of legume proteins. The digestible protein of the full fat flour, defatted flour, air classified and wet sieved fine fractions and protein concentrate were 91.9, 93.7, 82.0, 86.4 and 94.2%, respectively. The sapogenin content per 100 g protein of the investigated protein preparations was significantly lower (46% to 62%) than of the initial material (oilcake).

  8. Is the far border of the Local Void expanding?

    NASA Astrophysics Data System (ADS)

    Iwata, I.; Chamaraux, P.

    2011-07-01

    Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National

  9. Theoretical analysis of electromigration-induced failure of metallic thin films due to transgranular void propagation

    SciTech Connect

    Gungor, M.R.; Maroudas, D.

    1999-02-01

    Failure of metallic thin films driven by electromigration is among the most challenging materials reliability problems in microelectronics toward ultra-large-scale integration. One of the most serious failure mechanisms in thin films with bamboo grain structure is the propagation of transgranular voids, which may lead to open-circuit failure. In this article, a comprehensive theoretical analysis is presented of the complex nonlinear dynamics of transgranular voids in metallic thin films as determined by capillarity-driven surface diffusion coupled with drift induced by electromigration. Our analysis is based on self-consistent dynamical simulations of void morphological evolution and it is aided by the conclusions of an approximate linear stability theory. Our simulations emphasize that the strong dependence of surface diffusivity on void surface orientation, the strength of the applied electric field, and the void size play important roles in the dynamics of the voids. The simulations predict void faceting, formation of wedge-shaped voids due to facet selection, propagation of slit-like features emanating from void surfaces, open-circuit failure due to slit propagation, as well as appearance and disappearance of soliton-like features on void surfaces prior to failure. These predictions are in very good agreement with recent experimental observations during accelerated electromigration testing of unpassivated metallic films. The simulation results are used to establish conditions for the formation of various void morphological features and discuss their serious implications for interconnect reliability. {copyright} {ital 1999 American Institute of Physics.}

  10. Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers

    NASA Astrophysics Data System (ADS)

    Lee, Dongho; Lee, Jaehan; Heo, Sung; Park, Jong-Bong; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop; Kang, Yoonmook

    2015-02-01

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.

  11. THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS

    SciTech Connect

    Krause, Elisabeth; Dore, Olivier; Chang, Tzu-Ching; Umetsu, Keiichi

    2013-01-10

    The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias.

  12. Radiation-induced formation, annealing and ordering of voids in crystals: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Guglya, A. G.; Donnelly, S. E.

    2011-07-01

    Void ordering has been observed in very different radiation environments ranging from metals to ionic crystals bombarded with energetic particles. The void ordering is often accompanied by a saturation of the void swelling with increasing irradiation dose, which makes an understanding of the underlying mechanisms to be both of scientific significance and of practical importance for nuclear engineering. We show that both phenomena can be explained by the original mechanism based on the anisotropic energy transfer provided by self-focusing discrete breathers or quodons (energetic, mobile, highly localized lattice solitons that propagate great distances along close-packed crystal directions). The interaction of quodons with voids can result in radiation-induced “annealing” of selected voids, which results in the void ordering under special irradiation conditions. We observe experimentally radiation-induced void annealing by lowering the irradiation temperature of nickel and copper samples pre-irradiated to produce voids or gas bubbles. The bulk recombination of Frenkel pairs increases with decreasing temperature resulting in suppression of the production of freely migrating vacancies (the driving force of the void growth). On the other hand, the rate of radiation-induced vacancy emission from voids due to the void interaction with quodons remains essentially unchanged, which results in void dissolution. The experimental data on the void shrinkage and void lattice formation obtained for different metals and irradiating particles are explained by the present model assuming the quodon propagation length to be in the micron range, which is consistent with independent data on the irradiation-induced diffusion of interstitial ions in austenitic stainless steel.

  13. Classifying ice water content profiles of high-level clouds from AIRS/CALIPSO/CloudSat observations to better assess cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Feofilov, Artem; Stubenrauch, Claudia; Armante, Raymond

    2013-04-01

    About 40% of all clouds on Earth are high-level clouds (< 440 hPa), which have a noticeable effect on the energetic budget of the atmosphere: optically thick clouds reflect the incoming solar radiation while thinner clouds act as "greenhouse films" preventing escape of the Earth's infrared radiation to space. Accurate modelling of the radiative properties of high-level clouds is essential both for estimating their energetic effects and for the retrieval of bulk microphysical properties from infrared observations. It requires knowing the scattering and absorbing characteristics of cloud particles, amount of ice in the cloud, and variation of these parameters if the cloud is extended. In this work, we concentrate on vertical distribution of ice water content (IWC) in the high-level ice clouds. For the analysis, we used a synergy of the active and passive sounders of the A-Train satellite constellation. Relatively high spectral resolution of the Atmospheric InfraRed Sounder (AIRS) allows the identification of cirrus clouds and the retrieval of their physical and bulk microphysical properties as well as their horizontal extent. Active sounders, the CALIPSO lidar and the CloudSat radar, provide the vertical structure of the clouds: the radar-lidar GEOPROF dataset (Mace et al., 2007) contains the vertical extent and position of each cloud layer while the liDARraDAR dataset (Delanoë and Hogan, 2010) gives the IWC profiles and effective ice crystal sizes. In addition, we use environmental parameters from ERA Interim reanalyses. We have classified IWC vertical distributions according to their profile shape and found that a) they can be sub-divided into four major types; b) profile shape mainly depends on the integrated IWC of the cloud; c) there is a weak correlation between vertical wind and dominating profile type. We discuss an impact of different IWC profile types on the energetics of the atmosphere and on bulk microphysical properties retrieval, using the calculations

  14. Voiding dysfunction in women: How to manage it correctly

    PubMed Central

    Abdel Raheem, A.; Madersbacher, Helmut

    2013-01-01

    Introduction Of women aged >40 years, 6% have voiding dysfunction (VD), but the definition for VD in women with respect to detrusor underactivity (DU) and bladder outlet obstruction (BOO) is not yet clear. In this review we address the current literature to define the diagnosis and treatment of VD more accurately. Methods We used the PubMed database (1975–2012) and searched for original English-language studies using the keywords ‘female voiding dysfunction’, ‘detrusor underactivity’, ‘acontractile detrusor’ and ‘bladder outlet obstruction and urinary retention in women’. We sought studies including the prevalence, aetiology, pathogenesis, diagnosis and treatment of female VD. Results In all, 20 original studies were identified using the selected search criteria, and another 45 were extracted from the reference lists of the original papers. All studies were selected according to their relevance to the current topic and the most pertinent reports were incorporated into this review. Conclusion Female VD might be related to DU or/and BOO. Voiding and storage symptoms can coexist, making the diagnosis challenging, with the need for a targeted clinical investigation, and further evaluation by imaging and urodynamics. To date there is no universally accepted precise diagnostic criterion to diagnose and quantify DU and BOO in women. For therapy, a complete cure might not be possible for patients with VD, therefore relieving the symptoms and minimising the long-term complications associated with it should be the goal. Treatment options are numerous and must be applied primarily according to the underlying pathophysiology, but also considering disease-specific considerations and the abilities and needs of the individual patient. The treatment options range from behavioural therapy, intermittent (self-)catheterisation, and electrical neuromodulation and neurostimulation, and up to urinary diversion in rare cases. PMID:26558099

  15. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  16. Evaluation and Targeted Therapy of Voiding Dysfunction in Children.

    PubMed

    Palmer, Lane S

    2016-06-01

    Significant strides have been made over the past two decades in more precisely evaluating and managing children with voiding complaints. A thorough history should offer insight into the possible causes for the presenting complaints and this should be supplemented by physical examination, urine studies, and select imaging. Uroflowmetry and external sphincter electromyography with measurement of postvoid residual urine should allow for accurate diagnosis using categories offered by the International Children's Continence Society. This ability to make an accurate diagnosis should naturally lead to the use of treatment options (urotherapy, pharmacotherapy, biofeedback, and neuromodulation) that specifically target the responsible cause of the complaints rather than simply their symptoms.

  17. Topology and dark energy: testing gravity in voids.

    PubMed

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-13

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  18. Reactivity effects of void formations in a solution critical assembly

    SciTech Connect

    Walters, S.G.

    1994-01-01

    SHEBA II (Solution High Energy Burst Assembly) was constructed in order to better understand the neutronics of solutions of fissile materials. In order to estimate the effect on criticality from the formation of bubbles, models were devised in MCNP (Monte Carlo Neutron Photon transport code) and THREEDANT (THREE dimensional, Diffusion-Accelerated, Neutral-Particle Transport). It was found that the formation of voids in all but the outside bottom edge of the assembly cylinder tend to act as a negative insertion of reactivity. Also, an experiment has been designed which will verify the results of the codes.

  19. Urethane foam void filling. Innovative technology summary report

    SciTech Connect

    1998-12-01

    Under the decontamination and decommissioning (D and D) Implementation Plan of the United States Department of Energy`s (DOE`s) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP`s OSDF are provisions to protect against subsidence of the OSDF`s cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create depressions in the OSDF`s cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP`s OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene torch was the baseline approach used by the FEMP`s D and D contractor on Plant 1, B and W Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, it is time-consuming, labor-intensive and costly. Use of the oxy-acetylene torch exposes workers to health and safety hazards including the risk of burns, carbon monoxide, and airborne contamination of residual lead-based paints and other contaminants on the surface of the components being segmented. In addition, solvents used to remove paint from the components before segmenting them emit flammable, noxious fumes. This demonstration investigated the feasibility of placing large vessels intact in the OSDF without segmenting them. To prevent the walls of the vessels from collapsing under the overburden or from degradation, an innovative approach was employed which involved filling the voids in the vessels with a fluid material that hardened on standing. The hardened filling would support the walls of the vessels, and prevent them from collapsing. This report

  20. A study of void size growth in nonequilibrium stochastic systems of point defects

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Bashtova, Anna I.

    2016-05-01

    We study properties of voids growth dynamics in a stochastic system of point defects in solids under nonequilibrium conditions (sustained irradiation). It is shown that fluctuations of defect production rate (external noise) increase the critical void radius comparing to a deterministic system. An automodel regime of void size growth in a stochastic system is studied in detail. Considering a homogeneous system, it is found that external noise does not change the universality of the void size distribution function; the mean void size evolves according to classical nucleation theory. The noise increases the mean void size and spreads the void size distribution. Studying dynamics of spatially extended systems it was shown that vacancies remaining in a matrix phase are able to organize into vacancy enriched domains due to an instability caused by an elastic lattice deformation. It is shown that dynamics of voids growth is defined by void sinks strength with void size growth exponent varying from 1/3 up to 1/2.

  1. Three-dimensional simulations of dynamics of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Kapahi, A.; Udaykumar, H. S.

    2015-03-01

    This work presents the response of a porous heterogeneous energetic material subjected to severe loading conditions. Spherical voids are embedded in an otherwise homogeneous material with the mechanical properties of condensed phase explosives. The effect of imposed shocks on spherical (three-dimensional) voids is compared with the cylindrical (two-dimensional) voids studied in an earlier work, in terms of energy deposition and the maximum temperature reached in the material as the void collapses. It is observed that there is a significant rise in maximum temperature of the energetic material in the presence of spherical voids compared to cylindrical voids. In addition to increasing the maximum temperature, the three-dimensional effects also influence the energy distribution as the void collapses. This study also compares mutual void-void interactions by analyzing different relative positions between two voids for both cylindrical and spherical shapes. Apart from the comparison, this study reinforces the importance of micro-scale dynamics in understanding and quantifying the response of an energetic material to shock loading.

  2. Velocity and void distribution in a counter-current two-phase flow

    SciTech Connect

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities from flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)

  3. Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2008-12-01

    We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenological model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions

  4. Influence of cobalt and manganese content on the dehydrogenation capacity and kinetics of air-exposed LaNi 5+ x-type alloys in solid gas and electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.

    The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.

  5. Conversion of stacking fault tetrahedra to voids in electron irradiated Fe-Cr-Ni

    NASA Astrophysics Data System (ADS)

    Kojima, S.; Sano, Y.; Yoshiie, T.; Yoshida, N.; Kiritani, M.

    1986-11-01

    Electron irradiations of the austenitic Fe-13Cr-14Ni alloy were performed with a high voltage electron microscope at temperatures between room temperature and 650 K. Formation of stacking fault tetrahedra, voids and dislocation loops was observed as vacancy clusters. At the lower temperatures, the dominant vacancy clusters were tetrahedra and at the higher temperatures, voids were dominant. In the temperature range at which both tetrahedra and voids were coexistent, conversion of tetrahedra to voids were observed. These results are interpreted as the preferable nucleation of voids at the site of tetrahedra. Local effects of dilatation field at the corner of tetrahedra and the segregation of solute atoms are considered to enhance the nucleation. Clustered defects which are considered to be stacking fault tetrahedra that are formed with D-T fusion neutrons in SUS 316 stainless steel are suggested as the preferable site for void nucleation.

  6. Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

    NASA Astrophysics Data System (ADS)

    Song, Miao; Du, Kui; Wang, Chunyang; Wen, Shengping; Huang, Hui; Nie, Zuoren; Ye, Hengqiang

    2016-05-01

    The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

  7. Method of simulating spherical voids for use as a radiographic standard

    DOEpatents

    Foster, Billy E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.

  8. Growth of voids in porous ductile materials at high strain rate

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Ping

    1994-08-01

    A hollow-sphere model, with temperature-dependent viscoplastic material response, is developed to investigate the inertial and thermal effects on dynamic growth of voids in ductile materials. Theoretical analysis indicates that the inertial effect (kinetic energy of void growth) mainly dominates the behavoir of the void growth in temperature-dependent and high-strain-rate cases. Otherwise, the viscoplastic effect dominanes and the inertial effect can be negelcted. The rate of the dyanmic growth of voids increases when the thermal effect is considered. An expression of the threshold stress for the void growth is obtained, which depends on the initial porosity, the porosity, the yield strength, the density of surface energy of voids, the initial temperature, and the melting temperature.

  9. It Shall Not Return to Me Void: Teaching Religious Content to Individuals with Cognitive Disability

    ERIC Educational Resources Information Center

    Iguchi, Carolyn M.

    2010-01-01

    This research is an exploratory qualitative investigation into the challenges of teaching religious material to individuals with cognitive disabilities. The study setting was a single large evangelical Christian church known for excellence in ministry to individuals with disabilities and their families. The following issues were explored: (a)…

  10. Low void content autoclave molded titanium alloy and polyimide graphite composite structures.

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.; Creedon, J. F.

    1972-01-01

    This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.

