Sample records for air water groundwater

  1. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  2. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  3. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  4. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  5. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  6. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  7. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  8. Analysis of ground-water data for selected wells near Holloman Air Force Base, New Mexico, 1950-95

    USGS Publications Warehouse

    Huff, G.F.

    1996-01-01

    Ground-water-level, ground-water-withdrawal, and ground- water-quality data were evaluated for trends. Holloman Air Force Base is located in the west-central part of Otero County, New Mexico. Ground-water-data analyses include assembly and inspection of U.S. Geological Survey and Holloman Air Force Base data, including ground-water-level data for public-supply and observation wells and withdrawal and water-quality data for public-supply wells in the area. Well Douglas 4 shows a statistically significant decreasing trend in water levels for 1972-86 and a statistically significant increasing trend in water levels for 1986-90. Water levels in wells San Andres 5 and San Andres 6 show statistically significant decreasing trends for 1972-93 and 1981-89, respectively. A mixture of statistically significant increasing trends, statistically significant decreasing trends, and lack of statistically significant trends over periods ranging from the early 1970's to the early 1990's are indicated for the Boles wells and wells near the Boles wells. Well Boles 5 shows a statistically significant increasing trend in water levels for 1981-90. Well Boles 5 and well 17S.09E.25.343 show no statistically significant trends in water levels for 1990-93 and 1988-93, respectively. For 1986-93, well Frenchy 1 shows a statistically significant decreasing trend in water levels. Ground-water withdrawal from the San Andres and Douglas wells regularly exceeded estimated ground-water recharge from San Andres Canyon for 1963-87. For 1951-57 and 1960-86, ground-water withdrawal from the Boles wells regularly exceeded total estimated ground-water recharge from Mule, Arrow, and Lead Canyons. Ground-water withdrawal from the San Andres and Douglas wells and from the Boles wells nearly equaled estimated ground- water recharge for 1989-93 and 1986-93, respectively. For 1987- 93, ground-water withdrawal from the Escondido well regularly exceeded estimated ground-water recharge from Escondido Canyon, and

  9. Ground-water conditions at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Page, R.W.

    1980-01-01

    Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)

  10. Using air/water/sediment temperature contrasts to identify groundwater seepage locations in small streams

    NASA Astrophysics Data System (ADS)

    Karan, S.; Sebok, E.; Engesgaard, P. K.

    2016-12-01

    For identifying groundwater seepage locations in small streams within a headwater catchment, we present a method expanding on the linear regression of air and stream temperatures. Thus, by measuring the temperatures in dual-depth; in the stream column and at the streambed-water interface (SWI), we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept and coefficient of determination), and the daily mean temperatures (temperature variance and the average difference between the minimum and maximum daily temperatures). Our study show that using metrics from single-depth stream temperature measurements only are not sufficient to identify substantial groundwater seepage locations within a headwater stream. Conversely, comparing the metrics from dual-depth temperatures show significant differences so that at groundwater seepage locations, temperatures at the SWI, merely explain 43-75 % of the variation opposed to ≥91 % at the corresponding stream column temperatures. The figure showing a box-plot of the variation in daily mean temperature depict that at several locations there is great variation in the range the upper and lower loggers due to groundwater seepage. In general, the linear regression show that at these locations at the SWI, the slopes (<0.25) and intercepts (>6.5oC) are substantially lower and higher, while the mean diel amplitudes (<0.98oC) are decreased compared to remaining locations. The dual-depth approach was applied in a post-glacial fluvial setting, where metrics analyses overall corresponded to field measurements of groundwater fluxes deduced from vertical streambed temperatures and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambed in such settings.

  11. Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina

    USGS Publications Warehouse

    Cardinell, A.P.; Howe, S.S.

    1997-01-01

    A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.

  12. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  13. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  14. Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study

    NASA Astrophysics Data System (ADS)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese

    2016-04-01

    The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations

  15. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  16. Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California

    USGS Publications Warehouse

    Lamb, Charles E.

    1980-01-01

    The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)

  17. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    USGS Publications Warehouse

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  18. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  19. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  20. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D.

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.

  1. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging.

    PubMed

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  3. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  4. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  5. Generalized water-table and water-level data at the US Air Force plant 42 and vicinity, Palmdale, California, March-April, 1997

    USGS Publications Warehouse

    Christensen, Allen H.

    1999-01-01

    The U.S. Air Force Plant 42 (Plant 42) which is in the Antelope Valley about 1.5 miles northeast of Palmdale and 3 miles southeast of Lancaster in Los Angeles County. Historically, ground water has been the primary source of water owing, in large part, to the scarcity of surface water in the region. Since 1972, supplemental surface water has been imported from the California Water Project to help meet the demand for water. Despite the importation of surface water, ground-water withdrawal for both municipal and agricultural uses is affecting ground-water levels in the vicinity of Plant 42. To better understand the effects of ground-water withdrawal on ground-water levels and movement in the area, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, constructed a generalized water-table-contour map of the aquifer system underlying Plant 42 and the surrounding area.

  6. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  7. Hydrogeology and simulation of ground-water flow at US Marine Corps Air Station, Cherry Point, North Carolina, 1987-90

    USGS Publications Warehouse

    Eimers, J.L.; Daniel, C. C.; Coble, R.W.

    1994-01-01

    Geophysical and lithologic well-log data from 30 wells and chloride data, and water-level data from oil-test wells, supply wells, and observation wells were evaluated to define the hydrogeologic framework at the U.S. Marine Corps Air Station, Cherry Point, North Carolina. Elements of the hydrogeologic framework important to this study include six aquifers and their respective confining units. In descending order, these aquifers are the surficial, Yorktown, Pungo River, upper and lower Castle Hayne, and Beaufort. The upper and lower Castle Hayne and Beaufort aquifers and related confining units are relatively continuous throughout the study area. The surficial, Yorktown, Pungo River, and upper and lower Castle Hayne aquifers contain freshwater. The upper and lower Castle Hayne aquifers serve as the Air Station?s principal supply of freshwater. However, the lower Castle Hayne aquifer contains brackish water near its base and there is potential for upward movement of this water to supply wells completed in this aquifer. The potential for brackish-water encroachment is greatest if wells are screened too deep in the lower Castle Hayne aquifer or if pumping rates are too high. Lateral movement of brackish water into aquifers incised by estuarine streams is also possible if ground-water flow gradients toward these bodies are reversed by pumping. The potential for the reversed movement of water from the surficial aquifer downward to the water-supply aquifer is greatest in areas where clay confining units are missing. These missing clay units could indicate the presence of a paleochannel of the Neuse River. A quasi three-dimensional finite-difference ground-water flow model was constructed and calibrated to simulate conditions at and in the vicinity of the Air Station for the period of 1987-90. Comparisons of 94 observed and computed heads were made, and the average difference between them is -0.2 feet with a root mean square error of 5.7 feet. An analysis was made to

  8. Ground-water as a nuisance

    NASA Astrophysics Data System (ADS)

    Straskraba, V.

    1984-03-01

    In certain circumstances, ground-water causes geotechnical problems and can be considered a nuisance rather than a blessing. The cases where ground-water creates considerable complications include construction, tunnelling, mining, landslides, and land subsidence. The development of hydrogeology as a science has proved over the years to substantially reduce the severe problems and disasterous problems caused by ground-water.

  9. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  10. Ground-Water Recharge in Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Falteisek, J.D.

    2007-01-01

    'Ground-water recharge' broadly describes the addition of water to the ground-water system. Most water recharging the ground-water system moves relatively rapidly to surface-water bodies and sustains streamflow, lake levels, and wetlands. Over the long term, recharge is generally balanced by discharge to surface waters, to plants, and to deeper parts of the ground-water system. However, this balance can be altered locally as a result of pumping, impervious surfaces, land use, or climate changes that could result in increased or decreased recharge. * Recharge rates to unconfined aquifers in Minnesota typically are about 20-25 percent of precipitation. * Ground-water recharge is least (0-2 inches per year) in the western and northwestern parts of the State and increases to greater than 6 inches per year in the central and eastern parts of the State. * Water-level measurement frequency is important in estimating recharge. Measurements made less frequently than about once per week resulted in as much as a 48 percent underestimation of recharge compared with estimates based on an hourly measurement frequency. * High-quality, long-term, continuous hydrologic and climatic data are important in estimating recharge rates.

  11. Examining Submarine Ground-Water Discharge into Florida Bay by using 222Rn and Continuous Resistivity Profiling

    USGS Publications Warehouse

    Swarzenski, Peter; Reich, Chris; Rudnick, David

    2009-01-01

    Estimates of submarine ground-water discharge (SGD) into Florida Bay remain one of the least understood components of a regional water balance. To quantify the magnitude and seasonality of SGD into upper Florida Bay, research activities included the use of the natural geochemical tracer, 222Rn, to examine potential SGD hotspots (222Rn surveys) and to quantify the total (saline + fresh water component) SGD rates at select sites (222Rn time-series). To obtain a synoptic map of the 222Rn distribution within our study site in Florida Bay, we set up a flow-through system on a small boat that consisted of a Differential Global Positioning System, a calibrated YSI, Inc CTD sensor with a sampling rate of 0.5 min, and a submersible pump (z = 0.5 m) that continuously fed water into an air/water exchanger that was plumbed simultaneously into four RAD7 222Rn air monitors. To obtain local advective ground-water flux estimates, 222Rn time-series experiments were deployed at strategic positions across hydrologic and geologic gradients within our study site. These time-series stations consisted of a submersible pump, a Solinist DIVER (to record continuous CTD parameters) and two RAD7 222Rn air monitors plumbed into an air/water exchanger. Repeat time-series 222Rn measurements were conducted for 3-4 days across several tidal excursions. Radon was also measured in the air during each sampling campaign by a dedicated RAD7. We obtained ground-water discharge information by calculating a 222Rn mass balance that accounted for lateral and horizontal exchange, as well as an appropriate ground-water 222Rn end member activity. Another research component utilized marine continuous resistivity profiling (CRP) surveys to examine the subsurface salinity structure within Florida Bay sediments. This system consisted of an AGI SuperSting 8 channel receiver attached to a streamer cable that had two current (A,B) electrodes and nine potential electrodes that were spaced 10 m apart. A separate DGPS

  12. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  13. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  14. Strong seepage of shallow groundwater shifts the timing of the annual thermal signals in stream water

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Johnson, Z. C.; Snyder, C.; Hitt, N. P.; White, E. A.; Lane, J. W., Jr.; Nelms, D. L.

    2016-12-01

    Conventional wisdom indicates that while short-term (e.g. diurnal) thermal variance in streams may be attenuated by groundwater seepage, annual temperature swings will essentially track the local air temperature signal. However, the temperature of shallow (less than 5 m depth) groundwater from seepage zones may not be constant and near the local mean air temperature, but instead will fluctuate seasonally, and show a pronounced phase lag from the annual air signal. The degree of phase lag will be dependent on the rate of vertical fluid and heat exchange through shallow aquifer sediments. Gaining headwater streams might be expected to adopt similar phase lags to local seepage zones. We explore these dynamics through 9 mountain watersheds in Shenandoah National Park, VA, USA that harbor critical habitat for cold-water brook trout (Salvelinus fontinalis). Daily paired air and stream water temperature records were collected for up to 5 years at several stream locations along each watershed. Sinusoids fit to multiple-year data from more than 100 total locations indicate an average phase shift from air to surface water of approximately 10 d; this may primarily be due to strong conductive exchange with the rocky alluvial aquifer in generally incised and shaded channels. A subset of these transects (n=4) showed phase-lags greater than 20 d, coinciding with locations of particularly pronounced diurnal variance attenuation, indicating strong groundwater influence. Shallow bedrock, evaluated throughout the watersheds with passive seismic methods, restricts downward infiltration of precipitation in the mountain bedrock aquifers. Numerical 1D vertical aquifer models indicate similar phase lags in shallow groundwater at the bedrock contact to that observed in stream seepage zones. Therefore, contrary to conventional wisdom, shaded mountain streams with strong groundwater influence may adopt the annual thermal signature of the adjacent aquifer, shifting the stream thermal maxima

  15. Well-construction, water-level, and water-quality data for ground-water monitoring wells for the J4 hydrogeologic study, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.

    1996-01-01

    Between December 1993 and March 1994, 27 wells were installed at 12 sites near the J4 test cell at Arnold Engineering Development Center in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. This information will be used to help understand the effects of dewatering operations at the J4 test cell on the local ground-water-flow system. The J4 test cell, extending approximately 250 feet below land surface, is used in the testing of rocket motors. Ground water must be pumped continuously from around the test cell to keep it structurally intact. The amount of water discharged from the J4 test cell was monitored to estimate the average rate of ground-water withdrawal at the J4 test cell. Ground- water levels were monitored continuously at 14 wells for 12 months. Water-quality samples were collected from 26 of the new wells, 9 existing wells, and the ground-water discharge from the J4 test cell. All samples were analyzed for common inorganic ions, trace metals, and volatile organic compounds.

  16. Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho

    USGS Publications Warehouse

    Williams, Marshall L.

    2014-01-01

    Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

  17. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  18. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  19. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  20. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    NASA Technical Reports Server (NTRS)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  1. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  2. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  3. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  4. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  5. Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  6. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in

  7. Regional analysis of ground-water recharge: Chapter B in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge.The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  8. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was closed in 1989, and the Texas Natural Resources Conservation Commission issued permit number HW-50296 (U.S. Environmental Protection Agency number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in monitoring and evaluating ground-water quality at the site. One upgradient ground-water monitoring well (MW1) and two downgradient ground-water monitoring wells (MW2 and MW3), installed adjacent to the chromic acid pit, are monitored on a quarterly basis. Ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The ground-water level, measured in a production well located approximately 1,700 feet southeast of the Chromic Acid Pit site, has declined about 29.43 feet from 1982 to 1995. Depth to water at the Chromic Acid Pit site in September 1995 was 284.2 to 286.5 feet below land surface; ground-water flow at the water table is assumed to be toward the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site during water year 1995 contained dissolved- solids concentrations of 481 to 516 milligrams per liter. Total chromium concentrations detected above the laboratory reporting limit ranged from 0.0061 to 0.030 milligram per liter; dissolved chromium concentrations ranged from 0.0040 to 0.010 milligram per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.8 milligrams per

  9. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  10. Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals.

    PubMed

    Briggs, Martin A; Johnson, Zachary C; Snyder, Craig D; Hitt, Nathaniel P; Kurylyk, Barret L; Lautz, Laura; Irvine, Dylan J; Hurley, Stephen T; Lane, John W

    2018-09-15

    Streams strongly influenced by groundwater discharge may serve as "climate refugia" for sensitive species in regions of increasingly marginal thermal conditions. The main goal of this study is to develop paired air and stream water annual temperature signal analysis techniques to elucidate the relative groundwater contribution to stream water and the effective groundwater flowpath depth. Groundwater discharge to streams attenuates surface water temperature signals, and this attenuation can be diagnostic of groundwater gaining systems. Additionally, discharge from shallow groundwater flowpaths can theoretically transfer lagged annual temperature signals from aquifer to stream water. Here we explore this concept using multi-year temperature records from 120 stream sites located across 18 mountain watersheds of Shenandoah National Park, VA, USA and a coastal watershed in Massachusetts, USA. Both areas constitute important cold-water habitat for native brook trout (Salvelinus fontinalis). Observed annual temperature signals indicate a dominance of shallow groundwater discharge to streams in the National Park, in contrast to the coastal watershed that has strong, apparently deeper, groundwater influence. The average phase lag from air to stream signals in Shenandoah National Park is 11 d; however, extended lags of approximately 1 month were observed in a subset of streams. In contrast, the coastal stream has pronounced attenuation of annual temperature signals without notable phase lag. To better understand these observed differences in signal characteristics, analytical and numerical models are used to quantify mixing of the annual temperature signals of surface and groundwater. Simulations using a total heat budget numerical model indicate groundwater-induced annual temperature signal phase lags are likely to show greater downstream propagation than the related signal amplitude attenuation. The measurement of multi-seasonal paired air and water temperatures offers

  11. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  12. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  13. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    . Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers. Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds. ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-

  14. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  15. Generalized water-level contours, September-October 2000 and March-April 2001, and long-term water-level changes, at the U.S. Air Force Plant 42 and vicinity, Palmdale, California

    USGS Publications Warehouse

    Christensen, Allen H.

    2005-01-01

    Historically, the U.S. Air Force Plant 42 has relied on ground water as the primary source of water owing, in large part, to the scarcity of surface water in the region. Groundwater withdrawal for municipal, industrial, and agricultural use has affected ground-water levels at U.S. Air Force Plant 42, and vicinity. A study to document changes in groundwater gradients and to present historical water-level data was completed by the U.S. Geological Survey in cooperation with the U.S. Air Force. This report presents historical water-level data, hydrographs, and generalized seasonal water-level and water-level contours for September?October 2000 and March?April 2001. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently water availability. During September?October 2000 and March?April 2001 the U.S. Geological Survey and other agencies made a total of 102 water-level measurements, 46 during September?October 2000 and 56 during March?April 2001. These data document recent conditions and, when compared with historical data, document changes in ground-water levels. Two water-level contour maps were drawn: the first depicts water-level conditions for September?October 2000 map and the second depicts water-level conditions for March?April 2001 map. In general, the water-level contour maps show water-level depressions formed as result of ground-water withdrawal. One hundred sixteen long-term hydrographs, using water-level data from 1915 through 2000, were constructed to show water-level trends in the area. The hydrographs indicate that water-level decline occurred throughout the study area, with the greatest declines south of U.S. Air Force Plant 42.

  16. Assessment of ground-water contamination at Wurtsmith Air Force Base, Michigan, 1982-85

    USGS Publications Warehouse

    Cummings, T.R.; Twenter, F.R.

    1986-01-01

    Continued study of ground-water contamination at Wurtsmith Air Force Base, Michigan, defined the movement and distribution of volatile organic compounds in the glacial sand and gravel aquifer at known sites of contamination, and has defined new plumes at two other sites. The Arrow Street purge system, installed in 1982 to remove contaminants from the Building 43 plume, has lowered concentrations of trichloroethylene in ground water in the central part of the most contaminated area from a range of 1,000 to 2,000 micrograms per liter to about 200 micrograms per liter. Trichloroethylene is not escaping off-Base from this area. In the southern part of the Base a plume containing principally trichloroethylene and dichloroethylene has been delineated along Mission Drive. Maximum concentrations observed were 5,290 micrograms per liter of trichloroethylene and 1,480 micrograms per liter of dichloroethylene. Hydrologically suitable sites for purge wells are identified in the southern part of the plume using a new ground-water flow model of the Base. A benzene plume near the bulk-fuel storage area, delineated in earlier work, lias shifted to a more northerly direction under influence of the Arrow Street purge system. Sites initially identified for purging the benzene plume have been repositioned because of the change in contaminant movement. JP-4 fuel was found to be accumulating in wells near the bulk-fuel storage area, largely in response to seasonal fluctuations in the water table. It is thought to originate from a spill that occurred several years ago. A more thorough definition of contaminants in the northern landfill area has permitted a determination of the most hydrologically suitable sites for purge wells. In general, Concentrations found in water do not differ greatly from those observed in 1981. Since 1981, concentrations of trichloroethylene have decreased significantly in the Alert Apron plume. Near the origin of the plume, the concentration of trichloroethylene

  17. Hydrogeology, water quality, and ground-water development alternatives in the Beaver-Pasquiset ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Dickerman, D.C.; Ozbilgin, M.M.

    1985-01-01

    In a 23 sq mi study area, the Beaver-Pasquiset groundwater reservoir within the Pawcatuck River basin in southern Rhode Island, stratified drift is the only principal geologic unit capable of producing yields > 350 gal/min. Transmissivity of the aquifer ranges from 7,200 to 24,300 sq ft/day. Water table conditions prevail in the aquifer, which is in good hydraulic connection with perennial streams and ponds. A digital model of two-dimensional groundwater flow was used to simulate the interaction between surface water and groundwater, and to evaluate the impact of alternative schemes of groundwater development on groundwater levels, pond levels, and streamflow in the Beaver-Pasquiset groundwater reservoir. Transient simulations of theoretical pumpage were made for a drought period (1963-66) and a wet period (1976-78). The areas most favorable for development of high-capacity wells (350 gal/min or more) are along the Beaver River and near Pasquiset Pond. The water is soft and generally contains < 100 mg/L dissolved solids. Locally, groundwater contains elevated concentrations of iron and manganese (7.5 and 3.7 mg/L, respectively), southeast of Pasquiset Pond, and will require treatment if used for public supply. The groundwater reservoir was simulated with a two-dimensional finite-difference model using a block-centered grid consisting of 33 rows and 75 columns. Differences between measured and simulated water table altitudes for the final steady state run for 21 selected observation wells averaged +0.07 ft. Combined pumping rates for simulation of groundwater development alternatives at eight sites ranged from 3.25 to 7.00 Mgal/d. Pumping rates for individual wells ranged from 0.25 to 1.50 Mgal/d. Transient simulations suggest that the Beaver-Pasquiset groundwater reservoir is capable of sustaining a pumping rate of 4.25 Mgal/d during years of average groundwater recharge with minimal impact on groundwater levels, pond levels, and streamflow. During extreme drought

  18. Review: Groundwater management and groundwater/surface-water interaction in the context of South African water policy

    NASA Astrophysics Data System (ADS)

    Levy, Jonathan; Xu, Yongxin

    2012-03-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. In South Africa's 1998 National Water Act (NWA), water-use licenses, including groundwater, are granted only after defining the Reserve, the amount of water needed to supply basic human needs and preserve some ecological integrity. Accurate quantification of groundwater contributions to ecosystems for successful implementation of the NWA proves challenging; many of South Africa's aquifers are in heterogeneous and anisotropic fractured-rock settings. This paper reviews the current conceptualizations and investigative approaches regarding groundwater/surface-water interactions in the context of South African policies. Some selected pitfall experiences are emphasized. The most common approach in South Africa is estimation of average annual fluxes at the scale of fourth-order catchments (˜500 km2) with baseflow separation techniques and then subtracting the groundwater discharge rate from the recharge rate. This approach might be a good start, but it ignores spatial and temporal variability, potentially missing local impacts associated with production-well placement. As South Africa's NWA has already been emulated in many countries including Zambia, Zimbabwe and Kenya, the successes and failures of the South African experience dealing with the groundwater/surface-water interaction will be analyzed to guide future policy directions.

  19. Ground-Water Levels and Water-Quality Data for Wells in the Crumpton Creek Area near Arnold Air Force Base, Tennessee, November 2001 to January 2002

    USGS Publications Warehouse

    Williams, Shannon D.

    2003-01-01

    From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10

  20. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  1. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  2. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  3. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  4. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  5. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  6. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 258.51... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  7. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  8. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  9. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, Wilbur C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included in this report.The program of ground-water observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne.

  10. Simulation of Ground-Water Flow and Optimization of Withdrawals from Aquifers at the Naval Air Station Patuxent River, St. Mary's County, Maryland

    USGS Publications Warehouse

    Dieter, Cheryl A.; Fleck, William B.

    2008-01-01

    Potentiometric surfaces in the Piney Point-Nanjemoy, Aquia, and Upper Patapsco aquifers have declined from 1950 through 2000 throughout southern Maryland. In the vicinity of Lexington Park, Maryland, the potentiometric surface in the Aquia aquifer in 2000 was as much as 170 feet below sea level, approximately 150 feet lower than estimated pre-pumping levels before 1940. At the present rate, the water levels will have declined to the regulatory allowable maximum of 80 percent of available drawdown in the Aquia aquifer by about 2050. The effect of the withdrawals from these aquifers by the Naval Air Station Patuxent River and surrounding users on the declining potentiometric surface has raised concern for future availability of ground water. Growth at Naval Air Station Patuxent River may increase withdrawals, resulting in further drawdown. A ground-water-flow model, combined with optimization modeling, was used to develop withdrawal scenarios that minimize the effects (drawdown) of hypothetical future withdrawals. A three-dimensional finite-difference ground-water-flow model was developed to simulate the ground-water-flow system in the Piney Point-Nanjemoy, Aquia, and Upper Patapsco aquifers beneath the Naval Air Station Patuxent River. Transient and steady-state conditions were simulated to give water-resource managers additional tools to manage the ground-water resources. The transient simulation, representing 1900 through 2002, showed that the magnitude of withdrawal has increased over that time, causing ground-water flow to change direction in some areas. The steady-state simulation was linked to an optimization model to determine optimal solutions to hypothetical water-management scenarios. Two optimization scenarios were evaluated. The first scenario was designed to determine the optimal pumping rates for wells screened in the Aquia aquifer within three supply groups to meet a 25-percent increase in withdrawal demands, while minimizing the drawdown at a control

  11. Analytical results from ground-water sampling using a direct-push technique at the Dover National Test Site, Dover Air Force Base, Delaware, June-July 2001

    USGS Publications Warehouse

    Guertal, William R.; Stewart, Marie; Barbaro, Jeffrey R.; McHale, Timthoy J.

    2004-01-01

    A joint study by the Dover National Test Site and the U.S. Geological Survey was conducted from June 27 through July 18, 2001 to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site at Dover Air Force Base, Delaware. The study was conducted to support a planned enhanced bio-remediation demonstration and to assist the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. This report presents the analytical results from ground-water samples collected during the direct-push ground-water sampling study. A direct-push drill rig was used to quickly collect 115 ground-water samples over a large area at varying depths. The ground-water samples and associated quality-control samples were analyzed for volatile organic compounds and methyl tert-butyl ether by the Dover National Test Site analytical laboratory. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloroethene, 1.14 micrograms per liter of trichloroethene, 2.65 micrograms per liter of tetrachloroethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest methyl tert-butyl ether concentrations were found in the surficial aquifer from -4.6 to 6.4 feet mean sea level, however, methyl tert-butyl ether was detected as deep as -9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations were found in

  12. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  13. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  14. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  15. Ground-water resources of Olmsted Air Force Base, Middletown, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold; Longwill, Stanley Miller

    1961-01-01

    Olmsted Air Force Base is underlain by the Gettysburg shale of Triassic age. The Gettysburg shale at the Air Force Base consists of interbedded red sandstone, siltstone, and shale. The average strike of the strata is N. 43° E., and the strata dip to the northwest at an average angle of 26°. The transmissibility of known aquifers in the warehouse area of the Air Force Base is low. Therefore, wells in the warehouse area have low specific capacities and yield only small supplies of water. Wells on the main base, however, yield relatively large supplies of water because the transmissibilities of the aquifers are relatively high. Pumping tests in the warehouse area and the eastern area of the main base indicated the presence of impermeable boundaries in both areas. Pumping tests in the central and western parts of the main base revealed that the Susquehanna River probably is acting as a source of recharge (forms a recharge boundary) for wells in those areas. Data obtained during this investigation indicate that additional supplies of ground water for Olmsted Air Force Base could best be obtained from the western part of the main base.

  16. Water rights in areas of ground-water mining

    USGS Publications Warehouse

    Thomas, Harold E.

    1955-01-01

    Ground-water mining, the progressive depletion of storage in a ground-water reservoir, has been going on for several years in some areas, chiefly in the Southwestern States. In some of these States a water right is based on ownership of land overlying the ground-water reservoir and does not depend upon putting the water to use; in some States a right is based upon priority of appropriation and use and may be forfeited if the water is allowed to go unused for a specified period, but ownership of land is not essential; and in several States both these doctrines or modifications thereof are accepted, and each applies to certain classes of water or to certain conditions of development.Experience to date indicates that a cure for ground-water mining does not necessarily depend upon the water-rights doctrine that is accepted in the area. Indeed, some recent court decisions have incorporated both the areal factor of the landownership doctrines and the time factor of the appropriation doctrine. Overdraft can be eliminated if water is available from another source to replace some of the water taken from the affected aquifer. In areas where no alternate source of supply is available at reasonable cost, public opinion so far appears to favor treating ground water as a nonrenewable resource comparable to petroleum and metals, and mining it until the supply is exhausted, rather than curbing the withdrawals at an earlier date.

  17. Georgia's Ground-Water Resources and Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.

    2006-01-01

    The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.

  18. Ground-water contamination in East Bay Township, Michigan

    USGS Publications Warehouse

    Twenter, F.R.; Cummings, T.R.; Grannemann, N.G.

    1985-01-01

    Glacial deposits, as much as 360 feet thick, underlie the study area. The upper 29 to 118 feet, a sand and gravel unit, is the aquifer tapped for water by all wells in the area. This unit is underlain by impermeable clay that is at least 100 feet thick. Ground-water flow is northeastward at an estimated rate of 3 to 6 feet per day. Hydraulic conductivities in the aquifer range from 85 to 150 feet per day; 120 feet per day provided the best match of field data in a ground-water flow model. The depth to water ranged from 1 to 20 feet. Chemical anlayses indicate that ground water is contaminated with organic chemicals from near the Hangar/Administration building at the U.S. Coast Guard Air Station to East Bay, about 4,300 feet northeast. The plume, which follows ground-water flow lines, ranges from 180 to 400 feet wide. In the upper reach of the plume, hydrocarbons less dense than water occur at the surface of the water table; they move downward in the aquifer as they move toward East Bay. Maximum concentrations of the major organic compounds include: benzene, 3,390 micrograms per liter; toluene, 55,500 micrograms per liter; xylene, 3,900 micrograms per liter; tetrachloroethylene, 3,410 micrograms per liter; and bis (2-ethyl hexyl) phthalate, 2,100 micrograms per liter. Soils are generally free of these hydrocarbons; however, in the vicinity of past drum storage, aircraft maintenance operations, and fuel storage and dispensing, as much as 1,100 micrograms per kilogram of tetrachloroethylene and 1,500 micrograms per kilogram of bis (2-ethyl hexyl) phthalate were detected. At a few locations higher molecular weight hydrocarbons, characteristic of petroleum distillates, were found.

  19. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  20. Water Resources Investigations at Edwards Air Force Base since 1988

    USGS Publications Warehouse

    Sneed, Michelle; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Edwards Air Force Base (EAFB) in southern California (fig. 1) has relied on ground water to meet its water-supply needs. The extraction of ground water has led to two major problems that can directly affect the mission of EAFB: declining water levels (more than 120 ft since the 1920s) and land subsidence, a gradual downward movement of the land surface (more than 4 ft since the late 1920s). As water levels decline, this valuable resource becomes depleted, thus requiring mitigating measures. Land subsidence has caused cracked (fissured) runways and accelerated erosion on Rogers lakebed. In 1988, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, began investigations of the effects of declining water levels and land subsidence at EAFB and possible mitigation measures, such as the injection of imported surface water into the ground-water system. The cooperative investigations included data collection and analyses, numerical simulations of ground-water flow and land subsidence, and development of a preliminary simulation-optimization model. The results of these investigations indicate that the injection of imported water may help to control land subsidence; however, the potential ground-water-quality impacts are unknown.

  1. Hanford Site ground-water monitoring for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less

  2. Precipitation and Air Temperature Impact on Seasonal Variations of Groundwater Levels

    NASA Astrophysics Data System (ADS)

    Vitola, Ilva; Vircavs, Valdis; Abramenko, Kaspars; Lauva, Didzis; Veinbergs, Arturs

    2012-12-01

    The aim of this study is to clarify seasonal effects of precipitation and temperature on groundwater level changes in monitoring stations of the Latvia University of Agriculture - Mellupīte, Bērze and Auce. Groundwater regime and level fluctuations depend on climatic conditions such as precipitation intensity, evapotranspiration, surface runoff and drainage, as well as other hydrological factors. The relationship between precipitation, air temperature and groundwater level fluctuations could also lead and give different perspective of possible changes in groundwater quality. Using mathematical statistics and graphic-analytic methods it is concluded that autumn and winter precipitation has the dominant impact on groundwater level fluctuations, whereas spring and summer season fluctuations are more dependent on the air temperature.

  3. National water-information clearinghouse activities; ground-water perspective

    USGS Publications Warehouse

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  4. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  5. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  6. Investigation of ground-water contamination at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.

  7. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  8. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  9. Analytic game—theoretic approach to ground-water extraction

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  10. Ground-water conditions in Utah, spring of 1997

    USGS Publications Warehouse

    Gerner, S.J.; Steiger, J.I.; Sory, J.D.; Burden, Carole B.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1997-01-01

    This is the thirty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep aware of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1996. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  11. Ground-water conditions in Utah, spring of 1995

    USGS Publications Warehouse

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  12. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258.51 Section 258.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A...

  13. Ground-water levels and water-quality data for wells in the Spring Creek area near Arnold Air Force Base, Tennessee, April and May 2000

    USGS Publications Warehouse

    Williams, Shannon D.; Aycock, Robert A.

    2001-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample

  14. Ground-water monitoring in the Albuquerque area

    USGS Publications Warehouse

    Thorn, Condé R.

    1996-01-01

    At present (1996), all drinking water for Albuquerque residents comes from ground-water reserves. The Albuquerque area is the largest population center in the State and the largest consumer of ground water. Recent reports concerning the water resources of the Albuquerque area suggest that the Albuquerque Basin may soon face serious water-availability and water-quality problems due to anticipated ground-water development. Recent studies completed by the U.S. Geological Survey (USGS) have improved the understanding of the ground-water resources in the Albuquerque Basin. These studies have indicated that the more permeable units within the aquifer system--the upper Santa Fe Group--are less extensive than previously thought, and that water-levels have declined as much as 160 feet.

