Sample records for air water interactions

  1. Protein-lipid interactions at the air/water interface.

    PubMed

    Lad, Mitaben D; Birembaut, Fabrice; Frazier, Richard A; Green, Rebecca J

    2005-10-07

    Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.

  2. Interaction of L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface.

    PubMed

    Griffith, Elizabeth C; Perkins, Russell J; Telesford, Dana-Marie; Adams, Ellen M; Cwiklik, Lukasz; Allen, Heather C; Roeselová, Martina; Vaida, Veronica

    2015-07-23

    The interaction of L-phenylalanine with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-water interface was explored using a combination of experimental techniques and molecular dynamics (MD) simulations. By means of Langmuir trough methods and Brewster angle microscopy, L-phenylalanine was shown to significantly alter the interfacial tension and the surface domain morphology of the DPPC film. In addition, confocal microscopy was used to explore the aggregation state of L-phenylalanine in the bulk aqueous phase. Finally, MD simulations were performed to gain molecular-level information on the interactions of L-phenylalanine and DPPC at the interface. Taken together, these results show that L-phenylalanine intercalates into a DPPC film at the air-water interface, thereby affecting the surface tension, phase morphology, and ordering of the DPPC film. The results are discussed in the context of biological systems and the mechanism of diseases such as phenylketonuria.

  3. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  5. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface

  6. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  7. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water

  8. Ligand interaction with the purified serotonin transporter in solution and at the air/water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faivre, V.; Manivet, P.; Callaway, J.C.

    2000-06-01

    The purified serotonin transporter (SERT) was spread at the air/water interface and the effects both of its surface density and of the temperature on its interfacial behavior were studied. The recorded isotherms evidenced the existence of a stable monolayer undergoing a lengthy rearrangement. SERT/ligand interactions appeared to be dependent on the nature of the studied molecules. Whereas an unrelated drug (chlorcyclizine) did not bind to the spread SERT, it interacted with its specific ligands. Compared to heterocyclic drugs, for which binding appeared to be concentration-dependent, a 'two-site' mechanism was evidenced for pinoline and imipramine.

  9. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

    PubMed

    McCaffrey, Debra L; Nguyen, Son C; Cox, Stephen J; Weller, Horst; Alivisatos, A Paul; Geissler, Phillip L; Saykally, Richard J

    2017-12-19

    The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN - ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

  10. Field Observations of Coastal Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-12-01

    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  11. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.

    PubMed

    Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo

    2015-07-07

    Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.

  12. Long-Range Attractive and Repulsive Interactions between Colloidal Particles at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Gómez-Guzmán, Oscar; Ruiz-García, Jaime

    2001-03-01

    In the last few years there has been evidence of long-range attractive interactions between colloidal particles trapped between glass plates, where the plates separation is a few particle’s diameter.[1,2,3] In these experiments it is believe that the glass walls play an important role for the observed attractions. Colloidal particles trapped at the air water interface show the formation of different 2-D colloidal patterns such as foams, clusters and chains,[4,5,6,7] whose formation can be taken as an evidence of long range attractive interaction. Here, we present measurements of the pair interaction potential between 0.5 µm colloidal particles at the air/water interface. The potential shows an attractive secondary minimum at about 1.9s, where s is the particle’s diameter, and a secondary repulsive maximum at longer distances. Surprisingly, the position of the secondary well is at a position similar to those found on the colloidal systems trapped between glass plates. It is possible that in our colloidal system the interface plays the role of a glass plate. However, we do not have a clear explanation on the origin of the attractive component of the interaction potential. 1. G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994) 2. M. D. Carbajal-Tinoco, F. Castro-Roman and J. L. Arauz-Lara, Phys. Rev. E 53, 3745 (1996) 3. J. C. Croker and D. G. Grier, Phys. Rev. Lett. 77, 1897 (1996) 4. J. Ruiz-Garcia, R. Gámez-Corrales and B. I. Ivlev, Physica A 236, 97 (1997) 5. J. Ruiz-Garcia, R. Gámez-Corrales and B. I. Ivlev, Phys. Rev. E 58, 660 (1998) 6. J. Ruiz-Garcia and B. I. Ivlev, Molec. Phys. 95, 371 (1998) 7. S. J. Mejia-Rosales, R. Gamez-Corrales, B. I. Ivlev and J. Ruiz-Garcia, Physica A 276, 30 (2000)