  11. Glass composition and process for sealing void spaces in electrochemical devices

    DOEpatents

    Meinhardt, Kerry D.; Kirby, Brent W.

    2012-05-01

    A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.

  12. Spatially extended void-free dusty plasmas in a laboratory radio-frequency discharge

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Arp, O.; Piel, A.

    2011-11-01

    Laboratory experiments with thermophoretic levitation of dust particles for gravity compensation are reported. The observed spatially extended dust clouds were investigated, e.g., the dependence of discharge parameters on the void structure. These investigations lead to the discovery of an extended parameter region where spatially extended void-free clouds can be found. The mechanism of void closure is accompanied by a spontaneous change in the discharge topology. This change becomes evident from a reversal of the wave propagation direction.

  13. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    SciTech Connect

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar

    2009-01-15

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)

  14. Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.; Pisani, Alice

    2014-08-01

    We present and study cosmic voids identified using the watershed void finder VIDE in the Sloan Digital Sky Survey Data Release 9, compare these voids to ones identified in mock catalogues, and assess the impact of the survey mask on void statistics such as number functions, ellipticity distributions, and radial density profiles. The nearly 1000 identified voids span three nearly volume-limited samples from redshift z = 0.43 to 0.7. For comparison, we use 98 of the publicly available second-order Lagrangian perturbation theory-based mock galaxy catalogues of Manera et al., and also generate our own mock catalogues by applying a Halo Occupation Distribution model to an N-body simulation. We find that the mask reduces the number density of voids at all scales by a factor of 3 and slightly skews the relative size distributions. This engenders an increase in the mean ellipticity by roughly 30 per cent. However, we find that radial density profiles are largely robust to the effects of the mask. We see excellent agreement between the data and both mock catalogues, and find no tension between the observed void properties and the properties derived from Λcolddarkmatter simulations. We have added the void catalogues from both data and mock galaxy populations discussed in this work to the Public Cosmic Void Catalog at http://www.cosmicvoids.net.

  15. The effect of voids on the hardening of body-centered cubic Fe

    NASA Astrophysics Data System (ADS)

    Nakai, Ryosuke; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates.

  16. Cosmic voids in coupled dark energy cosmologies: the impact of halo bias

    NASA Astrophysics Data System (ADS)

    Pollina, Giorgia; Baldi, Marco; Marulli, Federico; Moscardini, Lauro

    2016-01-01

    In this work, we analyse the properties of cosmic voids in standard and coupled dark energy cosmologies. Using large numerical simulations, we investigate the effects produced by the dark energy coupling on three statistics: the filling factor, the size distribution and the stacked profiles of cosmic voids. We find that the bias of the tracers of the density field used to identify the voids strongly influences the properties of the void catalogues, and, consequently, the possibility of using the identified voids as a probe to distinguish coupled dark energy models from the standard Λ cold dark matter cosmology. In fact, on one hand coupled dark energy models are characterized by an excess of large voids in the cold dark matter distribution as compared to the reference standard cosmology, due to their higher normalization of linear perturbations at low redshifts. Specifically, these models present an excess of large voids with Reff > 20, 15, 12h-1 Mpc , at z = 0, 0.55, 1, respectively. On the other hand, we do not find any significant difference in the properties of the voids detected in the distribution of collapsed dark matter haloes. These results imply that the tracer bias has a significant impact on the possibility of using cosmic void catalogues to probe cosmology.

  17. Direct observation of voids in the vacancy excess region of ion bombarded silicon

    NASA Astrophysics Data System (ADS)

    Williams, J. S.; Conway, M. J.; Williams, B. C.; Wong-Leung, J.

    2001-05-01

    The results reported in this letter indicate that the spatial separation of the vacancy and interstitial excesses which result from ion bombardment gives rise to stable voids upon annealing at 850 °C even for implants where the projected ion range is only of the order of a few thousand Ångstrom. Such voids have been observed directly by transmission electron microscopy. Furthermore, in cases where both voids and interstitial-based defects are present at different depths, it is found that Au has a strong preference for decorating void surfaces and hence Au can, indeed, be used as a selective detector of open volume defects in Si.

  18. The void-size effect on plastic flow localization in the Gurson model

    NASA Astrophysics Data System (ADS)

    Jie, Wen; Yonggang, Huang; Keh-Chih, Hwang

    2004-08-01

    Recent studies have shown that the size of microvoids has a significant effect on the void growth rate. The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials. We have used the extended Gurson's dilatational plasticity theory, which accounts for the void size effect, to study the plastic flow localization in porous solids with long cylindrical voids. The localization model of Rice is adopted, in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization. The present study shows that it has little effect on the shear band angle.

  19. Study of void collapse leading to shock initiation and ignition in heterogeneous energetic material

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Koundinyan, Sushilkumar Prabu; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials like PBX, porosity plays an important role in shock initiation and ignition. This is because the collapse of voids leads to the formation of local high temperature regions termed as hot spots under the application of shock loading. The formation of hot spots can take place because of several mechanisms such as plastic deformation of voids, hydrodynamic impact on voids leading to the formation of high speed material jets etc. Once these hot spots are formed, they can lead to reaction and ignition in the explosive material. However, diffusive phenomenon like heat conduction can play an important role in shock initiation because depending on the size and intensity of void collapse hot spots, local ignition conditions can be smeared out. In the current work, void collapse leading to shock initiation and ignition in HMX has been studied using a massively parallel Eulerian code, SCIMITAR3D. The chemical kinetics of HMX decomposition and reaction has been modeled using the Henson-Smilowitz multi-step mechanism. Based on the current framework an ignition criterion has been established for single void collapse analysis for various shock strengths. Furthermore, the effects of void-void interactions have been analyzed demonstrating the important role of the combination of void fraction, reaction chemistry and heat conduction in determining the ignition threshold. This work has been funded from the AFRL-RWPC, Computational Mechanics Branch, Eglin AFB, Program Manager: Dr. Martin Schmidt.

  20. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-08-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface.

  1. Influence of CsCl addition on the nanostructured voids and optical properties of 80GeS2-20Ga2S3 glasses

    NASA Astrophysics Data System (ADS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Karbovnyk, I.

    2016-09-01

    The influence of CsCl content on the void evolution in (80GeS2-20Ga2S3)100-x(CsCl)x, x = 0; 5; 10; 15, chalcogenide glasses and changes of the optical response of these glasses due to CsCl addition are investigated. It is shown that structural agglomeration of voids occurs at addition and increasing of CsCl amount in base glasses. Supersaturation of GeS2-Ga2S3-CsCl glasses by CsCl results in the contraction of void volumes in (80GeS2-20Ga2S3)85(CsCl)15. By applying positron-positronium decomposition algorithm it was established that CsCl not only transforms voids in glass, but also forms new positron-trapping sites in Ge-Ga-S glassy matrix. Therefore, CsCl addition results in the shift of fundamental transmission edge in the visible region. It is shown that doping by larger concentrations of CsCl may lead to "supersaturation" of base glasses and that adding 10 mol% of CsCl is apparently an optimal doping level in view of further modification of glasses with rare-earth ions.

  2. Void-Filled SRTM Digital Elevation Model of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Barrios, Boris

    2005-01-01

    EXPLANATION The purpose of this data set is to provide a single consistent elevation model to be used for national scale mapping, GIS, remote sensing applications, and natural resource assessments for Afghanistan's reconstruction. For 11 days in February of 2000, the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency ian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed Shuttle Radar Topography Mission (SRTM) DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Afghanistan DEM was gap-filling areas where the SRTM data contained a data void. These void areas are as a result of radar shadow, layover, standing water, and other effects of terrain as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:200,000 - scale Soviet General Staff Topographic Maps which date from the middle to late 1980's. Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and image processing techniques. The data contained in this publication includes SRTM DEM quadrangles projected and clipped in geographic coordinates for the entire country. An index of all available SRTM DEM quadrangles is displayed here: Index_Geo_DD.pdf. Also

  3. GPR surveying of transport infrastructures and buildings; underground utility and void sensing - ongoing activities in Working Group 2 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Plati, Christina; Derobert, Xavier

    2015-04-01

    areas.' Project 2.4 focuses on the development of 'Innovative procedures for effective GPR inspection of construction materials and structures.' The WG2 also includes Project 2.5 on the 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil,' this is a topic of great interest in civil engineering, as water infiltration is often a relevant cause of degradation of structures, such as roads of bridges, and of rebar corrosion. During the first year of the Action, information was collected and shared about state-of-the-art, ongoing studies, problems and future research needs, in the topics covered by the five above-mentioned Projects [1-3]. Based on the experience and knowledge gained from the in-depth review work carried out by WG2, several case studies were then conducted; they were presented during the Second General Meeting and the GPR 2014 conference [5, 6]. Furthermore, the extension of GPR application to railways track ballast assessment was demonstrated [7]. The WG2 identified reference test-sites, suitable to compare inspection procedures or to test GPR equipment. The IFSTTAR geophysical test site is an open-air laboratory including a large and deep area, filled with various materials arranged in horisontal compacted slices, separated by vertical interfaces and water-tighted in surface; several objects as pipes, polystyrene hollows, boulders and masonry are embedded in the field [4]. The IFSTTAR full-scale APT facility is an outdoor circular carousel dedicated to full-scale pavement experiments, consisting of a central tower and four long arms equipped with wheels, running on a circular test track [4]. Furthermore, the WG2 is building a database of available experimental results, which are at the disposal of WG3 Members to test their electromagnetic modeling/inversion/data-processing methods. Another interesting and promising WG2 initiative that has to be mentioned is the development of a Catalogue of

  4. Managing voids of Si anodes in lithium ion batteries.

    PubMed

    Li, Xianglong; Zhi, Linjie

    2013-10-01

    The implementation of silicon (Si) in practical lithium ion battery electrodes has been hindered due to its large volume change and consequent structural and interfacial instabilities. Coating nanostructured Si with a second phase (e.g., carbon (C)) represents a very promising strategy for dealing with these critical issues facing Si-based electrodes. In this review article, we will outline recent advances in coating Si with engineered C matrices. By exemplifying hollow core-shell, core-hollow shell, and core-shell structured Si-C hybrid nanomaterials, we aim to highlight the importance of managing voids in designing such Si-C hybrid electrodes, and provide some scientific insights into the development of advanced Si-based anodes for next-generation lithium ion batteries.

  5. Dynamic void distribution in myoglobin and five mutants

    NASA Astrophysics Data System (ADS)

    Jiang, Yingying; Kirmizialtin, Serdal; Sanchez, Isaac C.

    2014-02-01

    Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins.

  6. Direct transformation of vacancy voids to stacking fault tetrahedra.

    PubMed

    Uberuaga, B P; Hoagland, R G; Voter, A F; Valone, S M

    2007-09-28

    Defect accumulation is the principal factor leading to the swelling and embrittlement of materials during irradiation. It is commonly assumed that, once defect clusters nucleate, their structure remains essentially constant while they grow in size. Here, we describe a new mechanism, discovered during accelerated molecular dynamics simulations of vacancy clusters in fcc metals, that involves the direct transformation of a vacancy void to a stacking fault tetrahedron (SFT) through a series of 3D structures. This mechanism is in contrast with the collapse to a 2D Frank loop which then transforms to an SFT. The kinetics of this mechanism are characterized by an extremely large rate prefactor, tens of orders of magnitude larger than is typical of atomic processes in fcc metals.

  7. Dynamic void distribution in myoglobin and five mutants.

    PubMed

    Jiang, Yingying; Kirmizialtin, Serdal; Sanchez, Isaac C

    2014-01-01

    Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins. PMID:24500195

  8. Observational Search for Negative Matter in Intergalactic Voids

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    Negative matter is a hypothetical form of matter with negative rest mass, inertial mass, and gravitational mass. It is not antimatter. If negative matter could be collected in macroscopic amounts, its negative inertial property could be used to make an continuously operating propulsion system which requires neither energy nor reaction mass, yet still violates no laws of physics. Negative matter has never been observed, but its existence is not forbidden by the laws of physics. We propose that NASA support an extension to an ongoing astrophysical observational effort by da Costa, et al. (1996) which could possibly determine whether or not negative matter exists in the well-documented but little-understood intergalactic voids.

  9. A void coalescence model for combined tension and shear

    NASA Astrophysics Data System (ADS)

    Butcher, C.; Chen, Z. T.

    2009-03-01

    The influence of shear loading on damage development in Gurson-based models has long been neglected resulting in inadequate fracture strain predictions at low triaxiality where shear effects become significant. The plastic limit-load fracture criterion used in advanced Gurson models neglects the influence of shear loading and overestimates the fracture strain and porosity at low triaxiality. In this paper, we extend the recently proposed shear damage model of Xue [1] to provide a stronger physical foundation by removing the simplifying assumptions. Then we directly modify the plastic limit-load fracture criterion by coupling with the extended shear damage model to account for shear weakening and failure of the intervoid ligament in void coalescence. We apply the modified plastic limit-load criterion to predict the necking of sheet tensile specimens and find very good agreement with the available experimental results.

  10. Mechanistic model for void distribution in flashing flow

    SciTech Connect

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs.

  11. Mechanistic model for void distribution in flashing flow

    NASA Astrophysics Data System (ADS)

    Riznic, J.; Ishii, M.; Afgan, N.

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model.

  12. Lichen recolonization following air quality improvement

    SciTech Connect

    Showman, R.E.

    1981-01-01

    Air quality improvement near a coal-fired power plant led to recolonization of Parmelia caperata (L.) Ach. in a pollution-induced void area. Recolonization was first observed about four years after pollution abatement. Least-affected sites were slowest to recover. After eight years of improved air quality, the distribution of P. caperata has returned to near normal. Lichen biomonitoring is useful not only to detect the effects of poor air quality but to document air quality improvements as well. 5 references, 4 figures.

  13. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, J.E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  14. Testing cosmology with a catalogue of voids in the BOSS galaxy surveys

    NASA Astrophysics Data System (ADS)

    Nadathur, Seshadri

    2016-09-01

    We present a public catalogue of voids in the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 11 LOWZ and CMASS galaxy surveys. This catalogue contains information on the location, sizes, densities, shapes and bounding surfaces of 8956 independent, disjoint voids, making it the largest public void catalogue to date. Voids are identified using a version of the ZOBOV algorithm, the operation of which has been calibrated though tests on mock galaxy populations in N-body simulations, as well as on a suite of 4096 mock catalogues which fully reproduce the galaxy clustering, survey masks and selection functions. Based on this, we estimate a false positive detection rate of 3 per cent. Comparison with mock catalogues limits deviations of the void size distribution from that predicted in the ΛCDM model to be less than 6 per cent for voids with effective radius 8 < Rv < 60 h-1Mpc and in the redshift range 0.15 < z < 0.7. This could tightly constrain modified gravity scenarios and models with a varying equation of state, but we identify systematic biases which must be accounted for to reduce the theoretical uncertainty in the predictions for these models to the current level of precision attained from the data. We also examine the distribution of void densities and identify a deficit of the deepest voids relative to ΛCDM expectations, which is significant at more than the 3σ equivalent level. We discuss possible explanations for this discrepancy but at present its cause remains unknown.