  15. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    USGS Publications Warehouse

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  16. Groundwater potential for water supply during droughts in Korea

    NASA Astrophysics Data System (ADS)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  17. Ground-water conditions in Utah, spring of 2002

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  18. Ground-water conditions in Utah, spring of 1999

    USGS Publications Warehouse

    Burden, Carole B.; Spangler, L.E.; Sory, J.D.; Eacret, Robert J.; Kenney, T.A.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    1999-01-01

    This is the thirty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1998. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  19. Ground-water conditions in Utah, spring of 2001

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2001-01-01

    This is the thirty-eighth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2000. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  20. Ground-water conditions in Utah, spring of 2003

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  1. Ground-water conditions in Utah, spring of 2000

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Johnson, K.K.; Kenny, T.A.; Brockner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2000-01-01

    This is the thirty-seventh in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1999. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  2. Ground-water conditions in Utah, spring of 2004

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2004-01-01

    This is the forty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2003. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  3. Ground-water conditions in Utah, spring of 1994

    USGS Publications Warehouse

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  4. Evaluating groundwater depletion as computed by a global water model

    NASA Astrophysics Data System (ADS)

    Schuh, Carina; Doell, Petra; Mueller Schmied, Hannes; Portmann, Felix

    2013-04-01

    When groundwater abstraction occurs faster than its replenishment over a long time and in a large area, the result is an overexploitation or depletion of groundwater. The problem is aggravated in areas where a growing population relies on freshwater resources for an intensive irrigation agriculture that is meant to guarantee food security. Especially in semi-arid and arid regions, the dominant use for groundwater is irrigation, reaching more than 95% of total water use. Therefore, the hot spots for groundwater depletion are the world's major irrigation areas like the central United States, north-western India and north China. Groundwater depletion presents a major threat to securing agricultural productivity and domestic water supply in these parts of the world. Besides, the environmental consequences that accompany the abstraction of groundwater are severe. Within the scientific community there is a common understanding that high-quality data on globally existing groundwater resources are deficient. In order to allow a sustainable management of the world's available groundwater resources, especially in areas under current water stress, the quantification of groundwater depletion is of high importance. WaterGAP (Water - Global Assessment and Prognosis) is a global model of water availability and water use which can serve to estimate the impact of groundwater and surface water withdrawals on groundwater storage. The new WaterGAP version 2.2a was modified to allow for an improved analysis of groundwater storage changes in semi-arid and arid regions. Now, groundwater recharge from surface water bodies is simulated in semi-arid and arid areas. Estimation of net groundwater abstractions was modified with respect of irrigation water use efficiency for groundwater and return flow fractions. In addition, irrigation consumptive use has been set to 70% of optimal irrigation consumptive use, assuming deficit irrigation to prevail in these parts of the world. Based on time

  5. Assessment of natural attenuation of ground-water contamination at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware

    USGS Publications Warehouse

    Barbaro, Jeffrey R.

    2002-01-01

    Water-quality, aquifer-sediment, and hydro-logic data were used to assess the effectiveness of natural attenuation of ground-water contamination at Fire Training Area Three, the Rubble Area Landfill, the Liquid Waste Disposal Landfill, and the Receiver Station Landfill in the East Management Unit of Dover Air Force Base, Delaware. These sites, which are contaminated with chlorinated solvents and fuel hydrocarbons, are under-going long-term monitoring to determine if natural attenuation continues to sufficiently reduce contaminant concentrations to meet regulatory requirements. This report is the first assessment of the effectiveness of natural attenuation at these sites since long-term monitoring began in 1999, and follows a preliminary investigation done in 1995?96. This assessment was done by the U.S. Geological Survey in cooperation with the U.S. Air Force.Since 1995?96, additional information has been collected and used in the current assessment. The conclusions in this report are based primarily on ground-water samples collected from January through March 2000. Previous analytical results from selected wells, available geologic and geo-physical well logs, and newly acquired information such as sediment organic-carbon measurements, hydraulic-conductivity measurements determined from slug tests on wells in the natural attenuation study area, and water-level measurements from surficial-aquifer wells also were used in this assessment. This information was used to: (1) calculate retardation factors and estimate contaminant migration velocities, (2) improve estimates of ground-water flow directions and inferred contaminant migration pathways, (3) better define the areal extent of contamination and the proximity of contaminants to discharge areas and the Base boundary, (4) develop a better under-standing of the vertical variability of contaminant concentrations and redox conditions, (5) evaluate the effects of temporal changes on concentrations in the plumes and

  6. Ground-water conditions in Utah, spring of 1998

    USGS Publications Warehouse

    Susong, David D.; Burden, Carole B.; Sory, J.D.; Eacret, Robert J.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1998-01-01

    This is the thirty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1997. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  7. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    DTIC Science & Technology

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  8. Ground-water provinces of southern Rhodesia

    USGS Publications Warehouse

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  9. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  10. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  11. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  12. Hydrogeology and ground-water quality of the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Thomas, C.L.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation, in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was certified closed in 1989 and the Texas Natural Resources Conservation Commission issued Permit Number HW-50296 (U.S. Environmental Protection Agency Permit Number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in evaluating hydrogeologic conditions and ground- water quality at the site. One upgradient and two downgradient ground-water monitoring wells were installed adjacent to the chromic acid pit by a private contractor. Quarterly ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The Chromic Acid Pit site is situated in the Hueco Bolson intermontane valley. The Hueco Bolson is a primary source of ground water in the El Paso area. City of El Paso and U.S. Army water-supply wells are located on all sides of the study area and are completed 600 to more than 1,200 feet below land surface. The ground-water level in the area of the Chromic Acid Pit site has declined about 25 feet from 1982 to 1993. Depth to water at the Chromic Acid Pit site in September 1994 was about 284 feet below land surface; ground-water flow is to the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site contained dissolved-solids concentrations of 442 to 564 milligrams per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.7 milligrams per liter; nitrite plus nitrate as nitrogen

  13. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  14. National water summary 1986; Hydrologic events and ground-water quality

    USGS Publications Warehouse

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  15. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  16. Ground-water conditions in Utah, spring of 2005

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2005-01-01

    This is the forty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2004. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources. This report is available online at http://www.waterrights.utah.gov/techinfo/ wwwpub/gw2005.pdf and http://ut.water.usgs.gov/publications/GW2005.pdf.

  17. Water balance of global aquifers revealed by groundwater footprint.

    PubMed

    Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F P; van Beek, Ludovicus P H

    2012-08-09

    Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems. Most assessments of global water resources have focused on surface water, but unsustainable depletion of groundwater has recently been documented on both regional and global scales. It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations, and be used to assess the potential for increasing agricultural yields with renewable groundwaterref. The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.

  18. U.S. Geological Survey Ground-Water Resources Program, 2001

    USGS Publications Warehouse

    Grannemann, Norman G.

    2001-01-01

    Ground water is among the Nation's most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from over use and contamination. Because ground-water systems typically respond slowly to human actions and climate variability, a long-term perspective is needed to manage this valuable resource. The U.S. Geological Survey Ground-Water Resources Program provides regional evaluations, fundamental data, and predictive tools to help assure the sustainability of our Nation's ground-water resources.

  19. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  20. Geochemistry and the understanding of ground-water systems

    USGS Publications Warehouse

    Glynn, Pierre D.; Plummer, Niel

    2005-01-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.

  1. Ground-water conditions in Utah, spring of 2007

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  2. Ground-water conditions in Utah, spring of 2006

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Wilberg, D.E.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2006-01-01

    This is the forty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2005. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/techinfo/wwwpub/gw2006.pdf and http://ut.water.usgs. gov/publications/GW2006.pdf.

  3. Ground-water conditions in Utah, spring of 2008

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  4. Ground-water conditions in Utah, spring of 2009

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  5. 40 CFR 264.97 - General ground-water monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General ground-water monitoring... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements...

  6. Two-dimensional advective transport in ground-water flow parameter estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of

  7. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  8. Developing a state water plan: Ground-water conditions in Utah, spring of 1978

    USGS Publications Warehouse

    Gates, Joseph S.; Jibson, W.N.; Herbert, L.R.; Mower, R.W.; Razem, A.C.; Cordova, R.M.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; DeGrand, M.J.; Sandberg, G.W.

    1978-01-01

    This report is the fifteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others (see References, p. 13), contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1977. Water-level fluctuations, however, are described for the period spring 1977 to spring 1978. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  9. Developing a state water plan: Ground-water conditions in Utah, spring of 1979

    USGS Publications Warehouse

    Price, Don; Jibson, W.N.; Contratto, P. Kay; Mower, R.W.; Steiger, Judy I.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; Neff, L.J.; Sandberg, G.W.; Herbert, L.R.

    1979-01-01

    This report is the sixteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1978. Water-level fluctuations, however, are described for the period spring 1978 to spring 1979. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  10. Quantifying the contribution of groundwater on water consumption in arid crop land with shallow groundwater

    NASA Astrophysics Data System (ADS)

    Huo, Z.; Liu, Z.; Wang, X.; Qu, Z.

    2016-12-01

    Groundwater from the shallow aquifers can supply substantial water for evapotranspiration of crops. However, it is difficult to quantify to the contribution of groundwater on crop's water consumption. In present study, regional scale evapotranspiration and the groundwater contribution to evapotranspiration were estimated by the soil water balance equation in Hetao irrigation distric with shallow aquifers, China. Estimates used an 8-year (2006-2013) hydrological dataset including soil moisture, the depth to water table, irrigation amounts, rainfall data, and drainage water flow. The 8-year mean evapotranspiration was estimated to be 664 mm. The mean groundwater supported evapotranspiration (ETg) was estimated to be 228 mm, with variation from 145 mm to 412 mm during the crop growth period. Analysis of the positive correlation between evapotranspiration and the sum of irrigation and rainfall, and the analysis of the negative correlation between ETg/ET and the sum of irrigation and rainfall, reflect the need of groundwater to meet the evapotranspiration demand. Approximately 20% to 40% of the evapotranspiration is from the shallow aquifers in the study area. Furthermore, a new method estimating daily ETg during the crop growing season was developed. The effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered in the model. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is a good agreement with the measured data for four soil profiles and different depths to groundwater table. These results could be useful for the government to understand the significant role of the groundwater and make reasonable water use policy in the semiarid agricultural regions.

  11. Shallow circulation groundwater - the main type of water containing hazardous radon concentration

    NASA Astrophysics Data System (ADS)

    Przylibski, Tadeusz

    2010-05-01

    Radon dissolves in water very good. As an effect this gas is present in surface and groundwater, which are used in households. The range of Rn-222 concentration in water is very wide, it changes from below 1 Bq/dm3 up to several hundreds of thousands Bq/dm3. Inhabitants may be exposed to an important additional dose from ionizing radiation if they use in household radon water (concentration of Rn-222 between 100 and 999.9(9) Bq/dm3), high-radon water (1000 - 9999.9(9) Bq/dm3) or extreme-radon water (10 000 Bq/dm3 and more). Value of the dose depends on the amount of radon released from water during cooking, washing, taking bath or shower, and it not depends on the amount of radon dissolved in drinked water or water used for making a meal. Radon released from water to the air in a house may be inhaled by inhabitants and increase the risk of lung cancer. Knowing the risk, international organizations, i.e. WHO, publish the recommendations concerning admissible levels of radon concentration in water in the intake (before supplying households). In a few countries these recommendations became a law (i.e. USA, England, Finland, Sweden, Russia, Czech Rep., Slowak Rep.). Law regulations force to measuring concentrations of radon dissolved in water in all the intakes of water supplying hauseholds. Knowing radon behaviour in the environment it is possible to select certain types of water, which may contain the highest radon concentration. As a result one may select these intakes of water, which should be particularly controled with regard to possible hazardous radon cencentration. Radon concentration in surface water depends on partial pressure of this gas over the water table - in the atmosphere. Partial pressure of radon in the atmosphere is very low, so the radon concentration in surface water is usually low and as a rule it is not higher than several, rarely several tens of Bq/dm3. In the spring, where the groundwater flows out on the surface, and groundwater become a

  12. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  13. Design and Operation of a Borehole Straddle Packer for Ground-Water Sampling and Hydraulic Testing of Discrete Intervals at U.S. Air Force Plant 6, Marietta, Georgia

    USGS Publications Warehouse

    Holloway, Owen G.; Waddell, Jonathan P.

    2008-01-01

    A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted

  14. Science to Help Understand and Manage Important Ground-Water Resources

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    Throughout California, as pressure on water resources continues to grow, water-supply agencies are looking to the state?s biggest ?reservoir? ? its ground-water basins ? for supply and storage. To better utilize that resource, the Sweetwater Authority and other local partners, including the city of San Diego and Otay Water Districts, are working with the U.S. Geological Survey (USGS) to develop the first comprehensive study of the coastal ground-water resources of southern San Diego County. USGS research is providing the integrated geologic and hydrologic knowledge necessary to help effectively utilize this resource on a coordinated, regional basis. USGS scientists are building a real-time well-monitoring network and gathering information about how the aquifers respond to different pumping and recharge-management strategies. Real-time ground-water levels are recorded every hour and are viewable on a project web site (http://ca.water.usgs.gov/sandiego/index.html). Data from the wells are helping to define the geology and hydrogeology of the area, define ground-water quality, and assess ground-water levels. The wells also are strategi-cally placed and designed to be usable by the local agencies for decades to come to help manage surface-water and ground-water operations. Additionally, the knowledge gained from the USGS study will help local, state, and federal agencies; water purveyors; and USGS scientists to understand the effects of urbanization on the local surface-water, ground-water, and biological resources, and to better critique ideas and opportuni-ties for additional ground-water development in the San Diego area.

  15. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sufficient to yield ground-water samples that are: (i) Representative of background ground-water quality in... not required provided that provisions for sampling upgradient and downgradient water quality will... perforated, and packed with gravel or sand where necessary, to enable sample collection at depths where...

  16. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2004-01-01

    Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.

  17. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genereux, David; Osburn, Christopher; Oberbauer, Steven

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving dischargemore » of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.« less

  18. Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1998-01-01

    Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.

  19. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  20. Availability of groundwater data for California, water year 2010

    USGS Publications Warehouse

    Ray, Mary; Orlando, Patricia v.P.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the groundwater resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to groundwater data for Water Year 2010. It contains a map of California showing the number of wells (by county) with available water-level or water-quality data for Water Year 2010 (fig. 1) and instructions for obtaining this and other groundwater information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report "Water Resources Data for California, Volume 5. Ground-Water Data"; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.

  1. Ground-water conditions in Georgia, 1999

    USGS Publications Warehouse

    Cressler, Alan M.

    2000-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart

  2. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  3. Groundwater quality and occurrence and distribution of selected constituents in the Aquia and Upper Patapsco aquifers, Naval Air Station Patuxent River, St. Mary's County, Maryland, July 2008

    USGS Publications Warehouse

    Dieter, Cheryl A.; Campo, Kimberly W.; Baker, Anna C.

    2012-01-01

    The Naval Air Station Patuxent River in southern Maryland has continued to expand in the first decade of the 21st century, contributing to rapid population growth in the surrounding area. The increase in population has caused State and County water managers and others to be concerned about the impact of population growth on the quantity and quality of groundwater supplies. The U.S. Geological Survey has been investigating the groundwater resources of the air station since 1998. As part of that ongoing investigation, groundwater was sampled in 2008 in six wells in the Aquia aquifer and two wells in the Upper Patapsco aquifer in the vicinity of Naval Air Station Patuxent River and Webster Outlying Field. Groundwater samples were analyzed for basic chemistry (field parameters, major ions, and nutrients) as well as several water-quality issues of concern including the occurrence of arsenic and tungsten, and saltwater intrusion. The results of the 2008 groundwater-quality sampling indicate that the overall quality of groundwater in the Aquia aquifer has not changed since 1943; data are too limited to determine if groundwater quality has changed in the Upper Patapsco aquifer. At one well in the Aquia aquifer, the arsenic concentration exceeded the U.S. Environmental Protection Agency standard for drinking water. Arsenic was not detected in samples from the Upper Patapsco aquifer. Tungsten concentrations were detected at low concentrations near the laboratory reporting level in all eight samples. There was no evidence of saltwater intrusion in any of the wells.

  4. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  5. Response of groundwater level and surface-water/groundwater interaction to climate variability: Clarence-Moreton Basin, Australia

    NASA Astrophysics Data System (ADS)

    Cui, Tao; Raiber, Matthias; Pagendam, Dan; Gilfedder, Mat; Rassam, David

    2018-03-01

    Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (-0.7 m/year) and ascending (2.1 m/year) Sen's slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.

  6. Water Follies: Groundwater Pumping and the Fate of America's Fresh Waters

    NASA Astrophysics Data System (ADS)

    Glennon, R.

    2002-12-01

    The next time you open a bottle of spring water, consider that it may have come from a well that is drying up a blue-ribbon trout stream. The next time you super-size a meal at McDonald's, note that the fries are all the same length. That's because the potato farmers irrigate their fields with groundwater from wells, some adjacent to nearby rivers. The next time you purchase gold jewelry, consider that it may have come from a mine that has pumped so much groundwater to de-water the gold-bearing rock that 60 to100 years will pass before the water table recovers. The next time you water your suburban lawn, pause to reflect on what that's doing to the nearby wetland. And the next time you visit Las Vegas and flip on the light in your hotel room, consider that the electricity may have been generated by a coal-fired power plant supplied by a slurry pipeline that uses groundwater critical to springs sacred to the Hopi people. These and countless other seemingly innocuous activities reflect our individual and societal dependence on groundwater that is hydrologically connected to surface water. Hydrologists understand that ground and surface water are interconnected, but frequently the legal rules governing water distinguish between ground and surface water. This has led to groundwater pumping that has dried up many rivers, particularly in the arid West. In Arizona, many once verdant streams have become desiccated sandboxes as city, mines, and farms pumped groundwater to such an extent that surface flows were totally depleted. The problem of the impact of groundwater pumping on the environment, however, is not confined to the arid West. It is an enormous national, indeed international problem. This presentation will focus on the United States and illustrate with examples from around the country the array of environmental problems caused by excessive groundwater pumping. The locations of these case studies range from Maine to California, from Minnesota to Florida, and from

  7. Ground-water quality in Douglas County, western Nevada

    USGS Publications Warehouse

    Garcia, K.T.

    1989-01-01

    A 182% increase in population within the last 10 years in Douglas County, Nevada, has raised concerns by county officials as to the possible effects land development may have on groundwater quality. Most groundwater in Douglas County meets the State of Nevada drinking water standards. Of the 333 water samples used in this analysis, 6 equaled or were greater than the drinking water standards for sulfates, 44 for fluoride, 4 for dissolved solids, 5 for nitrate as nitrate, 12 for arsenic, 33 for iron, and 18 for manganese. Groundwater in the west-central, northern, and northeastern part of Carson Valley is influenced by geothermal water. Some areas in the county may have septic-tank effluent contaminating the groundwater. Temporal changes in most municipal wells showed no overall trend for dissolved-solids and nitrate concentrations spanning the years 1969-83. However, a municipal well in the Topaz Lake area has shown a general increases in the nitrate concentration from 1961 to 1984, but the concentration does not exceed the drinking-water standard. A future groundwater quality monitoring program in Douglas County would include periodic sampling of primary or heavily pumped wells, long-term trend wells, and supplemental wells. (Thacker-USGS)

  8. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  9. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  10. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  11. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  12. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  13. Ground-water and water-chemistry data for the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Caldwell, Rodney R.; Truini, Margot

    1997-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the upper Deschutes Basin, Oregon. Data in this report include tabulated information and a location map for more than 1,500 field-located water wells, hydrographs showing water-level fluctuations over various time periods for 102 of the wells, and water-chemistry analyses from 26 wells, 7 springs, and 5 surface-water sites.

  14. Ground-water data for Georgia, 1983

    USGS Publications Warehouse

    Clarke, J.S.; Peck, M.F.; Longsworth, S.A.; McFadden, K.W.

    1984-01-01

    Continuous water-level records from 134 wells and more than 700 water-level measurements made in Georgia during 1983 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1983. Monthly means are shown for the 10-year period 1974-83. Mean annual water levels ranged from 9 feet higher to 6 feet lower in 1983 than in 1982. Water-quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional ground-water studies. Along the coast, chloride concentrations in the upper and lower water-bearing zones of the Floridan aquifer system generally remained steady in the Brunswick and Hilton Head Island areas. (USGS)

  15. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    USGS Publications Warehouse

    Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2018-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  16. Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet Al-Samra wastewater treatment plant/Jordan

    NASA Astrophysics Data System (ADS)

    Bajjali, William; Al-Hadidi, Kheir; Ismail, Ma'mmon

    2017-03-01

    Groundwater in the northeastern Amman-Zarqa basin is an important source of water for irrigation. The quality and quantity of water has deteriorated due to mismanagement and misunderstanding of the hydrogeological system. Overexploitation of groundwater resources upstream of the Khirbet Al-Samra wastewater treatment plant (KSWTP) has lowered the water table 43 m since the beginning of groundwater development in 1968. Heavy pumping of groundwater downstream of KSWTP has not dropped the water level due to constant recharge from the Zarqa river bed. The water level of groundwater is rising continuously at a rate of 20 cm per year since building the KSWTP in 1985. Groundwater salinity has also shifted the quality of the aquifer from fresh to brackish. Continual irrigation from the groundwater upstream of KSWTP dissolves accumulated salt from the soil formed by evaporation, and the contaminated water infiltrates back to the aquifer, thereby increasing both salt and nitrate concentrations. The intense irrigation from the reclaimed water downstream of KSWTP and leakage of treated wastewater from the Zarqa River to the shallow groundwater is a secondary source of salt and nitrates. The isotopic composition of groundwater varies over a wide range and is associated with the meteoric water line affected by Mediterranean Sea air moisture. The isotopic composition of groundwater is represented by evaporation line (EL) with a low slope of 3.6. The enrichment of groundwater in δ18O and δD is attributed mainly to the two processes of evaporation before infiltration of return flow and mixing of different types of water in KSWTP originating from different aquifers. The EL starts from a location more depleted than the weighted mean value of the Amman rainfall station on the Eastern Meteoric Water Line indicating that the recharge took place under the climate regime prevailing today in Jordan and the recharge of the groundwater originates from a greater elevation than that of the

  17. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  18. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  19. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the

  20. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    USGS Publications Warehouse

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is

  1. Recharging California's Groundwater: Crop Suitability and Surface Water Availability for Agricultural Groundwater Banking

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Kocis, T. N.; Brown, A.

    2016-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California (CA). A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands (alfalfa/pasture) for recharging groundwater. Understanding soil suitability for ag-GB, crop health and flooding tolerance, leaching of soil nitrate and salts, the availability of surface water for recharge, and the economic costs and benefits of ag-GB is fundamental to assessing the feasibility of local-scale implementation of ag-GB. The study presented here considers both the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flow) for ag-GB and the risks and benefits associated with using alfalfa fields as spreading grounds for ag-GB. The availability of surface water for winter (Nov to Apr) ag-GB were estimated based on daily streamflow records for 93 stream gauges within the Central Valley, CA. Analysis focused on high-magnitude (>90thpercentile) flows because most lower flows are likely legally allocated in CA. Results based >50 years of data indicate that an average winter/spring (Nov. - Apr.) in the Sacramento River Basin could provide 7 million acre-feet (AF) (8.6 km3) of water for ag-GB from flows above the 90th percentile. These flows originate from few storm events (5-7 events) and occur on average for 25-30 days between November and April. Wintertime on-farm recharge experiments were conducted on a 9-yr old, 15-acre alfalfa field in the Scott Valley, CA, where 135 AF and 107 AF of water were recharged during the winters of 2015 and 2016, respectively. Biomass data collected indicates that pulsed application of 6-10 ft of water on dormant alfalfa results in minimal yield loss (0.5 ton/acre reduction), short-duration saturated conditions in the root-zone, and high recharge

  2. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone: U TRANSPORT IN A GROUNDWATER-SURFACE WATER TRANSITION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Chen, Xingyuan; Murray, Chris

    A tightly spaced well-field within a groundwater uranium (U) plume in the groundwater-surface water transition zone was monitored for a three year period for groundwater elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from mountain snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (Uaq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time series trendsmore » for Uaq and SpC were complex and displayed large temporal well-to well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common temporal behaviors resulting from the intrusion dynamics of river water and the location of source terms. Concentration hot spots were observed in groundwater that varied in location with increasing water table elevation. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While uranium time-series concentration trends varied significantly from year to year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of the river water intrusion event.« less

  3. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  4. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  5. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other

  6. Preliminary report on the geology and ground-water supply of the Newark, New Jersey, area

    USGS Publications Warehouse

    Herpers, Henry; Barksdale, Henry C.

    1951-01-01

    In the Newark area, ground water is used chiefly for industrial cooling, air-conditioning, general processing, and for sanitary purposes. A small amount is used in the manufacture of beverages. Total ground-water pumpage in Newark is estimated at not less than 20,000,000 gallons daily. The Newark area is underlain by formations of Recent, Pleistocene and Triassic age, and the geology and hydrologic properties of these formations are discussed. Attention is called to the important influence of a buried valley in the rock floor beneath the Newark area on the yield of wells located within it. Data on the fluctuation of the water levels and the variation in pumpage are presented, and their significance discussed. The results of a pumping test made during the investigation were inconclusive. The beneficial results of artificially recharging the aquifers in one part of the area are described. The intrusion of salt water into certain parts of the ground-water body is described and graphically portrayed by a map showing the chloride concentration of the ground water in various parts of the City. Insofar as available data permit, the chemical quality of the ground water is discussed and records are given of the ground-water temperatures in various parts of the City. There has been marked lowering of the water table in the eastern part of the area, accompanied by salt water intrusion, indicating that the safe yield of the formations in this part of Newark has probably been exceeded. It is recommended that the study of the ground-water resources of this area be continued, and that artificial recharging of the aquifers be increased over as wide an area as possible.

  7. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to

  8. Ground-water flow patterns and water budget of a bottomland forested wetland, Black Swamp, eastern Arkansas

    USGS Publications Warehouse

    Gonthier, G.J.; Kleiss, B.A.

    1996-01-01

    The U.S. Geological Survey, working in cooperation with the U.S. Army Corps of Engineers, Waterways Experiment Station, collected surface-water and ground-water data from 119 wells and 13 staff gages from September 1989 to September 1992 to describe ground-water flow patterns and water budget in the Black Swamp, a bottomland forested wetland in eastern Arkansas. The study area was between two streamflow gaging stations located about 30.5 river miles apart on the Cache River. Ground-water flow was from northwest to southeast with some diversion toward the Cache River. Hydraulic connection between the surface water and the alluvial aquifer is indicated by nearly equal changes in surface-water and ground-water levels near the Cache River. Diurnal fluctuations of hydraulic head ranged from more than 0 to 0.38 feet and were caused by evapotranspiration. Changes in hydraulic head of the alluvial aquifer beneath the wetland lagged behind stage fluctuations and created the potential for changes in ground-water movement. Differences between surface-water levels in the wetland and stage of the Cache River created a frequently occurring local ground-water flow condition in which surface water in the wetland seeped into the upper part of the alluvial aquifer and then seeped into the Cache River. When the Cache River flooded the wetland, ground water consistently seeped to the surface during falling surface-water stage and surface water seeped into the ground during rising surface-water stage. Ground-water flow was a minor component of the water budget, accounting for less than 1 percent of both inflow and outflow. Surface-water drainage from the study area through diversion canals was not accounted for in the water budget and may be the reason for a surplus of water in the budget. Even though ground-water flow volume is small compared to other water budget components, ground-water seepage to the wetland surface may still be vital to some wetland functions.

  9. Ground-water geochemistry of the Albuquerque-Belen Basin, central New Mexico

    USGS Publications Warehouse

    Anderholm, S.K.

    1988-01-01

    The purpose of this study was to define the areal distribution of different water types, use the distribution to help define the groundwater flow system, and identify processes resulting in differences in groundwater quality in the Albuquerque-Belen Basin in central New Mexico. The chemistry of surface water inflow from adjacent areas, which infiltrates and recharges the aquifer along the basin margin, affects the groundwater quality in the eastern and southeastern areas of the basin. Groundwater in the eastern area generally has a specific conductance less than 400 microsiemens, and calcium and bicarbonate are the dominant ions. Mixing of recharge, groundwater inflow, and surface inflow from adjacent areas, which have different chemical compositions, is the major process affecting groundwater quality in the southwestern, western, and northern areas of the basin. In these areas, there is a large range in specific conductance and distribution of dissolved ions. Groundwater quality in the Rio Grande valley is affected by the infiltration of excess irrigation water. The excess irrigation water generally has a larger specific conductance than other groundwater in the valley, so mixing of these waters results in shallow groundwater generally having larger specific conductance than the deeper groundwater. (USGS)

  10. Methods of collecting and interpreting ground-water data

    USGS Publications Warehouse

    Bentall, Ray

    1963-01-01

    Because ground water is hidden from view, ancient man could only theorize as to its sources of replenishment and its behavior. His theories held sway until the latter part of the 17th century, which marked the first experimental work to determine the source and movement of ground water. Thus founded, the science of ground-water hydrology grew slowly and not until the 19th century is there substantial evidence of conclusions having been based on observational data. The 20th century has witnessed tremendous advances in the science in the methods of field investigation and interpretation of collected data, in the methods of determining the hydrologic characteristics of water-bearing material, and in the methods of inventorying ground-water supplies. Now, as is true of many other disciplines, the science of ground-water hydrology is characterized by frequent advancement of new ideas and techniques, refinement of old techniques, and an increasing wealth of data awaiting interpretation.So that its widely scattered staff of professional hydrologists could keep abreast of new ideas and advances in the techniques of groundwater investigation, it has been the practice in the U.S. Geological Survey to distribute such information for immediate internal use. As the methods become better established and developed, they are described in formal publications. Six papers pertaining to widely different phases of ground-water investigation comprise this particular contribution. For the sake of clarity and conformity, the original papers have been revised and edited by the compiler.

  11. In situ treatment of arsenic-contaminated groundwater by air sparging.

    PubMed

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  13. Coastal groundwater/surface-water interactions: a Great Lakes case study

    USGS Publications Warehouse

    Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2006-01-01

    Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.

  14. Tritium as an indicator of ground-water age in Central Wisconsin

    USGS Publications Warehouse

    Bradbury, Kenneth R.

    1991-01-01

    In regions where ground water is generally younger than about 30 years, developing the tritium input history of an area for comparison with the current tritium content of ground water allows quantitative estimates of minimum ground-water age. The tritium input history for central Wisconsin has been constructed using precipitation tritium measured at Madison, Wisconsin and elsewhere. Weighted tritium inputs to ground water reached a peak of over 2,000 TU in 1964, and have declined since that time to about 20-30 TU at present. In the Buena Vista basin in central Wisconsin, most ground-water samples contained elevated levels of tritium, and estimated minimum ground-water ages in the basin ranged from less than one year to over 33 years. Ground water in mapped recharge areas was generally younger than ground water in discharge areas, and estimated ground-water ages were consistent with flow system interpretations based on other data. Estimated minimum ground-water ages increased with depth in areas of downward ground-water movement. However, water recharging through thick moraine sediments was older than water in other recharge areas, reflecting slower infiltration through the sandy till of the moraine.

  15. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  16. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    NASA Astrophysics Data System (ADS)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  17. Accounting for groundwater in stream fish thermal habitat responses to climate change

    USGS Publications Warehouse

    Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.

    2015-01-01

    Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout habitat have generally assumed uniform air-water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air-water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, USA, 78 sites in 9 watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air-water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air-water temperature regression models can provide a powerful and cost-effective approach for predicting future stream temperatures while accounting for effects of groundwater.

  18. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  19. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    NASA Astrophysics Data System (ADS)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical

  20. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  1. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1994 through September 1996

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1994 through September 1996, with a focus on data from July through September 1996 (third quarter of 1996). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey. Total rainfall for the period July through September 1996 was 8.94 inches, which is 60 percent less than the mean rainfall of 22.23 inches for the period July through September. July and August are part of the annual dry season, while September is the start of the annual wet season. Ground-water withdrawal during July through September 1996 averaged 1,038,300 gallons per day. Withdrawal for the same 3 months in 1995 averaged 888,500 gallons per day. Ground-water withdrawals have steadily increased since about April 1995. At the end of September 1996, the chloride concentration of water from the elevated tanks at Cantonment and Air Operations were 68 and 150 milligrams per liter, respectively. The chloride concentration from all five production areas increased throughout the third quarter of 1996, and started the upward trend in about April 1995. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations also increased throughout the third quarter of 1996, with the largest increases from water in the deepest monitoring wells. Chloride concentrations have not been at this level since the dry season of 1994. A fuel-pipeline leak at Air Operations in May 1991 decreased total islandwide withdrawals by 15 percent. This lost pumping capacity is being offset by increased pumpage at Cantonment. Six wells do not contribute to the water supply because they are being used to hydraulically divert fuel migration away from water-supply wells by a program of ground-water withdrawal and injection.