  13. Physicochemical processes in the indirect interaction between surface air plasma and deionized water

    NASA Astrophysics Data System (ADS)

    Liu, Z. C.; Liu, D. X.; Chen, C.; Li, D.; Yang, A. J.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2015-12-01

    One of the most central scientific questions for plasma applications in healthcare and environmental remediation is the chemical identity and the dose profile of plasma-induced reactive oxygen and nitrogen species (ROS/RNS) that can act on an object inside a liquid. A logical focus is on aqueous physicochemical processes near a sample with a direct link to their upstream gaseous processes in the plasma region and a separation gap from the liquid bulk. Here, a system-level modeling framework is developed for indirect interactions of surface air plasma and a deionized water bulk and its predictions are found to be in good agreement with the measurement of gas-phase ozone and aqueous long-living ROS/RNS concentrations. The plasma region is described with a global model, whereas the air gap and the liquid region are simulated with a 1D fluid model. All three regions are treated as one integrated entity and computed simultaneously. With experimental validation, the system-level modeling shows that the dominant aqueous ROS/RNS are long-living species (e.g. H2O2 aq, O3 aq, nitrite/nitrate, H+ aq). While most short-living gaseous species could hardly survive their passage to the liquid, aqueous short-living ROS/RNS are generated in situ through reactions among long-living plasma species and with water molecules. This plasma-mediated remote production of aqueous ROS/RNS is important for the abundance of aqueous HO2 aq, HO3 aq, OHaq and \\text{O}2- aq as well as NO2 aq and NO3 aq. Aqueous plasma chemistry offers a novel and significant pathway to activate a given biological outcome, as exemplified here for bacterial deactivation in plasma-activated water. Additional factors that may synergistically broaden the usefulness of aqueous plasma chemistry include an electric field by aqueous ions and liquid acidification. The system-modeling framework will be useful in assisting designs and analyses of future investigations of plasma-liquid and plasma-cell interactions.

  14. Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  15. Miscibility of binary monolayers at the air-water interface and interaction of protein with immobilized monolayers by surface plasmon resonance technique.

    PubMed

    Wang, Yuchun; Du, Xuezhong

    2006-07-04

    The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).

  16. Additive Interaction between Heterogeneous Environmental Quality Domains (Air, Water, Land, Sociodemographic, and Built Environment) on Preterm Birth.

    PubMed

    Grabich, Shannon C; Rappazzo, Kristen M; Gray, Christine L; Jagai, Jyotsna S; Jian, Yun; Messer, Lynne C; Lobdell, Danelle T

    2016-01-01

    Environmental exposures often occur in tandem; however, epidemiological research often focuses on singular exposures. Statistical interactions among broad, well-characterized environmental domains have not yet been evaluated in association with health. We address this gap by conducting a county-level cross-sectional analysis of interactions between Environmental Quality Index (EQI) domain indices on preterm birth in the Unites States from 2000 to 2005. The EQI, a county-level index constructed for the 2000-2005 time period, was constructed from five domain-specific indices (air, water, land, built, and sociodemographic) using principal component analyses. County-level preterm birth rates ( n  = 3141) were estimated using live births from the National Center for Health Statistics. Linear regression was used to estimate prevalence differences (PDs) and 95% confidence intervals (CIs) comparing worse environmental quality to the better quality for each model for (a) each individual domain main effect, (b) the interaction contrast, and (c) the two main effects plus interaction effect (i.e., the "net effect") to show departure from additivity for the all U.S. counties. Analyses were also performed for subgroupings by four urban/rural strata. We found the suggestion of antagonistic interactions but no synergism, along with several purely additive (i.e., no interaction) associations. In the non-stratified model, we observed antagonistic interactions, between the sociodemographic/air domains [net effect (i.e., the association, including main effects and interaction effects) PD: -0.004 (95% CI: -0.007, 0.000), interaction contrast: -0.013 (95% CI: -0.020, -0.007)] and built/air domains [net effect PD: 0.008 (95% CI 0.004, 0.011), interaction contrast: -0.008 (95% CI: -0.015, -0.002)]. Most interactions were between the air domain and other respective domains. Interactions differed by urbanicity, with more interactions observed in non-metropolitan regions. Observed