  15. Atomistic insights into dislocation-based mechanisms of void growth and coalescence

    NASA Astrophysics Data System (ADS)

    Mi, Changwen; Buttry, Daniel A.; Sharma, Pradeep; Kouris, Demitris A.

    2011-09-01

    One of the low-temperature failure mechanisms in ductile metallic alloys is the growth of voids and their coalescence. In the present work we attempt to obtain atomistic insights into the mechanisms underpinning cavitation in a representative metal, namely Aluminum. Often the pre-existing voids in metallic alloys such as Al have complex shapes (e.g. corrosion pits) and the defromation/damage mechanisms exhibit a rich size-dependent behavior across various material length scales. We focus on these two issues in this paper through large-scale calculations on specimens of sizes ranging from 18 thousand to 1.08 million atoms. In addition to the elucidation of the dislocation propagation based void growth mechanism we highlight the observed length scale effect reflected in the effective stress-strain response, stress triaxiality and void fraction evolution. Furthermore, as expected, the conventionally used Gurson's model fails to capture the observed size-effects calling for a mechanistic modification that incorporates the mechanisms observed in our (and other researchers') simulation. Finally, in our multi-void simulations, we find that, the splitting of a big void into a distribution of small ones increases the load-carrying capacity of specimens. However, no obvious dependence of the void fraction evolution on void coalescence is observed.

  16. A molecular dynamics study of void initiation and growth in monocrystalline and nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Traiviratana, Sirirat

    MD simulations in monocrystalline and nanocrystalline copper were carried out with LAMMPS to reveal void growth mechanisms. The specimens were subjected to both tensile uniaxial and hydrostatic strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. The expansion of the loops and their cross slip leads to the severely work hardened layer surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress response to emitted dislocations was observed, in disagreement with the Gurson model [1] which is scale independent. The growth of voids simulated by MD is compared with the Cocks-Ashby constitutive model and significant agreement is found. The density of geometrically-necessary dislocations as a function of void size is calculated based on the emission of shear loops and their outward propagation. Calculations were also carried out for a void at the interface between two grains sharing a tilt boundary. The results show similar dislocation behaviors. A code that uses Voronoi tessellation for constructing nanocrystalline structures was developed and used to prepare the structures for simulations. Nanocrystal simulations reveal grain sliding and grain rotation as the nanocrystal deformed. Voids were nucleated at grain junctions and grew to coalescence as dislocations accommodated the material transfer. A code that can be used during post-processing to extract useful dislocation information from MD simulation data was partially developed and proved the feasibility of automatically analyzing dislocations.

  17. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  18. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  19. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  20. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  1. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier...

  2. In search of empty places: Voids in the distribution of galaxies

    NASA Astrophysics Data System (ADS)

    Bucklein, Brian K.

    2010-12-01

    We investigate several techniques to identify voids in the galaxy distribution of matter in the universe. We utilize galaxy number counts as a function of apparent magnitude and Wolf plots to search a two- or three-dimensional data set in a pencil-beam fashion to locate voids within the field of view. The technique is able to distinguish between voids that represent simply a decrease in density as well as those that show a build up of galaxies on the front or back side of the void. This method turns out to be primarily useable only at relatively short range (out to about 200 Mpc). Beyond this distance, the characteristics indicating a void become increasingly difficult to separate from the statistical background noise. We apply the technique to a very simplified model as well as to the Millennium Run dark matter simulation. We then compare results with those obtained on the Sloan Digital Sky Survey. We also created the Watershed Void Examiner (WaVE) which treats densities in a fashion similar to elevation on a topographical map, and then we allow the "terrain" to flood. The flooded low-lying regions are identified as voids, which are allowed to grow and merge as the level of flooding becomes higher (the overdensity threshold increases). Void statistics can be calculated for each void. We also determine that within the Millennium Run semi-analytic galaxy catalog, the walls that separate the voids are permeable at a scale of 4 Mpc. For each resolution that we tested, there existed a characteristic density at which the walls could be penetrated, allowing a single void to grow to dominate the volume. With WaVE, we are able to get comparable results to those previously published, but often with fewer choices of parameters that could bias the results. We are also able to determine the the density at which the number of voids peaks for different resolutions as well as the expected number of void galaxies. The number of void galaxies is amazingly consistent at an

  3. Influence of entrapped air pockets on hydraulic transients in water pipelines

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen

    2011-01-01

    The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

  4. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1986-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  5. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  6. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    SciTech Connect

    Roth, D.J.; Klima, S.J.; Kiser, J.D.; Baaklini, G.Y.

    1986-05-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics. 20 references.

  7. The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation

    PubMed Central

    Yang, Zhanbing; Watanabe, Seiichi; Kato, Takahiko

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void formation. Our results reveal that during laser-electron sequential irradiation, pre-laser irradiation enhanced void nucleation and subsequent electron irradiation enhanced void growth. However, the laser-electron dual-beam irradiation was analyzed to depress void swelling remarkably because the recombination of SVs and interstitials was enhanced. The results provide insight into the mechanism underlying the dual-beam radiation-induced depression of void swelling in solids. PMID:23383371

  8. Partial Discharge Characteristics of Closed Voids in the Low Vacuum Region

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shin'ichi; Araki, Tomoo; Konashi, Akio; Hozumi, Naohiro

    The purpose of this paper is to grasp the partial discharge property of closed voids under the low vacuum involved in an epoxy resin. When an epoxy resin insulator is manufactured in a factory, some voids may be involved in it. To prevent the invasion, partial discharge is measured for insulators. However, partial discharge may not be detected due to the low vacuum in voids right after the manufactory. Well-known Paschen curve testifies this phenomenon, which describes the partial discharge property ranging from a high vacuum to the atmospheric pressure. However this Paschen curve is acquired several gases between parallel-plane metallic electrode gaps. There is little clear statement of Paschen carve on the void. Therefore authors of this paper studied the partial discharge characteristics of the void within the epoxy resin under the variable vacuum level.

  9. Spatially extended void-free dusty plasmas in a laboratory radio-frequency discharge

    SciTech Connect

    Schmidt, C.; Arp, O.; Piel, A.

    2011-01-15

    Laboratory experiments with thermophoretic levitation of dust are described that aim at the closure of a central dust-free void region. A careful study of the void structure as a function of the discharge and levitation parameters leads to the discovery of an extended parameter region where stable void-free equilibria are found. The void closure is effected by a novel mechanism that involves a self-organized change in the discharge topology, in which the dust cloud becomes surrounded by a toroidal region of plasma production. In this geometry ions are found to stream radially inwards instead of outwards as in clouds with a central void. This change in ion flow is proved by a reversal of the propagation direction of dust-density waves.

  10. PHASE-FIELD SIMULATION OF IRRADIATED METALS PART i: VOID KINETICS

    SciTech Connect

    Paul C Millett; Anter El-Azab; Srujan Rokkam; Michael Tonks; Dieter Wolf

    2011-01-01

    We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn-Hilliard and Allen-Cahn equations, the model captures the processes of point defect generation and recombination, annihilation of defects at sinks, as well as void nucleation and growth in the presence of grain boundaries.. Illustrative results are presented that characterize the rate of void growth or shrinkage due to supersaturated vacancy or interstitial concentrations, void nucleation and growth kinetics due to cascade-induced defect production, as well as void denuded and peak zones adjacent to grain boundaries.

  11. Phase-field simulation of irradiated metals Part 1: Void kinetics.

    SciTech Connect

    Millett, P. C.; El-Azab, A.; Rokkam, S.; Tonks, M.; Wolf, D.

    2011-01-01

    We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn-Hilliard and Allen-Cahn equations, the model captures the processes of point defect generation and recombination, annihilation of defects at sinks, as well as void nucleation and growth in the presence of grain boundaries. Illustrative results are presented that characterize the rate of void growth or shrinkage due to supersaturated vacancy or interstitial concentrations, void nucleation and growth kinetics due to cascade-induced defect production, as well as void denuded and peak zones adjacent to grain boundaries.

  12. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account. PMID:23338186

  13. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.

  14. The irradiation effect of a simultaneous laser and electron dual-beam on void formation.

    PubMed

    Yang, Zhanbing; Watanabe, Seiichi; Kato, Takahiko

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void formation. Our results reveal that during laser-electron sequential irradiation, pre-laser irradiation enhanced void nucleation and subsequent electron irradiation enhanced void growth. However, the laser-electron dual-beam irradiation was analyzed to depress void swelling remarkably because the recombination of SVs and interstitials was enhanced. The results provide insight into the mechanism underlying the dual-beam radiation-induced depression of void swelling in solids.

  15. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1985-01-01

    The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  16. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1986-01-01

    The reliability of microfocous X-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 precent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  17. Force field inside the void in complex plasmas under microgravity conditions

    SciTech Connect

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  18. Force field inside the void in complex plasmas under microgravity conditions.

    PubMed

    Kretschmer, M; Khrapak, S A; Zhdanov, S K; Thomas, H M; Morfill, G E; Fortov, V E; Lipaev, A M; Molotkov, V I; Ivanov, A I; Turin, M V

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the "trampoline effect"). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  19. Omnidirectional antireflective properties of porous tungsten oxide films with in-depth variation of void fraction and stoichiometry

    NASA Astrophysics Data System (ADS)

    Vourdas, Nikolaos; Dalamagkidis, Konstantinos; Kostis, Ioannis; Vasilopoulou, Maria; Davazoglou, Dimitrios

    2012-11-01

    We report on the fabrication of porous hot-wire deposited WOx (hwWOx) films with omnidirectional antireflective properties coming from in-depth variation of both (i) void fraction from 0% at the Si substrate/hwWOx interface to 30% within less than 7 nm and to higher than 50% at the hwWOx/air interface, and (ii) x, namely hwWOx stoichiometry, from 2.5 at the Si/hwWOx to 3 within less than 7 nm. hwWOx films were deposited by means of hw deposition at rough vacuum and controlled chamber environment. The films were analyzed by Spectroscopic Ellipsometry to extract the graded refractive index profile, which was then used in a rigorous coupled wave analysis (RCWA) model to simulate the antireflective properties. RCWA followed reasonably the experimental reflection measurements. Void fraction and x in-depth variation, controlled by the hw process, greatly affect the antireflective properties, and improve the omnidirectional and broadband characteristics. The reflection suppression below 10% within the range of 500-1000 nm for angles of incidence up to more than 60° is demonstrated.

  20. The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension

    NASA Astrophysics Data System (ADS)

    Scheyvaerts, F.; Onck, P. R.; Tekogˇlu, C.; Pardoen, T.

    2011-02-01

    New extensions of a model for the growth and coalescence of ellipsoidal voids based on the Gurson formalism are proposed in order to treat problems involving shear and/or voids axis not necessarily aligned with the main loading direction, under plane strain loading conditions. These extensions are motivated and validated using 3D finite element void cell calculations with overall plane strain enforced in one direction. The starting point is the Gologanu model dealing with spheroidal void shape. A void rotation law based on homogenization theory is coupled to this damage model. The predictions of the model closely agree with the 3D cell calculations, capturing the effect of the initial void shape and orientation on the void rotation rate. An empirical correction is also introduced for the change of the void aspect ratio in the plane transverse to the main axis of the void departing from its initially circular shape. This correction is needed for an accurate prediction of the onset of coalescence. Next, a new approach is proposed to take strain hardening into account within the Thomason criterion for internal necking, avoiding the use of strain hardening-dependent fitting parameters. The coalescence criterion is generalized to any possible direction of the coalescence plane and void orientation. Finally, the model is supplemented by a mathematical description of the final drop of the stress carrying capacity during coalescence. The entire model is developed for plane strain conditions, setting the path to a 3D extension. After validation of the model, a parametric study addresses the effect of shear on the ductility of metallic alloys for a range of microstructural and flow parameters, under different stress states. In general, the presence of shear, for identical stress triaxiality, decreases the ductility, partly explaining recent experimental results obtained in the low stress triaxiality regime.

  1. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  2. Detecting Underground Mine Voids Using Complex Geophysical Techniques

    SciTech Connect

    Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.; Ackman, T. E

    2006-12-01

    In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filled with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.

  3. Stress-induced voiding study in integrated circuit interconnects

    NASA Astrophysics Data System (ADS)

    Hou, Yuejin; Tan, Cher Ming

    2008-07-01

    An analytical equation for an ultralarge-scale integration interconnect lifetime due to stress-induced voiding (SIV) is derived from the energy perspective. It is shown that the SIV lifetime is strongly dependent on the passivation quality at the cap layer/interconnect interface, the confinement effect by the surrounding materials to the interconnects, and the available diffusion paths in the interconnects. Contrary to the traditional power-law creep model, we find that the temperature exponent in SIV lifetime formulation is determined by the available diffusion paths for the interconnect atoms and the interconnect geometries. The critical temperature for the SIV is found to be independent of passivation integrity and dielectric confinement effect. Actual stress-free temperature (SFT) during the SIV process is also found to be different from the dielectric/cap layer deposition temperature or the final annealing temperature of the metallization, and it can be evaluated analytically once the activation energy, temperature exponent and critical temperature are determined experimentally. The smaller actual SFT indicates that a strong stress relaxation occurs before the high temperature storage test. Our results show that our SIV lifetime model can be used to predict the SIV lifetime in nano-interconnects.

  4. Improvements in Predicting Void Fraction in Subcooled Boiling

    SciTech Connect

    Ha, Kwi Seok; Lee, Yong Bum; No, Hee Cheon

    2005-06-15

    A simple two-phase thermal-hydraulic tool with the drift-flux model has been used to develop a subcooled boiling model. The tool is composed of four governing equations: mixture mass, vapor mass, mixture momentum, and mixture enthalpy. Using the developed tool, various subcooled boiling models were investigated through the published experimental data. In the process of evaluation, two models were developed associated with the subcooled boiling. First, the Saha and Zuber correlation predicting the point of the net vapor generation was modified to consider the thermal and dynamic effects at the high-velocity region. Second, the pumping factor model was developed using the pi-theorem based on parameters related to the bubble generation mechanism, and it produced an additional parameter: the boiling number. The proposed models and several other models were evaluated against a series of subcooled flow boiling experiments at the pressure range of 1 to 146.8 bars. From the root-mean-square analysis for the predicted void fraction in the subcooled boiling region, the results of the proposed model presented the best predictions for the whole-pressure ranges. Also, the implementation of the developed models into RELAP5/MOD3.3 brought about improved results compared to those of the default model of the code.