  2. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    USGS Publications Warehouse

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  3. U.S. Geological Survey Ground-Water Climate Response Network

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey serves the Nation by providing reliable hydrologic information used by others to manage the Nation's water resources. The U.S. Geological Survey (USGS) measures more than 20,000 wells each year for a variety of objectives as part of Federal programs and in cooperation with State and local agencies. Water-level data are collected using consistent data-collection and quality-control methods. A small subset of these wells meets the criteria necessary to be included in a 'Climate Response Network' of wells designed to illustrate the response of the ground-water system to climate variations nationwide. The primary purpose of the Climate Response Network is to portray the effect of climate on ground-water levels in unconfined aquifers or near-surface confined aquifers that are minimally affected by pumping or other anthropogenic stresses. The Climate Response Network Web site (http://groundwaterwatch.usgs.gov/) is the official USGS Web site for illustrating current ground-water conditions in the United States and Puerto Rico. The Climate Response Network Web pages provide information on ground-water conditions at a variety of scales. A national map provides a broad overview of water-table conditions across the Nation. State maps provide a more local picture of ground-water conditions. Site pages provide the details about a specific well.

  4. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  5. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  6. Ground-water levels in observation wells in Oklahoma, 1969-70

    USGS Publications Warehouse

    Moore, R.L.

    1972-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. In addition to the water-supply papers, the U.S. Geological Survey, cooperation with the Oklahoma Water Resources Board, has published the following informal reports on water levels in Oklahoma. Ground-water levels in observations wells in Oklahoma, 1956-60 Ground-water levels in observations wells in Oklahoma, 1961-62 Ground-water levels in observations wells in Oklahoma, 1963-64 Ground-water levels in observations wells in Oklahoma, 1965-66 Ground-water levels in observations wells in Oklahoma, 1967-68 Records of water-level measurements in wells in the Oklahoma Panhandle, 1966-70 Records of water-level measurements in wells in the Oklahoma Panhandle, 1971-72 The basic observation-well network in Oklahoma during the period 1969-70 included the following counties: Alfalfa, Beaver, Beckham, Caddo, Cimarron

  7. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  8. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  9. Comparative study of urban development and groundwater condition in coastal areas of Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Rodrigues Capítulo, Leandro; Carretero, Silvina C.; Kruse, Eduardo E.

    2017-08-01

    The geomorphological evolution of a sand-dune barrier in Buenos Aires, Argentina, is analyzed as a factor regulating the fresh groundwater reserves available. The impact of geomorphological evolution and the consequences for the social and economic development of two coastal areas are assessed. This is one of the most important tourist destinations in the country; for study purposes, it was divided into a northern sector and a southern sector. In the southern sector, the exploitable groundwater is associated with the Holocene and upper Pleistocene geomorphological evolution, which generated three interrelated aquifer units, constituting a system whose useful thickness reaches at least 45 m. In contrast, the northern sector is restricted to two Holocene aquifer units, whose total thickness is on the order of 12 m. The morphological characteristics and the occurrence of the largest fresh groundwater reserves in the southern sector are indicators of better conditions for economic growth, which is mainly reflected on the expansion of real estate ventures. The relationships of transmissivity vs area of real estate ventures (Arev), and total water consumption vs Arev, are indicators for the sustainable management of the water resources. The approach chosen may be used by decision makers in other regions to assess the feasibility of future tourism projects on the basis of the availability of water resources associated with geomorphological features.

  10. Reconnaissance of hydrology, land use, ground-water chemistry, and effects of land use on ground-water chemistry in the Albuquerque-Belen basin, New Mexico

    USGS Publications Warehouse

    Anderholm, S.K.

    1987-01-01

    In 1984, the U.S. Geological Survey began regional assessments of groundwater contamination in 14 areas, one of which was the Albuquerque-Belen basin. Groundwater recharge occurs along the basin margins. Groundwater discharge occurs as evapotranspiration in the Rio Grande valley, pumpage, and groundwater flow to the Socorro basin. Open-space land use, which primarily is used for grazing livestock, occupies the majority of the basin. In the Rio Grande valley, agricultural and residential land uses are predominant; in the area near Albuquerque, the land also is used for commercial, institutional , and industrial purposes. The Albuquerque-Belen basin was divided into seven zones on the basis of water chemistry. These water-chemistry zones indicate that large variations in water chemistry exist in the basin as the result of natural processes. Groundwater in the majority of the Albuquerque-Belen basin has a relatively low susceptibility to contamination because the depth to water is > 100 ft and there is virtually no natural mechanism for recharge to the groundwater system. Groundwater in the Rio Grande valley has a relatively high susceptibility to contamination because the depth to water is generally < 30 ft and there are many types of recharge to the groundwater system. Changes in land use may cause changes in the chemical composition of recharge to the groundwater system. The relatively large concentrations of dissolved iron in the Rio Grande valley near Albuquerque may result from the change from agricultural land use to residential land use. Recharge associated with agricultural land use is relatively oxidized because the water is in equilibrium with the atmosphere, whereas recharge associated with residential land use (onsite waste-disposal effluent) is relatively reduced and has larger concentrations of organic carbon, biological oxygen demand, and chemical oxygen demand. The constituents in the onsite waste-disposal effluent could cause reducing conditions in

  11. GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...

  12. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the

  13. Preliminary assessment of water chemistry related to groundwater flooding in Wawarsing, New York, 2009-11

    USGS Publications Warehouse

    Brown, Craig J.; Eckhardt, David A.; Stumm, Frederick; Chu, Anthony

    2012-01-01

    from 2003 to 2010 (current) and indicate short flow paths from the point of groundwater recharge. All but three of the samples from bedrock wells had interference problems with dissolved gases, mainly caused by excess air from degassing of hydrogen sulfide and methane. The SF6 and (or) CFC apparent recharge years of samples from three of the bedrock wells ranged from the 1940s to the early 2000s; the sample with the early 2000s recharge year was from a flowing artesian well that was chemically similar to water samples collected at the influent to the tunnel at Rondout Reservoir and the most hydraulically responsive to water tunnel pressure compared to other bedrock wells. Data described in this report can be used, together with hydrogeologic data, to improve the understanding of source waters and groundwater-flow patterns and pathways, and to help assess the mixing of different source waters in water samples. Differences in stable isotope ratios, major and trace constituent concentrations, saturation indexes, tritium concentrations, and apparent groundwater ages will be used to estimate the proportion of water that originates from Rondout-West Branch Tunnel leakage.

  14. Research to More Effectively Manage Critical Ground-Water Basins

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  15. Ground-water levels, water quality, and potential effects of toxic-substance spills or cessation of quarry dewatering near a municipal ground-water supply, southeastern Franklin County, Ohio

    USGS Publications Warehouse

    Sedam, A.C.; Eberts, S.M.; Bair, E.S.

    1989-01-01

    A newly completed municipal ground-water supply that produces from a sand and gravel aquifer in southern Franklin County, Ohio, may be susceptible to potential sources of pollution. Among these are spills of toxic substances that could enter recharge areas of the aquifer or be carried by surface drainage and subsequently enter the aquifer by induced infiltration. Ground water of degraded quality also is present in the vicinity of several landfills located upstream from the municipal supply. Local dewatering by quarrying operations has created a ground-water divide which, at present, prevents direct movement of the degraded ground water to the municipal supply. In addition, the dewatering has held water levels at the largest landfills below the base of the landfill. Should the dewatering cease, concern would be raised regarding the rise of water levels at this landfills and transport of contaminants through the aquifer to the Scioto River and subsequently by the river to the well field. From June 1984 through July 1986, the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, investigated the relations among the ground-water supply and potential sources of contamination by means of an observation-well network and a program of measuring water levels and sampling for water quality. Sample collections included those made to determine the baseline levels of organic chemicals and metals, as well as periodic sampling and analysis for common constituents to evaluate any changes taking place in the system. Finally, a steady-state, three-dimensional numerical model was used to determine ground-water flow directions and average ground-water velocities to asses potential effects of toxic-substance spills. The model also was used to simulate changes in the ground-water flow system that could result if part or all of the quarry dewatering ceased. Few of the organic-chemical and metal constituents analyzed for were present at detectable levels. With respect to

  16. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  17. Geostatistical applications in ground-water modeling in south-central Kansas

    USGS Publications Warehouse

    Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.

    1999-01-01

    This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described

  18. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona-2005-06

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2007-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area averages about 6 to 14 inches per year. The water monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2005 to September 2006. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2005, ground-water withdrawals in the Black Mesa area totaled 7,330 acre-feet, including ground-water withdrawals for industrial (4,480 acre-feet) and municipal (2,850 acre-feet) uses. From 2004 to 2005, total withdrawals increased by less than 2 percent, industrial withdrawals increased by approximately 3 percent, and total municipal withdrawals increased by 0.35 percent. From 2005 to 2006, annually measured water levels in the Black Mesa area declined in 10 of 13 wells in the unconfined areas of the N aquifer, and the median change was -0.5 foot. Measurements indicated that water levels declined in 12 of 15 wells in the confined area of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2006, the median water-level change for 29 wells was -8.5 feet. Median water-level changes were -0.2 foot for 13 wells in the unconfined areas and -46.6 feet for 16 wells in the confined area. Ground-water discharges were measured once in 2005 and once in 2006 at Moenkopi School Spring and Burro

  19. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  20. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  1. Impacts of Groundwater Pumping on Regional and Global Water Resources

    NASA Technical Reports Server (NTRS)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  2. Consequences of Groundwater Development on Water Resources of Hawai`i

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Izuka, S. K.; El-Kadi, A. I.

    2017-12-01

    The availability of fresh groundwater for human use is limited by whether the impacts of withdrawals are deemed acceptable by community stakeholders and water-resource managers. Quantifying the island-wide hydrologic impacts of withdrawal—saltwater intrusion, water-table decline, and reduction of groundwater discharge to streams, nearshore environments and downgradient groundwater bodies—is thus a key step for assessing fresh groundwater availability in Hawai`i. Groundwater-flow models of the individual islands of Kaua`i, O`ahu, and Maui were constructed using MODFLOW 2005 with the Seawater-Intrusion Package (SWI2). Consistent model construction among the islands, calibration, and analysis were streamlined using Python scripts. Results of simulating historical withdrawals from Hawai`i's volcanic aquifers show that the types and magnitudes of impacts that can limit fresh groundwater availability vary among each islands' unique hydrogeologic settings. In high-permeability freshwater-lens aquifers, saltwater intrusion and reductions in coastal groundwater discharge are the principal consequences of withdrawals that can limit groundwater availability. In dike-impounded groundwater and thickly saturated low-permeability aquifers, reduced groundwater discharge to streams, water-table decline, or reduced flows to adjacent freshwater-lens aquifers can limit fresh groundwater availability. The numerical models are used to quantify and delineate the spatial distribution of these impacts for the three islands. The models were also used to examine how anticipated changes in groundwater recharge and withdrawals will affect fresh groundwater availability in the future.

  3. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1994 through June 1996

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1994 through June 1996, with a focus on data from April through June 1996 (second quarter of 1996). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey. Cumulative rainfall for April through June 1996 was 22.64 inches, which is 12 percent more than the mean cumulative rainfall of 20.21 inches for April through June. The period April through June is part of the annual dry season. Ground-water withdrawal during April through June 1996 averaged 1,048,000 gallons per day. Withdrawal for the same 3 months in 1995 averaged 833,700 gallons per day. Withdrawal patterns during the second quarter of 1996 did not change significantly since 1991, with the Cantonment and Air Operations areas supplying about 99 percent of total islandwide pumpage. At the end of June 1996, the chloride concentration of water from the elevated tanks at Cantonment and Air Operations were 52 and 80 milligrams per liter, respectively. The chloride data from all five production areas showed no significant upward or downward trends throughout the second quarter of 1996. Potable levels of chloride concentrations have been maintained by adjusting individual pumping rates, and also because of the absence of long-term droughts. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations also showed no significant trends throughout the second quarter of 1996. Chloride concentrations have been about the same since the last quarter of 1995. A fuel-pipeline leak at Air Operations in May 1991 decreased total islandwide withdrawals by 15 percent. This lost pumping capacity is being offset by increased pumpage at Cantonment. Six wells do not contribute to the water supply because they are being used to hydraulically divert fuel migration away from water

  4. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1994 through March 1996

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1994 through March 1996, with a focus on data from January through March 1996 (first quarter of 1996). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey. Cumulative rainfall for January through March 1996 was about 30 inches, which is 9 percent less than the mean cumulative rainfall of about 33 inches for January through March. The period January through February is the end of the annual wet season, while March marks the start of the annual dry season. Ground-water withdrawal during January through March 1996 averaged 970,300 gallons per day. Withdrawal for the same 3 months in 1995 averaged 894,600 gallons per day. With- drawal patterns during the first quarter of 1996 did not change significantly since 1991, with the Cantonment and Air Operations areas supplying about 99 percent of total islandwide pumpage. At the end of March 1996, the chloride concentration of water from the elevated tanks at Cantonment and Air Operations were 47 and 80 milligrams per liter, respectively. The chloride data from all five production areas showed no significant upward or downward trends throughout the first quarter of 1996. Potable levels of chloride concentrations have been maintained by adjusting individual pumping rates, and also because of the absence of long-term droughts. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations also showed no significant trends throughout the first quarter of 1996. Chloride concentrations have been about the same since the last quarter of 1995. A fuel-pipeline leak at Air Operations in May 1991 decreased total islandwide withdrawals by 15 percent. This lost pumping capacity is being offset by increased pumpage at Cantonment. Six wells do not contribute to the water supply because they

  5. Hydrology of the Sevier-Sigurd ground-water basin and other ground-water basins, central Sevier Valley, Utah.

    USGS Publications Warehouse

    Lambert, P.M.; Mason, J.L.; Puchta, R.W

    1995-01-01

    The hydrologic system in the central Sevier Valley, and more specifically the Sevier-Sigurd basin, is a complex system in which surface- and ground-water systems are interrelated. Seepage from an extensive irrigation system is the primary source of recharge to the basin-fill aquifer in the Sevier-Sigurd basin.Water-quality data indicate that inflow from streams and subsurface inflow that intersect evaporite deposits in the Arapien Shale does not adversely affect ground-water quality in the Sevier-Sigurd basin. Stable-isotope data indicate that large sulfate concentrations in water from wells are from the dissolution of gypsum within the basin fill rather than inflow from the Arapien Shale.A ground-water-flow model of the basin-fill aquifer in the Sevier-Sigurd basin was calibrated to steady-state conditions and transient conditions using yearly water-level changes from 1957-88 and monthly water-level changes from 1958-59. Predictive simulations were made to test the effects of reduced recharge from irrigation and increased well discharge. To simulate the effects of conversion from flood to sprinkler irrigation, recharge from irrigated fields was reduced by 50 percent. After twenty years, this reduction resulted in water-level declines of 1 to 8 feet in most of the basin, and a reduction in ground-water discharge to the Sevier River of 4,800 acre-ft/yr. Water-level declines of as much as 12 feet and a reduction in recharge to the Sevier River of 4,800 acre-ft/yr were the result of increasing well discharge near Richfield and Monroe by 25,000 acre-ft/yr. 

  6. Ground-water management under the appropriation doctrine. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, D.; Bruhl, E.J.

    The purpose of the research is to better understand the characteristics of ground-water management under the prior-appropriation doctrine in the western United States. The general objective is to summarize the legal and administrative controls on ground-water use in eight western states and to compare the impacts of these controls on ground water systems.

  7. Hydrologic and geochemical approaches for determining ground-water flow components

    USGS Publications Warehouse

    Hjalmarson, H.W.; Robertson, F.N.

    1991-01-01

    Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.

  8. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  9. Ground-water and water-chemistry data for the Willamette basin, Oregon

    USGS Publications Warehouse

    Orzol, Leonard L.; Wozniak, Karl C.; Meissner, Tiffany R.; Lee, Douglas B.

    2000-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the Willamette River Basin, Oregon. The report includes tabulated information and a location map for 1,234 field-located water wells and 6 springs, hydrographs showing water-level fluctuations during various time periods for 265 of the wells, borehole geophysical data for 16 wells, and water-chemistry analyses from 125 wells and 6 springs. These data, as well as data for 4,752 additional fieldlocated wells and 1 spring, are included on a CD-ROM. In addition, the locations of the field-located wells and springs are provided in geographic information system formats on the CD-ROM.

  10. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2000-2005

    USGS Publications Warehouse

    Pippin, Charles G.; Chapman, Melinda J.; Huffman, Brad A.; Heller, Matthew J.; Schelgel, Melissa E.

    2008-01-01

    A 6-year intensive field study (2000-2005) of a complex, regolith-fractured bedrock ground-water system was conducted at the Langtree Peninsula research station on the Davidson College Lake Campus in Iredell County, North Carolina. This research station was constructed as part of the Piedmont and Mountains Resource Evaluation Program, a cooperative study being conducted by the North Carolina Department of Environment and Natural Resources and the U.S. Geological Survey. Results of the study characterize the distinction and interaction of a two-component ground-water system in a quartz diorite rock type. The Langtree Peninsula research station includes 17 monitoring wells and 12 piezometers, including 2 well transects along high to low topographic settings, drilled into separate parts of the ground-water-flow system. The location of the research station is representative of a metaigneous intermediate (composition) regional hydrogeologic unit. The primary rock type is mafic quartz diorite that has steeply dipping foliation. Primary and secondary foliations are present in the quartz diorite at the site, and both have an average strike of about N. 12 degree E. and dip about 60 degree in opposite directions to the southeast (primary) and the northwest (secondary). This rock is cut by granitic dikes (intrusions) ranging in thickness from 2 to 50 feet and having an average strike of N. 20 degree W. and an average dip of 66 degree to the southwest. Depth to consolidated bedrock is considered moderate to deep, ranging from about 24 to 76 feet below land surface. The transition zone was delineated and described in each corehole near the well clusters but had a highly variable thickness ranging from about 1 to 20 feet. Thickness of the regolith (23 to 68 feet) and the transition zone do not appear to be related to topographic setting. Delineated bedrock fractures are dominantly low angle (possibly stress relief), which were observed to be open to partially open at depths of

  11. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  12. Ground-water age and atmospheric tracers: Simulation studies and analysis of field data from the Mirror Lake site, New Hampshire

    USGS Publications Warehouse

    Goode, Daniel J.

    1998-01-01

    The use of environmental tracers in characterization of ground-water systems is investigated through mathematical modeling of ground-water age and atmospheric tracer transport, and by a field study at the Mirror Lake site, New Hampshire. Theory is presented for modeling ground-water age using the advective-dispersive transport equation. The transport equation includes a zero-order source of unit strength, corresponding to the rate of aging, and can accommodate matrix diffusion and other exchange processes. The effect of temperature fluctuations and layered soils on transport of atmospheric gases to the water table is investigated using a one-dimensional numerical model of chlorofluorocarbon (CFC-11) transport. The nonlinear relation between temperature and Henry's Law coefficient (reflecting air/water phase partitioning) can cause the apparent recharge temperature to be elevated above the annual mean temperature where the water table is shallow. In addition, fine-grained soils can isolate the air phase in the unsaturated zone from the atmosphere. At the USGS' Mirror Lake, New Hampshire fractured-rock research site CFC concentrations near the water table are depleted where dissolved oxygen is low. CFC-11 and CFC-113 are completely absent under anaerobic conditions, while CFC-12 is as low as one-third of modern concentrations. Anaerobic biodegradation apparently consumes CFC's near the water table at this site. One area of active degradation appears to be associated with streamflow loss to ground water. Soil gas concentrations are generally close to atmospheric levels, although some spatial correlation is observed between depleted concentrations of CFC-11 and CFC-113 in soil gas and water-table samples. Results of unsaturated-zone monitoring indicate that recharge occurs throughout the year in the watershed, even during summer evapotranspiration periods, and that seasonal temperature fluctuations occur as much as 5 meters below land surface. Application of ground-water

  13. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee

    2003-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are mostmore » likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less

  14. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2004-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2005 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2005 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2005 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less

  15. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  16. Observation-well network for collection of ground-water level data in Massachusetts

    USGS Publications Warehouse

    Socolow, Roy S.

    1994-01-01

    Aquifers--water-bearing deposits of sand and gravel, glacial till, and fractured bedrock--provide an extensive and readily accessible ground-water supply in Massachusetts. Ground water affects our everyday lives, not just in terms of how much water is available, but also in terms of the position of ground-water levels in relation to land surface. Knowledge of ground-water levels is needed by Federal, State, and local agencies to help plan, manage, and protect ground-water supplies, and by private construction companies for site planning and evaluation. A primary part of the mission of the U.S. Geological Survey (USGS), Water Resources Division, is the systematic collection of ground-water, surface-water, and water-quality data. These data are needed to manage and protect the nation's water resources. The Massachusetts-Rhode Island District of the USGS, in cooperation with the Massachusetts Department of Environmental Management (DEM), Office of Water Resources, and county and town environmental agencies, has maintained a network of observation wells throughout the Commonwealth since the mid 1930's. The purpose of this network is to monitor seasonal and long-term changes in groundwater storage in different lithologic, topographic, and geographic settings. These data are analyzed to provide a monthly index of ground-water conditions to aid in water-resources management and planning, and to define long-term changes in water levels resulting from manmade stresses (such as pumping and construction-site drainage) and natural stresses (such as floods and droughts).

  17. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  18. Geology and ground-water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Cline, Denzel R.

    1965-01-01

    The purpose of the ground-water investigation of Dane County, Wis., was to determine the occurrence, movement, quantity, quality, and availability of ground water in the unconsolidated deposits and the underlying bedrock. The relationships between ground water and surface water were studied in general in Dane County and in detail in the Madison metropolitan area. An analysis was made of the hydrologic system of the Yahara River valley and of the effects of ground-water pumpage on that system.

  19. Basic elements of ground-water hydrology with reference to North Carolina

    USGS Publications Warehouse

    Heath, Ralph Carr

    1980-01-01

    This report was prepared as an aid to developing a better understanding of the groundwater resources of North Carolina. It consists of 46 essays grouped into five parts. The topics covered by these essays range from the most basic aspects of ground-water hydrology to the identification and correction of problems that affect the operation of supply wells. The essays were designed both for self study and for use in workshops on ground-water hydrology and the development and operation of ground-water supplies. From the standpoint of self study, it is assumed that the reader does not have any prior knowledge of geology or ground-water hydrology. Those readers with such knowledge can simply skip those topics with which they are already familar. (USGS)

  20. Evaluation of water stress and groundwater storage using a global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.

    2017-12-01

    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From

  1. Framework for a ground-water quality monitoring and assessment program for California

    USGS Publications Warehouse

    Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler

    2003-01-01

    The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has

  2. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update

    USGS Publications Warehouse

    Rutledge, A.T.

    1998-01-01

    The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.

  3. Annual summary of ground-water conditions in Arizona, spring 1984 to spring 1985

    USGS Publications Warehouse

    ,

    1986-01-01

    In arid and semiarid regions such as Arizona, the availability of adequate water supplies has a significant influence on the type and extent of economic development. About two-thirds of the water used in the State is groundwater. The nature and extent of the groundwater reservoirs must be known for proper management of this valuable resource. The U.S. Geological Survey, in cooperation with the State of Arizona, has conducted a program of groundwater studies in Arizona since 1939. The primary purposes of these studies are to define the amount, location, and quality of the groundwater resources of Arizona and to monitor the effects of large-scale development of the groundwater supplies. The program includes the collection, compilation, and analysis of the geologic and hydrologic data necessary to evaluate the groundwater resources of the State. The basic hydrologic data are in computer storage and are available to the public. Since 1974, a major thrust of the program has been to inventory the groundwater conditions in the 68 groundwater areas of the State. Several selected groundwater areas are studied each year; water levels are measured annually in a statewide observation well network, many groundwater samples are collected and analyzed annually, and groundwater pumpage is computed for most of the areas. As of July 1985, reports had been published for 56 of the 68 groundwater areas. Data collected in the groundwater areas include information on selected wells, water level measurements, and water samples for chemical analysis. The data for each of the selected groundwater areas are analyzed, and the results are published in map form. Typically, the maps show depth to water; change in water levels; altitude of the water level; and quality of water data, such as specific conductance, dissolved solids, and fluoride. (Lantz-PTT)

  4. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  5. Implementations of Riga city water supply system founded on groundwater sources

    NASA Astrophysics Data System (ADS)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  6. Simulation of ground-water discharge to Biscayne Bay, southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian David

    2001-01-01

    As part of the Place-Based Studies Program, the U.S. Geological Survey initiated a project in 1996, in cooperation with the U.S. Army Corps of Engineers, to quantify the rates and patterns of submarine ground-water discharge to Biscayne Bay. Project objectives were achieved through field investigations at three sites (Coconut Grove, Deering Estate, and Mowry Canal) along the coastline of Biscayne Bay and through the development and calibration of variable-density, ground-water flow models. Two-dimensional, vertical cross-sectional models were developed for steady-state conditions for the Coconut Grove and Deering Estate transects to quantify local-scale ground-water discharge patterns to Biscayne Bay. A larger regional-scale model was developed in three dimensions to simulate submarine ground-water discharge to the entire bay. The SEAWAT code, which is a combined version of MODFLOW and MT3D, was used to simulate the complex variable-density flow patterns. Field data suggest that ground-water discharge to Biscayne Bay relative to the shoreline is restricted to within 300 meters at Coconut Grove, 600 to 1,000 meters at Deering Estate, and 100 meters at Mowry Canal. The vertical cross-sectional models, which were calibrated to the field data using the assumption of steady state, tend to focus ground-water discharge to within 50 to 200 meters of the shoreline. With homogeneous distributions for aquifer parameters and a constant-concentration boundary for Biscayne Bay, the numerical models could not reproduce the lower ground-water salinities observed beneath the bay, which suggests that further research may be necessary to improve the accuracy of the numerical simulations. Results from the cross-sectional models, which were able to simulate the approximate position of the saltwater interface, suggest that longitudinal dispersivity ranges between 1 and 10 meters, and transverse dispersivity ranges from 0.1 to 1 meter for the Biscayne aquifer. The three

  7. Quantifying Surface Water, Porewater, and Groundwater Interactions Using Tracers: Tracer Fluxes, Water Fluxes, and End-member Concentrations

    NASA Astrophysics Data System (ADS)

    Cook, Peter G.; Rodellas, Valentí; Stieglitz, Thomas C.

    2018-03-01

    Tracer approaches to estimate both porewater exchange (the cycling of water between surface water and sediments, with zero net water flux) and groundwater inflow (the net flow of terrestrially derived groundwater into surface water) are commonly based on solute mass balances. However, this requires appropriate characterization of tracer end-member concentrations in exchanging or discharging water. Where either porewater exchange or groundwater inflow to surface water occur in isolation, then the water flux is easily estimated from the net tracer flux if the end-member is appropriately chosen. However, in most natural systems porewater exchange and groundwater inflow will occur concurrently. Our analysis shows that if groundwater inflow (Qg) and porewater exchange (Qp) mix completely before discharging to surface water, then the combined water flux (Qg + Qp) can be approximated by dividing the combined tracer flux by the difference between the porewater and surface water concentrations, (cp - c). If Qg and Qp do not mix prior to discharge, then (Qg + Qp) can only be constrained by minimum and maximum values. The minimum value is obtained by dividing the net tracer flux by the groundwater concentration, and the maximum is obtained by dividing by (cp - c). Dividing by the groundwater concentration gives a maximum value for Qg. If porewater exchange and groundwater outflow occur concurrently, then dividing the net tracer flux by (cp - c) will provide a minimum value for Qp. Use of multiple tracers, and spatial and temporal replication should provide a more complete picture of exchange processes and the extent of subsurface mixing.

  8. Ground-water, surface-water, and water-chemistry data, Black Mesa area, Northeastern Arizona: 1999

    USGS Publications Warehouse

    Thomas, Blakemore E.; Truini, Margot

    2000-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and a precipitation of only about 6 to 12 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 1999, total ground-water withdrawals were 7,110 acre-feet, industrial use was 4,210 acre-feet, and municipal use was 2,900 acre-feet. From 1998 to 1999, total withdrawals increased by 0.7 percent, industrial use increased by 4 percent, and municipal use decreased by 4 percent. From 1998 to 1999, water levels declined in 11 of 15 wells in the unconfined part of the aquifer, and the median decline was 0.7 foot. Water levels declined in 14 of 16 wells in the confined part of the aquifer, and the median decline was 1.2 feet. From the prestress period (prior to 1965) to 1999, the median water-level decline in 31 wells was 10.6 feet. Median water-level changes were 0.0 foot for 15 wells in the unconfined part of the aquifer and a decline of 45.5 feet in 16 wells in the confined part. From 1998 to 1999, discharges were measured annually at four springs. Discharges declined 30 percent and 3 percent at 2 springs, did not change at 1 spring, and increased by 11 percent at 1 spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend was not observed. Continuous records of surface-water discharge have been collected from July 1976 to 1999 at Moenkopi Wash, July 1996 to 1999 at Laguna Creek, June 1993 to 1999 at Dinnebito Wash, and April

  9. Geohydrology, water quality, and estimation of ground-water recharge in San Francisco, California, 1987-92

    USGS Publications Warehouse

    Phillips, S.P.; Hamlin, S.N.; Yates, E.B.

    1993-01-01

    The city of San Francisco is considering further development of local groundwater resources as a supplemental source of water for potable or nonpotable use. By the year 2010, further water demand is projected to exceed the delivery capacity of the existing supply system, which is fed by surface-water sources; thus supplies are susceptible to drought conditions and damage to conveyance lines by earthquakes. The primary purpose of this study is to describe local geohydrology and water quality and to estimate groundwater recharge in the area of the city of San Francisco. Seven groundwater basins were identified in San Francisco on the basis of geologic and geophysical data. Basins on the east side of the city are relatively thin and contain a greater percentage of fine-grained sediments than those on the west side. The relatively small capacity of the basins and greater potential for contamination from sewer sources may limit the potential for groundwater development on the east side. Basins on the west side of the city have a relatively large capacity and low density sewer network. Water-level data indicate that the southern part of the largest basin on the west side of the city (Westside basin) probably cannot accommodate additional groundwater development without adversely affecting water levels and water quality in Lake Merced; however, the remainder of the basin, which is largely undeveloped, could be developed further. A hydrologic routing model was developed for estimating groundwater recharge throughout San Francisco. The model takes into account climatic factors, land and water use, irrigation, leakage from underground pipes, rainfall runoff, evapotranspiration, and other factors associated with an urban environment. Results indicate that area recharge rates for water years 1987-88 for the 7 groundwater basins ranged from 0.32 to 0.78 feet per year. Recharge for the Westside basin was estimated at 0.51 feet per year. Average annual groundwater recharge

  10. U.S. Geological Survey ground-water studies in Utah

    USGS Publications Warehouse

    Gates, Joseph S.

    1988-01-01

    Ground water is an important natural resource in Utah. In the basins west of the Wasatch Front, and in many other parts of Utah, ground water is the primary source of water. In many of the basins of the western desert and in parts of the Colorado Plateau, ground water is the only reliable source of water. Along the Wasatch Front to the north and south of Salt Lake City, in the Uinta Basin, and in the Sevier River drainage, surface water is the primary source of water. Ground-water sources supply about 20 percent of all water used in Utah and about 63 percent of the water for public supply. Of the total amount of ground water used, 44 percent is for irrigation, 35 percent is for public supply, 11 percent is for industry, 5 percent is for rural domestic supplies, and 5 percent is for livestock. The major issues related to ground water in Utah are: -Development of additional ground-water supplies while protecting existing water rights and minimizing effects on water levels, water quality, and streamflow, and-Protection of ground-water resources from contamination by pollutants from various types of land-use and waste-disposal practices.

  11. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  12. Natural water purification and water management by artificial groundwater recharge.

    PubMed

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  13. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin

  14. Research opportunities in interdisciplinary ground-water science in the U.S. Geological Survey

    USGS Publications Warehouse

    Sanford, W.E.; Caine, Jonathan S.; Wilcox, D.A.; McWreath, H.C.; Nicholas, J.R.

    2006-01-01

    This report is written for the scientifically literate reader but is not limited to those who are involved in ground-water science. The report is intended to encourage U.S. Geological Survey scientists to develop a sense of excitement about ground-water science in the agency, to inform scientists about existing and potential ground-water science opportunities, and to engage scientists and managers in interdisciplinary discussions and collaboration. The report is intended for use by U.S. Geological Survey and Department of the Interior management to formulate long-term ground-water science programs and to continue sustained support of ground-water monitoring and research, some of which may not have an immediate impact. Finally, the report can be used to communicate the U.S. Geological Survey's vision of ground-water science to Congress, partners, other agencies, and the research community at large with the goals of enhancing collaborative opportunities, sharing information, and maintaining dialogue regarding the directions of U.S. Geological Survey ground-water science.

  15. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  16. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  17. Groundwater Regulation in the Houston-Galveston Region to Control Subsidence - Balancing Total Water Demand, Available Alternative Water Supplies, and Groundwater Withdrawal

    NASA Astrophysics Data System (ADS)

    Turco, M. J.