  17. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  18. Interactions of poly(tert-butyl acrylate)-poly(styrene) diblock copolymers with lipids at the air-water interface.

    PubMed

    Mudgil, Poonam; Dennis, Gary R; Millar, Thomas J

    2006-08-29

    Diblock copolymers with hydrophilic poly(tert-butyl acrylate) (PtBA) and hydrophobic poly(styrene) (PS) blocks were synthesized with a view to use them as a surfactant in tear film for increasing the ocular comfort in dry eye syndrome. Interactions of six PtBA-PS copolymers with four important lipids found in the tear film, namely cholesterol, cholesteryl palmitate, dipalmitoyl phosphatidylcholine, and phosphatidylinositol, were studied at the air-water interface using a Langmuir trough. Thermodynamics of mixing of the copolymers and the lipids in the mixed monolayers was determined by calculating excess free energy of mixing. The diblock copolymers showed repulsive interactions with cholesteol and cholesteryl palmitate, near neutral interactions with dipalmitoyl phosphatidylcholine, and attractive interactions with phosphatidylinositol. The lipids interacted with the PS component of the copolymer. The results indicate that a copolymer with a small hydrophilic group and a big hydrophobic group can be a likely candidate for forming stable interactions with the lipids present in the tear film and hence increase the ocular comfort.

  19. Simultaneous generation of acidic and alkaline water using atmospheric air plasma formed in water

    NASA Astrophysics Data System (ADS)

    Imai, Shin-ichi; Sakaguchi, Yoshihiro; Shirafuji, Tatsuru

    2018-01-01

    Plasmas on water surfaces and in water can be generated at atmosphere pressure using several kinds of gases, including helium, argon, oxygen, and air. Nitrates are generated in water through the interaction between water and atmospheric plasma that uses ambient air. Water that has been made acidic by the generation of nitric acid and the acidic water can be used for the sterilization of medical instruments, toilet bowls, and washing machines. Dishwashers are another potential application, as alkaline water is needed to remove grease from tableware. To investigate the production of alkaline water and its mechanism, gas component analysis was performed using an atmospheric quadrupole mass spectrometer. It was found that hydrogen gas evolves from the water surrounding both the positive and negative electrodes. The gas and water analyses carried out in this study revealed that acidic water of pH 2.5 and alkaline water of pH 10 can be simultaneously generated by our ambient air plasma device, which has been altered from our original model. The alterative plasma device has a partition wall, which is made of conductive resin, between the positive and negative electrodes.

  20. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  1. Modeling of nanosecond pulsed laser processing of polymers in air and water

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Zhang, Yang; Hattel, Jesper H.; Spangenberg, Jon

    2018-07-01

    Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in air. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the process considering the effect of ambient media. Therefore, in the present work, models are developed for laser ablation of polymers in air and water considering all the relevant physical phenomena such as laser–polymer interaction, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer interaction at such wavelengths is purely photo-thermal in nature and the laser–plasma interaction is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method using the Crank‑Nicholson scheme. The model predicts that underwater laser ablation results in subsurface heating effect in the polymer and confinement of the laser generated plasma, which makes it different from laser ablation in air. Plasma expansion velocities are much lower in water than in air. This results in an enhanced plasma shielding effect in the case of water. The predicted results of ablation depth versus fluence from the model are in qualitative agreement with those observed in experiments.