  5. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. As the Shuttle Program comes to an end we now have the time to perform limited refurbishment. Thermography has been used to monitor the state of insulation as one of the four tanks was drained of cryogen and warmed to ambient temperatures. An anomalous region of insulation detected previously with thermography was confirmed by visual inspections during this period. Thermal models and a comparison of images from the cold and warm tanks suggests that the anomalous region can be detected even without cryogen in the tank. The ability to detect and correct probable insulation voids prior to filling with cryogenic fluid can provide significant cost savings by reducing commodity boil-off over many years of use.

  6. The effects of silicon and titanium on void swelling and phase transformations in neutron irradiated 12Cr-15Ni steels

    NASA Astrophysics Data System (ADS)

    Boothby, R. M.; Williams, T. M.

    1988-05-01

    12Cr-15Ni-0.25Ti steels with Si additions of 0.5, 0.9 and 1.4 wt% have been irradiated to a maximum dose of 47 dpa at temperatures ranging from 399 to 649°C. Detailed microstructural examinations of void swelling, precipitation behaviour and austenite instability have been made. Assessments of swelling and matrix phase transformations have also been made using density and induced magnetization measurements respectively. Austenite instability was increased by Si additions; the transformation product was usually ferrite although some martensite was also observed, and compositional fluctuations in untransformed austenite were detected. Precipitation, particularly of G phase, became more extensive and swelling in solution-treated alloys was reduced at higher Si contents. Enhanced growth of voids attached to G phase precipitates was observed. Cold-working decreased both swelling and ferrite formation. A fine dispersion of TiC was effective in suppressing swelling at high irradiation temperature as long as the precipitates remained stable. The stability of TiC was increased by cold-working but reduced by Si additions.

  7. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    PubMed Central

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W−1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  8. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-05-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W‑1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices.

  9. a New Algorithm for Void Filling in a Dsm from Stereo Satellite Images in Urban Areas

    NASA Astrophysics Data System (ADS)

    Gharib Bafghi, Z.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2016-06-01

    Digital Surface Models (DSM) derived from stereo-pair satellite images are the main sources for many Geo-Informatics applications like 3D change detection, object classification and recognition. However since occlusion especially in urban scenes result in some deficiencies in the stereo matching phase, these DSMs contain some voids. In order to fill the voids a range of algorithms have been proposed, mainly including interpolation alone or along with auxiliary DSM. In this paper an algorithm for void filling in DSM from stereo satellite images has been developed. Unlike common previous approaches we didn't use any external DSM to fill the voids. Our proposed algorithm uses only the original images and the unfilled DSM itself. First a neighborhood around every void in the unfilled DSM and its corresponding area in multispectral image is defined. Then it is analysed to extract both spectral and geometric texture and accordingly to assign labels to each cell in the voids. This step contains three phases comprising shadow detection, height thresholding and image segmentation. Thus every cell in void has a label and is filled by the median value of its co-labelled neighbors. The results for datasets from WorldView-2 and IKONOS are shown and discussed.

  10. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors.

    PubMed

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-05-06

    Could 'defect-considered' void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85-95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W(-1)) and excellent detectivity (2 × 10(13) Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of 'defect-considered' Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices.

  11. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors.

    PubMed

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could 'defect-considered' void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85-95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W(-1)) and excellent detectivity (2 × 10(13) Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of 'defect-considered' Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  12. A constitutive model for plastically anisotropic solids with non-spherical voids

    NASA Astrophysics Data System (ADS)

    Keralavarma, S. M.; Benzerga, A. A.

    2010-06-01

    Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.

  13. DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Tao, Charling; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun

    2016-07-01

    We present a novel parameter-free cosmological void finder (DIVE, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including a universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5 h-1Gpc side each, with a bias and number density similar to the Baryon Oscillation Spectroscopic Survey CMASS luminous red galaxies, performed with the PATCHY code. Our results show that there are two main species of DT voids, which can be characterized by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collapsing ones. Our approach is therefore able to efficiently determine the troughs of the density field from galaxy surveys, and can be used to study their clustering. We further study the power spectra of DT voids, and find that the bias of the two populations are different, demonstrating that the small DT voids are essentially tracers of groups of haloes.

  14. A FIRST APPLICATION OF THE ALCOCK-PACZYNSKI TEST TO STACKED COSMIC VOIDS

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Lavaux, Guilhem; Weinberg, David H.

    2012-12-20

    We report on the first application of the Alcock-Paczynski test to stacked voids in spectroscopic galaxy redshift surveys. We use voids from the Sutter et al. void catalog, which was derived from the Sloan Digital Sky Survey Data Release 7 main sample and luminous red galaxy catalogs. The construction of that void catalog removes potential shape measurement bias by using a modified version of the ZOBOV algorithm and by removing voids near survey boundaries and masks. We apply the shape-fitting procedure presented in Lavaux and Wandelt to 10 void stacks out to redshift z = 0.36. Combining these measurements, we determine the mean cosmologically induced ''stretch'' of voids in three redshift bins, with 1{sigma} errors of 5%-15%. The mean stretch is consistent with unity, providing no indication of a distortion induced by peculiar velocities. While the statistical errors are too large to detect the Alcock-Paczynski effect over our limited redshift range, this proof-of-concept analysis defines procedures that can be applied to larger spectroscopic galaxy surveys at higher redshifts to constrain dark energy using the expected statistical isotropy of structures that are minimally affected by uncertainties in galaxy velocity bias.

  15. Voids at the tunnel-soil interface for calculation of ground vibration from underground railways

    NASA Astrophysics Data System (ADS)

    Jones, Simon; Hunt, Hugh

    2011-01-01

    Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.

  16. Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Xydou, A.; Parviainen, S.; Aicheler, M.; Djurabekova, F.

    2016-09-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature ({{T}\\text{m}} ). The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculated based on molecular dynamic simulations. This value agrees well with the experimental given in the Ashby maps for the creep in copper via Coble GB diffusion.

  17. Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

    SciTech Connect

    FILTER, WILLIAM F.

    1999-09-17

    Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

  18. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    NASA Astrophysics Data System (ADS)

    Liu, J. X.; El Sayed, T.

    2013-01-01

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void's contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized.

  19. Thermal stress induced voids in nanoscale copper interconnects by in-situ TEM heating

    NASA Astrophysics Data System (ADS)

    An, Jin Ho

    Stress induced void formation in Cu interconnects, due to thermal stresses generated during the processing of semiconductors, is an increasing reliability issue in the semiconductor industry as Cu interconnects are being downscaled to follow the demand for faster chip speed. In this work, 1.8 micron and 180 nm wide Cu interconnects, fabricated by Freescale Semiconductors, were subjected to thermal cycles, in-situ in the TEM, to investigate the stress relaxation mechanisms as a function of interconnect linewidth. The experiments show that the 1.8 micron Cu interconnect lines relax the thermal stresses through dislocation nucleation and motion while the Cu interconnect 180 nm lines exhibit void formation. Void formation in 180 nm lines occurs predominantly at triple junctions where the Ta diffusion barrier meets a Cu grain boundary. In order to understand void formation in 180 nm lines, the grain orientation and local stresses are determined. In particular, Nanobeam Diffraction (NBD) in the TEM is used to obtain the diffraction pattern of each grain, from which the crystal orientation is evaluated by the ACT (Automated Crystallography for TEM) software. In addition, 2D Finite Element Method (FEM) simulations are performed using the Object Oriented Finite Modeling (OOF2) software to correlate grain orientation with local stresses, and consequently void formation. According to the experimental and simulation results obtained, void formation in 180nm Cu interconnects does not seem to be solely dependent on local stresses, but a combination of diffusion paths available, stress gradients and possibly the presence of defects. In addition, based on the in-situ TEM observations, void growth seems to occur through grain boundary and/or interfacial diffusion. However, in-situ STEM observations of fully opened voids post-failure show pileup of material at the Cu grain surfaces. This means that surface or interface diffusion is also very active during void growth in the presence

  20. Infrared Microspectroscopy of Bionanomaterials (Diatoms) with Careful Evaluation of Void Effects.

    PubMed

    Alipour, Leila; Hamamoto, Mai; Nakashima, Satoru; Harui, Rika; Furiki, Masanari; Oku, Osamu

    2016-03-01

    In order to characterize a representative natural bionanomaterial, present day centric diatom samples (diameter, 175-310 µm) have been analyzed and imaged by infrared (IR) micro-spectroscopy and scanning electron microscopy (SEM). Because diatom silica frustules have complex microscopic morphology, including many void areas such as micro- or nano-pores, the effects of voids on the spectral band shapes were first evaluated. With increasing void area percentage, 1220 cm(-1)/1070 cm(-1) peak height ratio (Si-O polymerization index) increases and 950 cm(-1)/800 cm(-1) peak height ratio (Si-OH/Si-O-Si) decreases, both approaching 1. Based on the void area percentage of representative diatom samples determined using SEM image analyses (51.5% to 20.5%) and spectral simulation, the 1220 cm(-1)/1070 cm(-1) ratios of diatom samples are sometimes affected by the void effect, but the 950 cm(-1)/800 cm(-1) ratios can indicate real structural information of silica. This void effect should be carefully evaluated for IR micro-spectroscopy of micro-nano-porous materials. Maturity of diatom specimens may be evaluated from: (1) void area percentages determined by SEM; (2) average thicknesses determined by optical microscope; and (3) average values of 1220 cm(-1)/1070 cm(-1) peak height ratios (opposite trend to the void effect) determined by IR micro-spectroscopy. Microscopic heterogeneities of chemical structures of silica were obtained by IR micro-spectroscopic mapping of four representative diatoms. The 950 cm(-1)/800 cm(-1) ratios show that large regions of some diatoms consist of hydrated amorphous immature silica. The successful analysis of diatoms by IR micro-spectroscopic data with careful void effect evaluation may be applied to physicochemical structures of many other bionanomaterials.

  1. A Generalized Cosmological Reduced Void Probability Distribution Function and Levy Index

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Andrew, K.; Baxley, J.; Smailhodzic, A.; Bolen, B.; Gary, J.; Taylor, L.; Barnaby, D.

    2009-01-01

    We use data from the Sloan Digital Sky Survey, the DEEP2 survey and numerical runs of the Gadget II code to analyze the distribution of cosmological voids in the universe similar to the model proposed by Mekjian.1 The general form of the Void Probability Function focuses on a scaling model inspired from percolation theory that gives an analytical form for the distribution function. For large redshifts the early universe was smooth and the probability function has a simple mathematical form that mimics the two point correlation results leading to a Zipf's Law probability distribution indicating an ever decreasing probability of larger and larger voids, we determine the Zipf form of the scaling power law for void frequency. As various large scale galactic structures emerge in a given simulation a number of relatively empty regions are isolated and characterized as voids based upon number counts in the associated volume. The number density of these regions is such that the universe has a large scale "sponge-like” appearance with voids of all scales permeating the field of observation, hinting at the existence of an underlying scaling law. For these data sets we examine the range of critical void probability function parameters that give rise to the best fit to the numerical and observational data. The resulting void probability functions are then used to determine the Levy index and the Fisher critical exponent within the context of a grand canonical ensemble analysis viewed as a percolation effect. We wish to thank the Kentucky Space Grant Consortium for providing the NASA grant funding this research 1. Aram Z. Mekjian , Generalized statistical models of voids and hierarchical structure in cosmology, The Astrophysical Journal, 655: 1-10, 2007, arXiv:0712.1217

  2. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    PubMed Central

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875

  3. Successful alpha-1 receptor blockade therapy in a toddler with infrequent and difficult voiding.

    PubMed

    Robson, William Lane M; Leung, Alexander K C

    2005-01-01

    A 3-year-old neurologically intact and behaviorally normal boy developed infrequent and difficult voiding subsequent to a soft tissue injury to the glans penis. Symptoms persisted for at least 9 months, and the course was complicated by diagnostic imaging evidence of a "markedly distended" bladder and a voiding diary that suggested elevated bladder volumes. Treatment with an alpha-1 receptor blocker normalized voiding within 24 hours. Discontinuation of the medication after 2 weeks resulted in recurrence of symptoms within 48 hours. Readministration of the medication resulted in prompt resolution of symptoms.

  4. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. Raymond Lee

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  5. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions.

    PubMed

    Nguyen, L D; Warner, D H

    2012-01-20

    The rate at which dislocations nucleate from spherical voids subjected to shear loading is predicted from atomistic simulation. By employing the latest version of the finite temperature string method, a variational transition state theory approach can be utilized, enabling atomistic predictions at ordinary laboratory time scales, loads, and temperatures. The simulation results, in conjunction with a continuum model, show that the deformation and growth of voids in Al are not likely to occur via dislocation nucleation under typical loadings regardless of void size. PMID:22400757

  6. Comparison of Short-Term Oxidation Behavior of Model and Commercial Chromia-Forming Ferritic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Keiser, James R; More, Karren Leslie; Fayek, Mostafa; Walker, Larry R; Meisner, Roberta Ann; Anovitz, Lawrence {Larry} M; Wesolowski, David J; Cole, David R

    2012-01-01

    A high-purity Fe-20Cr and commercial type 430 ferritic stainless steel were exposed at 700 and 800 C in dry air and air with 10% water vapor (wet air) and characterized by SEM, XRD, STEM, SIMS, and EPMA. The Fe-20Cr alloy formed a fast growing Fe-rich oxide scale at 700 C in wet air after 24 h exposure, but formed a thin chromia scale at 700 C in dry air and at 800 C in both dry air and wet air. In contrast, thin spinel + chromia base scales with a discontinuous silica subscale were formed on 430 stainless steel under all conditions studied. Extensive void formation was observed at the alloy-oxide interface for the Fe-20Cr in both dry and wet conditions, but not for the 430 stainless steel. The Fe-20Cr alloy was found to exhibit a greater relative extent of subsurface Cr depletion than the 430 stainless steel, despite the former's higher Cr content. Depletion of Cr in the Fe-20Cr after 24 h exposure was also greater at 700 C than 800 C. The relative differences in oxidation behavior are discussed in terms of the coarse alloy grain size of the high-purity Fe-20Cr material, and the effects of Mn, Si, and C on the oxide scale formed on the 430 stainless steel.