    2014-12-01

    In 1975, as a result of area residents and local governments becoming increasingly alarmed by the continued impact of subsidence on economic growth and quality of life in the region, the Harris-Galveston Coastal Subsidence District was created by the 64th Texas Legislature as an underground water conservation district. The primary mission of what is now the Harris-Galveston Subsidence District, is to provide for the regulation of the withdrawal of groundwater to control subsidence. Subsidence has been a concern in the Houston, TX area throughout most of recent history. Since 1906, over 10 feet of subsidence has occurred, with a broad area of 6 feet of subsidence throughout most of the Houston Area.Over its nearly forty years of existence, the District has developed substantial data sets providing the foundation for its regulatory plan. Annual water-level measurements, a network of deep extensometers, over 80 subsidence GPS monitors, and updated numerical and analytical models have been utilized. Periodically, the District utilizes U.S. Census data to predict the future magnitude and location of population and water demand. In 2013, all of these data sets were combined producing an updated regulatory plan outlining the timelines of conversion to alternative sources of water and defining the maximum percentage groundwater can contribute to a user's total water demand.The management of the groundwater resources within the District has involved significant coordination with regional ground and surface water suppliers; ongoing interaction with other state and local regulatory bodies; analysis of accurate and up to date predictions on water usage; the enforcement of real disincentives to those who rely too heavily on groundwater and a commitment to practicing and promoting water conservation.Water supplies in the region are projected to continue to be stressed in the future due to rapid population increases in the region. Future District efforts will be focused on

  18. Summary appraisals of the Nation's ground-water resources; Ohio region

    USGS Publications Warehouse

    Bloyd, Richard M.

    1974-01-01

    Rapid advance of techniques in ground-water hydrology during recent years has provided methods which the hydrologist can use for evaluating planned ground-water development. Therefore, the manager can resolve the inherent problems that historically have bred caution when this part of our total water resource was considered for development.

  19. Ground-water flow and ground- and surface-water interaction at McBaine Bottoms, Columbia, Missouri--2000-02

    USGS Publications Warehouse

    Smith, Brenda J.

    2003-01-01

    McBaine Bottoms southwest of Columbia, Missouri, is the site of 4,269 acres of the Eagle Bluffs Conservation Area operated by the Missouri Department of Conservation, about 130 acres of the city of Columbia wastewater-treat-ment wetlands, and the city of Columbia munici-pal-supply well field. The city of Columbia wastewater-treatment wetlands supply treated effluent to the Eagle Bluffs Conservation Area. The presence of a sustained ground-water high underlying the Eagle Bluffs Conservation Area has indicated that ground-water flow is toward the municipal well field that supplies drinking water to the city of Columbia. The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and the city of Columbia, measured the ground-water levels in about 88 monitoring wells and the surface-water elevation at 4 sites monthly during a 27-month period to determine the ground-water flow and the ground- and surface-water interaction at McBaine Bottoms. Lateral ground-water flow was dominated by the presence of a ground-water high that was beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression in the northern part of the study area. The ground-water high was present during all months of the study. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was toward the north toward the city of Columbia well field. The cone of depression was centered around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high beneath the Eagle Bluffs Conservation Area was present throughout the study period, the configuration of the high changed depending on hydrologic conditions. Generally in the spring, the height of the ground-water high began to decrease and hydraulic

  20. Statistical summaries of ground-water level data collected in the Suwannee River Water Management District, 1948 to 1994

    USGS Publications Warehouse

    Collins, J.J.; Freeman, L.D.

    1996-01-01

    Since 1948, ground-water level data have beensystematically collected from selected wells in theSuwannee River Water Management District (SRWMD) by the U.S. Geological Survey (USGS),the SRWMD, and other agencies. Records of waterlevels in the SRWMD (fig. 1), collected by the USGS and SRWMD through 1990, and by the SRWMD from 1990 to 1994, have been published for many years in the USGS annual report series "Water Resources Data for Florida." However, no systematic statistical summaries of water levels in the SRWMD have been previously published. The need for such statistical summary data forevaluations of drought severity, ground-water supplyavailability, and minimum water levels for regulatory purposes increases daily as demands for ground-water usage increase. Also, much of the base flow of the Suwannee River is dependent upon ground water. As the population and demand for ground water for drinking water and irrigation purposes increase, the ability to quickly and easily predict trends in ground-water availability will become paramount. In response to this need, the USGS, in cooperation with the SRWMD, compiled this report. Ground-water sta tistics for 136 sites are presented as well as figures showing water levels that were measured in wells from 1948 through September 1994. In 1994, the SRWMD and the USGS began a long- term program of cooperative studies designed tobetter understand minimum and maximum streamflows and ground-water levels in the SRWMD. Minimum and maximum flows and levels are needed by the district to manage the surface- and ground-water resources of the SRWMD and to maintain or improve the various ecosystems. Data evaluation was a necessary first step in the long- term SRWMD ground-water investigations program, because basic statistics for ground-water levels are not included in the USGS annual data reports such as "Water Resources Data for Florida, Water Year 1994" (Fran klin and others, 1995). Statistics included in this report were generated

  1. Recent advances in understanding the interaction of groundwater and surface water

    USGS Publications Warehouse

    Winter, Thomas C.

    1995-01-01

    The most common image of the interaction of groundwater and surface water is that of the interaction of streams with a contiguous alluvial aquifer. This type of system has been the focus of study for more than 100 years, from the work of Boussinesq (1877) to the present, and stream-aquifer interaction continues to be the most common topic of papers discussing the interaction of groundwater and surface water. However, groundwater and surface water interact in a wide variety of landscapes from alpine to coastal. Within these landscapes, ground-water systems range in scale from local to regional, and the types of surface water include streams, lakes, wetlands, and oceans. Given the broad spectrum of the topic of groundwater and surface water interaction, an overview of studies of this topic could be organized according to surface water type, landscape type, scale of hydrologic systems, or field and analytical methods. All these factors are discussed, but this paper is organized according to landscape type because of the great increase in studies of the interaction of groundwater and surface water in landscapes other than riverine systems in the last 15 years. Furthermore, discussing studies by landscape type facilitates comparison of methods and results from different geologic and climatic settings. The general landscapes discussed are mountain terrane, riverine systems, coastal terrane, hummocky terrane, and karst terrane.

  2. Annual safe groundwater yield in a semiarid basin using combination of water balance equation and water table fluctuation

    NASA Astrophysics Data System (ADS)

    Rezaei, Abolfazl; Mohammadi, Zargham

    2017-10-01

    The safe groundwater yield plays a major role in the appropriate management of groundwater systems, particularly in (semi-)arid areas like Iran. This study incorporates both the water balance equation and the water table fluctuation to estimate the annual safe yield of the unconfined aquifer in the eastern part of the Kaftar Lake, an Iranian semiarid region. Firstly, the water balance year 2002-03, owing same water table elevation at the beginning and year-end, was chosen from the monthly representative groundwater hydrograph of the aquifer to be taken into account as a basic water year for determining the safe yield. Then the ratio of the total groundwater pumping to the annual groundwater recharge in the selected water balance year together with the quantity of total recharge occurred in the wet period (October to May) of the year of interest were applied to evaluate the annual safe yield at the initiation of the dry period (June to September) of the year of interest. Knowing the annual safe groundwater withdrawal rate at the initiation of each dry period could be helpful to decision makers in managing groundwater resources conservation. Analysis results indicate that to develop a safe management strategy in the aquifer; the ratio of the annual groundwater withdrawal to the annually recharged volume should not exceed 0.69. In the water year 2003-04 where the ratio is equal to 0.52, the water table raised up (about 0.48 m) while the groundwater level significantly declined (about 1.54 m) over the water year 2007-08 where the ratio of the annual groundwater withdrawal to the annually recharged volume (i.e., 2.76) is larger than 0.69.

  3. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Roehl, Edwin A.; Conrads, Paul; Daamen, Ruby C.; Petkewich, Matthew D.

    2014-01-01

    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  4. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  5. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  6. Ground-water conditions in Georgia, 1997

    USGS Publications Warehouse

    Cressler, A.M.

    1998-01-01

    Ground-water conditions in Georgia during 1997 and for the period of record were evaluated using data from ground-water-level and ground-water-quality monitoring networks. Data for 1997 included in this report are from continuous water-level records from 71 wells and chloride analyses from 14 wells. In 1997, annual mean ground-water levels in Georgia ranged from 6.2 feet (ft) lower to 5.6 ft higher than in 1996. Of the 71 wells summarized in this report, 23 wells had annual mean water levels that were higher, 35 wells had annual mean water levels that were lower, and 11 wells had annual mean water levels that were about the same in 1997 as during 1996. Data for two wells are incomplete because data collection was discontinued at one well, and the equipment was vandalized at one well. Record-low daily mean water levels were recorded in six wells tapping the Upper Floridan aquifer, one well tapping the Caliborne aquifer, two wells tapping the Clayton aquifer, and three wells tapping Cretaceous aquifers. These record lows were from 0.2 to 5.6 ft lower than previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standard. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water

  7. Fundamentals of Ground-Water Modeling

    EPA Pesticide Factsheets

    This paper presents an overview of the essential components of ground-water flow and contaminant transport modeling in saturated porous media. While fractured rocks and fractured porous rocks may behave like porous media with respect to many flow and...

  8. Ground-water resources data for Baldwin County, Alabama

    USGS Publications Warehouse

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  9. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico

    USGS Publications Warehouse

    Bartolino, James R.; Niswonger, Richard G.

    1999-01-01

    An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature profiles and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of vertical ground-water flux between the river and underlying aquifer was simulated and the effective vertical hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses

  10. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    USGS Publications Warehouse

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  11. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  12. Regional Water Table (2002) and Water-Level Changes in the Mojave River and Morongo Ground-Water Basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.; Stamos, Christina L.; Predmore, Steven K.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During 2002, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 600 wells, providing coverage for most of the basins. Twenty-eight hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 9 short-term (1997 to 2002) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 2000 and 2002 water levels throughout the basins. In the Mojave River ground-water basin, about 66 percent of the wells had water-level declines of 0.5 ft or more since 2000 and about 27 percent of the wells had water-level declines greater than 5 ft. The only area that had water-level increases greater than 5 ft that were not attributed to fluctuations in nearby pumpage was in the Harper Lake (dry) area where there has been a significant reduction in pumpage during the last decade. In the Morongo ground-water basin, about 36 percent of the wells had water-level declines of 0.5 ft or more and about 10 percent of the wells had water-level declines greater than 5 ft. Water-level increases greater than 5 ft were measured only in the Warren subbasin, where artificial

  13. Surface water / groundwater interactions and their spatial variability, an example from the Avon River, South-East Australia

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Gilfedder, Benjamin

    2013-04-01

    some areas instead. Radon concentrations are in general low (under 0.5 Bq/l), but rise significantly when groundwater discharges to the river (up to 3 Bq/l). By using high resolution radon mapping with a water-air-gas-exchanger in combination with EC mapping on a boat we were able to show that groundwater discharge to the river is diffuse on river reaches of about 1 km length where it occurs. The discharge areas are along large alluvial riverbed deposits and are likely to be a mixture of local groundwater and parafluvial flow. High resolution radon mapping has only been used in coastal areas and this is the first study where the method was applied to river systems.

  14. Soil- and groundwater-quality data for petroleum hydrocarbon compounds within Fuels Area C, Ellsworth Air Force Base, South Dakota, 2014

    USGS Publications Warehouse

    Bender, David A.; Rowe, Barbara L.

    2015-01-01

    Ellsworth Air Force Base is an Air Combat Command located approximately 10 miles northeast of Rapid City, South Dakota. Ellsworth Air Force Base occupies about 6,000 acres within Meade and Pennington Counties, and includes runways, airfield operations, industrial areas, housing, and recreational facilities. Fuels Area C within Ellsworth Air Force Base is a fuels storage area that is used to support the mission of the base. In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimate groundwater-flow direction, select locations for permanent monitoring wells, and install and sample monitoring wells for petroleum hydrocarbon compounds within Fuels Area C. Nine monitoring wells were installed for the study within Fuels Area C during November 4–7, 2014. Soil core samples were collected during installation of eight of the monitoring wells and analyzed for benzene, toluene, ethylbenzene, total xylenes, naphthalene,m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. Groundwater samples were collected from seven of the nine wells (two of the monitoring wells did not contain enough water to sample or were dry) during November 19–21, 2014, and analyzed for select physical properties, benzene, toluene, ethylbenzene, total xylenes, naphthalene, m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. This report describes the nine monitoring well locations and presents the soil- and groundwater-quality data collected in 2014 for this study.

  15. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2003-04

    USGS Publications Warehouse

    Truini, Margot; Macy, Jamie P.; Porter, Thomas J.

    2005-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2003, total ground-water withdrawals were 7,240 acre-feet, industrial withdrawals were 4,450 acre-feet, and municipal withdrawals were 2,790 acre-feet. From 2002 to 2003, total withdrawals decreased by 10 percent, industrial withdrawals decreased by 4 percent, and municipal withdrawals decreased by 20 percent. Flowmeter testing was completed for 24 municipal wells in 2004. The median difference between pumping rates for the permanent meter and a test meter for all the sites tested was -2.9 percent. Values ranged from -10.9 percent at Forest Lake NTUA 1 to +7.8 percent at Rough Rock NTUA 2. From 2003 to 2004, water levels declined in 6 of 12 wells in the unconfined part of the aquifer, and the median change was -0.1 foot. Water levels declined in 7 of 11 wells in the confined part of the aquifer, and the median change was -2.7 feet. From the prestress period (prior to 1965) to 2003, the median water-level change for 26 wells was -23.2 feet. Median water-level change were -6.1 feet for 14 wells in the unconfined parts of the aquifer and and -72.1 feet for 12 wells in the confined part. Discharges were measured once in 2003 and once in 2004 at four springs. Discharge stayed the same at Pasture Canyon Spring, increased 9 percent at

  16. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 2002-03

    USGS Publications Warehouse

    Truini, Margot; Thomas, Blakemore E.

    2004-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2002, total ground-water withdrawals were 8,000 acre-feet, industrial use was 4,640 acre-feet, and municipal use was 3,360 acre-feet. From 2001 to 2002, total withdrawals increased by 4 percent, industrial use increased by 2 percent, and municipal use increased by 7 percent. Flowmeter testing was completed for 32 municipal wells in 2003. The median difference between pumping rates for the permanent meter and a test meter for all the sites tested was -2.0 percent. Values ranged from -13.7 percent at Hopi High School no. 2 to +12.9 percent at Shonto PM3. From 2002 to 2003, water levels declined in 5 of 13 wells in the unconfined part of the aquifer, and the median change was 0.0 foot. Water levels declined in 8 of 13 wells in the confined part of the aquifer, and the median change was -1.1 feet. From the prestress period (prior to 1965) to 2003, the median water-level change for 26 wells was -8.3 feet. Median water-level changes were -0.4 foot for 13 wells in the unconfirned part of the aquifer and -60.3 feet for 13 wells in the confined part. Discharges were measured once in 2002 and once in 2003 at four springs. Discharge decreased by 16 percent at Pasture Canyon Spring, increased 10 percent at Moenkopi Spring and 90 percent at an

  17. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2004-05

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2006-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2004, total ground-water withdrawals were 7,210 acre-feet, industrial withdrawals were 4,370 acre-feet, and municipal withdrawals were 2,840 acre-feet. From 2003 to 2004, total withdrawals decreased by less than 1 percent, industrial withdrawals decreased by 2 percent, and municipal withdrawals increased by 2 percent. From 2004 to 2005, annually measured water levels declined in 6 of 13 wells in the unconfined areas of the aquifer, and the median change was -0.1 foot. Water levels declined in 8 of 12 wells in the confined area of the aquifer, and the median change was -1.2 feet. From the prestress period (prior to 1965) to 2005, the median water-level change for 33 wells was -9.0 feet. Median water-level changes were -0.6 foot for 16 wells in the unconfined areas and -32.0 feet for 17 wells in the confined area. Discharges were measured once in 2004 and once in 2005 at four springs. Discharge increased by 8 percent at Pasture Canyon Spring, decreased by 5 percent at Moenkopi School Spring, increased by 71 percent at an unnamed spring near Dennehotso, and stayed the same at Burro Spring. For the period of record at each spring, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent

  18. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  19. Resolving hyporheic and groundwater components of streambed water flux

    USGS Publications Warehouse

    Bhaskar, Aditi S.; Harvey, Judson W.; Henry, Eric J.

    2012-01-01

    Hyporheic and groundwater fluxes typically occur together in permeable sediments beneath flowing stream water. However, streambed water fluxes quantified using the thermal method are usually interpreted as representing either groundwater or hyporheic fluxes. Our purpose was to improve understanding of co-occurring groundwater and hyporheic fluxes using streambed temperature measurements and analysis of one-dimensional heat transport in shallow streambeds. First, we examined how changes in hyporheic and groundwater fluxes affect their relative magnitudes by reevaluating previously published simulations. These indicated that flux magnitudes are largely independent until a threshold is crossed, past which hyporheic fluxes are diminished by much larger (1000-fold) groundwater fluxes. We tested accurate quantification of co-occurring fluxes using one-dimensional approaches that are appropriate for analyzing streambed temperature data collected at field sites. The thermal analytical method, which uses an analytical solution to the one-dimensional heat transport equation, was used to analyze results from a numerical heat transport model, in which hyporheic flow was represented as increased thermal dispersion at shallow depths. We found that co-occurring groundwater and hyporheic fluxes can be quantified in streambeds, although not always accurately. For example, using a temperature time series collected in a sandy streambed, we found that hyporheic and groundwater flow could both be detected when thermal dispersion due to hyporheic flow was significant compared to thermal conduction. We provide guidance for when thermal data can be used to quantify both hyporheic and groundwater fluxes, and we show that neglecting thermal dispersion may affect accuracy and interpretation of estimated streambed water fluxes.

  20. Variation in glyphosate and AMPA concentrations of surface water and groundwater

    NASA Astrophysics Data System (ADS)

    Caprile, Ana Clara; Aparicio, Virginia; Sasal, Carolina; Andriulo, Enrique

    2017-04-01

    The presence of pesticides in various environmental matrices indicate that the soil's ability to function as a bio-physical-chemical reactor is declining. As it operates as an interface between air and water, it causes a negative impact on these two vital resources. Currently, the pampa agriculture is simplified with a marked tendency towards spring-summer crops, where the main crops are RR soybean and corn. Herbicides are neither retained nor degraded in the soil, which results in polluted groundwater and surface waters. The objectives of this study were: a) to verify the presence of glyphosate and aminomethylphosphonic acid (AMPA) in Pergamino stream (a typical representative of the most productive agricultural region of Argentina) under different land use and to detect if in the detections there was a space-time pattern, and b) to verify the detection of these molecules in groundwater of the upper same basin under exclusively rural land use. Surface stream was sampling in six sites (five under rural land use and one under urban-industrial land use) at a rate of one sample by spring, summer and winter seasons (2010-2013, 54 total samples). Groundwater glyphosate and AMPA concentrations were determined in 24 piezometers constructed at two positions of the landscape, across the groundwater flow direction, sampled at two sampling dates (2010 and 2012, 45 total samples). In surface water, glyphosate and AMPA were detected in 54 and 69% of the samples analyzed, respectively. The median concentrations were 0.9 and 0.8 µg L-1 for glyphosate and AMPA and maximal concentrations 258 and 5865 µg L-1, respectively. The sampling site under urban-industrial land use had abnormally high concentrations of glyphosate in the spring (attributed to point pollution), a fact that not allowed to see differences in the remaining sampling times under different land uses. AMPA concentrations under urban-industrial land use were high and higher than rural land use in 3 studied seasons

  1. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  2. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  3. River water infiltration enhances denitrification efficiency in riparian groundwater.

    PubMed

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Summary appraisals of the Nation's ground-water resources; Caribbean region

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Heisel, James E.

    1980-01-01

    Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.

  5. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  6. Regional water table (2004) and water-level changes in the Mojave River and Morongo ground-water basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Stamos, Christina L.; Huff, Julia A.; Predmore, Steven K.; Clark, Dennis A.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During March and April 2004, the U.S. Geological Survey and other agencies made almost 900 water-level measurements in about 740 wells in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with historical data, changes in ground-water levels. A water-level contour map was drawn using data from 500 wells, providing coverage for most of the basins. In addition, 26 long-term (as much as 74 years) hydrographs were constructed which show water-level conditions throughout the basins, 9 short-term (1992 to 2004) hydrographs were constructed which show the effects of recharge and discharge along the Mojave River, and a water-level-change map was compiled to compare 2002 and 2004 water levels throughout the basins. The water-level change data show that in the Mojave River ground-water basin, more than one half (102) of the wells had water-level declines of 0.5 ft or more and almost one fifth (32) of the wells had declines greater than 5 ft. between 2002 and 2004. The water-level change data also show that about one tenth (17) of the wells compared in the Mojave River ground-water basin had water level increases of 0.5 ft or more. Most of the water-level increases were the result of stormflow in the Mojave River during March 2004, which resulted in recharge to wells in the floodplain aquifer mainly along the river in the Alto subarea and the Transition zone, and along the

  7. Natural water purification and water management by artificial groundwater recharge

    PubMed Central

    Balke, Klaus-Dieter; Zhu, Yan

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624

  8. North Dakota ground-water quality

    USGS Publications Warehouse

    Garklavs, George; Nelson, Rick

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  9. Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Rosenberry, Donald O.; Jackson, P. Ryan; Bode, Jenifer A.; O'Grady, Ryan M.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation

  10. Ground-water, surface-water and water-chemistry data, Black Mesa area, northeastern Arizona: 2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2002-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 2001, total ground-water withdrawals were 7,680 acre-feet, industrial use was 4,530 acre-feet, and municipal use was 3,150 acre-feet. From 2000 to 2001, total withdrawals decreased by 1 percent, industrial use increased by 1 percent, and municipal use decreased by 3 percent. From 2001 to 2002, water levels declined in 5 of 14 wells in the unconfined part of the aquifer, and the median change was +0.2 foot. Water levels declined in 12 of 17 wells in the confined part of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2002, the median water-level change for 32 wells was -15.8 feet. Median water-level changes were -1.3 feet for 15 wells in the unconfined part of the aquifer and -31.7 feet for 17 wells in the confined part. Discharges were measured once in 2001 and once in 2002 at four springs. Discharges decreased by 26 percent and 66 percent at two springs, increased by 100 percent at one spring, and did not change at one spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent. Continuous records of surface-water discharge have been collected from 1976 to 2001 at Moenkopi Wash, 1996 to 2001 at Laguna Creek, 1993 to 2001 at Dinnebito Wash, and 1994 to 2001 at

  11. Looking at groundwater research landscape of Jakarta Basin for better water management

    NASA Astrophysics Data System (ADS)

    Irawan, Dasapta Erwin; Priyambodho, Adhi; Novianti Rachmi, Cut; Maulana Wibowo, Dimas

    2017-07-01

    Based on our experience, defining the gap between what we know and what we don’t know is the hardest part in proposing water management strategy. Many techniques have been introduced to make this stage easier, and one of them is bibliometric analysis. The following paper is the second part of our bibliometric project in the search for a gap in the water resources research in Jakarta. This paper starts to analyse the visualisations that had been extracted from the previous paper based on our database. Using the keyword “groundwater Jakarta”, we managed to get 70 relevant papers. Several visualisations have been built using open source applications. Word cloud analysis shows that the trend to discuss groundwater in scientific sense had only been started in the early 2000’s. This is presumably due to the emerging regional autonomy in which forcing regions to understand their groundwater setting before creating a management strategy. More papers in the later time has been induced by more geo-hazards (land subsidence and floods) resulted in the vast groundwater pumping. More and more resources have been utilized to get more groundwater data. Water scientists by then understood that these hazards had been started long before the 2000’s. This had become the starting point of data era later on. The next era will be the era of water management. Hydrologists had been proposing integrated water management Jakarta and its nearby groundwater basins. Most of them have been strongly suggested to manage all water bodies, rainfall, surface water, and groundwater as one system. In the 2010’s we identify more papers are discussing in water quality following the vast discussion in water quantity in the previous era. People have been more aware the importance of quality in providing water system for the citizen. Then five years later, we believe that water researchers have also put their mind in the interactions between surface water and groundwater, especially in the

  12. Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.

    2016-12-01

    The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change

  13. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  14. Simulation of the effects of ground-water withdrawals and recharge on ground-water flow in Cape Cod, Martha's Vineyard, and Nantucket Island basins, Massachusetts

    USGS Publications Warehouse

    Masterson, John P.; Barlow, Paul M.

    1994-01-01

    The effects of changing patterns of ground-water pumping and aquifer recharge on the surface-water and ground-water hydrologic systems were determined for the Cape Cod, Martha's Vineyard, and Nantucket Island Basins. Three-dimensional, transient, ground-water-flow modelS that simulate both freshwater and saltwater flow were developed for the f1ow cells of Cape Cod which currently have large-capacity public-supply wells. Only the freshwater-flow system was simulated for the Cape Cod flow cells where public-water supply demands are satisfied by small-capacity domestic wells. Two- dimensional, finite-difference, change models were developed for Martha's Vineyard and Nantucket Island to determine the projected drawdowns in response to projected in-season pumping rates for 180 days of no aquifer recharge. Results of the simulations indicate very little change in the position of the freshwater-saltwater interface from predevelopment flow conditions to projected ground-water pumping and recharge rates for Cape Cod in the year 2020. Results of change model simulations for Martha's Vineyard and Nantucket Island indicate that the greatest impact in response to projected in-season ground-water pumping occurs at the pumping centers and the magnitude of the drawdowns are minimal with respect to the total thickness of the aquifers.

  15. Factors influencing ground-water recharge in the eastern United States

    USGS Publications Warehouse

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  16. Using thermal-infrared imagery to delineate ground-water discharge

    USGS Publications Warehouse

    Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.

    1996-01-01

    On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface-water

  17. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  18. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water.

    PubMed

    Ginige, Maneesha P; Kaksonen, Anna H; Morris, Christina; Shackelton, Mark; Patterson, Bradley M

    2013-09-01

    Managed aquifer recharge offers the opportunity to manage groundwater resources by storing water in aquifers when in surplus and thus increase the amount of groundwater available for abstraction during high demand. The Water Corporation of Western Australia (WA) is undertaking a Groundwater Replenishment Trial to evaluate the effects of recharging aerobic recycled water (secondary treated wastewater subjected to ultrafiltration, reverse osmosis, and ultraviolet disinfection) into the anaerobic Leederville aquifer in Perth, WA. Using culture-independent methods, this study showed the presence of Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Cytophaga, Flavobacteria, Gammaproteobacteria, and Sphingobacteria, and a decrease in microbial diversity with an increase in depth of aquifer. Assessment of physico-chemical and microbiological properties of groundwater before and after recharge revealed that recharging the aquifer with aerobic recycled water resulted in elevated redox potentials in the aquifer and increased bacterial numbers, but reduced microbial diversity. The increase in bacterial numbers and reduced microbial diversity in groundwater could be a reflection of an increased denitrifier and sulfur-oxidizing populations in the aquifer, as a result of the increased availability of nitrate, oxygen, and residual organic matter. This is consistent with the geochemical data that showed pyrite oxidation and denitrification within the aquifer after recycled water recharge commenced. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. 10 CFR 63.343 - Severability of individual protection and ground-water protection standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Severability of individual protection and ground-water protection standards. 63.343 Section 63.343 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... ground-water protection standards. The individual protection and ground-water protection standards are...

  20. Annual summary of ground-water conditions in Arizona, spring 1982 to spring 1983

    USGS Publications Warehouse

    ,

    1984-01-01

    The withdrawal of ground water was slightly less than 4.2 million acre-feet in Arizona in 1982, which is about 1.2 million acre-feet less than the amount withdrawn in 1981. Most of the decrease in 1982 was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Through 1982, slightly more than 193 million acre-feet of ground water had been withdrawn from the ground-water reservoirs in Arizona. The report contains three small-scale maps that show ground-water pumpage by areas, the status of the ground-water inventory and observation-well program, and the ground-water quality sampling program. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1983, and change in water level in selected wells from 1978 to 1983. A brief text summarizes the current ground-water conditions in the State. (USGS)

  1. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  2. GWVis: A Tool for Comparative Ground-Water Data Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application (GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. Current three dimensional models of ground-water are overly complex, while the two dimensional representations (i.e., on paper) are neither comprehensive, nor engaging. At present, GWVis operates on water head elevation data over a given time span, together with a matching (fixed) underlying geography. Two elevation scenarios are compared with each other, typically a control data set (actual field data) and a simulation. Scenario comparison can be animated for the timemore » span provided. We developed GWVis using the Python programming language, associated libraries, and pyOpenGL extension packages to improve performance and control of attributes of the mode (such as color, positioning, scale, and interpolation). GWVis bridges the gap between two dimensional and dynamic three dimensional research visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives and to infer information about scenarios. By incorporating scientific data in an environment that can be easily understood, GWVis allows the information to be presented to a large audience base.« less

  3. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, G.A.; Stamos, C.L.; Predmore, S.K.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During 2002, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 660 wells, providing coverage for most of the basins. Twenty-eight hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 9 short-term (1997 to 2002) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 2000 and 2002 water levels throughout the basins. In the Mojave River ground-water basin, about 66 percent of the wells had water-level declines of 0.5 ft or more since 2000 and about 27 percent of the wells had water-level declines greater than 5 ft. The only area that had water-level increases greater than 5 ft that were not attributed to fluctuations in nearby pumpage was in the Harper Lake (dry) area where there has been a significant reduction in pumpage during the last decade. In the Morongo ground-water basin, about 36 percent of the wells had water-level declines of 0.5 ft or more and about 10 percent of the wells had water-level declines greater than 5 ft. Water-level increases greater than 5 ft were measured only in the Warren subbasin, where artificial

  4. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  5. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  6. Sources of groundwater and characteristics of surface-water recharge at Bell, White, and Suwannee Springs, Florida, 2012–13

    USGS Publications Warehouse

    Stamm, John F.; McBride, W. Scott

    2016-12-21

    considered together, evidence from water-level, specific conductance, major-ion concentration, and isotope data indicated that groundwater at Bell Springs and the UFA well was a mixture of surface water and groundwater from the upper confining unit, and that groundwater at White and Suwannee Springs was a mixture of surface water, groundwater from the upper confining unit, and groundwater from the Upper Floridan aquifer. Higher concentrations of magnesium in groundwater samples at the UFA well than in samples at Bell Springs might indicate less mixing with surface water at the UFA well than at Bell Springs. Characteristics of surface-water recharge, such as residence time at the surface, apparent age, and recharge water temperature, were estimated on the basis of isotopic ratios, and dissolved concentrations of gases such as argon, tritium, and sulfur hexafluoride. Oxygen and deuterium isotopic ratios were consistent with rapid recharge by rainwater for samples collected in 2012, and longer residence time at the surface (ponding) for samples collected in 2013. Apparent ages of groundwater samples, computed on the basis of tritium activity and sulfur hexafluoride concentration, indicated groundwater recharge occurred after the late 1980s; however, the estimated apparent ages likely represent the average of ages of multiple sources. Recharge since the 1980s is consistent with groundwater from shallow sources, such as the upper confining unit and Upper Floridan aquifer. Recharge water temperature computed for the three springs and UFA well averaged 20.1 degrees Celsius, which is similar to the mean annual air temperature of 20.6 degrees Celsius at a nearby weather station for 1960–2014.

  7. Groundwater and surface water interaction in flow-through gravel pit lakes.

    NASA Astrophysics Data System (ADS)

    Nella Mollema, Pauline; Antonellini, Marco

    2015-04-01

    Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form when the gravel pits are below the water table and fill with groundwater. In certain areas there are more than 60 of these lakes close together and their presence changes the drainage patterns and water- and hydrochemical budgets of a watershed. In flow-through gravel pit lakes, groundwater mixes with surface water and interacts with the atmosphere; outflow occurs only via groundwater. The lifespan of gravel pit lakes may be up to thousands of years as their depth to surface ratio is typically large and sedimentation rates are low. We have studied two gravel pit lake systems, a fluvial freshwater system in the Netherlands and a coastal brackish lake system in Italy. One Dutch gravel pit lake studied in detail is in part artificially replenished with Meuse River water for drinking water production that occurs downstream of the lake by water pumps. The Italian gravel pit lakes are fed by brackish groundwater that is a mix of freshwater from precipitation, Apennine Rivers and brackish (Holocene) Adriatic Sea water. Here, the drainage system of the low lying land enhances groundwater flow into the lake. Surface water evaporation is larger in temperate and Mediterranean climates than the actual evapotranspiration of pre-existing grassland and forests. The lakes, therefore, cause a loss of freshwater. The creation of water surfaces allows algae and other flora and fauna to develop. In general, water becomes gradually enriched in certain chemical constituents on its way through the hydrological cycle, especially as groundwater due to water-rock interactions. When groundwater ex-filtrates into gravel pit lakes, the natural flow of solutes towards the sea is interrupted. Hydrochemical analysis of ground- and surface waters, as well as chemical analysis of lake bottom sediments and stable H and O isotope data, show that gravel pit lake water is characterized (among

  8. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  9. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1996

    USGS Publications Warehouse

    Littin, Gregory R.; Monroe, Stephen A.

    1997-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1996, ground-water withdrawals for industrial and municipal use totaled about 7,040 acre-feet, which is less than a 1-percent decrease from 1995. Pumpage from the confined part of the aquifer decreased by about 3 percent to 5,390 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 9 percent to 1,650 acre-feet. Water-level declines in the confined area during 1996 were recorded in 11 of 13 wells, and the median change was a decline of about 2.7 feet as opposed to a decline of 1.8 feet for 1995. Water-level declines in the unconfined area were recorded in 11 of 18 wells, and the median change was a decline of 0.5 foot in 1996 as opposed to a decline of 0.1 foot in 1995. The average low-flow discharge at the Moenkopi streamflow-gaging station was 2.3 cubic feet per second in 1996. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1996. Average low-flow discharge was 2.3 cubic feet per second at Laguna Creek, 0.4 cubic foot per second at Dinnebito Wash, and 0.2 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring decreased by about 2 gallons per minute from the measurement in 1995. Discharge from an unnamed spring near Dennehotso decreased by 1.3 gallons per minute from the measurement made in 1995; however

  10. Land-subsidence and ground-water storage monitoring in the Tucson Active Management Area, Arizona

    USGS Publications Warehouse

    Pool, Don R.; Winster, Daniel; Cole, K.C.