  2. Measurement of interaction between water droplets and curved super-hydrophobic substrates in the air

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyi; Zhao, Meirong; Jiang, Jile; Zhang, Lele; Zhuang, Shuya; Zhao, Yuchen; Huang, Yinguo; Zheng, Yelong

    2018-04-01

    The interaction force is very important in the study of the contact process of droplets and super-hydrophobic substrates. Accurate interaction force measurement in the air has far-reaching impact on industrial production and biomimetic field. However, limited by the evaporation of small droplets, interaction force can only be measured in the liquid by AFM and other devices. A millimetric cantilever was used to make it possible to measure the interaction between droplets and super-hydrophobic substrates in the air. The optical lever was calibrated with the electrostatic force. The super- hydrophobic substrates were fabricated using nano particles and copper grids. We finally acquired the interaction force and wetting time between the droplet and super- hydrophobic substrates with different grid fractions and similar contact angle. The results showed that the interaction force decreased with the increase of the grid fraction. These would open a new way of understanding the mechanism of hydrophobic.

  3. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  4. Measuring interactions between polydimethylsiloxane and serum proteins at the air-water interface.

    PubMed

    Liao, Zhengzheng; Hsieh, Wan-Ting; Baumgart, Tobias; Dmochowski, Ivan J

    2013-07-30

    The interaction between synthetic polymers and proteins at interfaces is relevant to basic science as well as a wide range of applications in biotechnology and medicine. One particularly common and important interface is the air-water interface (AWI). Due to the special energetics and dynamics of molecules at the AWI, the interplay between synthetic polymer and protein can be very different from that in bulk solution. In this paper, we applied the Langmuir-Blodgett technique and fluorescence microscopy to investigate how the compression state of polydimethylsiloxane (PDMS) film at the AWI affects the subsequent adsorption of serum protein [e.g., human serum albumin (HSA) or immunoglobulin G (IgG)] and the interaction between PDMS and protein. Of particular note is our observation of circular PDMS domains with micrometer diameters that form at the AWI in the highly compressed state of the surface film: proteins were shown to adsorb preferentially to the surface of these circular PDMS domains, accompanied by a greater than 4-fold increase in protein found in the interfacial film. The PDMS-only film and the PDMS-IgG composite film were transferred to cover glass, and platinum-carbon replicas of the transferred films were further characterized by scanning electron microscopy and atomic force microscopy. We conclude that the structure of the PDMS film greatly affects the amount and distribution of protein at the interface.

  5. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  6. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the

  7. Rates of urbanisation and the resiliency of air and water quality.

    PubMed

    Duh, Jiunn-Der; Shandas, Vivek; Chang, Heejun; George, Linda A

    2008-08-01

    Global human population and urban development are increasing at unprecedented rates and creating tremendous stress on local, regional, and global air and water quality. However, little is known about how urban areas vary in their capacity to address effectively air and water quality impacts associated to urban development. There exists a need to better understanding the factors that mediate the interactions between urbanisation and variations of environmental quality. By synthesizing literatures on the relationship between urban development and air and water quality, we assess the amount of scholarship for each of these cities, characterize population growth rates in one hundred of the largest global cities, and link growth trends to changes in air and water quality. Our results suggest that, while there is a growing literature linking urbanisation and environmental quality, some regions of the globe are better represented than others, and that these trends are consistent with our characterization of population growth rates. In addition, the comparison between population growth rates and air and water quality suggest that multiple factors affect the environmental quality, and that approaching rates of urbanisation through the lens of 'resiliency' can be an effective integrative concept for studying the capacity of urban areas to respond to rapid rates of change. Based on these results we offer a framework for systematically assessing changes in air and water quality in megacities.