  7. RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect

    Miniati, Francesco; Elyiv, Andrii

    2013-06-10

    The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

  8. PLASMA EFFECTS ON FAST PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect

    Schlickeiser, R.; Ibscher, D.; Supsar, M. E-mail: ibscher@tp4.rub.de

    2012-10-20

    The interaction of TeV gamma rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon- photon annihilation process. The created pair beam distribution is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature in the unmagnetized intergalactic medium (IGM). The maximum electrostatic growth rate occurs at angles of 39.{sup 0}2 with respect to the pair beam direction, and is more than three orders of magnitude greater than the maximum Weibel growth rate, indicating that the linear oblique electrostatic instability operates much faster than the Weibel instability. The dissipation of the generated electrostatic turbulence is different for intense and weak gamma-ray blazars. For intense blazars, the normalized number of generated pairs n {sub 22} = n{sub b} /[10{sup -22} cm{sup -3}] exceeds the critical density n{sub c} (T) = 4.8 Multiplication-Sign 10{sup -3} T {sub 4} for given normalized IGM temperature T {sub 4} = T/[10{sup 4} K] necessary for the onset of the modulation instability, so that all free kinetic pair energy is dissipated in heating the IGM in cosmic voids. For weak blazars, half of the initial energy density of the beam particles is transferred to the electrostatic and electromagnetic fluctuations on timescales smaller than the inverse Compton energy loss timescale of the pairs. In both cases, this prevents the development of a full electromagnetic pair cascade as in vacuum. For weak blazars, the superluminal electrostatic fluctuations are dissipated by the inverse Compton scattering into transverse electromagnetic waves by the relaxed relativistic pair particles to optical frequencies, implying the occurrence of optical electrostatic bremsstrahlung pair halos from weak blazars with spectral flux densities below 50 {mu}Jy.

  9. Cold-batter mincing of hot-boned and crust-frozen air-chilled turkey breast allows for reduced sodium content in protein gels.

    PubMed

    Lee, H C; Medellin-Lopez, M; Singh, P; Sansawat, T; Chin, K B; Kang, I

    2014-09-01

    The purpose of this research was to evaluate sodium reduction in the protein gels that were prepared with turkey breasts after hot boning (HB), quarter (¼) sectioning, crust-frozen air-chilling (CFAC), and cold temperature mincing. For each of 4 replications, 36 turkeys were slaughtered and eviscerated. One-half of the carcasses were randomly assigned to water immersion chilling for chill boning (CB), whereas the remaining carcasses were immediately HB and quarter-sectioned/crust-frozen air-chilled (HB-¼CFAC) in a freezing room (-12°C, 1.0 m/s). After deboning, CB fillets were conventionally minced, whereas HB-¼CFAC fillets were cold minced up to 27 min with 1 or 2% salt. From the beginning of mincing, the batter temperatures of HB-¼CFAC were lower (P < 0.05) than those of CB batters up to 12 and 21 min for 2 and 1% salts, respectively. Upon mincing, the batter pH of the HB-¼CFAC (P < 0.05) rapidly decreased and was not different (P > 0.05) from the pH of CB batters, except for the 1% salt HB-¼CFAC batter after 15 min of mincing. The pattern of pH was not changed when the batters were stored overnight. The protein of 2% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets at 9, 12, 18, and 24 min. Similarly, the protein of 1% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets from 12 min. Stress values of 2% salt HB-¼CFAC gels were higher (P < 0.05) than those of 1 and 2% salt CB gels, with intermediate values for 1% salt HB-¼CFAC gels. In the scanning electron microscope image, prerigor batter appears to have more open space, less protein aggregation, and more protein-coated fat particles than those of postrigor batters. Based on these results, the combination of HB-¼CFAC and cold-batter-mincing technologies appear to improve protein functionality and sodium reduction capacity.

  10. Cold-batter mincing of hot-boned and crust-frozen air-chilled turkey breast allows for reduced sodium content in protein gels.

    PubMed

    Lee, H C; Medellin-Lopez, M; Singh, P; Sansawat, T; Chin, K B; Kang, I

    2014-09-01

    The purpose of this research was to evaluate sodium reduction in the protein gels that were prepared with turkey breasts after hot boning (HB), quarter (¼) sectioning, crust-frozen air-chilling (CFAC), and cold temperature mincing. For each of 4 replications, 36 turkeys were slaughtered and eviscerated. One-half of the carcasses were randomly assigned to water immersion chilling for chill boning (CB), whereas the remaining carcasses were immediately HB and quarter-sectioned/crust-frozen air-chilled (HB-¼CFAC) in a freezing room (-12°C, 1.0 m/s). After deboning, CB fillets were conventionally minced, whereas HB-¼CFAC fillets were cold minced up to 27 min with 1 or 2% salt. From the beginning of mincing, the batter temperatures of HB-¼CFAC were lower (P < 0.05) than those of CB batters up to 12 and 21 min for 2 and 1% salts, respectively. Upon mincing, the batter pH of the HB-¼CFAC (P < 0.05) rapidly decreased and was not different (P > 0.05) from the pH of CB batters, except for the 1% salt HB-¼CFAC batter after 15 min of mincing. The pattern of pH was not changed when the batters were stored overnight. The protein of 2% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets at 9, 12, 18, and 24 min. Similarly, the protein of 1% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets from 12 min. Stress values of 2% salt HB-¼CFAC gels were higher (P < 0.05) than those of 1 and 2% salt CB gels, with intermediate values for 1% salt HB-¼CFAC gels. In the scanning electron microscope image, prerigor batter appears to have more open space, less protein aggregation, and more protein-coated fat particles than those of postrigor batters. Based on these results, the combination of HB-¼CFAC and cold-batter-mincing technologies appear to improve protein functionality and sodium reduction capacity. PMID:25012854

  11. A deep redshift survey of IRAS galaxies towards the Bootes void

    NASA Technical Reports Server (NTRS)

    Dey, Arjun; Strauss, Michael A.; Huchra, John

    1990-01-01

    Redshifts were measured for a complete sample of galaxies detected by the IRAS within 11.5 deg of the center of the void in Bootes discovered by Kirshner et al (1981). There are 12 IRAS galaxies within the void as defined by the above authors, seven of which were discovered in this survey. One of these has a companion at the same redshift. The resulting density of IRAS galaxies in the void is measured to be between 1/6 and 1/3 of the average density; the uncertainty is dominated by Poisson statistics. Good agreement is found between the selection function and number density derived from the present sample and those derived from the all-sky sample of Strauss (1989). The optical spectra of the newly found galaxies in the void are typical of IRAS galaxies in the field.

  12. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    NASA Astrophysics Data System (ADS)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  13. Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes

    NASA Technical Reports Server (NTRS)

    Brahm, E. N.; Rolin, T. D.

    2010-01-01

    NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability

  14. Void-nanograting transition by ultrashort laser pulse irradiation in silica glass.

    PubMed

    Dai, Ye; Patel, Aabid; Song, Juan; Beresna, Martynas; Kazansky, Peter G

    2016-08-22

    The structural evolution from void modification to self-assembled nanogratings in fused silica is observed for moderate (NA > 0.4) focusing conditions. Void formation, appears before the geometrical focus after the initial few pulses and after subsequent irradiation, nanogratings gradually occur at the top of the induced structures. Nonlinear Schrödinger equation based simulations are conducted to simulate the laser fluence, intensity and electron density in the regions of modification. Comparing the experiment with simulations, the voids form due to cavitation in the regions where electron density exceeds 1020 cm-3 but is below critical. In this scenario, the energy absorption is insufficient to reach the critical electron density that was once assumed to occur in the regime of void formation and nanogratings, shedding light on the potential formation mechanism of nanogratings. PMID:27557213

  15. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Nijdam, S.; Beckers, J.

    2016-07-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon-acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed "hiccup" and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  16. Mechanisms of voids formation during cooldown and freezing of lithium in SP-100 type systems

    NASA Technical Reports Server (NTRS)

    Yang, Jae Y.; El-Genk, Mohamed S.

    1991-01-01

    The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (a) homogeneous nucleation, (b) heterogeneous nucleation, (c) normal segregation of helium gas dissolved in liquid lithium, and (d) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid Lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids.

  17. The effect of oxygen on void stability in ion-irradiated steel

    NASA Astrophysics Data System (ADS)

    Seitzman, Larry E.; Dodd, R. Arthur; Kulcinski, Gerald L.

    1990-07-01

    The effect of oxygen on void stability in an Fe-17Ni-13Cr austenitic ternary alloy has been investigated using 15 MeV nickel-ion irradiation at elevated temperatures and preimplantation of 6 MeV oxygen at room temperature. The nickel irradiation was performed over a temperature range of 550 °C to 650 °C. Utilizing transverse specimen preparation techniques, the irradiated steel was examined by transmission electron microscopy (TEM). As little as 10 appm preimplanted oxygen caused a significant increase in the void number density when the steel was irradiated at 550 °C. A near-surface void-denuded zone occurs in the irradiated steel, while a region depleted of visible voids also occurs in the steel injected with 300 appm oxygen or greater and irradiated at 550 °C.

  18. Dielectric particle and void resonators for thin film solar cell textures.

    PubMed

    Mann, Sander A; Grote, Richard R; Osgood, Richard M; Schuller, Jon A

    2011-12-01

    Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators-low refractive index inclusions within a high index embedding medium-exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm. PMID:22273965

  19. Micro-CT for the quantification of 3D voids within damaged structures

    SciTech Connect

    Patterson, Brian M; Hamilton, Christopher E; Cerreta, Ellen K; Dennis - Koller, Darcie; Bronkhorst, C. A.; Hansen, B. L.

    2011-01-26

    Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

  20. Approximate yield criteria for anisotropic metals with prolate or oblate voids

    NASA Astrophysics Data System (ADS)

    Monchiet, Vincent; Gruescu, Cosmin; Charkaluk, Eric; Kondo, Djimedo

    2006-07-01

    Following the study of Gologanu et al. (1997) which has extended the well-known approach of Gurson (1975), we propose approximate yield criteria for anisotropic plastic voided metals containing non spherical cavities. The plastic anisotropy of the matrix is described by means of Hill's quadratic criterion. The procedure to establish the closed form expression of approximate macroscopic criteria, in which void shape and plastic anisotropic effects are included, is detailed. The new criteria allow us to recover existing results in the cases of spherical and cylindrical voids in an Hill type plastic matrix. Moreover, they agree with previous criteria for non spherical voids in an isotropic plastic matrix. Finally, for validation purposes, we provide, in the general case of non spherical cavities in the anisotropic matrix, a comparison with the numerical exact two field criteria. To cite this article: V. Monchiet et al., C. R. Mecanique 334 (2006).

  1. The temperature dependence of void and bubble formation and growth in aluminium during 600 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Green, W. V.; Singh, B. N.; Leffers, T.

    1984-05-01

    As a part of a continuing program, we report in the present paper results obtained from irradiating pure aluminium samples in the PIREX facility installed in the 600 MeV proton beam of the accelerator at the Swiss Institute for Nuclear Research (SIN). The aluminium foils have been irradiated at 8 different temperatures in the range from 130°-430°C, to displacement doses of up to 5 dpa and helium contents of over 1000 appm. The TEM examinations have shown that at all irradiation temperatures and displacement doses, helium bubbles are formed uniformly through the whole grain interior. No voids are observed at temperatures above 160° C. At all temperatures, irradiation induced dislocations have been observed, most of them linked to bubbles. At higher temperatures and doses, clear evidence of irradiation induced precipitation has been observed; the precipitates are normally decorated with helium bubbles.

  2. A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds

    NASA Astrophysics Data System (ADS)

    Salvaggio, Katie N.

    Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points

  3. Structural analyses of a rigid pavement overlaying a sub-surface void

    NASA Astrophysics Data System (ADS)

    Adam, Fatih Alperen

    Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on

  4. Phase-field Modeling of Void Migration and Growth Kinetics in Materials under Irradiation and Temperature Field

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Gao, Fei; Henager, Charles H.; Khaleel, Mohammad A.

    2010-12-15

    A phase-field model is developed to investigate the migration of vacancies, interstitials, and voids as well as void growth kinetics in materials under radiation and temperature field. The model takes into account the generation of vacancies and interstitials associated with the irradiation damage, the recombination between vacancies and interstitials, defect diffusion, and defect sinks. The effect of void sizes, vacancy concentration, vacancy generation rate, recombination rate, and temperature gradient on a single void migration and growth kinetics is parametrically studied. The results demonstrate that the temperature gradient causes void migration and defect fluxes, i.e., the Soret effect, which affects void stability and growth kinetics. It is found that 1) the void migration mobility is independent of the void size, which is in agreement with the theoretical prediction with the assumption of bulk diffusion controlled migration; 2) the void migration mobility strongly depends on temperature gradient; and 3) the effect of defect concentration, generation rate, and recombination rate on void migration mobility is minor although they strongly influence the void growth kinetics.

  5. Fractal study of pion void probability distribution in ultrarelativistic nuclear collision and its target dependence

    NASA Astrophysics Data System (ADS)

    Bhaduri, Susmita; Ghosh, Dipak

    2016-08-01

    There are numerous existing works on investigating the dynamics of particle production process in ultrarelativistic nuclear collision. In the past, fluctuation of spatial pattern has been analyzed in terms of the scaling behavior of voids. But analysis of the scaling behavior of the void in fractal scenario has not been explored yet. In this work, we have analyzed the fractality of void probability distribution with a completely different and rigorous method called visibility graph analysis, analyzing the void-data produced out of fluctuation of pions in 32S-AgBr interaction at 200 GeV in pseudo-rapidity (η) and azimuthal angle (ϕ) space. The power of scale-freeness of visibility graph denoted by PSVG is a measure of fractality, which can be used as a quantitative parameter for the assessment of the state of chaotic system. As the behavior of particle production process depends on the target excitation, we can dwell down the void probability distribution in the event-wise fluctuation resulted out of the high energy interaction for different degree of target excitation, with respect to the fractal scenario and analyze the scaling behavior of the voids. From the analysis of the PSVG parameter, we have observed that scaling behavior of void probability distribution in multipion production changes with increasing target excitation. Since visibility graph method is a classic method of complex network analysis, has been applied over fractional Brownian motion (fBm) and fractional Gaussian noises (fGn) to measure the fractality and long-range dependence of a time series successfully, we can quantitatively confirm that fractal behavior of the void probability distribution in particle production process depends on the target excitation.

  6. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. II. Magnification probability distributions

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira; Vanderveld, R. Ali

    2012-01-01

    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (≳35Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald , which includes the effect of lensing shear. The standard deviation of this distribution is ˜0.027 magnitudes and the mean is ˜0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ˜1Mpc, the standard deviation is reduced to ˜0.013 magnitudes. This standard deviation due to voids is a factor ˜3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ˜20%, and also build a simplified analytic model that reproduces our results to within ˜30%. Our model also allows us to explore the domain of validity of weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ˜4%, and corrections due to shear are ˜3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible.