    2000-01-01

    The Tucson Active Management Area (TAMA) comprises two basins--Tucson Basin and Avra Valley. The TAMA has been directed by Arizona ground-water law to attain an annual balance between groundwater withdrawals and recharge by the year 2025. This balance is defined by the statute as "safe yield." Current ground-water withdrawals exceed recharge, resulting in conditions of ground-water overdraft, which causes removal of water from ground-water storage and subsidence of the land surface. Depletion of storage and associated land subsidence will not be halted until all discharge from the system, both natural and human induced, is balanced by recharge. The amount of the ground-water overdraft has been difficult to estimate until recently because it could not be directly measured. Overdraft has been estimated using indirect water-budget methods that rely on uncertain estimates of recharge. As a result, the status of the ground-water budget could not be known with great certainty. Gravity methods offer a means to directly measure ground-water overdraft through measurement of changes in the gravitational field of the Earth that are caused by changes in the amount of water stored in the subsurface. Changes in vertical position also affect the measured gravity value and thus subsidence also must be monitored. The combination of periodic observations of gravity and vertical positions provide direct measures of changes in stored ground water and land subsidence.

  11. Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia

    NASA Astrophysics Data System (ADS)

    Shamsuddin, Mohd Khairul Nizar; Sulaiman, Wan Nor Azmin; Suratman, Saim; Zakaria, Mohamad Pauzi; Samuding, Kamarudin

    2014-05-01

    Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5-98 % decrease in turbidity, as well as reductions in HCO3 -, Cl-, SO4 2-, NO3 -, Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.

  12. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  13. Groundwater modeling in integrated water resources management--visions for 2020.

    PubMed

    Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner

    2010-01-01

    Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.

  14. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  15. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  16. Predictability and Quantification of Complex Groundwater Table Dynamics Driven by Irregular Surface Water Fluctuations

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Wang, Shen S. J.; Shen, Chengji; Zhang, Zeyu; Lu, Chunhui; Li, Ling

    2018-03-01

    Shallow groundwater interacts strongly with surface water across a quarter of global land area, affecting significantly the terrestrial eco-hydrology and biogeochemistry. We examined groundwater behavior subjected to unimodal impulse and irregular surface water fluctuations, combining physical experiments, numerical simulations, and functional data analysis. Both the experiments and numerical simulations demonstrated a damped and delayed response of groundwater table to surface water fluctuations. To quantify this hysteretic shallow groundwater behavior, we developed a regression model with the Gamma distribution functions adopted to account for the dependence of groundwater behavior on antecedent surface water conditions. The regression model fits and predicts well the groundwater table oscillations resulting from propagation of irregular surface water fluctuations in both laboratory and large-scale aquifers. The coefficients of the Gamma distribution function vary spatially, reflecting the hysteresis effect associated with increased amplitude damping and delay as the fluctuation propagates. The regression model, in a relatively simple functional form, has demonstrated its capacity of reproducing high-order nonlinear effects that underpin the surface water and groundwater interactions. The finding has important implications for understanding and predicting shallow groundwater behavior and associated biogeochemical processes, and will contribute broadly to studies of groundwater-dependent ecology and biogeochemistry.

  17. Geochemical Assessment of Groundwater in the Peri-urban Environment of Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Gallardo, A.

    2014-12-01

    Groundwater pollution is a major concern in peri-urban environments. Thus, water quality is being investigated at several domestic wells in Brandsen, 70 km south of Buenos Aires, Argentina. To present, about 20 water sources were sampled in orchards and small farms of the area. There is limited data about the wells construction, although collected information suggests that groundwater is derived from the superficial sandy loams of the Pampean Aquifer. Samples were analysed for major inorganic elements using ion chromatography and ICP-MS. Titration was used to estimate alkalinity. Physical characteristics (EC, pH, temperature) were measured on site. Results show that groundwater pH ranges from 6.5 to 7.8, with a specific conductance of 180 to 255 mS/m. A peak of 360 mS/m in one horticultural parcel is associated to local NO3- concentrations up to 140 mg/L. This value exceeds the maximum recommendations set by the WHO (50 mg/L). Considering that fertilizer inputs in that property are negligible, the high levels of NO3- might be attributed to effluents from a neighbour septic tank. An increase in NO3- (>150mg/L) was also detected in two conventional farms. This increase correlates to elevated SO42- concentrations (>300 mg/L) suggesting thus, fertilizers percolation into the saturated zone. The leaching of these fluids might be exacerbated by irrigation during new planting, and accumulations of fertilizer-solids in the root zones from previous seasons. Chloride concentrations average ~90 mg/L and would not pose a threat to health at the moment. Its main origin would be related to connate waters in the loam matrix, although some anthropogenic inputs might occur in the previously described farms. In general, the rest of the analysed elements fall within acceptable levels for drinking purposes as well. Nevertheless, further work is still necessary to better define the fate of the potential harmful elements and assess seasonal variations in water quality.

  18. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.

    PubMed

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

    2012-05-15

    Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...

  20. Automated ground-water monitoring with Robowell: case studies and potential applications

    NASA Astrophysics Data System (ADS)

    Granato, Gregory E.; Smith, Kirk P.

    2002-02-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/

  1. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.; ,

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  2. Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2006-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following

  3. Embodied energy comparison of surface water and groundwater supply options.

    PubMed

    Mo, Weiwei; Zhang, Qiong; Mihelcic, James R; Hokanson, David R

    2011-11-01

    The embodied energy associated with water provision comprises an important part of water management, and is important when considering sustainability. In this study, an input-output based hybrid analysis integrated with structural path analysis was used to develop an embodied energy model. The model was applied to a groundwater supply system (Kalamazoo, Michigan) and a surface water supply system (Tampa, Florida). The two systems evaluated have comparable total energy embodiments based on unit water production. However, the onsite energy use of the groundwater supply system is approximately 27% greater than the surface water supply system. This was primarily due to more extensive pumping requirements. On the other hand, the groundwater system uses approximately 31% less indirect energy than the surface water system, mainly because of fewer chemicals used for treatment. The results from this and other studies were also compiled to provide a relative comparison of embodied energy for major water supply options. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Simulation of ground-water flow in the Mojave River basin, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Nishikawa, Tracy; Cox, Brett F.

    2001-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has led to rapid growth in population and, consequently, to an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry-except for a small stretch of perennial flow and periods of flow after intense storms. Thus, the region relies almost entirely on ground water to meet its agricultural and municipal needs. Ground-water withdrawal since the late 1800's has resulted in discharge, primarily from pumping wells, that exceeds natural recharge. To better understand the relation between the regional and the floodplain aquifer systems and to develop a management tool that could be used to estimate the effects that future stresses may have on the ground-water system, a numerical ground-water flow model of the Mojave River ground-water basin was developed, in part, on the basis of a previously developed analog model. The ground-water flow model has two horizontal layers; the top layer (layer 1) corresponds to the floodplain aquifer and the bottom layer (layer 2) corresponds to the regional aquifer. There are 161 rows and 200 columns with a horizontal grid spacing of 2,000 by 2,000 feet. Two stress periods (wet and dry) per year are used where the duration of each stress period is a function of the occurrence, quantity of discharge, and length of stormflow from the headwaters each year. A steady-state model provided initial conditions for the transient-state simulation. The model was calibrated to transient-state conditions (1931-94) using a trial-and-error approach. The transient-state simulation results are in good agreement with measured data. Under transient-state conditions, the simulated floodplain aquifer and regional aquifer hydrographs matched the general trends observed for the measured water levels. The simulated streamflow hydrographs matched wet stress period average flow rates and times of no flow at the

  5. Ground-water levels in Wyoming, 1976 through 1985

    USGS Publications Warehouse

    Kennedy, H.I.; Oberender, C.B.

    1987-01-01

    Groundwater levels are measured periodically in a network of 84 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 84 observation wells showing water-level fluctuations from 1976 through 1985. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  6. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  7. [VC and DCE in groundwater and drainage channel water].

    PubMed

    Ackermann, A

    2004-12-01

    In an area used merely for gardening in a downland moor, which is partly transformed to an industrial estate, accidentally a contamination of a drainage channel with VOC's - predominantly chloroethylene (vinyl chloride [VC]) and 1.2-cis-dichloroethylene (DCE) - was found. The ascending ground water leaks into the drainage channels. The dissolved harmful substances (water solubility of VC is 1.6 g/l) can reach the radix range of plants and fruit bosks and can theoretically be incorporated with the water influx. Additionally the water from the drainage channels can be used to water the crops. Six gardens and a housing were involved. In the groundwater of the mainly concerned region max. 5,000 microg/l VOC's (quite predominantly VC and DCE) was measured from 147 samples. In the drainage channel water max. 2,500 microg/l was measured from 52 samples (limit value according to the drinking water ordinance is 10 microg/l). In the sediment of the channel with approximately 60,000 microg/kg VOC was found in dry matter (6 samples). We describe, how the consumer protection dept. dealt with this unexpected situation and what measures were taken. The impact on human health by the contaminated ground and channel water or by means of contaminated plants are determined for tree fruits, potatoes, bulbs and carrots. The soil air was contaminated, but in buildings no harmful compounds were detectioned.

  8. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1987-01-01

    The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.

  9. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  10. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major

  11. Analytical models for the groundwater tidal prism and associated benthic water flux

    USGS Publications Warehouse

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  12. Identifying the regional-scale groundwater-surface water interaction on the Sanjiang Plain, Northeast China.

    PubMed

    Wang, Xihua; Zhang, Guangxin; Xu, Y Jun; Sun, Guangzhi

    2015-11-01

    Assessment on the interaction between groundwater and surface water (GW-SW) can generate information that is critical to regional water resource management, especially for regions that are highly dependent on groundwater resources for irrigation. This study investigated such interaction on China's Sanjiang Plain (10.9 × 10(4) km(2)) and produced results to assist sustainable regional water management for intensive agricultural activities. Methods of hierarchical cluster analysis (HCA), principal component analysis (PCA), and statistical analysis were used in this study. One hundred two water samplings (60 from shallow groundwater, 7 from deep groundwater, and 35 from surface water) were collected and grouped into three clusters and seven sub-clusters during the analyses. The PCA analysis identified four principal components of the interaction, which explained 85.9% variance of total database, attributed to the dissolution and evolution of gypsum, feldspar, and other natural minerals in the region that was affected by anthropic and geological (sedimentary rock mineral) activities. The analyses showed that surface water in the upper region of the Sanjiang Plain gained water from local shallow groundwater, indicating that the surface water in the upper region was relatively more resilient to withdrawal for usage, whereas in the middle region, there was only a weak interaction between shallow groundwater and surface water. In the lower region of the Sanjiang Plain, surface water lost water to shallow groundwater, indicating that the groundwater was vulnerable to pollution by pesticides and fertilizers from terrestrial sources.

  13. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  14. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond

  15. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  16. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona: 1998

    USGS Publications Warehouse

    Truini, Margot; Baum, Bradley M.; Littin, Gregory R.; Shingoitewa-Honanie, Gayl

    2000-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined parts of the aquifer, (3) surface-water discharge, (4) flowmeter tests, and (5) ground-water and surface-water chemistry. In 1998, ground-water withdrawals for industrial and municipal use totaled about 7,060 acre-feet, which is less than a 1 percent decrease from 1997. Pumpage from the confined part of the aquifer decreased by less than 1 percent to 5,470 acre-feet, and pumpage from the unconfined part of the aquifer increased by less than 1 percent to 1,590 acre-feet. Water-level declines in the confined part of the aquifer were recorded in 10 of 14 wells during 1998, and the median change from 1997 was a decline of 3.0 feet as opposed to a rise of 0.2 feet for the change from 1996 to 1997. Water-level declines in the unconfined part of the aquifer were recorded in 9 of 16 wells, and the median change from 1997 was 0.0 feet, which is the same as the median change from 1996 to 1997. Of the 35 pumpage meters on municipal wells that were tested, the difference between metered and tested discharge ranged from +6.3 to -19.6 percent. The average difference was about -3.4 percent. Five of the meters exceeded the allowable difference (10 percent) and should be repaired or replaced. The low-flow discharge at the Moenkopi streamflow-gaging station ranged from 2.6 to 4.7 cubic feet per second in 1998. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1998. The low-flow discharge ranged from 0.41 to 5.1 cubic feet

  17. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  18. Ground-water quality in the Davie Landfill, Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.

    1976-01-01

    Ground-water adjacent to a disposal pond for septic tank sludge, oil, and grease at the Davie landfill, Broward County, Florida was tested for a variety of ground-water contaminants. Three wells adjacent to the disposal pond yielded water rich in nutrients, organic carbon and many other chemical constituents. Total coliform bacteria ranged from less than 100 to 660 colonies per 100 milliliters in samples collected from the shallowest well (depth 20 feet). At well depths of 35 and 45 feet bacterial counts were less than 20 colonies per 100 milliliters or zero. Concentrations of several constituents in water samples collected from the wells downgradient from the landfill, disposal pond, and an incinerator wash pond were greater than in samples collected from wells immediately upgradient of the landfill. A comparison of sodium-chloride ion ratios indicated that downgradient ground-water contamination was related to the incinerator wash water pond rather than the septic tank sludge pond. (Woodard-USGS)

  19. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  20. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  1. Potential health consequences of ground-water contamination by nitrates in Nebraska.

    PubMed

    Weisenburger, D D

    1993-01-01

    Ground water serves as the primary source of drinking water for nearly all of rural Nebraska. However, ground-water contamination by nitrates, largely due to the use of fertilizers, is an increasing problem. In an ecologic study, the author found that counties characterized by high fertilizer usage and significant ground-water contamination by nitrates also had a high incidence of non-Hodgkin's lymphoma. Other potential health effects of nitrates in drinking water are also discussed.

  2. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  3. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1997

    USGS Publications Warehouse

    Littin, Gregory R.; Baum, Bradley M.; Truini, Margot

    1999-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined parts of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1997, ground-water withdrawals for industrial and municipal use totaled about 7,090 acre-feet, which is less than a 1-percent increase from 1996. Pumpage from the confined part of the aquifer increased by about 2 percent to 5,510 acre-feet, and pumpage from the unconfined part of the aquifer decreased by about 4 percent to 1,580 acre-feet. Water-level declines in the confined part during 1997 were recorded in 5 of 12 wells; however, the median change was a rise of about 0.2 foot as opposed to a decline of 2.8 feet for 1996. Water-level declines in the unconfined part were recorded in 7 of 15 wells, and the median change was 0.0 foot in 1997 as opposed to a decline of 0.5 foot in 1996. The low-flow discharge at the Moenkopi streamflow-gaging station ranged from 1.6 to 2.0 cubic feet per second in 1997. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1997. The low-flow discharge ranged from 2.3 to 4.2 cubic feet per second at Laguna Creek, 0.44 to 0.48 cubic foot per second at Dinnebito Wash, and 0.15 to 0.26 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring increased by about 3 gallons per minute from the measurement in 1996. Discharge from an unnamed spring near Dennehotso increased by 9.9 gallons per minute from the measurement made in

  4. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  5. Summary appraisals of the Nation's ground-water resources; Upper Mississippi region

    USGS Publications Warehouse

    Bloyd, R.M.

    1975-01-01

    Advances in techniques in ground-water hydrology during recent years have provided methods that the hydrologist and planner can use for planning and design of ground-water developments. Therefore, the planner can now resolve some of the development and management questions that historically have bred uncertainty when this part of the water resource was considered for development.

  6. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  7. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility.

    PubMed

    Eschauzier, Christian; Raat, Klaasjan J; Stuyfzand, Pieter J; De Voogt, Pim

    2013-08-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main source for PFAA in surface waters and corresponding drinking water. However, even though groundwater is an important source for drinking water production, PFAA sources remain largely uncertain. In this paper, we identified different direct and indirect sources of PFAA to groundwater within the catchment area of a public supply well field (PSWF) in The Netherlands. Direct sources were landfill leachate and water draining from a nearby military base/urban area. Indirect sources were infiltrated rainwater. Maximum concentrations encountered in groundwater within the landfill leachate plume were 1.8 μg/L of non branched perfluorooctanoic acid (L-PFOA) and 1.2 μg/L of perfluorobutanoic acid (PFBA). Sum concentrations amounted to 4.4 μg/L total PFAA. The maximum concentration of ΣPFAA in the groundwater originating from the military camp was around 17 ng/L. Maximum concentrations measured in the groundwater halfway the landfill and the PWSF (15 years travel distance) were 29 and 160 ng/L for L-PFOA and PFBA, respectively. Concentrations in the groundwater pumping wells (travel distance >25 years) were much lower: 0.96 and 3.5 ng/L for L-PFOA and PFBA, respectively. The chemical signature of these pumping wells corresponded to the signature encountered in other wells sampled which were fed by water that had not been in contact with potential contaminant sources, suggesting a widespread diffuse contamination from atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Ground-water areas and well logs, central Sevier Valley, Utah

    USGS Publications Warehouse

    Young, Richard A.

    1960-01-01

    Between September 1959 and June 1960 the United States Geological Survey and the Utah State Engineer, with financial assistance from Garfield, Millard, Piute, Sanpete, and Sevier Counties and from local water-users’ associations, cooperated in an investigation to determine the structural framework of the central Sevier Valley and to evaluate the valley’s ground-water potential. An important aspect of the study was the drilling of 22 test holes under private contract. These data and other data collected during the course of the larger ground-water investigation of which the test drilling was a part will be evaluated in a report on the geology and ground-water resources of the central Sevier Valley. The present report has been prepared to make available the logs of test holes and to describe in general terms the availability of ground water in the different areas of the valley.

  9. Inventory of ground-water resources in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Broshears, Robert E.; Akbari, M. Amin; Chornack, Michael P.; Mueller, David K.; Ruddy, Barbara C.

    2005-01-01

    In 2004, the U.S. Geological Survey began working with engineers at the Afghanistan Geological Survey to provide hydrologic training and equipment and to apply these tools to build an inventory of water wells in the Kabul Basin of Afghanistan. An inventory of 148 wells now includes information on well location, depth, and access. Water-level and water-quality measurements have been made at most of these wells. A water-level elevation map has been constructed, and general directions of ground-water flow have been defined. Ground-water flow in the Kabul Basin is primarily through saturated alluvium and other basin-fill sediments. The water-table surface generally mirrors topography, and ground water generally flows in the directions of surface-water discharge. The quality of ground water in the Kabul Basin varies widely. In some areas, ground-water quality is excellent, with low concentrations of dissolved solids and no problematic constituents. In other areas, however, high concentrations of dissolved solids and the presence of some constituents at concentrations deemed harmful to humans and crops render untreated ground water marginal or unsuitable for public supply and/or agricultural use. Of particular concern are elevated concentrations of nitrate, boron, and dissolved solids, and an indication of fecal pollution in some parts of the basin. As Afghanistan emerges from years of conflict, as institutional capacities rejuvenate and grow, and as the need for wise water-management decisions continues, adequate data and a fuller understanding of the ground-water resource in the Kabul Basin will be imperative. The work described in this report represents only a modest beginning in what will be a long-term data-collection and interpretive effort.

  10. Groundwater-surface water interactions in a glacierized catchment and their influence on proglacial water supply

    NASA Astrophysics Data System (ADS)

    Gordon, R. P.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.

    2012-12-01

    The tropical glaciers of the Cordillera Blanca of Peru are retreating rapidly due to climate change, which threatens water resources for the quarter-million inhabitants of the upper Rio Santa river valley and many more downstream. Recent studies have shown that glacial melt supplies approximately half of dry season stream discharge in Cordillera Blanca valleys. The remainder of streamflow is supplied by groundwater stored in alpine meadows, moraines and talus slopes. In the future, when glacier loss has reduced the influence of melt water on streams, groundwater discharge will be the primary dry-season source of stream water for irrigation, municipalities, and hydropower in the Santa watershed. A better understanding of the dynamics of alpine groundwater, including sources and exchange fluxes, is therefore important for future planning in this region. Understanding these groundwater-surface water interactions is necessary for making accurate estimates of meltwater contributions to the hydrologic budget, and for our ability to make predictions about future water resources under deglaciating conditions. We combined measurements of groundwater-surface water exchange during the dry season with synoptic sampling of stream water and end-members in order to quantify the groundwater contributions to streamflow from an alpine meadow, debris fan, and moraine complex in a glacierized valley of the Cordillera Blanca. Using stream tracer-dilution techniques, we calculated channel water balances for 9 stream reaches of 100-200 m throughout the meadow and measured the discharge of glacial meltwater into debris fan and moraine units. We used vertical heat tracing to measure stream-groundwater exchange at 2-hour increments over 2 weeks in 13 stream locations in the meadow, debris fan, and moraine units. Channel water balance and heat tracing results show that, during the studied portion of the dry season, the stream loses water (2.5 l/s or ~25% of flow) to the subsurface in the

  11. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvado Environmental LLC

    2009-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contaminationmore » and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and

  12. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.

    PubMed

    Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B

    2018-06-15

    Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.

  13. Relationships between basic soils-engineering equations and basic ground-water flow equations

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  14. Evolving Groundwater Rights and Management in Metropolitan Los Angeles: Implications for Water Supply and Stormwater

    NASA Astrophysics Data System (ADS)

    Porse, E.; Pincetl, S.; Glickfeld, M.

    2015-12-01

    Groundwater supports many aspects of human life. In cities, groundwater can provide a cost-effective source of water for drinking and industrial uses, while groundwater basins provide storage. The role of groundwater in a city's water supply tends to change over time. In the Los Angeles metropolitan area, groundwater is critical. Over decades, users in the region's many basins allocated annual pumping rights to groundwater among users through adjudications. These rights were determined through collective processes over decades, which contributed to the complex array of public and private organizations involved in water management. The rights also continue to evolve. We analyzed changes in the distribution of groundwater rights over time for adjudicated basins in Southern Los Angeles County. Results indicate that groundwater rights are increasingly: 1) controlled or regulated by public institutions and municipalities, and 2) consolidated among larger users. Yet, both the percentage of total supplies provided by groundwater, as well as the distribution of groundwater rights, varies widely among cities and communities throughout Los Angeles. As metropolitan Los Angeles faces reduced water imports and emphasizes local water reliance, access to pumping rights and storage capacity in groundwater basins will become even more vital. We discuss implications of our results for future urban water management.

  15. Hydrology and simulation of ground-water flow, Lake Point, Tooele County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.

    2006-01-01

    Water for new residential development in Lake Point, Utah may be supplied by public-supply wells completed in consolidated rock on the east side of Lake Point. Ground-water flow models were developed to help understand the effect the proposed withdrawal will have on water levels, flowing-well discharge, spring discharge, and ground-water quality in the study area. This report documents the conceptual and numerical ground-water flow models for the Lake Point area.The ground-water system in the Lake Point area receives recharge from local precipitation and irrigation, and from ground-water inflow from southwest of the area. Ground water discharges mostly to springs. Discharge also occurs to evapotranspiration, wells, and Great Salt Lake. Even though ground water discharges to Great Salt Lake, dense salt water from the lake intrudes under the less-dense ground water and forms a salt-water wedge under the valley. This salt water is responsible for some of the high dissolved-solids concentrations measured in ground water in Lake Point.A steady-state MODFLOW-2000 ground-water model of Tooele Valley adequately simulates water levels, ground-water discharge, and ground-water flow direction observed in Lake Point in 1969 and 2002. Simulating an additional 1,650 acre-feet per year withdrawal from wells causes a maximum projected drawdown of about 550 feet in consolidated rock near the simulated wells and drawdown exceeding 80 feet in an area encompassing most of the Oquirrh Mountains east of Lake Point. Drawdown in most of Lake Point ranges from 2 to 10 ft, but increases to more than 40 feet in the areas proposed for residential development. Discharge to Factory Springs, flowing wells, evapotranspiration, and Great Salt Lake is decreased by about 1,100 acre-feet per year (23 percent).The U.S. Geological Survey SUTRA variable-density ground-water-flow model generates a reasonable approximation of 2002 dissolved-solids concentration when simulating 2002 withdrawals. At most

  16. Stable isotopes of water in estimation of groundwater dependence in peatlands

    NASA Astrophysics Data System (ADS)

    Isokangas, Elina; Rossi, Pekka; Ronkanen, Anna-Kaisa; Marttila, Hannu; Rozanski, Kazimierz; Kløve, Bjørn

    2016-04-01

    Peatland hydrology and ecology can be irreversibly affected by anthropogenic actions or climate change. Especially sensitive are groundwater dependent areas which are difficult to determine. Environmental tracers such as stable isotopes of water are efficient tools to identify these dependent areas and study water flow patterns in peatlands. In this study the groundwater dependence of a Finnish peatland complex situated next to an esker aquifer was studied. Groundwater seepage areas in the peatland were localized by thermal imaging and the subsoil structure was determined using ground penetrating radar. Water samples were collected for stable isotopes of water (δ18O and δ2H), temperature, pH and electrical conductivity at 133 locations of the studied peatland (depth of 10 cm) at approximately 100 m intervals during 4 August - 11 August 2014. In addition, 10 vertical profiles were sampled (10, 30, 60 and 90 cm depth) for the same parameters and for hydraulic conductivity. The cavity ring-down spectroscopy (CRDS) was applied to measure δ18O and δ2H values. The local meteoric water line was determined using precipitation samples from Nuoritta station located 17 km west of the study area and the local evaporation line was defined using water samples from lake Sarvilampi situated on the studied peatland complex. Both near-surface spatial survey and depth profiles of peatland water revealed very wide range in stable isotope composition, from approximately -13.0 to -6.0 ‰ for δ18O and from -94 to -49 ‰ for δ2H, pointing to spatially varying influence of groundwater input from near-by esker aquifer. In addition, position of the data points with respect to the local meteoric water line showed spatially varying degree of evaporation of peatland water. Stable isotope signatures of peatland water in combination with thermal images delineated the specific groundwater dependent areas. By combining the information gained from different types of observations, the

  17. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  18. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    NASA Astrophysics Data System (ADS)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  19. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  20. The Sparta aquifer in Arkansas' critical ground-water areas: Response of the aquifer to supplying future water needs

    USGS Publications Warehouse

    Hays, Phillip D.; Fugitt, D. Todd

    1999-01-01

    The Sparta aquifer is a confined aquifer of great regional importance that comprises a sequence of unconsolidated sand, silt, and clay units extending across much of eastern and southeastern Arkansas and into adjoining States. Water use from the aquifer has doubled since 1975 and continues to increase, and large water-level declines are occurring in many areas of the aquifer. To focus State attention and resources on the growing problem and to provide a mechanism for locally based education and management, the Arkansas Soil and Water Conservation Commission has designated Critical Ground-Water Areas in some counties (see page 6, ?What is a Critical Ground-Water Area??). Ground-water modeling study results show that the aquifer cannot continue to meet growing water-use demands. Dewatering of the primary producing sands is predicted to occur within 10 years in some areas if current trends continue. The predicted dewatering will cause reduced yields and damage the aquifer. Modeling also shows that a concerted ground-water conservation management plan could enable sustainable use of the aquifer. Water-conservation measures and use of alternative sources that water managers in Union County (an area of high demand and growth in Arkansas' initial five-county Critical Ground-Water Area) think to be realistic options result in considerable recovery in water levels in the aquifer during a 30-year model simulation.

  1. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    USGS Publications Warehouse

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  2. Annual summary of ground-water conditions in Arizona, Spring 1981 to Spring 1982

    USGS Publications Warehouse

    ,

    1982-01-01

    The withdrawal of ground water was about 5.4 million acre-feet in Arizona in 1981, which is about 800,000 acre-feet more than the amount withdrawn in 1980. Most of the increase in 1981 was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Through 1981, slightly more than 189 million acre-feet of ground water had been withdrawn from the ground-water reservoirs in Arizona. The report contains two small-scale maps that show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1982, and change in water level in selected wells from 1977 to 1982. A brief text summarizes the current ground-water conditions in the State. (USGS)

  3. Developing a state water plan: Ground-water conditions in Utah, spring of 1964

    USGS Publications Warehouse

    Arnow, Ted; Butler, R.G.; Mower, R.W.; Gates, Joseph S.; Cordova, R.M.; Carpenter, C.H.; Bjorklund, L.J.; Feltis, R.D.; Robinson, G.B. Jr.; Sandberg, G.W.

    1964-01-01

    This report is the first in a series of annual reports which will describe ground-water conditions in Utah. It was prepared cooperatively by the U.S. Geological Survey and the Utah Water and Power Board and was designed to provide the data for interested parties, such as legislators, administrators, and planners to keep abreast of changing ground-water conditions in the state. Because this report is the first of the series, it necessarily includes certain background and descriptive information which gives a broad general picture of ground-water conditions. Subsequent reports will discuss only changes that have taken place during the previous year.Many of the data used in the preparation of the report were collected by the Geological Survey in cooperation with the Utah State Engineer during past and continuing programs. The well-location map and some statistical information about numbers of wells in the State were prepared by digital computer from the Utah Resources Information System, University of Utah, utilizing records which were compiled largely from the files of the Utah State Engineer. R.E. Marsell, geological consultant to the Utah Water and Power Board, first suggested that this report be prepared.

  4. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  5. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  6. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  7. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    ,; Kurt, J.; Kozar, Mark D.

    2007-01-01

    The average apparent age of ground water in fractured-bedrock aquifers in West Virginia was determined using chlorofluorocarbon (CFC) dating methods. Since the introduction of CFC gases as refrigerants in the late 1930s, atmospheric concentrations have increased until production ceased in the mid-1990s. CFC dating methods are based on production records that date to the early 1940s, and the preservation of atmospheric CFC concentrations in ground water at the time of recharge. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Ambient Ground-Water Monitoring Network (AGN) programs in West Virginia from 1997 to 2005, 80 samples from the Appalachian Plateaus Physiographic Province, 27 samples from the Valley and Ridge Physiographic Province, and 5 samples from the Ohio River alluvial aquifers were collected to estimate ground-water ages in aquifers of West Virginia. Apparent CFC ages of water samples from West Virginia aquifers ranged from 5.8 to 56 years. In the Appalachian Plateaus, topographically driven ground-water flow is evident from apparent ages of water samples from hilltop, hillside, and valley settings (median apparent ages of 12, 14, and 25 years, respectively). Topographic setting was the only factor that was found to be related to apparent ground-water age in the Plateaus at the scale of this study. Similar relations were not found in Valley and Ridge aquifers, indicating that other factors such as bedding or geologic structure may serve larger roles in controlling ground-water flow in that physiographic province. Degradation of CFCs was common in samples collected from methanogenic/anoxic aquifers in the Appalachian Plateaus and suboxic to anoxic aquifers in the Valley and Ridge. CFC contamination was most common in Ohio River alluvial aquifers and carbonate units of the Valley and Ridge, indicating that these highly transmissive surficial aquifers are the most vulnerable to water-quality degradation and may

  8. ERTS imagery for ground-water investigations

    USGS Publications Warehouse

    Moore, Gerald K.; Deutsch, Morris

    1975-01-01

    ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.

  9. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    NASA Astrophysics Data System (ADS)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  10. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    PubMed

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  11. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most

  12. Ground-water levels and direction of ground-water flow in the central part of Bernalillo County, New Mexico, summer 1983

    USGS Publications Warehouse

    Kues, Georginna E.

    1986-01-01

    In 1980, toxic chemicals were detected in water samples from wells in and near Albuquerque 's San Jose well field. At the request of the Environmental Improvement Division of the New Mexico Health and Environment Department, the U.S. Geological Survey conducted a study to determine groundwater levels and flow direction. Water levels were measured in 44 wells in a 64 sq mi area along the Rio Grande and adjacent areas during a period of near maximum municipal pumpage. Based on the altitude of screened interval, wells were grouped into shallow (screened internal above an altitude of 4,800 ft) or deep (screened internal below an altitude of 4,800 ft) zones. Groundwater in the shallow zone generally moves from north to south parallel to flow in the Rio Grande. Groundwater in the deep zone generally moves from the northwest to the east and southeast. A poorly developed cone of depression within the deep zone was present in the northeast. Water levels in wells were as much as 18 feet higher in the shallow zone than in the deep zone in the vicinity of the San Jose well field, indicating a downward gradient. (Author 's abstract)

  13. U.S. Geological Survey ground-water studies in Missouri

    USGS Publications Warehouse

    Smith, B.J.

    1993-01-01

    The activities of the USGS Water Resources Division in Missouri are conducted by scientists, technicians, and support staff in offices in Rolla, Olivette, and Independence. During 1992, the USGS had cooperative or cost-sharing agreements with about 30 Federal, State, and local agencies involving 20 hydrologic investigations in Missouri; 12 of these investigations included studies of groundwater quantity and quality. Several examples of groundwater studies by the USGS that address specific groundwater issues in Missouri include the occurrence of pesticides, groundwater flow and quality in the Missouri River alluvium near Kansas City, groundwater flow in claypan soils, radioactive- and nitroaromatic-compound contami- nation at Weldon Spring, and hydrologic monitoring of a wetland complex. (USGS)

  14. Patterns and rates of ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Modica, Edward

    1992-01-01

    Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.