  8. Secondary structure of spiralin in solution, at the air/water interface, and in interaction with lipid monolayers.

    PubMed

    Castano, Sabine; Blaudez, Daniel; Desbat, Bernard; Dufourcq, Jean; Wróblewski, Henri

    2002-05-03

    The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at

  9. EPA evaluates air, water controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairley, P.

    1996-06-05

    Water and air pollution controls make significant contribution to the economy`s health, according to two EPA reports. Clean water provides billions of dollars in benefits to US industries, says a recently released study; and the agency`s draft report on the benefits of air pollution identifiesmore » $$20 in medical costs avoided for every dollar spent on pollution controls. The Clean Water Industry Coalition (CWIC) says the water report reaffirms the need to {open_quotes}modernize{close_quotes} the Clean Water Act (CWA), but EPA administrator Carol Browner says a CWA {open_quotes}rollback{close_quotes} supported by CWIC and passed by House Republicans last May would have jeopardized industries that depend on clean water by weakening effluent standards. Browner denies that the benefits of clean water as identified by the EPA report would have protected water standards from the bill`s cost-benefit requirements. A draft EPA report on clean air leaked by the American Lung Association estimates that tailpipe and smokestack controls for air pollution saved 79,000 lives and resulted in 15 million fewer respiratory illnesses in 1990 alone. The report assesses the costs and benefits of the Clean Air Act from 1970 to 1990. The cost of federal, state, and local regulations were estimated at $$436 billion over the 20-year span, whereas direct benefits of reduced pollution totaled $6.8 trillion.« less

  10. Air sparging: Air-water mass transfer coefficients

    NASA Astrophysics Data System (ADS)

    Braida, Washington J.; Ong, Say Kee

    1998-12-01

    Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.

  11. Lifshitz interaction can promote ice growth at water-silica interfaces

    NASA Astrophysics Data System (ADS)

    Boström, Mathias; Malyi, Oleksandr I.; Parashar, Prachi; Shajesh, K. V.; Thiyam, Priyadarshini; Milton, Kimball A.; Persson, Clas; Parsons, Drew F.; Brevik, Iver

    2017-04-01

    At air-water interfaces, the Lifshitz interaction by itself does not promote ice growth. On the contrary, we find that the Lifshitz force promotes the growth of an ice film, up to 1-8 nm thickness, near silica-water interfaces at the triple point of water. This is achieved in a system where the combined effect of the retardation and the zero frequency mode influences the short-range interactions at low temperatures, contrary to common understanding. Cancellation between the positive and negative contributions in the Lifshitz spectral function is reversed in silica with high porosity. Our results provide a model for how water freezes on glass and other surfaces.

  12. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  13. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    PubMed Central

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  14. Rice Starch Particle Interactions at Air/Aqueous Interfaces-Effect of Particle Hydrophobicity and Solution Ionic Strength.

    PubMed

    McNamee, Cathy E; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.

  15. Rice starch particle interactions at air/aqueous interfaces– effect of particle hydrophobicity and solution ionic strength

    NASA Astrophysics Data System (ADS)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-05-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e. the natural particle found inside the plant, at air/aqueous interfaces and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film.

  16. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-05-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl.

  17. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    NASA Astrophysics Data System (ADS)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  18. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  19. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  20. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  1. Bovine insulin-phosphatidylcholine mixed Langmuir monolayers: behavior at the air-water interface.