  7. Joints, fissures, and voids in rhyolite welded ash-flow tuff at Teton damsite, Idaho

    USGS Publications Warehouse

    Prostka, Harold J.

    1977-01-01

    Several kinds of joints, fissures, and voids are present in densely welded rhyolite ash-flow tuff at Teton damsite. Older fissures and voids probably were formed in the ash-flow sheet during secondary flowage, which probably was caused by differential compaction or settling over irregular topography. The younger, more abundant fissures are mostly steep cooling joints that probably have been opened farther by horizontal tectonic extension and gravitational creep, perhaps aided by lateral stress relief.

  8. Observations of dwarfs in nearby voids: implications for galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Pustilnik, Simon A.

    2016-10-01

    The intermediate results of the ongoing study of deep samples of ~200 galaxies residing in nearby voids, are presented. Their properties are probed via optical spectroscopy, ugri surface photometry, and HI 21-cm line measurements, with emphasis on their evolutionary status. We derive directly the hydrogen mass M(HI), the ratio M(HI)/LB and the evolutionary parameter gas-phase O/H. Their luminosities and integrated colours are used to derive stellar mass M* and the second evolutionary parameter - gas mass-fraction f g). The colours of the outer parts, typically representative of the galaxy oldest stellar population, are used to estimate the upper limits on time since the beginning of the main SF episode. We compare properties of void galaxies with those of the similar late-type galaxies in denser environments. Most of void galaxies show smaller O/H for their luminosity, in average by ~30\\%, indicating slower evolution. Besides, the fraction of ~10\\% of the whole void sample or ~30\\% of the least luminous void LSB dwarfs show the oxygen deficiency by a factor of 2-5. The majority of this group appear very gas-rich, with f g ~(95-99)%, while their outer parts appear rather blue, indicating the time of onset of the main star-formation episode of less than 1-4 Gyr. Such unevolved LSBD galaxies appear not rare among the smallest void objects, but turned out practically missed to date due to the strong observational selection effects. Our results evidense for unusual evolutionary properties of the sizable fraction of void galaxies, and thus, pose the task of better modelling of dwarf galaxy formation and evolution in voids.

  9. Theory of dust and dust-void structures in the presence of the ion diffusion.

    PubMed

    Tsytovich, V N; Vladimirov, S V; Morfill, G E

    2004-12-01

    A dust void is a dust-free region inside the dust cloud that often develops for conditions relevant to plasma processing discharges and complex plasma experiments. A distinctive feature of the void is a sharp boundary between the dust and dust-free regions; this is manifested especially clear when dissipation in the plasma is small and discontinuity of the dust number density appear. Here, the structure of the dust void boundary and the distribution of the dust and plasma parameters in the dust structure bordering the void is analyzed taking into account effects of dissipation due to the ion diffusion on plasma neutrals. The sharp boundary between the dust and void regions exists also in the presence of the ion diffusion; however, only derivatives of the dust density, dust charge, electron density and electric field are discontinuous at the void boundaries, while the functions themselves as well as derivatives of the ion drift velocity and the ion density are continuous. Numerical calculations demonstrate various sorts of diffusive dust void structures; the possibility of singularities in the balance equations caused by the diffusion process inside the dust structures is investigated. These singularities can be responsible for a new type of shocklike structures. Other structures are typically self-organized to eliminate the singularities. Numerical computations in this case demonstrate a set of thin dust layers separated by high density thin dust clouds similar to the multiple-layer dust structures observed in the laboratory and in the upper ionosphere. The possibility for existence of a few equilibrium positions of the void boundary is discussed.

  10. Supernovae as seen by off-center observers in a local void

    SciTech Connect

    Blomqvist, Michael; Mörtsell, Edvard E-mail: edvard@fysik.su.se

    2010-05-01

    Inhomogeneous universe models have been proposed as an alternative explanation for the apparent acceleration of the cosmic expansion that does not require dark energy. In the simplest class of inhomogeneous models, we live within a large, spherically symmetric void. Several studies have shown that such a model can be made consistent with many observations, in particular the redshift-luminosity distance relation for type Ia supernovae, provided that the void is of Gpc size and that we live close to the center. Such a scenario challenges the Copernican principle that we do not occupy a special place in the universe. We use the first-year Sloan Digital Sky Survey-II supernova search data set as well as the Constitution supernova data set to put constraints on the observer position in void models, using the fact that off-center observers will observe an anisotropic universe. We first show that a spherically symmetric void can give good fits to the supernova data for an on-center observer, but that the two data sets prefer very different voids. We then continue to show that the observer can be displaced at least fifteen percent of the void scale radius from the center and still give an acceptable fit to the supernova data. When combined with the observed dipole anisotropy of the cosmic microwave background however, we find that the data compells the observer to be located within about one percent of the void scale radius. Based on these results, we conclude that considerable fine-tuning of our position within the void is needed to fit the supernova data, strongly disfavouring the model from a Copernican principle point of view.

  11. Nonlinear plasma voids (holes) in a charge-varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Ait Gougam, Leila; Aoutou, Kamel; Zerguini, Taha Houssine

    2005-09-15

    Nonlinear large amplitude plasma voids are investigated in a charge-varying dusty plasma. Numerical solutions of highly nonlinear equations are carried out including dust charging and ion trapping. The results complement previously published results on this problem. It is found that under certain conditions the effect of dust charge variation can be quite important. In particular, it may be noted that the dust charge variation leads to an additional enlargement of the nonlinear plasma voids.

  12. Analysis of void formation in SHEBA II using S{sub N} and Monte Carlo codes

    SciTech Connect

    Walters, S.; Butterfield, K.; Dudziak, D.

    1994-12-31

    The purpose of this work was to evaluate the effect of the introduction of a void into a supercritical solution system. Calculations have indicated that the primary shutdown mechanism in the excursion of a solution is radiolytic gas formation. The density of a radiolytic gas varies directly with the local power density. As such, the complete evaluation of the quench mechanism requires detailed knowledge of the reactivity effect of voids as a function of position.

  13. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  14. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit.

  15. Air oxidation of hydrazine. 1. Reaction kinetics on natural kaolinites, halloysites, and model substituent layers with varying iron and titanium oxide and O- center contents

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Mariner, R.; Rice, A.

    1991-01-01

    Air oxidation of hydrazine was studied by using a group of kaolinites, halloysites, and substituent oxides as models for the tetrahedral and octahedral sheets. The rate was found to be linear with oxygen. The stoichiometry showed that oxygen was the primary oxidant and that dinitrogen was the only important nitrogen-containing product. The rates on kaolinites were strongly inhibited by water. Those on three-dimensional silica and gibbsite appeared not to be. That on a supposedly layered silica formed from a natural kaolinite by acid leaching showed transitional behavior--slowed relative to that expected from a second-order reaction relative to that on the gibbsite and silica but faster than those on the kaolinites. The most striking result of the reaction was the marked increase in the rate of reaction of a constant amount of hydrazine as the amount of clay was increased. The increase was apparent (in spite of the water inhibition at high conversions) over a 2 order of magnitude variation of the clay weight. The weight dependence was taken to indicate that the role of the clay is very important, that the number of reactive centers is very small, or that they may be deactivated over the course of the reaction. In contrast to the strong dependence on overall amount of clay, the variation of amounts of putative oxidizing centers, such as structural Fe(III), admixed TiO2 or Fe2O3, or O- centers, did not result in alteration of the rate commensurate with the degree of variation of the entity in question. Surface iron does play some role, however, as samples that were pretreated with a reducing agent were less active as catalysts than the parent material. These results were taken to indicate either that the various centers interact to such a degree that they cannot be considered independently or that the reaction might proceed by way of surface complexation, rather than single electron transfers.

  16. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. PMID:27169731

  17. Point defect generation, nano-void formation and growth. II. Criterion for ductile failure

    NASA Astrophysics Data System (ADS)

    Saimoto, S.; Diak, B. J.; Lloyd, D. J.

    2012-05-01

    Using the derived relation for point defect generation according to a new constitutive relation, the notion of nano-void formation at grown-in nano-particles is examined and its consequences deduced as the nano-voids grow in size with continued deformation. Assuming that void growth is due only to point defect accumulation, the analysis of fracture strains in tension of natural-aged AA6111 suggests that coalescence by micro-plastic activity occurs when the void diameter becomes about one third of the evolving inter-void spacing. Hence, the derived limit strain to incipient void-coalescence is inversely proportional to the square root of point defect generation as determined from the stress-strain data. Using this criterion, failure prediction maps can be constructed for strain modes of plane-strain and balanced bi-axial to result in the outer bounds of the forming limit diagram. Trial examinations with AA5754 and AA3003 show great promise.

  18. Void-assisted plasticity in Ag nanowires with a single twin structure

    NASA Astrophysics Data System (ADS)

    Zheng, He; Wang, Jiangwei; Huang, Jian Yu; Wang, Jianbo; Mao, Scott X.

    2014-07-01

    By employing the in situ transmission electron microscopy (TEM) technique, tensile deformation behaviors of a silver nanowire (NW) with a single twin structure were studied. Our observations revealed that the initial stage of plastic deformation was dominated by surface-mediated partial dislocation activities. Strikingly, the void formation and growth were shown to govern the later stage of plasticity, leading to the ductile type of fracture in NWs. Possible void nucleation and growth mechanisms were discussed. Additionally, TEM images show the transformation from bi-crystal to polycrystal in the fracture area, likely due to the void activity. Our results have implications in the assembly of functional structures applying nano-building blocks.By employing the in situ transmission electron microscopy (TEM) technique, tensile deformation behaviors of a silver nanowire (NW) with a single twin structure were studied. Our observations revealed that the initial stage of plastic deformation was dominated by surface-mediated partial dislocation activities. Strikingly, the void formation and growth were shown to govern the later stage of plasticity, leading to the ductile type of fracture in NWs. Possible void nucleation and growth mechanisms were discussed. Additionally, TEM images show the transformation from bi-crystal to polycrystal in the fracture area, likely due to the void activity. Our results have implications in the assembly of functional structures applying nano-building blocks. Electronic supplementary information (ESI) available: Detailed nanowire diameter information and supplementary movies. See DOI: 10.1039/c3nr04731h

  19. Could multiple voids explain the cosmic microwave background Cold Spot anomaly?

    DOE PAGES

    Naidoo, Krishna; Benoit-Levy, Aurelien; Lahav, Ofer

    2016-03-20

    Understanding the observed Cold Spot (CS) (temperature of ~ -150 mu K at its centre) on the Cosmic Microwave Background (CMB) is an outstanding problem. Explanations vary from assuming it is just a ≳ 3σ primordial Gaussian fluctuation to the imprint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ~-50 mu K.more » In this model the central CS temperature lies at ~ 2σ but fails to explain the CS hot ring. An alternative multi-void model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multi-void scenarios) are removed. Furthermore, the CS tension with the LCDM model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.« less

  20. Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints

    SciTech Connect

    Jung, Yong; Yu, Jin

    2014-02-28

    Effects of electric current flow on the Kirkendall void formation at solder joints were investigated using Sn-3.5Ag/Cu joints specially designed to have localized nucleation of Kirkendall voids at the Cu{sub 3}Sn/Cu interface. Under the current density of 1 × 10{sup 4} A/cm{sup 2}, kinetics of Kirkendall void growth and intermetallic compound thickening were affected by the electromigration (EM), and both showed the polarity effect. Cu{sub 6}Sn{sub 5} showed a strong susceptibility to the polarity effect, while Cu{sub 3}Sn did not. The electromigration force induced additional tensile (or compressive) stress at the cathode (or anode), which accelerated (or decelerated) the void growth. From the measurements of the fraction of void at the Cu{sub 3}Sn/Cu interface on SEM micrographs and analysis of the kinetics of void growth, the magnitude of the local stress induced by EM was estimated to be 9 MPa at the anode and −7 MPa at the cathode.

  1. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  2. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.

  3. On the assumed impact of germanium doping on void formation in Czochralski-grown silicon

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Jan; Zhang, Xinpeng; Xu, Wubing; Chen, Jiahe; Ma, Xiangyang; Yang, Deren

    2010-12-01

    The assumed impact of Ge doping on void formation during Czochralski-growth of silicon single crystals, is studied using scanning infrared microscopy. It has been reported that Ge doping leads to a reduction in the flow pattern defect density and of the crystal originated particle size, both suggesting an effect of Ge on vacancy concentration and void formation during crystal growth. The present study however reveals only a marginal-if any-effect of Ge doping on grown-in single void size and density. Double and multiple void formation might however be suppressed partially by Ge doping leading to the observed decrease in flow pattern defect density. The limited effect of Ge doping on single void formation is in agreement with earlier findings that Ge atoms are only a weak trap for vacancies at higher temperatures and therefor should have a smaller impact on the vacancy thermal equilibrium concentration and on single void nucleation than, e.g., interstitial oxygen and nitrogen.

  4. Influence of nickel and beryllium content on swelling behavior of copper irradiated with fast neutrons

    SciTech Connect

    Singh, B.N.; Garner, F.A.; Edwards, D.J.; Evans, J.H.

    1996-10-01

    In the 1970`s, the effects of nickel content on the evolution of dislocation microstructures and the formation and growth of voids in Cu-Ni alloys were studied using 1 MeV electrons in a high voltage electron microscope. The swelling rate was found to decrease rapidly with increasing nickel content. The decrease in the swelling rate was associated with a decreasing void growth rate with increasing nickel content at irradiation temperatures up to 450{degrees}C. At 500{degrees}C, both void size and swelling rate were found to peak at 1 and 2% Ni, respectively, and then to decrease rapidly with increasing nickel content. However, recent work has demonstrated that the swelling behavior of Cu-5%Ni irradiated with fission neutrons is very similar for that of pure copper. The present experiments were designed to investigate this apparent discrepancy.

  5. Modeling virgin compression of reconstituted clay at different initial water contents

    NASA Astrophysics Data System (ADS)

    Bian, Xia; Qian, Sen; Ding, Jian-wen

    2015-10-01

    The observations on compressibility of reconstituted clays show that the compression line with a higher initial water content lies above the compression line with a lower initial water content for a given clay. Hence there exists additional void ratio due to initial water contents among virgin compression lines (VCLs) of reconstituted clays. In this paper, the difference in void ratio caused by different initial water contents is investigated based on the empirical equation proposed by Liu and Carter (2000) for describing the differential void ratio at the same stress between natural and reconstituted clays. The mechanism of compressibility of reconstituted clays, when the stress level is larger than the remolded yield stress, is also discussed.