  15. Kansas ground-water observation-well network, 1985

    USGS Publications Warehouse

    Dague, B.J.; Stullken, L.E.

    1986-01-01

    Water level measurements are made in 1,892 selected wells in 73 counties, which currently (1985) comprise the Kansas groundwater observation-well network. These measurements are made on a continuous, monthly, quarterly, or annual basis. Water level measurements have been made in observation wells since 1937 as part of a cooperative program among the Kansas Geological Survey , the Kansas State Board of Agriculture, the city of Wichita, and the U.S. Geological Survey. The objectives of the observation-well cooperative program are: (1) to provide long-term records of water level fluctuations in representative wells, (2) to facilitate the determination of possible water level trends that may indicate future availability of groundwater supplies, (3) to aid in the determination of possible changes in the base flow of streams, and (4) to provide information for use in water-resources research. This report lists for each well in the network the location, the first year of recorded water level measurement, the frequency and number of measurements, the land-surface altitude, hexagon-grid identifiers for wells in the High Plains aquifer, and the principal geologic unit(s) in which the well is completed. (USGS)

  16. Trace elements in groundwater used for water supply in Latvia

    NASA Astrophysics Data System (ADS)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name

  17. Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research station, 2001-03 : North Carolina Piedmont and Mountains Resource Evaluation Program

    USGS Publications Warehouse

    Chapman, Melinda J.; Bolich, Richard E.; Huffman, Brad A.

    2005-01-01

    Results of a 2-year field study of the regolith-fractured bedrock ground-water system at the Lake Wheeler Road research station in Wake County, North Carolina, indicate both disconnection and interaction among components of the ground-water system. The three components of the ground-water system include (1) shallow, porous regolith; (2) a transition zone, including partially weathered rock, having both secondary (fractures) and primary porosity; and (3) deeper, fractured bedrock that has little, if any, primary porosity and is dominated by secondary fractures. The research station includes 15 wells (including a well transect from topographic high to low settings) completed in the three major components of the ground-water-flow system and a surface-water gaging station on an unnamed tributary. The Lake Wheeler Road research station is considered representative of a felsic gneiss hydrogeologic unit having steeply dipping foliation and a relatively thick overlying regolith. Bedrock foliation generally strikes N. 10? E. to N. 30? E. and N. 20? W. to N. 40? W. to a depth of about 400 feet and dips between 70? and 80? SE. and NE., respectively. From 400 to 600 feet, the foliation generally strikes N. 70? E. to N. 80? E., dipping 70? to 80? SE. Depth to bedrock locally ranges from about 67 to 77 feet below land surface. Fractures in the bedrock generally occur in two primary sets: low dip angle, stress relief fractures that cross cut foliation, and steeply dipping fractures parallel to foliation. Findings of this study generally support the conceptual models of ground-water flow from high to low topographic settings developed for the Piedmont and Blue Ridge Provinces in previous investigations, but are considered a refinement of the generalized conceptual model based on a detailed local-scale investigation. Ground water flows toward a surface-water boundary, and hydraulic gradients generally are downward in recharge areas and upward in discharge areas; however, local

  18. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    USGS Publications Warehouse

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and

  19. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1992

    USGS Publications Warehouse

    La Camera, Richard J.; Westenburg, Craig L.

    1994-01-01

    Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.

  20. Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Krabbenhoft, David P.

    1999-01-01

    Although considered the most important component for the establishment and persistence of wetlands, hydrology has been hard to characterize and linkages between hydrology and other environmental conditions are often poorly understood. In this work, methods for characterizing a wetland’s hydrology from hydrographs were developed, and the importance of ground water to the physical and geochemical conditions in the root zone was investigated. Detailed sampling of nearly continuous hydrographs showed that sites with greater ground-water discharge had higher water tables and more stable hydrographs. Subsampling of the continuous hydrograph failed to characterize the sites correctly, even though the wetland complex is located in a strong regional ground-water-discharge area. By comparing soil-moisture-potential measurements to the water-table hydrograph at one site, we noted that the amount of root-zone saturation was not necessarily driven by the water-table hydrograph but can be a result of other soil parameters (i.e., soil texture and associated capillary fringe). Ground-water discharge was not a significant determinant of maximum or average temperatures in the root zone. High ground-water discharge was associated with earliest date of thaw and shortest period of time that the root zone was frozen, however. Finally, the direction and magnitude of shallow ground-water flow was found to affect the migration and importance of a geochemical species. Areas of higher ground-water discharge had less downward penetration of CO2 generated in the root zone. In contrast, biotically derived CO2 was able to penetrate the deeper ground-water system in areas of ground-water recharge. Although ground-water flows are difficult to characterize, understanding these components is critical to the success of wetland restoration and creation efforts.

  1. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  2. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    five hydrogeologic terranes. This integrated database then was used to evaluate the ground-water potential of each hydrogeologic terrane. Lineament-trace analysis was used to help assess the ground-water development potential in the hydrogeologic terranes containing igneous rocks. Analyses suggest that areas with slopes greater than 15 degrees have relatively low ground-water development potential. The presence of fractures, independent of the topographic slope, may locally enhance the water-bearing properties in the hydrogeologic terranes containing igneous rocks. The results of this study indicate that induced streamflow generally is needed to sustain low to moderate ground-water withdrawal rates in the five hydrogeologic terranes. The ground-water flow systems in the hydrogeologic terranes are only able to sustain small withdrawal rates that rarely exceed 50 gallons per minute. Areas with a high density of fractures, as could be the case at the intersection of lineament traces in the upper parts of the Rio Ca?as and Rio Yaguez watersheds, are worthy of exploratory drilling for ground-water development.

  3. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Moran, Jean E.; Singleton, Michael J.

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in partmore » as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.« less

  4. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    USGS Publications Warehouse

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  5. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.

  6. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  7. Estimates of consumptive use and ground-water return flow using water budgets in Palo Verde Valley, California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Kimsey, Steven L.

    1987-01-01

    Palo Verde Valley, California, is an agricultural area in the flood plain of the Colorado River where irrigation water is diverted from the river and groundwater is discharged to a network of drainage ditches and (or) the river. Consumptive use by vegetation and groundwater return flow were calculated using water budgets. Consumptive use by vegetation was 484,000 acre-ft in 1981, 453,600 acre-ft in 1982, 364,400 acre-ft in 1983, and 374,300 acre-ft in 1984. The consumptive-use estimates are most sensitive to two measured components of the water budget, the diversion at Palo Verde Dam and the discharge from drainage ditches to the river. Groundwater return flow was 31,700 acre-ft in 1981, 24,000 acre-ft in 1982, 2,500 acre-ft in 1983, and 7 ,900 acre-ft in 1984. The return-flow estimates are most sensitive to discharge from drainage ditches; various irrigation requirements and crop areas, particularly alfalfa; the diversion at Palo Verde Dam; and the estimate of consumptive use. During increasing flows in the river, the estimate of groundwater return flow is sensitive also to change in groundwater storage. Change in groundwater storage was estimated to be -5,700 acre-ft in 1981, -12,600 acre-ft in 1982, 5,200 acre-ft in 1983, and 11 ,600 acre-ft in 1984. Changes in storage can be a significant component in the water budget used to estimate groundwater return flow but is negligible in the water budget used to estimate consumptive use. Change in storage was 1 to 3% of annual consumptive use. Change in storage for the area drained by the river ranged from 7 to 96% of annual groundwater return flow during the 4 years studied. Consumptive use calculated as diversions minus return flows was consistently lower than consumptive use calculated in a water budget. Water-budget estimates of consumptive use account for variations in precipitation, tributary inflow, river stage, and groundwater storage. The calculations for diversions minus return flows do not account for these

  8. Ground-water hydrology of Pahvant Valley and adjacent areas, Utah

    USGS Publications Warehouse

    1990-01-01

    The primary ground-water reservoir in Pahvant Valley and adjacent areas is in the unconsolidated basin fill and interbedded basalt. Recharge in 1959 was estimated to be about 70,000 acre-feet per year and was mostly by seepage from streams, canals, and unconsumed irrigation water and by infiltration of precipitation. Discharge in 1959 was estimated to be about 109,000 acre-feet and was mostly from springs, evapotranspiration, and wells.Water-level declines of more than 50 feet occurred in some areas between 1953 and 1980 because of less-than-normal precipitation and extensive pumping for irrigation. Water levels recovered most of these declines between 1983 and 1986 because of reduced withdrawals and record quantities of precipitation.The quality of ground water in the area west of Kanosh has deteriorated since large ground-water withdrawals began in about 1953. The cause of the deterioration probably is movement of poor quality water into the area from the southwest and possibly the west during periods of large ground-water withdrawals and recycling of irrigation water. The quality of water from some wells has improved since 1983, due to increased recharge and decreased withdrawals for irrigation.Water-level declines of m:>re than 80 feet in some parts of Pahvant Valley are projected if ground-water withdrawals continue for 20 years at the 1977 rate of about 96,000 acre-feet. Rises of as much as 58 feet and declines of as much as 47 feet are projected with withdrawals of 48,000 acre-feet per year for 20 years. The elimination of recharge from the Central Utah Canal is projected to cause water-level declines of up to 8 feet near the canal.

  9. Monitoring requirements for groundwaters under the influence of reclaimed water.

    PubMed

    Fox, P

    2001-07-01

    Monitoring groundwaters under the influence of reclaimed water must consider the major constituents of concern in reclaimed water. This research focused on the fate of dissolved organic carbon and nitrogen species at field sites located throughout the Southwestern United States. A watershed approach was developed to predict the fate of dissolved organic carbon as a function of the drinking water dissolved organic carbon concentration and the total dissolved solids concentration in the reclaimed water. Extensive characterization of the dissolved organic carbon recovered from groundwaters under the influence of reclaimed water was done. With the exception of fluorescence spectroscopy, the dissolved organic carbon present in effluent organic matter was similar in structure, character and reactivity as compared to natural organic matter. Evidence for sustainable nitrogen removal mechanisms during groundwater recharge with reclaimed water was obtained. The autotrophic reaction between ammonia and nitrate appears to a mechanism for the removal nitrogen in a carbon-depleted environment. The monitoring tools and methodologies developed in this research can be used to assure protection of public health and determine the sustainability of indirect potable reuse projects.

  10. Ground-water hydrology and water quality of Irwin Basin at Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.; Londquist, Clark J.

    1997-01-01

    Geohydrologic data were collected from Irwin Basin at Fort Irwin National Training Center in the Mojave Desert of southern California by the U.S. Geological Survey during 199296 to deter mine the quantity and quality of ground water available in this basin. In addition to data collected from existing wells and test holes, 17 monitoring sites were constructed in Irwin Basin to provide data on subsurface geology, ground-water levels, and ground-water quality. Eleven of these sites were multiple-well monitoring sites that were constructed to provide depth-dependent geohydrologic data in the aquifer system. The aquifer system of Irwin Basin, defined on the basis of hydrologic data collected from wells in Irwin Basin, consists of an upper and a lower aquifer. A 1994 water-table contour map shows that a cone of depression beneath Irwin Basin well field has developed as a result of ground-water development. Water-quality samples collected from Irwin Basin wells to determine potential sources of ground-water degradation indicate that water in three areas in the basin contains high nitrate and dissolved-solids concentrations. The stable isotopes of oxygen and hydrogen indicate that present-day precipitation is not a major source of recharge in this basin. Tritium and carbon-14 data indicate that most of the basin was recharged before 1953 and that this water may be more than 14,000 years old.

  11. Illinois ground-water observation network; a preliminary planning document for network design

    USGS Publications Warehouse

    Frost, L.R.; O'Hearn, Michael; Gibb, J.P.; Sherrill, M.G.

    1984-01-01

    Water-level and water-quality networks in Illinois were evaluated to determine the adequacy and completeness of available data bases. Ground-water data in present data bases are inadequate to provide information on ground-water quality and water levels in large areas of Illinois and in the major geohydrologic units underlying Illinois and surrounding areas. Data-management needs indicate that a new data base is desirable and could be developed by use of carefully selected available data and new data. Types of data needed to define ground-water quality and water levels in selected geohydrologic units were tentatively identified. They include data on concentrations of organic chemicals related to activities of man, and concentrations of inorganic chemicals which relate either to man 's activities or to the chemical composition of the source aquifer. Water-level data are needed which can be used to describe short- and long-term stresses on the ground-water resources of Illinois. Establishment of priorities for data collection has been deferred until existing hydrologic data files can be stored for usable data and until input from other local, State, and Federal agencies can be solicited and compiled. (USGS)

  12. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-94

    USGS Publications Warehouse

    Claar, D.V.; Lilly, M.R.

    1995-01-01

    Ground-water and surface-water elevation data were collected at 52 sites from 1990 to 1994 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water elevations were measured in 32 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1994, the data-collection area was expanded to include the entire airport area.

  13. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  14. Hydrogeology and ground-water flow in the Edwards-Trinity aquifer-system, west-central, Texas

    USGS Publications Warehouse

    Kuniansky, Eve L.; Ardis, Ann F.

    1997-01-01

    Comparison of pre- and postdevelopment water budgets for the regional model indicates that the increase in groundwater withdrawals has captured 20 percent of the water that would have naturally discharged to streams, and 30 percent of the natural discharge to springs after ground-water development. Induced recharge from streams to the ground-water system increased by 12 percent in the postdevelopment simulation compared to the predevelopment simulation.

  15. In situ study of the effect of ground source heat pump on shallow ground-water quality in the late Pleistocene terrace area of Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Uemura, K.; Akiba, Y.; Ota, M.

    2015-12-01

    The implementation of ground source heat pump (GSHP) systems has rapidly increased around the world, since they reduce carbon dioxide emissions and save electric energy. The GSHP system transfer heat into the geosphere zone when air conditioners are used to cool rooms or buildings. However, the effects of temperature increase on the quality of underground water has yet to be fully investigated. In order to reduce the risks of ground-water pollution by the installed GSHPs, it is important to evaluate the effect of temperature change on the ground-water quality. In this study, we installed a closed loop GSHP system on a heat exchange well along with a monitoring well drilled to measure ground-water quality and temperature. The monitoring well was drilled at 0.1cm away from the heat exchange well. We observed that changes of temperature in the heat exchange well affected the water quality, especially turbidity, in gravelly layer.

  16. Simulation of ground-water flow, contributing recharge areas, and ground-water travel time in the Missouri River alluvial aquifer near Ft. Leavenworth, Kansas

    USGS Publications Warehouse

    Kelly, Brian P.

    2004-01-01

    The Missouri River alluvial aquifer near Ft. Leavenworth, Kansas, supplies all or part of the drinking water for Ft. Leavenworth; Leavenworth, Kansas; Weston, Missouri; and cooling water for the Kansas City Power and Light, Iatan Power Plant. Ground water at three sites within the alluvial aquifer near the Ft. Leavenworth well field is contaminated with trace metals and organic compounds and concerns have been raised about the potential contamination of drinking-water supplies. In 2001, the U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Army began a study of ground-water flow in the Missouri River alluvial aquifer near Ft. Leavenworth. Hydrogeologic data from 173 locations in the study area was used to construct a ground-water flow model (MODFLOW-2000) and particle-tracking program (MODPATH) to determine the direction and travel time of ground-water flow and contributing recharge areas for water-supply well fields within the alluvial aquifer. The modeled area is 28.6 kilometers by 32.6 kilometers and contains the entire study area. The model uses a uniform grid size of 100 meters by 100 meters and contains 372,944 cells in 4 layers, 286 columns, and 326 rows. The model represents the alluvial aquifer using four layers of variable thickness with no intervening confining layers. The model was calibrated to both quasi-steady-state and transient hydraulic head data collected during the study and ground-water flow was simulated for five well-pumping/river-stage scenarios. The model accuracy was calculated using the root mean square error between actual measurements of hydraulic head and model generated hydraulic head at the end of each model run. The accepted error for the model calibrations were below the maximum measurement errors. The error for the quasi-steady-state calibration was 0.82 meter; for the transient calibration it was 0.33 meter. The shape, size, and ground-water travel time within the contributing recharge area for each well or well

  17. Geohydrology and simulated ground-water flow, Plymouth-Carver Aquifer, southeastern Massachusetts

    USGS Publications Warehouse

    Hansen, Bruce P.; Lapham, Wayne W.

    1992-01-01

    The Plymouth-Carver aquifer underlies an area of 140 square miles and is the second largest aquifer in areal extent in Massachusetts. It is composed primarily of saturated glacial sand and gravel. The water-table and bedrock surface were mapped and used to determine saturated thickness of the aquifer, which ranged from less than 20 feet to greater than 200 feet. Ground water is present mainly under unconfined conditions, except in a few local areas such as beneath Plymouth Harbor. Recharge to the aquifer is derived almost entirely from precipitation and averages about 1.15 million gallons per day per square mile. Water discharges from the aquifer by pumping, evapotranspiration, direct evaporation from the water table, and seepage to streams, ponds, wetlands, bogs, and the ocean. In 1985, water use was about 59.6 million gallons per day, of which 82 percent was used for cranberry production. The Plymouth-Carver aquifer was simulated by a three-dimensional, finite difference ground-water-flow model. Most model boundaries represent the natural hydrologic boundaries of the aquifer. The model simulates aquifer recharge, withdrawals by pumped wells, leakage through streambeds, and discharge to the ocean. The model was calibrated for steady-state and transient conditions. Model results were compared with measured values of hydraulic head and ground-water discharge. Results of simulations indicate that the modeled ground-water system closely simulates actual aquifer conditions. Four hypothetical ground-water development alternatives were simulated to demonstrate the use of the model and to examine the effects on the ground-water system. Simulation of a 2-year period of no recharge and average pumping rates that occurred from 1980-85 resulted in water-level declines exceeding 5 feet throughout most of the aquifer and a decrease of 54 percent in average ground-water discharge to streams. In a second simulation, four wells in the northern part of the area were pumped at 10

  18. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  19. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  20. Impact of Water Resorts Development along Laguna de Bay on Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Jago-on, K. A. B.; Reyes, Y. K.; Siringan, F. P.; Lloren, R. B.; Balangue, M. I. R. D.; Pena, M. A. Z.; Taniguchi, M.

    2014-12-01

    Rapid urbanization and land use changes in areas along Laguna de Bay, one of the largest freshwater lake in Southeast Asia, have resulted in increased economic activities and demand for groundwater resources from households, commerce and industries. One significant activity that can affect groundwater is the development of the water resorts industry, which includes hot springs spas. This study aims to determine the impact of the proliferation of these water resorts in Calamba and Los Banos, urban areas located at the southern coast of the lake on the groundwater as a resource. Calamba, being the "Hot Spring Capital of the Philippines", presently has more than 300 resorts, while Los Banos has at least 38 resorts. Results from an initial survey of resorts show that the swimming pools are drained/ changed on an average of 2-3 times a week or even daily during peak periods of tourist arrivals. This indicates a large demand on the groundwater. Monitoring of actual groundwater extraction is a challenge however, as most of these resorts operate without water use permits. The unrestrained exploitation of groundwater has resulted to drying up of older wells and decrease in hot spring water temperature. It is necessary to strengthen implementation of laws and policies, and enhance partnerships among government, private sector groups, civil society and communities to promote groundwater sustainability.

  1. Use of hydrologic budgets and hydrochemistry to determine ground-water and surface-water interactions for Rapid Creek, Western South Dakota

    USGS Publications Warehouse

    Anderson, Mark T.

    1995-01-01

    The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.

  2. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    USGS Publications Warehouse

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  3. Seasonal groundwater contribution to crop-water use assessed with lysimeter observations and model simulations

    USGS Publications Warehouse

    Luo, Y.; Sophocleous, M.

    2010-01-01

    Groundwater evaporation can play an important role in crop-water use where the water table is shallow. Lysimeters are often used to quantify the groundwater evaporation contribution influenced by a broad range of environmental factors. However, it is difficult for such field facilities, which are operated under limited conditions within limited time, to capture the whole spectrum of capillary upflow with regard to the inter-seasonal variability of climate, especially rainfall. Therefore, in this work, the method of combining lysimeter and numerical experiments was implemented to investigate seasonal groundwater contribution to crop-water use. Groundwater evaporation experiments were conducted through a weighing lysimeter at an agricultural experiment station located within an irrigation district in the lower Yellow River Basin for two winter wheat growth seasons. A HYDRUS-1D model was first calibrated and validated with weighing lysimeter data, and then was employed to perform scenario simulations of groundwater evaporation under different depths to water table (DTW) and water input (rainfall plus irrigation) driven by long term meteorological data. The scenario simulations revealed that the seasonally averaged groundwater evaporation amount was linearly correlated to water input for different values of DTW. The linear regression could explain more than 70% of the variability. The seasonally averaged ratio of the groundwater contribution to crop-water use varied with the seasonal water input and DTW. The ratio reached as high as 75% in the case of DTW=1.0. m and no irrigation, and as low as 3% in the case of DTW=3.0. m and three irrigation applications. The results also revealed that the ratio of seasonal groundwater evaporation to potential evapotranspiration could be fitted to an exponential function of the DTW that may be applied to estimate seasonal groundwater evaporation. In this case study of multilayered soil profile, the depth at which groundwater may

  4. Brackish groundwater in the United States

    USGS Publications Warehouse

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    in the United States. Previously published digital data relating to brackish groundwater resources were limited to a small number of State- and regional-level studies. Data sources for this assessment ranged from single publications to large datasets and from local studies to national assessments. Geochemical data included concentrations of dissolved solids, major ions, trace elements, nutrients, and radionuclides as well as physical properties of the water (pH, temperature, and specific conductance). Additionally, the database provides selected well information (location, yield, depth, and contributing aquifer) necessary for evaluating the water resource.The assessment was divided into national-, regional-, and aquifer-scale analyses. National-scale analyses included evaluation of the three-dimensional distribution of observed dissolved-solids concentrations in groundwater, the three-dimensional probability of brackish groundwater occurrence, and the geochemical characteristics of saline (greater than or equal to 1,000 mg/L of dissolved solids) groundwater resources. Regional-scale analyses included a summary of the percentage of observed grid cell volume in the region that was occupied by brackish groundwater within the mixture of air, water, and rock for multiple depth intervals. Aquifer-scale analyses focused primarily on four regions that contained the largest amounts of observed brackish groundwater and included a generalized description of hydrogeologic characteristics from previously published work; the distribution of dissolved-solids concentrations; considerations for developing brackish groundwater resources, including a summary of other chemical characteristics that may limit the use of brackish groundwater and the ability of sampled wells producing brackish groundwater to yield useful amounts of water; and the amount of saline groundwater being used in 2010.

  5. Bibliography of ground-water references for all 254 counties in Texas, 1886-2001

    USGS Publications Warehouse

    Baker, E.T.

    2005-01-01

    PrefaceThis bibliography comprises more than 10,000 citations of ground-water references involving all 254 counties in Texas. The reference citations date from 1886 and extend into 2001. Publications and reports from more than 30 agencies, universities, water districts, geological societies, cities, consultants, and private publication outlets are included in the bibliography. The bibliographic listing is, first, alphabetical by county and, second, chronological by date of the report, from oldest to most recent. The passing years have seen a proliferation in both published and unpublished reports, and such proliferation continues to expand at an accelerating pace. All 254 counties have had groundwater studies, either cursory or detailed. Investigation and development of the ground-water resources of the State of Texas resulted in reports that appear in a variety of formats, including Federal, State, and local agency reports; scholarly, professional, and trade journals; conference proceedings; guidebooks; maps; and theses and dissertations. The end result for the person seeking ground-water information about specific Texas counties is the increasing difficulty in locating pertinent data among the many and diverse ground-water reports in which the information is recorded. This bibliography, covering a span of 115 years, should have considerable utility in guiding those individuals seeking ground-water information.

  6. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam.

    PubMed

    McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U

    2012-10-15

    Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.

  7. Ground-water data in the Baker County-northern Malheur County area, Oregon

    USGS Publications Warehouse

    Collins, C.A.

    1979-01-01

    Ground-water data for the Baker County-northern Malheur area, Oregon, are tabulated for the Bureau of Land Management. The data include well and spring records, a well-location map, drillers ' logs of wells, observation-well hydrographs, and chemical analyses of ground-water samples. The reported yields of wells and springs in the area ranged from less than 1 to 2 ,500 gallons per minute. Dissolved solids in ground-water samples ranged from 50 to 1,587 milligrams per liter, and arsenic ranged from 0.001 to 0.317 milligrams per liter. (Woodard-USGS)

  8. Sustainable Hydro Assessment and Groundwater Recharge Projects (SHARP) in Germany - Water Balance Models

    NASA Astrophysics Data System (ADS)

    Niemand, C.; Kuhn, K.; Schwarze, R.

    2010-12-01

    SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for

  9. Ground-Water Conditions and Studies in the Albany Area of Dougherty County, Georgia, 2007

    USGS Publications Warehouse

    Gordon, Debbie W.

    2008-01-01

    The U.S. Geological Survey (USGS) has been working with the Albany Water, Gas, and Light Commission to monitor ground-water quality and availability since 1977. This report presents an overview of ground-water conditions and studies in the Albany area of Dougherty County, Georgia, during 2007. Historical data are also presented for comparison with 2007 data. Ongoing monitoring activities include continuous water-level recording in 24 wells and monthly water-level measurements in 5 wells. During 2007, water levels in 21 of the continuous-recording wells were below normal, corresponding to lower than average rainfall. Ground-water samples collected from the Upper Floridan aquifer indicate that nitrate levels have decreased or remained about the same since 2006. Water samples were collected from the Flint River and wells at the Albany wellfield, and data were plotted on a trilinear diagram to show the percent composition of selected major cations and anions. Ground-water constituents (major cations and anions) of the Upper Floridan aquifer at the Albany wellfield are distinctly different from those in the water of the Flint River. To improve the understanding of the ground-water flow system and nitrate movement in the Upper Floridan aquifer, the USGS is developing a ground-water flow model in the southwestern Albany area of Georgia. The model is being calibrated to simulate periods of dry (October 1999) and relatively wet (March 2001) hydrologic conditions. Preliminary water-level simulations indicate a generally good fit to measured water levels.

  10. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  11. Simulated ground-water flow and water quality of the Mississippi River alluvium near Burlington, Iowa, 1999

    USGS Publications Warehouse

    Boyd, Robert A.

    2001-01-01

    Water samples collected from the alluvium indicated ground water can be classified as a calcium-magnesium-bicarbonate type. Reducing conditions likely occur in some localized areas of the alluvium, as suggested by relatively large concentrations of dissolved iron (4,390 micrograms per liter) and manganese (2, 430 micrograms per liter) in some ground-water samples. Nitrite plus nitrate was detected at concentrations greater than or equal to 8 milligrams per liter in three samples collected from observation wells completed in close proximity to cropland; the nitrite plus nitrate concentration in one groundwater sample exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for nitrate in drinking water (10 milligrams per liter as N). Triazine herbicides (atrazine, cyanazine, propazine, simazine, and selected degradation products) and chloroacetanilide herbicides (acetochlor, alachlor, and metolachlor) were detected in some water samples. A greater number of herbicide compounds were detected in surface-water samples than in ground-water samples. Herbicide concentrations typically were at least an order of magnitude greater in surfacewater samples than in ground-water samples. The Maximum Contaminant Level for alachlor (2 micrograms per liter) was exceeded in a sample from Dry Branch Creek at Tama Road and for atrazine (3 micrograms per liter) was exceeded in samples collected from Dry Branch Creek at Tama Road and the county drainage ditch at Tama Road.

  12. Ground-water in the Austin area, Lander County, Nevada

    USGS Publications Warehouse

    Phoenix, David A.

    1949-01-01

    The U.S. Geological Survey, in cooperation with the State Engineer of Nevada, made a preliminary survey of ground-water conditions in the Austin area, Nev., during the period July 25 to 28, 1949. The purpose was to evaluate ground-water conditions with special reference to the quantity of ground water that might be available in the area--an adequate water supply has been a constant problem throughout the history of the Austin area. The investigation was made by the writer under the supervision of Thomas W. Robinson, district engineer, Ground Water Branch, U.S. Geological Survey. Material assistance was given in the field by local residents. Frank Bertrand, water commissioner, Thomas Peacock, county assessor, and George McGinnis, county commissioner, guided the writer to springs new utilized by the town of Austin and rendered other valuable field assistance.

  13. Groundwater chemistry near an impoundment for produced water, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Healy, R.W.; Bartos, T.T.; Rice, C.A.; McKinley, M.P.; Smith, B.D.

    2011-01-01

    The Powder River Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of the large amounts of groundwater extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and water chemistry at one impoundment, Skewed Reservoir, has produced the most detailed data set for any impoundment in the Basin. Data were collected from a network of 21 observation wells and three suction lysimeters. A groundwater mound formed atop bedrock within initially unsaturated, unconsolidated deposits underlying the reservoir. Heterogeneity in physical and chemical properties of sediments resulted in complex groundwater flow paths and highly variable groundwater chemistry. Sulfate, bicarbonate, sodium, and magnesium were the dominant ions in all areas, but substantial variability existed in relative concentrations; pH varied from less than 3 to more than 9, and total dissolved solids concentrations ranged from less than 5000 to greater than 100,000 mg/L. Selenium was a useful tracer of reservoir water; selenium concentrations exceeded 300 μg/L in samples obtained from 18 of the 24 sampling points. Groundwater travel time from the reservoir to a nearby alluvial aquifer (a linear distance of 177 m) was calculated at 474 days on the basis of selenium concentrations. The produced water is not the primary source of solutes in the groundwater. Naturally occurring salts and minerals within the unsaturated zone, dissolved and mobilized by infiltrating impoundment water, account for most of the solute mass in groundwater. Gypsum dissolution, cation-exchange, and pyrite oxidation appear to be important reactions. The complex geochemistry and groundwater flow paths at the study site underscore the difficulty in assessing effects of surface impoundments on water resources within the Powder River Basin.

  14. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    NASA Astrophysics Data System (ADS)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  15. Ground-water levels in Wyoming, 1978 through September 1987

    USGS Publications Warehouse

    Kennedy, H.I.; Green, S.L.

    1988-01-01

    Groundwater levels are measured periodically in a network of 95 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 95 observation wells showing water level fluctuations from 1978 through September 1987. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  16. Ground-water sapping processes, Western Desert, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W.; Arvidson, R.E.; Sultan, M.

    1997-01-01

    Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parametersmore » demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. This {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years. 65 refs., 21 figs., 2 tabs.« less

  17. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, 1991-93

    USGS Publications Warehouse

    Torikai, J.D.

    1995-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data are presented from January 1991 through December 1993. This report concentrates on data from fourth quarter 1993, and references historic data from 1991 and 1992. Total rainfall for 1993 was 95 inches which is 10 percent below the mean annual rainfall of 106 inches. In comparison, total rainfalls in 1992 and 1991 were 93 inches and 130 inches, respectively. Ground-water withdrawal has averaged 954,000 gallons per day during 1993, while with- drawals in 1992 and 1991 averaged 936,000 gallons per day and 927,000 gallons per day, respectively. In each of the five areas of ground-water produc- tion, withdrawals have remained steady since 1991. At the end of December 1993, the chloride concen- tration of the composite water supply was 36 milligrams per liter, well below the 250 milligrams per liter secondary drinking water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply during the last quarter (October through December 1993) ranged between 35 and 75 milligrams per liter. Chloride concentrations in monitoring wells at Cantonment and Air Operations decreased during the last quarter (October through December 1993) after having risen progressively during the previous quarter (July through September 1993). There has been a general trend of increasing chloride concentrations in the deeper monitoring wells since the 1992 dry season, which began in March 1992. A fuel spill at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water supply purposes in April 1992. The remaining six wells are being used to hydraulically contain and divert fuel migration.

  18. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

    NASA Astrophysics Data System (ADS)

    Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman

    2017-05-01

    Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

  19. Groundwater

    USGS Publications Warehouse

    Stonestrom, David A.; Wohl, Ellen E.

    2016-01-01

    Groundwater represents the terrestrial subsurface component of the hydrologic cycle. As such, groundwater is generally in motion, moving from elevated areas of recharge to lower areas of discharge. Groundwater usually moves in accordance with Darcy’s law (Dalmont, Paris: Les Fontaines Publiques de la Ville de Dijon, 1856). Groundwater residence times can be under a day in small upland catchments to over a million years in subcontinental-sized desert basins. The broadest definition of groundwater includes water in the unsaturated zone, considered briefly here. Water chemically bound to minerals, as in gypsum (CaSO4 • 2H2O) or hydrated clays, cannot flow in response to gradients in total hydraulic head (pressure head plus elevation head); such water is thus usually excluded from consideration as groundwater. In 1940, M. King Hubbert showed Darcy’s law to be a special case of thermodynamically based potential field equations governing fluid motion, thereby establishing groundwater hydraulics as a rigorous engineering science (Journal of Geology 48, pp. 785–944). The development of computer-enabled numerical methods for solving the field equations with real-world approximating geometries and boundary conditions in the mid-1960s ushered in the era of digital groundwater modeling. An estimated 30 percent of global fresh water is groundwater, compared to 0.3 percent that is surface water, 0.04 percent atmospheric water, and 70 percent that exists as ice, including permafrost (Shiklomanov and Rodda 2004, cited under Groundwater Occurrence). Groundwater thus constitutes the vast majority—over 98 percent—of the unfrozen fresh-water resources of the planet, excluding surface-water reservoirs. Environmental dimensions of groundwater are equally large, receiving attention on multiple disciplinary fronts. Riparian, streambed, and spring-pool habitats can be sensitively dependent on the amount and quality of groundwater inputs that modulate temperature and solutes

  20. The changing pattern of ground-water development on Long Island, New York

    USGS Publications Warehouse

    Heath, Ralph C.; Foxworthy, B.L.; Cohen, Philip M.