    PubMed

    Pérez-López, S; Blanco-Vila, N M; Vila-Romeu, N

    2011-08-04

    The behavior of the binary mixed Langmuir monolayers of bovine insulin (INS) and phosphatidylcholine (PC) spread at the air-water interface was investigated under various subphase conditions. Pure and mixed monolayers were spread on water, on NaOH and phosphate-buffered solutions of pH 7.4, and on Zn(2+)-containing solutions. Miscibility and interactions between the components were studied on the basis of the analysis of the surface pressure (π)-mean molecular area (A) isotherms, surface compression modulus (C(s)(-1))-π curves, and plots of A versus mole fraction of INS (X(INS)). Our results indicate that intermolecular interactions between INS and PC depend on both the monolayer state and the structural characteristics of INS at the interface, which are strongly influenced by the subphase pH and salt content. Brewster angle microscopy (BAM) was applied to investigate the peptide aggregation pattern at the air-water interface in the presence of the studied lipid under any experimental condition investigated. The influence of the lipid on the INS behavior at the interface strongly depends on the subphase conditions.

  2. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.

    2017-08-01

    The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.

  3. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  4. Strong interactions in air showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Dennis D.; Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Straße, Frankfurt am Main

    2015-03-02

    We study the role new gauge interactions in extensions of the standard model play in air showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new interactions.

  5. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  6. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is listed...

  7. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed Central

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-01-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl. Images Figure 1. Figure 2. Figure 3. Figure 4. A Figure 4. B Figure 4. C Figure 4. D PMID:8593853

  8. Practical water production from desert air

    PubMed Central

    Kalmutzki, Markus J.; Kapustin, Eugene A.

    2018-01-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)–801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point. PMID:29888332

  9. Practical water production from desert air.

    PubMed

    Fathieh, Farhad; Kalmutzki, Markus J; Kapustin, Eugene A; Waller, Peter J; Yang, Jingjing; Yaghi, Omar M

    2018-06-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)-801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point.

  10. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces.

    PubMed

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong

    2015-03-15

    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better

  11. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  12. Self-Assembly of Peptides at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Sayar, Mehmet

    2013-03-01

    Peptides are commonly used as building blocks for design and development of novel materials with a variety of application areas ranging from drug design to biotechnology. The precise control of molecular architecture and specific nature of the nonbonded interactions among peptides enable aggregates with well defined structural and functional properties. The interaction of peptides with interfaces leads to dramatic changes in their conformational and aggregation behavior. In this talk, I will discuss our research on the interplay of intermolecular forces and influence of interfaces. In the first part the amphiphilic nature of short peptide oligomers and their behavior at the air/water interface will be discussed. The surface driving force and its decomposition will be analyzed. In the second part aggregation of peptides in bulk water and at an interface will be discussed. Different design features which can be tuned to control aggregation behavior will be analyzed.

  13. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  14. Open issues in hadronic interactions for air showers

    NASA Astrophysics Data System (ADS)

    Pierog, Tanguy

    2017-06-01

    In detailed air shower simulations, the uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic interaction models. With the results of the first run of the LHC, the difference between post-LHC model predictions has been reduced to the same level as experimental uncertainties of cosmic ray experiments. At the same time new types of air shower observables, like the muon production depth, have been measured, adding new constraints on hadronic models. Currently no model is able to consistently reproduce all mass composition measurements possible within the Pierre Auger Observatory for instance. Comparing the different models, and with LHC and cosmic ray data, we will show that the remaining open issues in hadronic interactions in air shower development are now in the pion-air interactions and in nuclear effects.

  15. Water content dependence of trapped air in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.

  16. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  17. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  18. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  19. Transferability of polarizable models for ion-water electrostatic interaction

    NASA Astrophysics Data System (ADS)

    Masia, Marco

    2009-06-01

    Studies of ion-water systems at condensed phase and at interfaces have pointed out that molecular and ionic polarization plays an important role for many phenomena ranging from hydrogen bond dynamics to water interfaces' structure. Classical and ab initio Molecular Dynamics simulations reveal that induced dipole moments at interfaces (e.g. air-water and water-protein) are usually high, hinting that polarizable models to be implemented in classical force fields should be very accurate in reproducing the electrostatic properties of the system. In this paper the electrostatic properties of three classical polarizable models for ion-water interaction are compared with ab initio results both at gas and condensed phase. For Li+- water and Cl--water dimers the reproducibility of total dipole moments obtained with high level quantum chemical calculations is studied; for the same ions in liquid water, Car-Parrinello Molecular Dynamics simulations are used to compute the time evolution of ionic and molecular dipole moments, which are compared with the classical models. The PD2-H2O model developed by the author and coworkers [Masia et al. J. Chem. Phys. 2004, 121, 7362] together with the gaussian intermolecular damping for ion-water interaction [Masia et al. J. Chem. Phys. 2005, 123, 164505] showed to be the fittest in reproducing the ab initio results from gas to condensed phase, allowing for force field transferability.