  6. The influence of dynamical structural relaxation of point defect clusters on void formation in irradiated copper

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.; Mukouda, I.; Sugio, K.

    1997-11-01

    In the neutron-irradiation experiment with a temperature controlled capsule at JMTR, residual-gas-free copper was irradiated at 200°C and 300°C together with as-received copper. The fluences were 5 × 10 18 n/cm 2 (the low fluence) to 1 × 10 20 n/cm 2 (the high fluence). TEM observation of the irradiated specimens showed that interstitial clusters form a colony at the low fluence which develops into a dislocation structure at the high fluence. Between the colonies only vacancy clusters in the form of voids and stacking fault tetrahedra (sft) were observed. There are no effects of residual gas atoms on the formation of voids at the low fluence although the effects become appreciable at the high fluence. The number of vacancies which are accumulated in a void is 350 times larger than that in a sft at the low fluence. The number density of voids decreased with increasing neutron fluence while the number density of sft increased. The voids form uniformly in copper irradiated to the low fluence while they were observed along dislocations at the high fluence. Computer simulations by molecular dynamics show that small interstitial clusters relax to a bundle of <110> crowdions and move long distances in response to small strain fields. Interstitial clusters move along a <110> direction and can switch to other <110> directions, and form groups of clusters. At high temperature, a dense colony of the clusters forms and develops into a dislocation structure. It is shown that small vacancy clusters relax to movable structures at high temperature. The structure consists of vacancies which are connected in a curved string shape. Along the vacancy strings, many relaxations of a tri-vacancy of Damask- Dienes-Weizer type (3v-sft) were observed. Such a relaxation to the 3v-sft type makes it difficult for a single vacancy evaporation. Small vacancy clusters move and coalesce into larger vacancy clusters. The linkage of the results of experiments and computer-simulations suggests

  7. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  8. A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Lavaux, Guilhem; Weinberg, David H.

    2012-12-10

    We produce the most comprehensive public void catalog to date using the Sloan Digital Sky Survey Data Release 7 main sample out to redshift z = 0.2 and the luminous red galaxy sample out to z = 0.44. Using a modified version of the parameter-free void finder ZOBOV, we fully take into account the presence of the survey boundary and masks. Our strategy for finding voids is thus appropriate for any survey configuration. We produce two distinct catalogs: a complete catalog including voids near any masks, which would be appropriate for void galaxy surveys, and a bias-free catalog of voids away from any masks, which is necessary for analyses that require a fair sampling of void shapes and alignments. Our discovered voids have effective radii from 5 to 135 h {sup -1} Mpc. We discuss basic catalog statistics such as number counts and redshift distributions and describe some additional data products derived from our catalog, such as radial density profiles and projected density maps. We find that radial profiles of stacked voids show a qualitatively similar behavior across nearly two decades of void radii and throughout the full redshift range.

  9. A measurement of the Alcock-Paczyński effect using cosmic voids in the SDSS

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Pisani, Alice; Wandelt, Benjamin D.; Weinberg, David H.

    2014-10-01

    We perform an Alcock-Paczyński test using stacked cosmic voids identified in the Sloan Digital Sky Survey (SDSS) Data Release 7 main sample and Data Release 10 LOWZ and CMASS samples. We find ˜1500 voids out to redshift 0.6 using a heavily modified and extended version of the watershed algorithm ZOBOV, which we call VIDE (Void IDentification and Examination). To assess the impact of peculiar velocities, we use the mock void catalogues presented in Sutter et al. We find a constant uniform flattening of 14 per cent along the line of sight when peculiar velocities are included. This flattening appears universal for all void sizes at all redshifts and for all tracer densities. We also use these mocks to identify an optimal stacking strategy. After correcting for systematic effects, we find that our Alcock-Paczyński measurement leads to a preference of our best-fitting value of ΩM ˜ 0.15 over ΩM = 1.0 by a likelihood ratio of 10. Likewise, we find a factor of 4.5 preference of the likelihood ratio for a Λ cold dark matter ΩM = 0.3 model and a null measurement. Taken together, we find substantial evidence for the Alcock-Paczyński signal in our sample of cosmic voids. Our assessment using realistic mocks suggests that measurements with future SDSS releases and other surveys will provide tighter cosmological parameter constraints. The void-finding algorithm and catalogues used in this work will be made publicly available at http://www.cosmicvoids.net.

  10. A Functional Representation of the Cosmological Reduced Void Probability Distribution as the Fox H Function

    NASA Astrophysics Data System (ADS)

    Andrew, Keith; Smailhodzic, A.; Carini, M.; Barnaby, D.

    2010-01-01

    We use data from the Sloan Digital Sky Survey, the DEEP2 and 2dF Galaxy Redshift surveys and numerical runs of the Gadget II code to analyze the distribution of cosmological voids in the universe similar to the model proposed by Mekjian.1. The Void Probability Function focuses on a scaling model inspired from percolation theory that gives an analytical form for the distribution function. For large redshifts the early universe was smooth and the probability function has a simple mathematical form that mimics the two point correlation results leading to a generalized power law. As various large scale galactic structures emerge in a given simulation a number of relatively empty regions are isolated and characterized as voids based upon number counts in the associated volume. The number density of these regions is such that the universe has a large scale “sponge-like” appearance with voids of all scales permeating the field of observation. For these data sets we examine the range of critical void probability function parameters that give rise to the best fit to the numerical and observational data. Several expressions for the probability distribution differ at the long end tail of the distribution which is sensitive to the Levy index of the distribution. Almost all of the distributions can be expressed as special cases of the Fox H function which has an asymptotic form whose tail depends upon the Levy index. We analyze the Levy index expressions and link them to the Fox H function parameters and to an anomalous diffusion equation that gives rise to the observed LSS void pattern. We wish to thank the Kentucky Space Grant Consortium for providing the NASA grant funding this research 1. Aram Z. Mekjian , Generalized statistical models of voids and hierarchical structure in cosmology, The Astrophysical Journal, 655: 1-10, 2007, arXiv:0712.1217

  11. An ultrasonic investigation of the effect of voids on the mechanical properties of bread dough and the role of gas cells in determining the cellular structure of freeze- dried breadcrumb

    NASA Astrophysics Data System (ADS)

    Elmehdi, Hussein Mohamed

    charge repulsion effects. In the second part of the thesis, freeze-dried breadcrumb structure was investigated. To change the size of the air cells, the dough was proofed for various times. Ultrasonic velocity and amplitude decrease with increasing φ. The experimental data were found to be in reasonable agreement with theoretical models for the elasticity of isotropic cellular foams and tortuosity. The effects of anisotropy in breadcrumb structure were studied by compressing samples uniaxially, thereby transforming the shape of the air cells from approximately spherical to elongated ellipsoids. Ultrasonic measurements were taken in the directions parallel and perpendicular to the strain. These results indicated that the path by which sound propagates is critical. The data were interpreted using the same two theoretical models, taking into account anisotropy effects. The tortuosity model was able to interpret the void fraction dependence of the velocity along the two orthogonal directions, thus giving a way of relating changes in ultrasonic velocity to changes in breadcrumb structure. This thesis demonstrates the potential for using ultrasound as a non-destructive, cheap and accurate tool for studying the effect of voids (and their expansion) on dough properties. These ultrasonic techniques can also be used to investigate the effect of air cells on the structural integrity of breadcrumb and hence be a useful tool for quantitatively assessing bread quality.

  12. Void Fraction and Pressure Drop in Two-Phase Equilibrium Flows in a Vertical 2 × 3 Rod Bundle Channel ─ Assessment of Correlations against the Present Subchannel Data

    NASA Astrophysics Data System (ADS)

    Sadatomi, Michio; Kano, Keiko; Kawahara, Akimaro; Mori, Naoki

    In order to increase void fraction and pressure drop data in a multi-subchannel system like an actual fuel rod bundle, air-water experiments have been conducted using a vertical 2 × 3 rod bundle channel made up of two central and four side subchannels as the test channel. Void fraction and pressure drop in each subchannel were measured and the frictional pressure drop was determined mainly for slug and churn flows. The results show that both the void fraction and the frictional pressure drop are higher in the central subchannel than the side one. In order to analyze the data, the data on gas and liquid flow rates in each subchannel under the same flow condition have been used. In the analysis, the calculations by various correlations reported in literatures have been compared with the present data for validation. The recommended correlations respectively for the void fraction and the frictional pressure drop have been clarified. Results of such experiments and analyses are presented and discussed in this paper.

  13. Dynamic vapor generator that simulates transient odor emissions of victims entrapped in the voids of collapsed buildings.

    PubMed

    Statheropoulos, M; Pallis, G C; Mikedi, K; Giannoukos, S; Agapiou, A; Pappa, A; Cole, A; Vautz, W; Thomas, C L Paul

    2014-04-15

    The design, development, and validation of a dynamic vapor generator are presented. The generator simulates human scent (odor) emissions from trapped victims in the voids of collapsed buildings. The validation of the device was carried out using a reference detector: a quadrupole mass spectrometer equipped with a pulsed sampling (PS-MS) system. A series of experiments were conducted for evaluating the simulator's performance, defining types and weights of different factors, and proposing further optimization of the device. The developed device enabled the production of stable and transient odor profiles in a controllable and reproducible way (relative standard deviation, RSD < 11%) at ppbv to low ppmv concentrations and allowed emission durations up to 30 min. Moreover, the factors affecting its optimum performance (i.e., evaporation chamber temperature, air flow rate through the mixing chamber, air flow rate through the evaporation chamber, and type of compound) were evaluated through an analysis of variance (ANOVA) tool revealing the next steps toward optimizing the generator. The developed simulator, potentially, can also serve the need for calibrating and evaluating the performance of analytical devices (e.g., gas chromatographers, ion mobility spectrometers, mass spectrometers, sensors, e-noses) in the field. Furthermore, it can contribute in better training of urban search and rescue (USaR) canines.

  14. Voiding dysfunction in patients with nasal congestion treated with pseudoephedrine: a prospective study

    PubMed Central

    Shao, I-Hung; Wu, Chia-Chen; Tseng, Hsiao-Jung; Lee, Ta-Jen; Lin, Yu-Hsiang; Tam, Yuan-Yun

    2016-01-01

    Background Pseudoephedrine is a sympathomimetic drug widely used as a nasal decongestant. However, it can cause adverse effects, such as voiding dysfunction. The risk of voiding dysfunction remains uncertain in patients without subjective voiding problems. Methodology We prospectively enrolled patients with nasal congestion who required treatment with pseudoephedrine from May to August 2015. All patients denied concomitant subjective voiding problem. The International Prostate Symptom Score (IPSS) questionnaire was used to evaluate voiding function before and 1 week after the pseudoephedrine treatment. The results of the IPSS questionnaire were analyzed as the total (IPSS-T), voiding (IPSS-V), storage (IPSS-S), and quality of life due to urinary symptom scores. Results We enrolled 131 males with a mean age of 42.0±14.3 years. The IPSS-T, IPSS-V, and IPSS-S scores slightly increased after the medication (IPSS-T increased from 6.49 to 6.77, IPSS-V from 3.33 to 3.53, and IPSS-S from 3.17 to 3.24). The quality of life due to urinary symptom score nonsignificantly decreased from 2.02 to 1.87. We observed that older age and a higher premedication IPSS-V score yielded significant differences (P<0.05) for subclinical voiding dysfunction and unchanged voiding function. In patients aged ≥50 years, the IPSS-T, IPSS-V, and IPSS-S scores significantly increased after the pseudoephedrine treatment (IPSS-T increased from 9.95 to 11.45, IPSS-V from 5.38 to 6.07, and IPSS-S 4.57 to 5.38), whereas the quality of life due to urinary symptom score nonsignificantly decreased from 2.71 to 2.48 (P=0.057). In patients aged <50 years, all scores did not significantly differ. Conclusion Pseudoephedrine treatment for nasal congestion requires extra precautions in males >50 years, even without subjective voiding symptoms. PMID:27486310

  15. A possible cold imprint of voids on the microwave background radiation

    SciTech Connect

    Cai, Yan-Chuan; Cole, Shaun; Frenk, Carlos S.; Neyrinck, Mark C.; Szapudi, István

    2014-05-10

    We measure the average temperature decrement on the cosmic microwave background (CMB) produced by voids selected in the Sloan Digital Sky Survey Data Release 7 spectroscopic redshift galaxy catalog, spanning redshifts 0 < z < 0.44. We find an imprint amplitude between 2.6 and 2.9 μK as viewed through a compensated top-hat filter scaled to the radius of each void, we assess the statistical significance of the imprint at ∼2σ, and we make crucial use of N-body simulations to calibrate our analysis. As expected, we find that large voids produce cold spots on the CMB through the integrated Sachs-Wolfe (ISW) effect. However, we also find that small voids in the halo density field produce hot spots, because they reside in contracting, larger-scale overdense regions. This is an important effect to consider when stacking CMB imprints from voids of different radii. We have found that the same filter radius that gives the largest ISW signal in simulations also yields close to the largest detected signal in the observations. However, although it is low in significance, our measured signal has a much higher amplitude than expected from ISW in the concordance ΛCDM universe. The discrepancy is also at the ∼2σ level. We have demonstrated that our result is robust against the varying of thresholds over a wide range.

  16. Die Backside FIB Preparation for Identification and Characterization of Metal Voids

    SciTech Connect

    Antoniou, Nicholas; Campbell, Ann N.; Filter, William F.

    1999-07-28

    Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, they used FIB technology to prepare an IC for inspection of voided metal interconnects (lines) and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscopy (SEM). Sequential cross sections of individual voided vias enabled them to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping to identify the IC process steps that needed to be changed.

  17. Analysis of voids in crystal structures: the methods of 'dual' crystal chemistry.

    PubMed

    Blatov, V A; Shevchenko, A P

    2003-01-01

    The theoretical basics of the analysis of voids in crystal structures by means of Voronoi-Dirichlet polyhedra (VDP) and of the graph theory are stated. Topological relations are considered between VDPs and atomic domains in a crystal field. These relations allow the separation of two non-intersecting topological subspaces in a crystal structure, whose connectednesses are defined by two finite 'reduced' graphs. The first, 'direct', subspace includes the atoms (VDP centres) and the network of interatomic bonds (VDP faces), the second, 'dual', one comprises the void centres (VDP vertices) and the system of channels (VDP edges) between them. Computer methods of geometrical-topological analysis of the 'dual' subspace are developed and implemented within the program package TOPOS. They are designed for automatically restoring the system of channels, visualizing and sizing voids and void conglomerates, dimensional analysis of continuous void systems, and comparative topological analysis of 'dual' subspaces for various substances. The methods of analysis of 'dual' and 'direct' subspaces are noted to differ from each other only in some details that allows the term 'dual' crystal chemistry to be introduced. The efficiency of the methods is shown with the analysis of compounds of different chemical nature: simple substances, ionic structures, superionic conductors, zeolites, clathrates, organic supramolecular complexes. PMID:12496460

  18. Void asymmetries in the cosmic web: a mechanism for bulk flows

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.; Sharma, S.