    1966-01-01

    Ground-water development on Long Island has followed a pattern that has reflected changing population trends, attendant changes in the use and disposal of water, and the response of the hydrologic system to these changes. The historic pattern of development has ranged from individually owned shallow wells tapping glacial deposits to large-capacity public-supply wells tapping deep artesian aquifers. Sewage disposal has ranged from privately owned cesspools to modern large-capacity sewage-treatment plants discharging more than 70 mgd of water to the sea. At present (1965), different parts of long Island are characterized by different stages of ground-water development. In parts of Suffolk County in eastern long Island, development is similar to the earliest historical stages. Westward toward New York City, ground-water development becomes more intensive and complex, and the attendant problems become more acute. The alleviation of present problems and those that arise in the future will require management decisions based on the soundest possible knowledge of the hydrologic system, including an understanding of the factors involved in the changing pattern of ground-water development on the island.

  1. Groundwater footprint methodology as policy tool for balancing water needs (agriculture & tourism) in water scarce islands - The case of Crete, Greece.

    PubMed

    Kourgialas, Nektarios N; Karatzas, George P; Dokou, Zoi; Kokorogiannis, Andreas

    2018-02-15

    In many Mediterranean islands with limited surface water resources, the growth of agricultural and touristic sectors, which are the main water consumers, highly depends on the sustainable water resources management. This work highlights the crucial role of groundwater footprint (GF) as a tool for the sustainable management of water resources, especially in water scarce islands. The groundwater footprint represents the water budget between inflows and outflows in an aquifer system and is used as an index of the effect of groundwater use in natural resources and environmental flows. The case study presented in this paper is the island of Crete, which consists of 11 main aquifer systems. The data used for estimating the groundwater footprint in each system were groundwater recharges, abstractions through 412 wells, environmental flows (discharges) from 76 springs and 19 streams present in the area of study. The proposed methodology takes into consideration not only the water quantity but also the water quality of the aquifer systems and can be used as an integrated decision making tool for the sustainable management of groundwater resources. This methodology can be applied in any groundwater system. The results serve as a tool for assessing the potential of sustainable use and the optimal distribution of water needs under the current and future climatic conditions, considering both quantitative and qualitative factors. Adaptation measures and water policies that will effectively promote sustainable development are also proposed for the management of the aquifer systems that exhibit a large groundwater footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. MODFLOW-based coupled surface water routing and groundwater-flow simulation

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; White, Jeremy T.

    2015-01-01

    In this paper, we present a flexible approach for simulating one- and two-dimensional routing of surface water using a numerical surface water routing (SWR) code implicitly coupled to the groundwater-flow process in MODFLOW. Surface water routing in SWR can be simulated using a diffusive-wave approximation of the Saint-Venant equations and/or a simplified level-pool approach. SWR can account for surface water flow controlled by backwater conditions caused by small water-surface gradients or surface water control structures. A number of typical surface water control structures, such as culverts, weirs, and gates, can be represented, and it is possible to implement operational rules to manage surface water stages and streamflow. The nonlinear system of surface water flow equations formulated in SWR is solved by using Newton methods and direct or iterative solvers. SWR was tested by simulating the (1) Lal axisymmetric overland flow, (2) V-catchment, and (3) modified Pinder-Sauer problems. Simulated results for these problems compare well with other published results and indicate that SWR provides accurate results for surface water-only and coupled surface water/groundwater problems. Results for an application of SWR and MODFLOW to the Snapper Creek area of Miami-Dade County, Florida, USA are also presented and demonstrate the value of coupled surface water and groundwater simulation in managed, low-relief coastal settings.

  3. Ground-water recharge from small intermittent streams in the western Mojave Desert, California: Chapter G in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Izbicki, John A.; Johnson, Russell U.; Kulongoski, Justin T.; Predmore, Steven; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    extend to the distal ends of all washes. Where urbanization had concentrated spatially distributed runoff into a small number of fixed channels, enhanced infiltration induced recharging conditions, mobilizing accumulated chloride.Estimated amounts of ground-water recharge from the studied reaches were small. Extrapolating on the basis of drainage areas, the estimated aggregate recharge from small intermittent streams is minor compared to recharge from the Mojave River. Recharge is largely controlled by streamflow availability, which primarily reflects precipitation patterns. Precipitation in the Mojave Desert is strongly controlled by topography. Cool moist air masses from the Pacific Ocean are mostly blocked from entering the desert by the high mountains bordering its southern edge. Storms do, however, readily enter the region through Cajon Pass. These storms generate flow in the Mojave River that often reaches Afton Canyon, more than 150 kilometers downstream. The isotopic composition of ground water reflects the localization of recharge beneath the Mojave River. Similar processes occur near San Gorgonio Pass, 75 kilometers southeast from Cajon Pass along the bounding San Andreas Fault.

  4. Modeling the time-varying interaction between surface water and groundwater bodies

    NASA Astrophysics Data System (ADS)

    Gliege, Steffen; Steidl, Jörg; Lischeid, Gunnar; Merz, Christoph

    2016-04-01

    The countless kettle holes (small lakes) in the Late Pleistocene landscapes of Northern Europe have important ecological and hydrological functions. On the one hand they act as depressions in which water and solutes of mainly agriculturally used catchments accumulate. On the other hand they operate as biochemical reactors with respect to greenhouse gas emissions, carbon sequestration, and as major sinks for nutrients and contaminants. Even small kettle holes often are hydraulically connected to the uppermost groundwater system: Groundwater discharges into the kettle hole on one side, and the aquifer is recharged from the kettle hole water body on the other side. Thus kettle hole biogeochemical processes are both affected by groundwater and vice versa. Groundwater flow direction and velocity into and out of the kettle hole often is not stable over time. Groundwater flow direction might reverse at the downstream part, resulting in repeated recycling of groundwater and corresponding solute turnover within the kettle holes. A sound understanding of this intricate interplay is a necessary prerequisite for better understanding of the biogeochemistry of this terrestrial-aquatic interface. A numerical experiment was used to quantify the lateral solute exchange between a kettle hole and the surrounding groundwater. A vertical cross section through the real existing catchment of a kettle hole was chosen. Glacial till represents the lower boundary. The heterogeneity of the subsurface was reproduced by various parameterizations of the soil hydraulic properties as well as varying the thickness of the unconfined aquifer or the lateral boundary conditions. In total 24 different parameterizations were implemented in the modeling software HydroGeoSphere (HGS). HGS is suitable to calculate the fluid exchange between surface and subsurface simultaneously and in a physically based way. The simulation runs were done for the period from November 1994 to October 2014. All results were

  5. Groundwater level deterioration issues and suggested solution for the water curtain cultivation area in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yongcheol; Lee, Bongju; Ha, Kucheol; Yoon, Yunyeol; Moon, Sangho; Cho, Suyoung; Kim, Seongyun

    2013-04-01

    Protected water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of the green house. But the issue is that the method results in groundwater level deterioration because it disposes the used groundwater to nearby stream. Reuse of the groundwater for water curtain cultivation is important Groundwater level, steam level, and groundwater usage rate are investigated at the five green house concentrated areas such as Cheongwon, Namyangju, Choongju, Namwon, Jinju. Groundwater usage rate is estimated using a ultrasonic flowmeter for a specific well and using the combination of pressure sensor and propeller type velocity counting equipment at a water disposal channel from November to April which is water curtain cultivating season. Groundwater usage rate ranges from 46.9m3/d to 108.0m3/d for a 10a greenhouse. Groundwater level change is strongly influenced by seasonal variation of rainfall and concentrated pumping activities in winter but the level is lower than stream level all year long resulting in all year around losing stream at Cheongwon, Namyangju, Jinju. At Nanwon, the stream is converted from losing one in winter to gaining one in summer. Groundwater level deterioration at concentrated water curtain cultivation area is found to be severe for some area where circulating water curtain cultivation system is need to be applied for groundwater restoration and sustainable cultivation in winter. Circulating water curtain cultivation system can restore the groundwater level by recharging the used groundwater through injection well and then pumping out from pumping well.

  6. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  7. Ground-water recharge from streamflow data, NW Florida

    USGS Publications Warehouse

    Vecchioli, John; Bridges, W.C.; Rumenik, Roger P.; Grubbs, J.W.

    1991-01-01

    Annual base flows of streams draining Okaloosa County and adjacent areas in northwest Florida were determined through hydrograph separation and correlation techniques for purposes of evaluating variations in ground-water recharge rates. Base flows were least in the northern part of the county and greatest in the southern part. Topographic and soils data were then superimposed on the distribution of base flow by subbasin to produce a map showing distribution of ground-water recharge throughout the county. The highest recharge rate occurs in the southern part of the county where relatively flat upland areas underlain by excessively drained sandy soils result in minimal storm runoff and evapotranspiration.

  8. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  9. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    USGS Publications Warehouse

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  10. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  11. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.

    PubMed

    Lewis, David Bruce; Feit, Sharon J

    2015-04-01

    We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional-basin wetland: forested swamps and herbaceous-vegetation marshes. In west-central Florida, >650 ML groundwater day(-1) are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50-60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m(2) through 30.5 cm depth was diminished by 25-30% in short-hydroperiod swamps. In herbaceous-vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining-reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand. © 2014 John Wiley & Sons Ltd.

  12. Ground-water models: Validate or invalidate

    USGS Publications Warehouse

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  13. Considerations for use of the RORA program to estimate ground-water recharge from streamflow records

    USGS Publications Warehouse

    Rutledge, A.T.

    2000-01-01

    The RORA program can be used to estimate ground-water recharge in a basin from analysis of a streamflow record. The program can be appropriate for use if the ground-water flow system is characterized by diffuse areal recharge to the water table and discharge to a stream. The use of the program requires an estimate of a recession index, which is the time required for ground-water discharge to recede by one log cycle after recession becomes linear or near-linear on the semilog hydrograph. Although considerable uncertainty is inherent in the recession index, the results of the RORA program may not be sensitive to this variable. Testing shows that the program can yield consistent estimates under conditions that include leakage to or from deeper aquifers and ground-water evapotranspiration. These tests indicate that RORA estimates the net recharge, which is recharge to the water table minus leakage to a deeper aquifer, or recharge minus ground-water evapotranspiration. Before the program begins making calculations it designates days that fit a requirement of antecedent recession, and these days are used in calculations. The program user might increase the antecedent-recession requirement above its default value to reduce the influence of errors that are caused by direct-surface runoff, but other errors can result from the reduction in the number of peaks detected. To obtain an understanding of flow systems, results from the RORA program might be used in conjunction with other methods such as analysis of ground-water levels, estimates of ground-water discharge from other forms of hydrograph separation, and low-flow variables. Relations among variables may be complex for a variety of reasons; for example, there may not be a unique relation between ground-water level and ground-water discharge, ground-water recharge and discharge are not synchronous, and low-flow variables can be related to other factors such as the recession index.

  14. Simulation and particle-tracking analysis of ground-water flow near the Savannah River site, Georgia and South Carolina, 2002, and for selected ground-water management scenarios, 2002 and 2020

    USGS Publications Warehouse

    Cherry, Gregory S.

    2006-01-01

    Ground-water flow under 2002 hydrologic conditions was evaluated in an eight-county area in Georgia and South Carolina near the Savannah River Site (SRS), by updating boundary conditions and pumping rates in an existing U.S. Geological Survey (USGS) ground-water model. The original ground-water model, developed to simulate hydrologic conditions during 1987-92, used the quasi-three-dimensional approach by dividing the Floridan, Dublin, and Midville aquifer systems into seven aquifers. The hydrogeologic system was modeled using six active layers (A2-A7) that were separated by confining units with an overlying source-sink layer to simulate the unconfined Upper Three Runs aquifer (layer A1). Potentiometric- surface maps depicting September 2002 for major aquifers were used to update, evaluate, and modify boundary conditions used by the earlier ground-water flow model. The model was updated using the USGS finite-difference code MODFLOW-2000 for mean-annual conditions during 1987-92 and 2002. The specified heads in the source-sink layer A1 were lowered to reflect observed water-level declines during the 1998-2002 drought. These declines resulted in a decrease of 12.1 million gallons per day (Mgal/d) in simulated recharge or vertical inflow to the uppermost confined aquifer (Gordon, layer A2). Although ground-water pumpage in the study area has increased by 32 Mgal/d since 1995, most of this increase (17.5 Mgal/d) was from the unconfined Upper Three Runs aquifer (source-sink layer A1) with the remaining 14.5 Mgal/d assigned to the active layers within the model (A2-A7). The simulated water budget for 2002 shows a decrease from the 1987-92 model from 1,040 Mgal/d to 1,035 Mgal/d. The decreased ground-water inflows and increased ground-water withdrawal rates reduced the simulated ground-water outflow to river cells in the active layers of the model by 43 Mgal/d. The calibration statistics for all layers of the 2002 simulation resulted in a decrease in the root mean square

  15. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  16. Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980

    USGS Publications Warehouse

    ,

    1981-01-01

    Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)

  17. Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico

    USGS Publications Warehouse

    Plummer, Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades

    2004-01-01

    and sulfur hexafluoride from 288 wells and springs in parts of the Santa Fe Group aquifer system. The surface-water data collected as part of this study include monthly measurements of major- and minor-element chemistry (30 elements), oxygen-18 and deuterium content of water, chlorofluorocarbons, and tritium content at 14 locations throughout the basin. Additional data include stable isotope analyses of precipitation and of ground water from City of Albuquerque production wells collected and archived from the early 1980?s, and other data on the chemical and isotopic composition of air, unsaturated zone air, plants, and carbonate minerals from throughout the basin. The data were used to identify 12 sources of water to the basin, map spatial and vertical extents of ground-water flow, map water chemistry in relation to hydrogeologic, stratigraphic, and structural properties of the basin, determine radiocarbon ages of ground water, and reconstruct paleo-environmental conditions in the basin over the past 30,000 years. The data indicate that concentrations of most elements and isotopes generally parallel the predominant north to south direction of ground-water flow. The radiocarbon ages of dissolved inorganic carbon in ground water range from modern (post-1950) to more than 30,000 years before present, and appear to be particularly well defined in the predominantly siliciclastic aquifer system. Major sources of water to the basin include (1) recharge from mountains along the north, east and southwest margins (median age 5,000-9,000 years); (2) seepage from the Rio Grande and Rio Puerco (median age 4,000-8,000 years), and from Abo and Tijeras Arroyos (median age 3,000-9,000 years); (3) inflow of saline water along the southwestern basin margin (median age 20,000 years); and (4) inflow along the northern basin margin that probably represents recharge from the Jemez Mountains during the last glacial period (median age 20,000 years). Water recharged from the Jemez Mountains

  18. Geology, ground-water flow, and dissolved-solids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers

    USGS Publications Warehouse

    Kammerer, P.A.

    1998-01-01

    A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.

  19. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  20. Ground-water hydrology of James City County, Virginia

    USGS Publications Warehouse

    Harsh, John F.

    1980-01-01

    Urbanization and increase in water demand prompted a 2-year study of groundwater availability and quality in the county of James City. The coastal-plain sediments, parts of which underlie the county, are the largest source of groundwater in Virginia. Four aquifers form the complex aquifer system. Hydraulic characteristics vary from aquifer to aquifer and from place to place. The Cretaceous aquifer furnishes nearly all the water for industrial and municipal needs. Movement of water in the Cretaceous aquifer is toward cones of depression formed by pumping centers at Williamsburg and Dow Badische Co. All aquifers contain water that generally meets State standards for drinking water. Water in the Cretaceous aquifer is of the sodium chloride bicarbonate type. As depth of aquifer increases, the concentrations of dissolved solids and chloride also increase. Saline water (more than 250 milligrams per liter) occupies the deeper parts of the confined aquifers. The amount of water stored in the coastal sediments is estimated to be 650-1300 billion gallons. An increase in pumpage to accomodate the expected daily demand of 9.8 million gallons per day in year 2000 is feasible provided pumpage is distributed over the county. (USGS)

  1. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  2. Assessment of groundwater under direct influence of surface water.

    PubMed

    Nnadi, Fidelia N; Fulkerson, Mark

    2002-08-01

    Waterborne pathogens are known to reside in surface water systems throughout the U.S. Cryptosporidium outbreaks over recent years are the result of drinking water supplied from such sources. Contamination of aquifers has also led to several reported cases from drinking water wells. With high resistance to typical groundwater treatment procedures, aquifer infiltration by Cryptosporidium poses a serious threat. As groundwater wells are the main source of drinking water supply in the State of Florida, understanding factors that affect the presence of Cryptosporidium would prevent future outbreaks. This study examines karst geology, land use, and hydrogeology in the State of Florida as they influence the risk of groundwater contamination. Microscopic Particulate Analysis (MPA) sampling was performed on 719 wells distributed across Florida. The results of the sampling described each well as having high, moderate, or low risk to surface water influence. The results of this study indicated that the hydrogeology of an area tends to influence the MPA Risk Index (RI) of a well. Certain geologic formations were present for the majority of the high risk wells. Residential land use contained nearly half of the wells sampled. The results also suggested that areas more prone to sinkhole development are likely to contain wells with a positive RI.

  3. Initial assessment of the ground-water resources in the Monterey Bay region, California

    USGS Publications Warehouse

    Muir, K.S.

    1977-01-01

    Because urban growth has placed an increasing demand on the ground-water resources of the Monterey Bay region, Calif., an assessment of the ground-water conditions was made to aid the development of local and regional plans. Ground water provides 80 percent of the water used in the region, which includes six ground-water subbasins. In several of the subbasins, pumpage exceeds safe yield. Existing water-quality degradation results from seawater intrusion, septic-tank effluent, and irrigation-return water. Potential sources of degradation include municipal sewage disposal, leachates from solid-waste disposal sites, and poor-quality connate water. High-priority items for future study include location of recharge areas, detection of seawater intrusion, and well-monitoring of landfill sites. (Woodard-USGS)

  4. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  5. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  6. Annual summary of ground-water conditions in Arizona, spring 1977 to spring 1978

    USGS Publications Warehouse

    ,

    1978-01-01

    The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1977. About 4.7 million acre-feet of ground water was used for the irrigation of crops in 1977. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1973-77, ground-water withdrawal in the two areas was about 8.1 and 5.1 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, scale 1:500 ,000, shows potential well production, depth to water in selected wells in spring 1978, and change in water level in selected wells from 1973 to 1978. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. (Woodard-USGS)

  7. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

    NASA Astrophysics Data System (ADS)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2018-02-01

    A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

  8. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  9. MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process

    USGS Publications Warehouse

    Harbaugh, Arlen W.

    2005-01-01

    This report presents MODFLOW-2005, which is a new version of the finite-difference ground-water model commonly called MODFLOW. Ground-water flow is simulated using a block-centered finite-difference approach. Layers can be simulated as confined or unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and rivers, also can be simulated. The report includes detailed explanations of physical and mathematical concepts on which the model is based, an explanation of how those concepts are incorporated in the modular structure of the computer program, instructions for using the model, and details of the computer code. The modular structure consists of a MAIN Program and a series of highly independent subroutines. The subroutines are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system that is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving the set of simultaneous equations resulting from the finite-difference method. Several solution methods are incorporated, including the Preconditioned Conjugate-Gradient method. The division of the program into packages permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program also are designed to permit maximum flexibility. The program is designed to allow other capabilities, such as transport and optimization, to be incorporated, but this report is limited to describing the ground-water flow capability. The program is written in Fortran 90 and will run without modification on most computers that have a Fortran 90 compiler.

  10. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  11. The influence of submarine groundwater discharge on greenhouse gas evasion from coastal waters (Invited)

    NASA Astrophysics Data System (ADS)

    Santos, I. R.

    2013-12-01

    Coastal waters are thought to play a major role on global carbon budgets but we still lack a quantitative understanding about some mechanisms driving greenhouse gas cycling in coastal waters. Very little is known about the role of submarine groundwater discharge (SGD) in delivering carbon to rivers, estuaries and coastal waters even though the concentrations of most carbon species in groundwater are often much higher than those in surface waters. I hypothesize that SGD plays a significant role in coastal carbon and greenhouse gas budgets even if the volumetric SGD contribution is small. I will report new, detailed observations of radon (a natural groundwater tracer) and carbon dioxide and methane concentrations and stable isotopes in tidal rivers, estuaries, coastal wetlands, mangroves and coral reef lagoons. Groundwater exchange at these contrasting sites was driven by a wide range of processes, including terrestrial hydraulic gradients, tidal pumping, and convection. In all systems, SGD was an important source of carbon dioxide, DIC, and methane to surface waters. In some cases, groundwater seepage alone could account for 100% of carbon dioxide evasion from surface waters to the atmosphere. Combining high precision in situ radon and greenhouse gas concentration and stable isotope observations allows for an effective, unambiguous assessment of how groundwater seepage drives carbon dynamics in surface waters.

  12. Appraisal of ground-water quality near wastewater-treatment facilities, Glacier National Park, Montana

    USGS Publications Warehouse

    Moreland, Joe A.; Wood, Wayne A.

    1982-01-01

    Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system.Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant.Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts.

  13. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    USGS Publications Warehouse

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  14. Hydrogeologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, southwestern Arizona and southeastern California

    USGS Publications Warehouse

    Dickinson, Jesse; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.

    2006-01-01

    The ground-water and surface-water system in the Yuma area in southwestern Arizona and southeastern California is managed intensely to meet water-delivery requirements of customers in the United States, to manage high ground-water levels in the valleys, and to maintain treaty-mandated water-quality and quantity requirements of Mexico. The following components in this report, which were identified to be useful in the development of a ground-water management model, are: (1) refinement of the hydrogeologic framework; (2) updated water-level maps, general ground-water flow patterns, and an estimate of the amount of ground water stored in the mound under Yuma Mesa; (3) review and documentation of the ground-water budget calculated by the Bureau of Reclamation, U.S. Department of the Interior (Reclamation); and (4) water-chemistry characterization to identify the spatial distribution of water quality, information on sources and ages of ground water, and information about the productive-interval depths of the aquifer. A refined three-dimensional digital hydrogeologic framework model includes the following hydrogeologic units from bottom to top: (1) the effective hydrologic basement of the basin aquifer, which includes the Pliocene Bouse Formation, Tertiary volcanic and sedimentary rocks, and pre-Tertiary metamorphic and plutonic rocks; (2) undifferentiated lower units to represent the Pliocene transition zone and wedge zone; (3) coarse-gravel unit; (4) lower, middle, and upper basin fill to represent the upper, fine-grained zone between the top of the coarse-gravel unit and the land surface; and (5) clay A and clay B. Data for the refined model includes digital elevation models, borehole lithology data, geophysical data, and structural data to represent the geometry of the hydrogeologic units. The top surface of the coarse-gravel unit, defined by using borehole and geophysical data, varies similarly to terraces resulting from the down cutting of the Colorado River. Clay A

  15. Simulation of groundwater and surface-water resources and evaluation of water-management alternatives for the Chamokane Creek basin, Stevens County, Washington

    USGS Publications Warehouse

    Ely, D. Matthew; Kahle, Sue C.

    2012-01-01

    A three-dimensional, transient numerical model of groundwater and surface-water flow was constructed for Chamokane Creek basin to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate the effects of potential increases in groundwater pumping on groundwater and surface-water resources in the basin. The Chamokane Creek model was constructed using the U.S. Geological Survey (USGS) integrated model, GSFLOW. GSFLOW was developed to simulate coupled groundwater and surface-water resources. The model uses 1,000-foot grid cells that subdivide the model domain by 102 rows and 106 columns. Six hydrogeologic units in the model are represented using eight model layers. Daily precipitation and temperature were spatially distributed and subsequent groundwater recharge was computed within GSFLOW. Streamflows in Chamokane Creek and its major tributaries are simulated in the model by routing streamflow within a stream network that is coupled to the groundwater-flow system. Groundwater pumpage and surface-water diversions and returns specified in the model were derived from monthly and annual pumpage values previously estimated from another component of this study and new data reported by study partners. The model simulation period is water years 1980-2010 (October 1, 1979, to September 30, 2010), but the model was calibrated to the transient conditions for water years 1999-2010 (October 1, 1998, to September 30, 2010). Calibration was completed by using traditional trial-and-error methods and automated parameter-estimation techniques. The model adequately reproduces the measured time-series groundwater levels and daily streamflows. At well observation points, the mean difference between simulated and measured hydraulic heads is 7 feet with a root-mean-square error divided by the total difference in water levels

  16. Spatial-temporal variability in groundwater abstraction across Uganda: Implications to sustainable water resources management

    NASA Astrophysics Data System (ADS)

    Nanteza, J.; Thomas, B. F.; Mukwaya, P. I.

    2017-12-01

    The general lack of knowledge about the current rates of water abstraction/use is a challenge to sustainable water resources management in many countries, including Uganda. Estimates of water abstraction/use rates over Uganda, currently available from the FAO are not disaggregated according to source, making it difficult to understand how much is taken out of individual water stores, limiting effective management. Modelling efforts have disaggregated water use rates according to source (i.e. groundwater and surface water). However, over Sub-Saharan Africa countries, these model use estimates are highly uncertain given the scale limitations in applying water use (i.e. point versus regional), thus influencing model calibration/validation. In this study, we utilize data from the water supply atlas project over Uganda to estimate current rates of groundwater abstraction across the country based on location, well type and other relevant information. GIS techniques are employed to demarcate areas served by each water source. These areas are combined with past population distributions and average daily water needed per person to estimate water abstraction/use through time. The results indicate an increase in groundwater use, and isolate regions prone to groundwater depletion where improved management is required to sustainably management groundwater use.

  17. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  18. Management of groundwater supply and water quality in the Los Angeles Basin, California

    USGS Publications Warehouse

    Reichard, E.G.; Crawford, S.M.; Land, M.T.; Paybins, K.S.

    1999-01-01

    Water use and water needs in the coastal Los Angeles Basin in California have been very closely tied to the development of the region during the last 150 years. The first water wells were drilled in the mid-1800s. Currently about 40% of the water supply (9.4 m3 s-1) in the region is provided by groundwater. Other sources of water supply include reclaimed water and surface water imported from Owens Valley, the Colorado River, and northern California. Increasing groundwater use in the basin led to over-abstraction and seawater instrusion. Because of this, an important component of water management in the area has been the artificial recharge of local, imported, and reclaimed water which is spread in ponds and injected in wells to recharge the aquifer system and control seawater intrusion. The US Geological Survey (USGS) is working co-operatively with the Water Replenishment District of Southern California to evaluate the hydraulic and water-quality effects of these recharge operations and to assess the potential impacts of alternative water-management strategies, including changes in pumping and increases in the use of reclaimed water. As part of this work, the USGS has developed a geographic information system (GIS), collected water-quality and geohydrological data from new and existing wells, and developed a multi-aquifer regional groundwater flow model. Chemical and isotopic data were used to identify the age and source of recharge to groundwater throughout the study area. This information is key to understanding the fate of artificially recharged water and helps define the three-dimensional groundwater flow system. The geohydrological data, especially the geophysical and geological data collected from 11 newly installed multi-completion monitoring wells, were used to redefine the regional hydrostratigraphy. The groundwater flow model is being used to enhance the understanding of the geohydrological system and to quantitatively evaluate new water

  19. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT (CD-ROM)

    EPA Science Inventory

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the tricWoroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were insta...

  20. Statistical robustness of machine-learning estimates for characterizing a groundwater-surface water system, Southland, New Zealand

    NASA Astrophysics Data System (ADS)

    Friedel, M. J.; Daughney, C.

    2016-12-01

    The development of a successful surface-groundwater management strategy depends on the quality of data provided for analysis. This study evaluates the statistical robustness when using a modified self-organizing map (MSOM) technique to estimate missing values for three hypersurface models: synoptic groundwater-surface water hydrochemistry, time-series of groundwater-surface water hydrochemistry, and mixed-survey (combination of groundwater-surface water hydrochemistry and lithologies) hydrostratigraphic unit data. These models of increasing complexity are developed and validated based on observations from the Southland region of New Zealand. In each case, the estimation method is sufficiently robust to cope with groundwater-surface water hydrochemistry vagaries due to sample size and extreme data insufficiency, even when >80% of the data are missing. The estimation of surface water hydrochemistry time series values enabled the evaluation of seasonal variation, and the imputation of lithologies facilitated the evaluation of hydrostratigraphic controls on groundwater-surface water interaction. The robust statistical results for groundwater-surface water models of increasing data complexity provide justification to apply the MSOM technique in other regions of New Zealand and abroad.

  1. Annual summary of ground-water conditions in Arizona, spring 1975 to spring 1976

    USGS Publications Warehouse

    Babcock, H.M.

    1977-01-01

    Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. A larger map of the State at a scale of 1:500,000 shows potential well production, depth to water in selected wells in spring 1976, and change in water level in selected wells from 1971 to 1976. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water in Arizona was about 5.6 million acre-feet in 1975, of which about 4.7 million acre-feet was used for the irrigation of crops. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1971-75, ground-water withdrawal in the two areas was about 8.3 and 4.7 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)

  2. Annual summary of ground-water conditions in Arizona, spring 1976 to spring 1977

    USGS Publications Warehouse

    Babcock, H.M.

    1977-01-01

    Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth of water in selected wells in spring 1977, and change in water level in selected wells from 1972 to 1977. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1976 of which about 4.7 million acre-feet was used for the irrigation. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1972-76, ground-water withdrawal in the two areas was about 8.2 to 4.9 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)

  3. Summary appraisals of the Nation's ground-water resources; Pacific Northwest region

    USGS Publications Warehouse

    Foxworthy, Bruce L.

    1979-01-01

    Management opportunities in the region include: (1) Development of new supplies and additional uses of ground water; (2) protection and enhancement of water quality; (3) reduction of waterlogging; (4) energy development from some ground-water reservoirs; (5) improving access to the ground water; (6) increased use of underground space for storage and disposal; and (7) greater use of advanced management and conservation techniques. Conjunctive use of surface and ground water to provide greater available supplies probably is the most promising water-management opportunity. However, if the full potential of the ground-water resources is to be realized, important constraints, including present water-right structures and serious deficiencies in information, must be overcome.

  4. Quantifying time-varying ground-water discharge and recharge in wetlands of the northern Florida Everglades

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.

    2000-01-01

    Developing a more thorough understanding of water and chemical budgets in wetlands depends in part on our ability to quantify time-varying interactions between ground water and surface water. We used a combined water and solute mass balance approach to estimate time-varying ground-water discharge and recharge in the Everglades Nutrient Removal project (ENR), a relatively large constructed wetland (1544 hectare) built for removing nutrients from agricultural drainage in the norther Everglades in South Florida, USA. Over a 4-year period (1994 through 1998), ground-water recharge averaged 13.4 hectare-meter per day (ha-m/day) or 0.9 cm/day, which is approximately 31% of surface water pumped into the ENR for treatment. In contrast, ground-water discharge was much smaller (1.4 ha-m/day, or 0.09 cm/day, or 2.8% of water input to ENR for treatment). Using a water-balance approach alone only allowed net ground-water exchange (discharge - recharge) to be estimated (-12 ?? 2.4 ha-ma/day). Disharge and recharge were individually determined by combining a chloride mass balance with the water balance. For a variety of reasons, the ground-water discharge estimated by the combined mass balance approach was not reliable (1.4 ?? 37 ha-m/day). As a result, ground-water interactions could only be reliably estimated by comparing the mass-balance results with other independent approaches, including direct seepage-meter measurements and previous estimates using ground-water modeling. All three independent approaches provided similar estimates of average ground-water recharge, ranging from 13 to 14 ha-m/day. There was also relatively good agreement between ground-water discharge estimates for the mass balance and seepage meter methods, 1.4 and 0.9 ha-m/day, respectively. However, ground-water-flow modeling provided an average discharge estimate that was approximately a factor of four higher (5.4 ha-m/day) than the other two methods. Our study developed an initial understanding of how the

  5. MODFLOW-Based Coupled Surface Water Routing and Groundwater-Flow Simulation.

    PubMed

    Hughes, J D; Langevin, C D; White, J T

    2015-01-01

    In this paper, we present a flexible approach for simulating one- and two-dimensional routing of surface water using a numerical surface water routing (SWR) code implicitly coupled to the groundwater-flow process in MODFLOW. Surface water routing in SWR can be simulated using a diffusive-wave approximation of the Saint-Venant equations and/or a simplified level-pool approach. SWR can account for surface water flow controlled by backwater conditions caused by small water-surface gradients or surface water control structures. A number of typical surface water control structures, such as culverts, weirs, and gates, can be represented, and it is possible to implement operational rules to manage surface water stages and streamflow. The nonlinear system of surface water flow equations formulated in SWR is solved by using Newton methods and direct or iterative solvers. SWR was tested by simulating the (1) Lal axisymmetric overland flow, (2) V-catchment, and (3) modified Pinder-Sauer problems. Simulated results for these problems compare well with other published results and indicate that SWR provides accurate results for surface water-only and coupled surface water/groundwater problems. Results for an application of SWR and MODFLOW to the Snapper Creek area of Miami-Dade County, Florida, USA are also presented and demonstrate the value of coupled surface water and groundwater simulation in managed, low-relief coastal settings. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Use of RORA for Complex Ground-Water Flow Conditions

    USGS Publications Warehouse

    Rutledge, A.T.

    2004-01-01

    The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.

  7. Geohydrologic framework of the Roswell ground-water basin, Chaves and Eddy Counties, New Mexico

    USGS Publications Warehouse

    Welder, G.E.

    1983-01-01

    This report describes the geohydrology of the Roswell ground-water basin and shows the long-term hydrostatic-head changes in the aquifers. The Roswell ground-water basin consists of a carbonate artesian aquifer overlain by a leaky confining bed, which, in turn is overlain by an alluvial water-table aquifer. The water-table aquifer is hydraulically connected to the Pecos River. Ground-water pumpage from about 1,500 wells in the basin was about 378,000 acre-feet in 1978. Irrigation use on about 122,000 acres accounted for 95 percent of that pumpage.

  8. Impact of river restoration on groundwater - surface water - interactions

    NASA Astrophysics Data System (ADS)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  9. Ground-Water Resources of Saipan, Commonwealth of the Northern Meriana Islands

    USGS Publications Warehouse

    Carruth, Rob

    2003-01-01

    Introduction Saipan has an area of 48 mi2 and is the largest of the 14 islands in the Commonwealth of the Northern Mariana Islands (CNMI). The island is formed by volcanic rocks overlain by younger limestones. The island is situated in the western Pacific Ocean at latitude 15?12'N and longitude 145?45'E, about 3,740 mi west-southwest of Honolulu and midway between Japan and New Guinea (fig. 1). The climate on Saipan is classified as tropical marine with an average temperature of 80?F. The natural beauty of the island and surrounding waters are the basis for a growing tourist-based economy. The resulting rapid development and increases in resident and tourist populations have added stresses to the island's limited water supplies. Freshwater resources on Saipan are not readily observable because, aside from the abundant rainfall, most freshwater occurs as ground water. Fresh ground water is found in aquifers composed mainly of fragmental limestones. About 90 percent of the municipal water supply comes from 140 shallow wells that withdraw about 11 Mgal/d. The chloride concentration of water withdrawn from production wells ranges from less than 100 mg/L for wells in the Akgak and Capital Hill well fields, to over 2,000 mg/L from wells in the Puerto Rico, Maui IV, and Marpi Quarry well fields. The chloride concentrations and rates of ground-water production are not currently adequate for providing island residents with a potable 24-hour water supply and future demands are expected to be higher. To better understand the ground-water resources of the island, and water resources on tropical islands in general, the U.S. Geological Survey (USGS) entered into a cooperative program with the Commonwealth Utilities Corporation (CUC). The objective of the program, initiated in 1989, is to assess the ground-water resources of Saipan and to make hydrologic information available to the CUC in support of their ongoing efforts to improve the quality and quantity of the municipal water

  10. Water Resources of the Ground-Water System in the Unconsolidated Deposits of the Colville River Watershed, Stevens County, Washington

    USGS Publications Warehouse

    Kahle, Sue C.; Longpre, Claire I.; Smith, Raymond R.; Sumioka, Steve S.; Watkins, Anni M.; Kresch, David L.

    2003-01-01

    A study of the water resources of the ground-water system in the unconsolidated deposits of the Colville River Watershed provided the Colville River Watershed Planning Team with an assessment of the hydrogeologic framework, preliminary determinations of how the shallow and deeper parts of the ground-water system interact with each other and the surface-water system, descriptions of water-quantity characteristics including water-use estimates and an estimated water budget for the watershed, and an assessment of further data needs. The 1,007-square-mile watershed, located in Stevens County in northeastern Washington, is closed to further surface-water appropriations throughout most of the basin during most seasons. The information provided by this study will assist local watershed planners in assessing the status of water resources within the Colville River Watershed (Water Resources Inventory Area 59). The hydrogeologic framework consists of glacial and alluvial deposits that overlie bedrock and are more than 700 feet thick in places. Twenty-six hydrogeologic sections were constructed, using a map of the surficial geology and drillers' logs for more than 350 wells. Seven hydrogeologic units were delineated: the Upper outwash aquifer, the Till confining unit, the Older outwash aquifer, the Colville Valley confining unit, the Lower aquifer, the Lower confining unit, and Bedrock. Synoptic stream discharge measurements made in September 2001 identified gaining and losing reaches over the unconsolidated valley deposits. During the September measurement period, the Colville River gained flow from the shallow ground-water system near its headwaters to the town of Valley and lost flow to the shallow ground-water system from Valley to Chewelah. Downstream from Chewelah, the river generally lost flow, but the amounts lost were small and within measurement error. Ground-water levels indicate that the Lower aquifer and the shallow ground-water system may act as fairly

  11. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, T.E.; Franke, O.L.; Bennett, G.D.

    1984-01-01

    The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)

  12. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    NASA Astrophysics Data System (ADS)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  13. Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures

    NASA Astrophysics Data System (ADS)

    Rau, Gabriel C.; Halloran, Landon J. S.; Cuthbert, Mark O.; Andersen, Martin S.; Acworth, R. Ian; Tellam, John H.

    2017-09-01

    Ephemeral and intermittent flow in dryland stream channels infiltrates into sediments, replenishes groundwater resources and underpins riparian ecosystems. However, the spatiotemporal complexity of the transitory flow processes that occur beneath such stream channels are poorly observed and understood. We develop a new approach to characterise the dynamics of surface water-groundwater interactions in dryland streams using pairs of temperature records measured at different depths within the streambed. The approach exploits the fact that the downward propagation of the diel temperature fluctuation from the surface depends on the sediment thermal diffusivity. This is controlled by time-varying fractions of air and water contained in streambed sediments causing a contrast in thermal properties. We demonstrate the usefulness of this method with multi-level temperature and pressure records of a flow event acquired using 12 streambed arrays deployed along a ∼ 12 km dryland channel section. Thermal signatures clearly indicate the presence of water and characterise the vertical flow component as well as the occurrence of horizontal hyporheic flow. We jointly interpret thermal signatures as well as surface and groundwater levels to distinguish four different hydrological regimes: [A] dry channel, [B] surface run-off, [C] pool-riffle sequence, and [D] isolated pools. The occurrence and duration of the regimes depends on the rate at which the infiltrated water redistributes in the subsurface which, in turn, is controlled by the hydraulic properties of the variably saturated sediment. Our results have significant implications for understanding how transitory flows recharge alluvial sediments, influence water quality and underpin dryland ecosystems.

  14. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  15. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1993 through September 1995

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1993 through September 1995, although the report focuses on hydrologic events from July through September 1995. Cumulative rainfall for July through September 1995 was about 15 inches which is 32 percent less than the mean cumulative rainfall of about 22 inches for July through September. July and August are within the annual dry season, while September is the start of the annual wet season. Mean cumulative rainfall is calculated for the fixed base period 1951-90. Ground-water withdrawal during July through September 1995 averaged 888,500 gallons per day. Withdrawal for the same 3 months in 1994 averaged 919,400 gallons per day. Patterns of withdrawal during the third quarter of 1995 did not change significantly since 1993 at all five ground-water production areas. At the end of September 1995, the chloride concentration of the composite water supply was 51 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from July through September 1995 ranged between 42 and 68 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations continued to increase since April 1995, with water from the deepest monitoring wells increasing in chloride concentration by as much as 2,000 milligrams per liter. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water-supply purposes in April 1992. The remaining six wells are being used to hydraulically divert fuel migration away from water-supply wells by recirculating about 150,000 gallons of water each day.

  16. Interbasin groundwater flow and groundwater interaction with surface water in a lowland rainforest, Costa Rica: A review

    NASA Astrophysics Data System (ADS)

    Genereux, David P.; Jordan, Michael

    2006-04-01

    This paper reviews work related to interbasin groundwater flow (naturally occurring groundwater flow beneath watershed topographic divides) into lowland rainforest watersheds at La Selva Biological Station in Costa Rica. Chemical mixing calculations (based on dissolved chloride) have shown that up to half the water in some streams and up to 84% of the water in some riparian seeps and wells is due to high-solute interbasin groundwater flow (IGF). The contribution is even greater for major ions; IGF accounts for well over 90% of the major ions at these sites. Proportions are highly variable both among watersheds and with elevation within the same watershed (there is greater influence of IGF at lower elevations). The large proportion of IGF found in water in some riparian wetlands suggests that IGF is largely responsible for maintaining these wetlands. δ 18O data support the conclusions from the major ion data. Annual water and major ion budgets for two adjacent watersheds, one affected by IGF and the other not, showed that IGF accounted for two-thirds of the water input and 92-99% of the major ion input (depending on the major ion in question) to the former watershed. The large (in some cases, dominating) influence of IGF on watershed surface water quantity and quality has important implications for stream ecology and watershed management in this lowland rainforest. Because of its high phosphorus content, IGF increases a variety of ecological variables (algal growth rates, leaf decay rate, fungal biomass, invertebrate biomass, microbial respiration rates on leaves) in streams at La Selva. The significant rates of IGF at La Selva also suggest the importance of regional (as opposed to small-scale local) water resource planning that links lowland watersheds with regional groundwater. IGF is a relatively unexplored and potentially critical factor in the conservation of lowland rainforest.

  17. User interface for ground-water modeling: Arcview extension

    USGS Publications Warehouse

    Tsou, Ming‐shu; Whittemore, Donald O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  18. Water use, ground-water recharge and availability, and quality of water in the Greenwich area, Fairfield County, Connecticut and Westchester County, New York, 2000-2002

    USGS Publications Warehouse

    Mullaney, John R.

    2004-01-01

    Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2)) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water- flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse- grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge

  19. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    USGS Publications Warehouse

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  20. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  1. Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report

    USGS Publications Warehouse

    Grannemann, Norman G.; Van Stempvoort, Dale

    2016-01-01

    When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes

  2. Characterization of Ground-Water Quality, Upper Republican Natural Resources District, Nebraska, 1998-2001

    USGS Publications Warehouse

    Frankforter, Jill D.; Chafin, Daniele T.

    2004-01-01

    Nearly all rural inhabitants and livestock in the Upper Republican Natural Resources District (URNRD) in southwestern Nebraska use ground water that can be affected by elevated nitrate concentrations. The development of ground-water irrigation in this area has increased the vulnerability of ground water to the introduction of fertilizers and other agricultural chemicals. In 1998, the U.S. Geological Survey, in cooperation with the Upper Republican Natural Resources District, began a study to characterize the quality of ground water in the Upper Republican Natural Resources District area with respect to physical properties and concentrations of major ions, coliform bacteria, nitrate, and pesticides, and to assess the presence of nitrogen concentrations in the unsaturated zone. At selected well sites, the ground-water characterization also included tritium and nitrogen-isotope analyses to provide information about the approximate age of the ground water and potential sources of nitrogen detected in ground-water samples, respectively. In 1998, ground-water samples were collected from 101 randomly selected domestic-well sites. Of the 101 samples collected, 26 tested positive for total coliform bacteria, exceeding the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) of zero colonies. In 1999, ground-water samples were collected from 31 of the 101 well sites, and 16 tested positive for coliform bacteria. Nitrates were detected in ground water from all domestic-well samples and from all but four of the irrigation-well samples collected from 1998 to 2001. Eight percent of the domestic-well samples and 3 percent of the irrigation-well samples had nitrate concentrations exceeding the U.S. Environmental Protection Agency's MCL for drinking water of 10 milligrams per liter. Areas with nitrate concentrations exceeding 6 milligrams per liter, the URNRD's ground-water management-plan action level, were found predominantly in north-central Chase, western and

  3. A nested observation and model approach to non linear groundwater surface water interactions.

    NASA Astrophysics Data System (ADS)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential

  4. Impact of groundwater markets in India on water use efficiency: a data envelopment analysis approach.

    PubMed

    Manjunatha, A V; Speelman, S; Chandrakanth, M G; Van Huylenbroeck, G

    2011-11-01

    In the hard rock areas of India, overdraft of groundwater has led to negative externalities. It increased costs of groundwater irrigation and caused welfare losses. At the same time informal groundwater markets are slowly emerging and are believed to improve water distribution and to increase water use efficiency in the irrigation sector. These claims are evaluated in this study. For this purpose data was collected from a sample containing three different groups of water users: water sellers, water buyers and a control group of non-traders. First the socio-economic characteristics of these groups are compared. Then the efficiency of water use of the three groups is studied using Data Envelopment Analysis. The results indicate that groundwater markets provide resource poor farmers access to irrigation water, giving them the opportunity to raise their productivity. Water buyers are furthermore shown to be most efficient in their water use, while water sellers are also shown to be more efficient than the control group. The differences in efficiency between the groups are statistically significant. The demonstrated potential of groundwater markets to improve the efficiency of water use and to increase equity in resource access should be taken into account by the Indian government when deciding on their attitude towards the emerging groundwater markets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Urban water supply infrastructure planning under predictive groundwater uncertainty: Bayesian updating and flexible design

    NASA Astrophysics Data System (ADS)

    Fletcher, S.; Strzepek, K.

    2017-12-01

    Many urban water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply, driven by short-term climate variability and long-term climate change. These uncertainties are often exacerbated in groundwater-dependent water systems due to the extra difficulty in measuring groundwater storage, recharge, and sustainable yield. Groundwater models are typically under-parameterized due to the high data requirements for calibration and limited data availability, leading to uncertainty in the models' predictions. We develop an integrated approach to urban water supply planning that combines predictive groundwater uncertainty analysis with adaptive water supply planning using multi-stage decision analysis. This allows us to compare the value of collecting additional groundwater data and reducing predictive uncertainty with the value of using water infrastructure planning that is flexible, modular, and can react quickly in response to unexpected changes in groundwater availability. We apply this approach to a case from Riyadh, Saudi Arabia. Riyadh relies on fossil groundwater aquifers and desalination for urban use. The main fossil aquifers incur minimal recharge and face depletion as a result of intense withdrawals for urban and agricultural use. As the water table declines and pumping becomes uneconomical, Riyadh will have to build new supply infrastructure, decrease demand, or increase the efficiency of its distribution system. However, poor groundwater characterization has led to severe uncertainty in aquifer parameters such as hydraulic conductivity, and therefore severe uncertainty in how the water table will respond to pumping over time and when these transitions will be necessary: the potential depletion time varies from approximately five years to 100 years. This case is an excellent candidate for flexible planning both because of its severity and the potential for

  6. Influence of intermittent water releases on groundwater chemistry at the lower reaches of the Tarim River, China.

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun

    2009-11-01

    Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.

  7. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest

  8. Future Climate Impacts on Crop Water Demand and Groundwater Longevity in Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Sahoo, S.; Elliott, J. W.; Foster, I.

    2016-12-01

    Improving groundwater management practices under future drought conditions in agricultural regions requires three steps: 1) estimating the impacts of climate and drought on crop water demand, 2) projecting groundwater availability given climate and demand forcing, and 3) using this information to develop climate-smart policy and water use practices. We present an innovative combination of models to address the first two steps, and inform the third. Crop water demand was simulated using biophysical crop models forced by multiple climate models and climate scenarios, with one case simulating climate adaptation (e.g. modify planting or harvest time) and another without adaptation. These scenarios were intended to represent a range of drought projections and farm management responses. Nexty, we used projected climate conditions and simulated water demand across the United States as inputs to a novel machine learning-based groundwater model. The model was applied to major agricultural regions relying on the High Plains and Mississippi Alluvial aquifer systems in the US. The groundwater model integrates input data preprocessed using single spectrum analysis, mutual information, and a genetic algorithm, with an artificial neural network model. Model calibration and test results indicate low errors over the 33 year model run, and strong correlations to groundwater levels in hundreds of wells across each aquifer. Model results include a range of projected groundwater level changes from the present to 2050, and in some regions, identification and timeframe of aquifer depletion. These results quantify aquifer longevity under climate and crop scenarios, and provide decision makers with the data needed to compare scenarios of crop water demand, crop yield, and groundwater response, as they aim to balance water sustainability with food security.

  9. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  10. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    PubMed

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  11. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China

    NASA Astrophysics Data System (ADS)

    Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen

    2018-03-01

    Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.

  12. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  13. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of wells that... at other wells will provide an indication of background ground-water quality that is as...

  14. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the uppermost aquifer (as defined in § 258.2) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may...; or (ii) Sampling at other wells will provide an indication of background ground-water quality that is...

  15. Selected ground-water data for Yucca Mountain region, southern Nevada and eastern California, through December 1994

    USGS Publications Warehouse

    Westenburg, C.L.; La Camera, R. J.

    1996-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented for calendar year 1994. Data collected prior to 1994 are graphically presented and data collected by other agencies (or as part of other programs) are included to further indicate variations of ground-water levels, discharges, and withdrawals through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of measured water-level altitudes for selected baseline periods and for calendar years 1992-94.

  16. Ground-water resources data for Warren County, Pennsylvania

    USGS Publications Warehouse

    Moore, M.E.; Buckwalter, T.F.

    1996-01-01

    This report presents lithologic, hydrologic, and chemical data collected during a study of the ground-water resources of Warren County, Pa. The study was conducted during 1983-90 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, and the Warren County Commissioners. The data include information on aquifers, water levels, and yields for about 600 wells, and records for 57 springs. Descriptions of aquifer lithology and chemical analyses of water samples collected at well and spring sites are provided. Chemical analyses include major cations, anions, nutrients, and selected trace elements. Also included are data on concentrations of volatile organic compounds, dissolved methane, ethane, propane, and total organic carbon. The report presents a summary of the source and significance of selected chemical constituents in ground water, a listing of Federal drinking water standards, and information on selected methods of removing or reducing concentrations of undesirable chemical constituents from water. Daily ground- water levels for five observation wells are tabulated. Maps of Warren County show the location of townships, boroughs, and 7-1/2-minute quadrangles. Data-collection sites are shown on 18 figures. A glossary is provided for readers unfamiliar with ground-water terminology.

  17. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  18. High Plains Regional Ground-water Study web site

    USGS Publications Warehouse

    Qi, Sharon L.

    2000-01-01

    Now available on the Internet is a web site for the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program-High Plains Regional Ground-Water Study. The purpose of the web site is to provide public access to a wide variety of information on the USGS investigation of the ground-water resources within the High Plains aquifer system. Typical pages on the web site include the following: descriptions of the High Plains NAWQA, the National NAWQA Program, the study-area setting, current and past activities, significant findings, chemical and ancillary data (which can be downloaded), listing and access to publications, links to other sites about the High Plains area, and links to other web sites studying High Plains ground-water resources. The High Plains aquifer is a regional aquifer system that underlies 174,000 square miles in parts of eight States (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming). Because the study area is so large, the Internet is an ideal way to provide project data and information on a near real-time basis. The web site will be a collection of living documents where project data and information are updated as it becomes available throughout the life of the project. If you have an interest in the High Plains area, you can check this site periodically to learn how the High Plains NAWQA activities are progressing over time and access new data and publications as they become available.

  19. Using SWAT-MODFLOW to simulate groundwater flow and groundwater-surface water interactions in an intensively irrigated stream-aquifer system

    NASA Astrophysics Data System (ADS)

    Wei, X.; Bailey, R. T.

    2017-12-01

    Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.

  20. Ground-water data, Sevier Desert, Utah

    USGS Publications Warehouse

    Mower, Reed W.; Feltis, Richard D.

    1964-01-01

    This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-64 by the U.S. Geological survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Sevier Desert, in Juab and Millard Counties, Utah. The interpretive material will be published in a companion report by R. W. Mower and R. D. Feltis.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figures. From table 1 he can note such things as depth, diameter, water level, yield, use of water, temperature of water, and depth of perforations. By comparing the depth of perforations with the drillers' logs in table 3 he can note the type of material that yields water to the wells. Table 2 and figure 2 show the historic fluctuations and trends of water levels in the vicinity. From table 4 he can note the chemical quality of the water from wells in the vicinity. Table 5 shows the amount of water discharged during 1951-63 from the pumped irrigation, public supply, and industrial wells. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the state Engineer. If the State Engineer believes unappropriated water is available, the application may be approved after minimum statutory requirements have been satisfied.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.

  1. Residence time distributions of artificially infiltrated groundwater used for drinking water production

    NASA Astrophysics Data System (ADS)

    Popp, A. L.; Marçais, J.; Moeck, C.; Brennwald, M. S.; Kipfer, R.

    2017-12-01

    Public drinking water supply in urban areas is often challenging due to exposure to potential contamination and high water demands. At our study site, a drinking water supply field in Switzerland, managed aquifer recharge (MAR) was implemented to overcome an increasing water demand and decreasing water quality. Water from the river Rhine is put on a system of channels and ponds to artificially infiltrate and hence, increase the natural groundwater availability. The groundwater system consists of two overlying aquifers, with hydraulic connections related to fractures and faults. The deeper aquifer contains contaminants, which possibly originate from nearby landfills and industrial areas. The operating water works aims to pump recently infiltrated water only. However, we suspect that the pumped water contains a fraction of old water due to the fractured zones which serve as hydraulic connection between the two aquifers. With this study, we aim to better understand the mixing patterns between recently infiltrated water and old groundwater to evaluate the risk for contamination of the system. To reach our objective, we used a set of gas tracers (222Rn, 3H/3He, 4He) from fifteen wells distributed throughout the area to estimate the residence time distribution (RTD) of each well. We calibrated the RTD with a Binary Mixing Model, where the fraction of young groundwater is assumed to follow a Piston Flow Model. The older groundwater fraction is calibrated with a Dispersion Model. Our results reflect the heterogeneity of the system with some abstraction wells containing young water only and others showing an admixture of old water which can only be explained by a connection to the deeper aquifer. We also show that our results on calibrated RTDs are in accordance with other geochemical data such as electrical conductivity, major ions and pH. Our results will contribute to a sound conceptual flow and transport understanding and will help to optimize the water supply system.

  2. Ground-water recharge in the arid and semiarid southwestern United States - Climatic and geologic framework: Chapter A in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Stonestrom, David A.; Harrill, James R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly but irregularly control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of multidecadal droughts unlike any in the modern instrumental record. Anthropogenically induced climate change likely will reduce ground-water recharge through diminished snowpack at higher elevations, and perhaps through increased drought. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Land-use modifications influence ground-water recharge directly through vegetation, irrigation, and impermeable area, and indirectly through climate change. High ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive

  3. The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water

    USGS Publications Warehouse

    Winter, Thomas C.; LaBaugh, James W.; Rosenberry, Donald O.

    1988-01-01

    The hydraulic potentiomanometer described herein consists of a potentiometer connected to a manometer by a flexible tube. The device is used to directly measure the direction of seepage as well as the hydraulic-head difference between groundwater and surface water. The device works most effectively in sandy materials. For accurate measurements the device must be free of air leaks.

  4. Groundwater, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona-2008-2009

    USGS Publications Warehouse

    Macy, Jamie P.

    2010-01-01

    The N aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area, which is typically about 6 to 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2008 to September 2009. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2008, total groundwater withdrawals were 4,110 acre-feet, industrial withdrawals were 1,210 acre-ft, and municipal withdrawals were 2,900 acre-ft. Total withdrawals during 2008 were about 44 percent less than total withdrawals in 2005. From 2007 to 2008 total withdrawals decreased by 4 percent, industrial withdrawals increased by approximately 3 percent, but total municipal withdrawals decreased by 6 percent. From 2008 to 2009, annually measured water levels in the Black Mesa area declined in 8 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 11 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was -0.2 feet. From the prestress period (prior to 1965) to 2009, the median water-level change for 34 wells in both the confined and unconfined area was -11.8 feet. Also, from the prestress period to 2009, the median water-level changes were -1

  5. Groundwater, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2007-2008

    USGS Publications Warehouse

    Macy, Jamie P.

    2009-01-01

    The N aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area, which is typically about 6 to 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2007 to September 2008. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2007, total groundwater withdrawals were 4,270 acre-feet, industrial withdrawals were 1,170 acre-ft, and municipal withdrawals were 3,100 acre-ft. Total withdrawals during 2007 were about 41 percent less than total withdrawals in 2005. From 2006 to 2007, however, total withdrawals increased by 4 percent, industrial withdrawals decreased by approximately 2 percent, and total municipal withdrawals increased by 7 percent. From 2007 to 2008, annually measured water levels in the Black Mesa area declined in 6 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was -0.2 feet. Water levels declined in 9 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was -0.2 feet. From the prestress period (prior to 1965) to 2008, the median water-level change for 33 wells in both the confined and unconfined area was -12.9 feet. Median water-level changes were -1.0 feet for 15 wells measured in the unconfined areas and -33

  6. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    USGS Publications Warehouse

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate

  7. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  8. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  9. Numerical simulation of ground-water flow in lower Satus Creek Basin, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Prych, E.A.

    1983-01-01

    A multilayer numerical model of steady-state ground-water flow in lower Satus Creek basin was constructed, calibrated using time-averaged data, and used to estimate the long-term effects of proposed irrigation-water management plans on ground-water levels in the area. Model computations showed that irrigation of new lands in the Satus uplands would raise ground-water levels in lower Satus Creek basin and thereby increase the size of the waterlogged areas. The model also demonstrated that pumping water from wells, reducing the amount of irrigation water used in the lowlands, and stopping leakage from Satus No. 2 and 3 Pump Canals were all effective methods to alleviate present waterlogging in some parts of the basin and to counteract some of the anticipated ground-water-level rises that would be caused by irrigating the uplands. The proposed changes in water use affected model-computed ground-water levels most in the eastern part of the basin between Satus No. 2 and No. 3 Pump Canals. The effects on ground-water levels in the western part of the basin between Satus Creek and Satus No. 2 Pump Canal were smaller. (USGS)

  10. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    NASA Astrophysics Data System (ADS)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-06-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  11. Overview of ground-water recharge study sites

    USGS Publications Warehouse

    Constantz, Jim; Adams, Kelsey S.; Stonestrom, David A.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Multiyear studies were done to examine meteorologic and hydrogeologic controls on ephemeral streamflow and focused ground-water recharge at eight sites across the arid and semiarid southwestern United States. Campaigns of intensive data collection were conducted in the Great Basin, Mojave Desert, Sonoran Desert, Rio Grande Rift, and Colorado Plateau physiographic areas. During the study period (1997 to 2002), the southwestern region went from wetter than normal conditions associated with a strong El Niño climatic pattern (1997–1998) to drier than normal conditions associated with a La Niña climatic pattern marked by unprecedented warmth in the western tropical Pacific and Indian Oceans (1998–2002). The strong El Niño conditions roughly doubled precipitation at the Great Basin, Mojave Desert, and Colorado Plateau study sites. Precipitation at all sites trended generally lower, producing moderate- to severe-drought conditions by the end of the study. Streamflow in regional rivers indicated diminishing ground-water recharge conditions, with annual-flow volumes declining to 10–46 percent of their respective long-term averages by 2002. Local streamflows showed higher variability, reflecting smaller scales of integration (in time and space) of the study-site watersheds. By the end of the study, extended periods (9–15 months) of zero or negligible flow were observed at half the sites. Summer monsoonal rains generated the majority of streamflow and associated recharge in the Sonoran Desert sites and the more southerly Rio Grande Rift site, whereas winter storms and spring snowmelt dominated the northern and westernmost sites. Proximity to moisture sources (primarily the Pacific Ocean and Gulf of California) and meteorologic fluctuations, in concert with orography, largely control the generation of focused ground-water recharge from ephemeral streamflow, although other factors (geology, soil, and vegetation) also are important. Watershed area correlated weakly

  12. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...

  13. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...

  14. Simulation of ground-water flow in the Vevay Township area, Ingham County, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Simard, Andreanne

    2004-01-01

    Ground water is the primary source of water for domestic, public-supply, and industrial use within the Tri-County region that includes Clinton, Eaton, and Ingham Counties in Michigan. Because of the importance of this ground-water resource, numerous communities, including the city of Mason in Ingham County, have begun local Wellhead Protection Programs. In these programs, communities protect their groundwater resource by identifying the areas that contribute water to production wells and potential sources of contamination, and by developing methods to manage and minimize threats to the water supply. In addition, some communities in Michigan are concerned about water availability, particularly in areas experiencing water-level declines in the vicinity of quarry dewatering operations. In areas where Wellhead Protection Programs are implemented and there are potential threats to the water supply, residents and communities need adequate information to protect the water supply.In 1996, a regional ground-water-flow model was developed by the U.S. Geological Survey to simulate ground-water flow in Clinton, Eaton, and Ingham Counties. This model was developed primarily to simulate the bedrock ground-waterflow system; ground-water flow in the unconsolidated glacial sediments was simulated to support analysis of flow in the underlying bedrock Saginaw aquifer. Since its development in 1996, regional model simulations have been conducted to address protection concerns and water availability questions of local water-resources managers. As a result of these continuing model simulations, additional hydrogeologic data have been acquired in the Tri-County region that has improved the characterization of the simulated ground-water-flow system and improved the model calibration. A major benefit of these updates and refinements is that the regional Tri-County model continues to be a useful tool that improves the understanding of the ground-water-flow system in the Tri-County region

  15. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    USGS Publications Warehouse

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  16. A Study on the Surface and Subsurface Water Interaction Based on the Groundwater Recession Curve

    NASA Astrophysics Data System (ADS)

    Wang, S. T.; Chen, Y. W.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.

    2017-12-01

    The interaction of surface to subsurface water is an important issue for groundwater resources assessment and management. The influences of surface water to groundwater are mainly through the rainfall recharge, river recharge and discharge and other boundary sources. During a drought period, the interaction of river and groundwater may be one of the main sources of groundwater level recession. Therefore, this study explores the interaction of surface water to groundwater via the groundwater recession. During drought periods, the pumping and river interaction together are the main mechanisms causing the recession of groundwater level. In principle, larger gradient of the recession curve indicates more groundwater discharge and it is an important characteristic of the groundwater system. In this study, to avoid time-consuming manual analysis, the Python programming language is used to develop a statistical analysis model for exploring the groundwater recession information. First, the slopes of the groundwater level hydrograph at every time step were computed for each well. Then, for each well, the represented slope to each groundwater level was defined as the slope with 90% exceedance probability. The relationship between the recession slope and the groundwater level can then be obtained. The developed model is applied to Choushui River Alluvial Fan. In most wells, the results show strong positive correlations between the groundwater levels and the absolute values of the recession slopes.

  17. Residence times and mixing of water in river banks: implications for recharge and groundwater-surface water exchange

    NASA Astrophysics Data System (ADS)

    Unland, N. P.; Cartwright, I.; Cendón, D. I.; Chisari, R.

    2014-12-01

    Bank exchange processes within 50 m of the Tambo River, southeast Australia, have been investigated through the combined use of 3H and 14C. Groundwater residence times increase towards the Tambo River, which suggests the absence of significant bank storage. Major ion concentrations and δ2H and δ18O values of bank water also indicate that bank infiltration does not significantly impact groundwater chemistry under baseflow and post-flood conditions, suggesting that the gaining nature of the river may be driving the return of bank storage water back into the Tambo River within days of peak flood conditions. The covariance between 3H and 14C indicates the leakage and mixing between old (~17 200 years) groundwater from a semi-confined aquifer and younger groundwater (<100 years) near the river, where confining layers are less prevalent. It is likely that the upward infiltration of deeper groundwater from the semi-confined aquifer during flooding limits bank infiltration. Furthermore, the more saline deeper groundwater likely controls the geochemistry of water in the river bank, minimising the chemical impact that bank infiltration has in this setting. These processes, coupled with the strongly gaining nature of the Tambo River are likely to be the factors reducing the chemical impact of bank storage in this setting. This study illustrates the complex nature of river groundwater interactions and the potential downfall in assuming simple or idealised conditions when conducting hydrogeological studies.

  18. Ground-water recharge in the arid and semiarid southwestern United States

    USGS Publications Warehouse

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge

  19. Assessing Groundwater Contamination Vulnerability at Public Water Supply Wells in California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Hudson, B.; Dooher, B. P.; Leif, R.; Eaton, G. F.; Davisson, L.

    2001-12-01

    The California Aquifer Susceptibility project, sponsored by the California State Water Resources Control Board, uses a probabilistic approach to assess the vulnerability of public water supply wells to contamination by anthropogenic compounds. Sources of contamination to groundwater occur near the earth's surface, and have been present mostly since WWII. Therefore, wells that receive water that has recharged in the recent past are more likely to intercept contaminants transported by advection. The parameters that the study uses to rank wells according to vulnerability are groundwater age dates (using the tritium/helium method), stable isotopes of the water molecule (for water source determination), and analysis of low level Volatile Organic Compounds (VOCs). Results of a pilot project in which 300 public water supply wells were tested for vulnerability will be presented. Basins sampled for the study include the Livermore Valley, Santa Clara Valley, and the Sacramento Basin. Methyl-tertiary-Butyl Ether (MTBE) may be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Low-level detections of other VOCs such as TCE and PCE can give an early warning of a contaminant plume. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and associated contaminants. Examination of these parameters also helps identify 'short circuits', whereby e.g., loss of integrity in well casing allows near surface contamination to reach 'old' (recharged >50 years ago) water. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

  20. Flow path oscillations in transient ground-water simulations of large peatland systems

    USGS Publications Warehouse

    Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.

    2006-01-01

    Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.