    2016-10-01

    Bulk flows of galaxies moving with respect to the cosmic microwave background are well established observationally and seen in the most recent ΛCDM simulations. With the aid of an idealised Gadget-2 simulation, we show that void asymmetries in the cosmic web can exacerbate local bulk flows of galaxies. The {\\it Cosmicflows-2} survey, which has mapped in detail the 3D structure of the Local Universe, reveals that the Local Group resides in a ``local sheet'' of galaxies that borders a ``local void'' with a diameter of about 40 Mpc. The void is emptying out at a rate of 16 km s-1 Mpc-1. In a co-moving frame, the Local Sheet is found to be moving away from the Local Void at ~ 260 km s-1. Our model shows how asymmetric collapse due to unbalanced voids on either side of a developing sheet or wall can lead to a systematic movement of the sheet. We conjectured that asymmetries could lead to a large-scale separation of dark matter and baryons, thereby driving a dependence of galaxy properties with environment, but we do {\\it not} find any evidence for this effect.

  19. Molecular Dynamics Simulation of High Strain-Rate Void Nucleation and Growth in Copper

    NASA Astrophysics Data System (ADS)

    Belak, J.; Boercker, D. B.; Bales, G. S.; Glosli, J.

    1997-07-01

    Isotropic tension is simulated in nanoscale polycrystalline copper with 10nm grain sizes using large-scale molecular dynamics. The nanocrystalline copper is fabricated on the computer by growing randomly oriented grains from random positions in the simulations cell. Constant volume strain rates of 10^8 - 10^10 are considered for systems ranging from 10^5 - 10^6 atoms using an EAM interatomic potential for copper. The spacing between voids for room temperature simulations is found to scale approximately as l ~ 0.005 * Cs / dotɛ, where Cs is the sound speed and dotɛ is the strain rate. Below strain rates of about 10^9, only one void is observed to nucleate and grow in the simulation cell. The growth of small voids is simulated by cutting a void out of the simulation cells and repeating the isotropic expansion. Results are presented for several grain boundary orientations (textures) and void sizes and compared to macroscopic models.

  20. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGES

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  1. An Extended Self-Consistent Viscoplastic Polycrystal Formulation: Application to Polycrystals with Voids

    SciTech Connect

    Lebensohn, Ricardo A.; Tomé, Carlos N.; Maudlin, Paul J.

    2003-08-01

    In this work we consider the presence of ellipsoidal voids inside polycrystals submitted to large strain deformation. For this purpose, the originally incompressible viscoplastic self-consistent (VPSC) formulation of Lebensohn and Tomé (1993) has been extended to compressible polycrystals. In doing this, both the deviatoric and the spherical components of strain rate and stress are accounted for. Such an extended model allows us to account for the presence of voids and for porosity evolution, while preserving the anisotropy and crystallographic capabilities of the VPSC model. The formulation is adjusted to match Gurson model in the limit of rateindependent isotropic media and spherical voids. We present several applications of this extended VPSC model that address the coupling between texture, plastic anisotropy, void shape, triaxiality, and porosity evolution. This report contains a detailed and comprehensive derivation of the VPSC polycrystal model and of the equations associated with the theory. Such description is meant to serve as a general reference source for the VPSC formulation and is not limited to the particular case of voided polycrystals.

  2. Adhesion of voids to bimetal interfaces with non-uniform energies

    SciTech Connect

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.

  3. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    SciTech Connect

    Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in a micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.

  4. ''The Incubation Period for Void Swelling and its Dependence on Temperature, Dose Rate, and Dislocation Structure Evolution''

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2002-06-13

    Void swelling in structural materials used for nuclear reactors is characterized by an incubation period whose duration largely determines the usefulness of the material for core components. Significant evolution of the dislocation and void microstructures that control radiation-induced swelling can occur during this period. Thus, a theory of incubation must treat time-dependent void nucleation in combination with dislocation evolution, in which the sink strengths of voids and dislocations change in concert. We present theoretical results for void nucleation and growth including the time-dependent, self-consistent coupling of point defect concentrations to the evolution of both void populations and dislocation density. Simulations show that the incubation radiation dose is a strong function of the starting dislocation density and of the dislocation bias factors for vacancy and interstitial absorption. Irradiation dose rate and temperature also affect the duration of incubation. The results are in general agreement with experiment for high purity metals.

  5. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    NASA Astrophysics Data System (ADS)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  6. United fills the federal R and D void

    SciTech Connect

    Green, P.

    1982-05-01

    The United Coal Company of Bristol, Virginia set up its own R and D operation in anticipation of the dwindling supply of public funding. Projects under investigation include the emulsification of coal in water to form a slurry which can replace oil; the fluidized-bed combustion of waste (i.e. high ash) coal, and coal-to-methanol-to-gasoline conversion. Further research covers the reduction of the sulfur content of coal by flotation of the pyrite (second stage coal pyrite flotation); a safety device to warn of impending roof failure; coal freezing problems in rail cars; and dust suppression during operation of continuous miners.

  7. Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer

    NASA Astrophysics Data System (ADS)

    Yan, M. Y.; Tu, K. N.; Vairagar, A. V.; Mhaisalkar, S. G.; Krishnamoorthy, Ahila

    2005-12-01

    Direct observation, by means of in situ scanning electron microscopy, of void heterogeneous nucleation and migration controlled electromigration failure mechanism in Cu dual damascene interconnect structures has been recently reported [A. V. Vairagar, S. G. Mhaisalkar, A. Krishnamoorthy, K. N. Tu, A. M. Gusak, M. A. Meyer, and E. Zschech, Appl. Phys. Lett. 85, 2502 (2004)] In the present study, a dual damascene structure with an additional 25nm Ta diffusion barrier embedded into the upper Cu layer was fabricated. This thin layer of diffusion barrier blocked voids from propagating into the via, thus eliminating the previously reported failure mechanism. With this structure, a lifetime improvement of at least 40 times was achieved. Analysis on failed samples suggested that failures in samples with the embedded Ta barrier layer occurred at the bottom of the via, which were caused by void migration along the bottom of the Cu lines.

  8. Surveying for Dwarf Galaxies Within Voids FN2 and FN8

    NASA Astrophysics Data System (ADS)

    McNeil, Stephen; Draper, Chris; Moody, J. Ward

    2016-10-01

    The presence or absence of dwarf galaxies with Mr' > -14 in low-density volumes correlates with dark matter halos and how they affect galaxy formation. We are conducting a redshifted Hα imaging survey for dwarf galaxies with Mr' > -13 in the heart of the well-defined voids FN2 and FN8 using the KPNO 4m Mayall telescope and Mosaic Imager. These data have furnished over 600 strong candidates in a four square degree area. Follow-up spectra finding none of these candidates to be within the void volumes will constrain the dwarf population there to be 2 to 8% of the cosmic mean. Conversely, finding even one Hα dwarf in the void heart will challenge several otherwise successful theories of large-scale structure formation.

  9. Irradiation-induced nano-voids in strained tin precipitates in silicon

    SciTech Connect

    Gaiduk, P. I.; Lundsgaard Hansen, J. Nylandsted Larsen, A.

    2014-04-14

    We report on self-assembling of spherically shaped voids in nanometer size strained Sn precipitates after irradiation with He{sup +} ions in different conditions. It is found that high-temperature irradiation induces vacancies which are collected by compressively strained Sn precipitates enhancing of out-diffusion of Sn atoms from the precipitates. Nano-voids formation takes place simultaneously with a β- to α-phase transformation in the Sn precipitates. Post-irradiation thermal treatment leads to the removal of voids and a backward transformation of the Sn phase to β-phase. Strain-enhanced separation of point defects along with vacancy assisted Sn out-diffusion and precipitate dissolution are discussed.

  10. Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Zhang, Guowei; Zhao, Jianwei

    2016-02-01

    The isotropic copper nanocubes with different size cubic voids under triaxial tensions are investigated by the molecular dynamics method. For accuracy we present the hydrostatic stress, Mises stress, true stress, logarithmic strain and relationship between each other. In the simulation the number of model atoms is formulized and the hydrostatic stresses can replace triaxial stresses of model. We demonstrate that the yielding strengths will decrease with increase of void, particularly when the void percentage is reaching 0.2%. The models are breaking at 45 angle dislocation with tiny differences. Also, the Gurson model cannot well describe the trend of damage; instead the authors propose a modified model by relationship between Mises stress and hydrostatic stress.

  11. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.

  12. Orthopedic devices; classification for the resorbable calcium salt bone void filler device. Final rule.

    PubMed

    2003-06-01

    The Food and Drug Administration (FDA) is classifying the resorbable calcium salt bone void filler device intended to fill bony voids or gaps of the extremities, spine, and pelvis that are caused by trauma or surgery and are not intrinsic to the stability of the bony structure into class II (special controls). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a class II special controls guidance entitled "Class II Special Controls Guidance Document: Resorbable Calcium Salt Bone Void Filler Device; Guidance for Industry and FDA." This action is being undertaken based on new information submitted in a classification proposal from Wright Medical Technology under the Federal Food, Drug, and Cosmetic Act as amended by the Medical Device Amendments of 1976, the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997. PMID:12784825

  13. A reliability study on tin based lead free micro joint including intermetallic and void evolution

    NASA Astrophysics Data System (ADS)

    Feyissa, Frezer Assefa

    In microelectronics soldering to Cu pad lead to formation of two intermetallic structures in the solder -pad interface. The growth of these layers is accompanied by microscopic voids that usually cause reliability concern in the industry. Therefore it is important to understand factors that contribute for the growth of IMC using various combination of reflow time, Sn thickness and aging temperature. Systematic study was conducted on Cu-Sn system to investigate the formation and growth of intermetallic compound (IMC) as well as voiding evolution for different solder thicknesses. The growth of the Cu6Sn5 IMC layer was found to be increasing as the Sn thicknesses increase after reflow while the Cu3Sn layer were decreasing under same conditions. Also after reflow and aging more voiding were shown to occur in the thin solder than thicker one.

  14. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)

    SciTech Connect

    Zhao Fei; Qiao Jiansheng; Huang Yina; Wan Farong Ohnuki, Soumei

    2008-03-15

    CLAM is one composition of a Reduced Activation Ferritic/Martensitic steel (RAFM), which is being studied in a number of institutes and universities in China. The effect of electron-beam irradiation temperature on irradiation swelling of CLAM was investigated by using a 1250 kV High Voltage Electron Microscope (HVEM). In-situ microstructural observations indicated that voids formed at each experimental temperature - 723 K, 773 K and 823 K. The size and number density of voids increased with increasing irradiation dose at each temperature. The results show that CLAM has good swelling resistance. The maximum void swelling was produced at 723 K; the swelling was about 0.3% when the irradiation damage was 13.8 dpa.

  15. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  16. Molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclohexane).

    PubMed

    Boyd, Sylke; Murray, Jane S; Politzer, Peter

    2009-11-28

    In the context of a continuing investigation of factors that affect the sensitivities of energetic materials to detonation initiation, we have carried out a molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclo-hexane). An empirical force field that is capable of handling flexible molecules in a pliable crystal was used. Voids ranging in size from 2 to 30 adjacent vacated sites were created in model lattices of 216 or 512 molecules. Energetic and geometric ground state properties were determined. The void formation energy per molecule removed was found to decrease from 50 kcal/mol for a single vacancy to about 23+/-2 kcal/mol for voids larger than one unit cell (8 molecules). Analysis of the local binding energies in the vicinity of a void reveals not only the expected decrease for molecules directly on the void surface but also a wide spread of values in the first 5-10 A away from the surface; this includes some molecules with local binding energies significantly higher than in the defect-free lattice. Molecular conformational changes and reorientations begin to be found in the vicinities of voids larger than one unit cell. Thermal behavior investigated includes void and molecular diffusion coefficients and fluctuations in void size. PMID:19947705

  17. Development and validation of advanced CFD models for detailed predictions of void distribution in a BWR bundle

    NASA Astrophysics Data System (ADS)

    Neykov, Boyan

    In recent years, a commonly adopted approach is to use Computational Fluid Dynamics (CFD) codes as computational tools for simulation of different aspects of the nuclear reactor thermal-hydraulic performance where high-resolution and high-fidelity modeling is needed. Within the framework of this PhD work, the CFD code STAR-CD [1] is used for investigations of two phase flow in air-water systems as well as boiling phenomena in simple pipe geometry and in a Boiling Water Reactor (BWR) fuel assembly. Based on the two-fluid Eulerian solver, improvements of the STAR-CD code in the treatment of the drag, lift and wall lubrication forces in a dispersed two phase flow at high vapor (gas) phase fractions are investigated and introduced. These improvements constitute a new two phase modeling framework for STAR-CD, which has been shown to be superior as compared to the default models in STAR-CD. The conservation equations are discretized using the finite-volume method and solved using a solution procedure is based on Pressure Implicit with Splitting of Operators (PISO) algorithm, adapted to the solution of the two-fluid model. The improvements in the drag force modeling include investigation and integration of models with dependence on both void fraction and bubble diameter. The set of the models incorporated into STAR-CD is selected based on an extensive literature review focused on two phase systems with high vapor fractions. The research related to the modeling of wall lubrication force is focused on the validation of the already existing model in STAR-CD. The major contribution of this research is the development and implementation of an improved correlation for the lift coefficient used in the lift force formula. While a variety of correlations for the lift coefficient can be found in the open literature, most of those were derived from experiments conducted at low vapor (gas) phase fractions and are not applicable to the flow conditions existing in the BWRs. Therefore

  18. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  19. Recurring priapism may be a symptom of voiding dysfunction - case report and literature review.

    PubMed

    Jesus, Lisieux Eyer de; Teixeira, Leonardo; Bertelli, Andre

    2016-01-01

    Recurring priapism is rare in pre-pubertal children and may be attributed to multiple causes. We propose that voiding dysfunction (VD) may also justify this symptom and detail a clinical case of recurring stuttering priapism associated to overactive bladder that completely resolved after usage of anticholinergics and urotherapy. Sacral parasympathetic activity is responsible for detrusor contraction and for spontaneous erections and a relationship between erections and bladder status has been proved in healthy subjects (morning erections) and models of medullar trauma. High bladder pressures and/or volumes, voiding incoordination and posterior urethritis can potentially trigger reflex erections.

  20. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.