  20. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  1. Use of the erbium, chromium:yttrium-scandium-gallium-garnet laser on human enamel tissues. Influence of the air-water spray on the laser-tissue interaction: scanning electron microscope evaluations.

    PubMed

    Olivi, Giovanni; Angiero, Francesca; Benedicenti, Stefano; Iaria, Giuseppe; Signore, Antonio; Kaitsas, Vassilios

    2010-11-01

    The study investigated the influence of varying amounts of air/water spray and the energy used by an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) 2,780 nm laser when treating dental tissues. The morphological effects produced by the laser interaction on healthy human enamel were evaluated by scanning electron microscopy (SEM). The vestibular and lingual surfaces of ten molars were treated with laser at different power settings; each surface was subdivided into cervical, median, and occlusal parts and treated with different proportions of water spray; the series contained 60 tooth portions. Treatment differed in terms of power setting and air/water percentage. All specimens were then subjected to dehydration and metallisation. At SEM evaluation, the classic aspect of laser-treated enamel was visible: grooves, flakes, shelves and sharp edges, indicative of micro-explosion rather than melting. Vaporisation of the tissue created a clear delimitation from surrounding healthy tissue, with partial respect to the prismatic structure of the treated enamel. The aspect of the enamel was rarely type 1 Silverstone but more frequently type 2 or 3, with prismatic structure not respected and/or completely disordered. These morphological differences appeared to be correlated with the inclination of the laser beam aimed at the enamel prisms and with the percentage of air/water used. The laser system analysed showed itself to be effective at removing human dental enamel. The results appeared to be closely correlated with the variation of the percentage of the laser's water-air spray.

  2. Laser-assisted surface modification of Ti-implant in air and water environment

    NASA Astrophysics Data System (ADS)

    Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J.

    2018-01-01

    A study of the surface modification of titanium CP grade 2 implant/target with high intensity picosecond (Nd:YAG) laser, operating at 1064 nm wavelength and pulse duration of 40 ps, in gaseous (air) and liquid (water) medium, is presented. The exposure of Ti to a laser pulse energy of 17 mJ in both media - gaseous and liquid, induced specific surface features and phenomena: (i) enhancement of the implant surface roughness (higher in water). In this context, the damage depth is more prominent in water (as high as ∼40 μm) vs. air (∼14 μm). Also, the appearance of laser induced periodic surface structures (LIPSS) is recorded in both media, at periphery area, while in water they are registered at lower pulse count; (ii) variation of chemical surface content depending on the applied medium. Thus, in the central irradiation region, the oxygen was absent in air while its concentration was relatively high (6.44 wt%) in case of water; (iii) possibility of direct collection of synthesized titanium based nanoparticles in water environment, and (iv) formation of the plasma above the sample in both mediums, more volumetrically confined in water. These investigations showed that surface structuring and observed phenomena are in strong correlation with the medium used. The liquid - water seems like the medium of choice in regard to titanium implant biocompatibility and bio-activity (the water is a favorable medium for build-up of the oxide layer which affects bioactivity). The process of laser interaction with titanium implant targets was accompanied by the formation of plasma plume, which provides the additional sterilizing effect facilitating contaminant-free conditions.

  3. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    PubMed

    Chaubal, Alisha; Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-04-01

    This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Patients with body mass index (BMI) less than 18 kg/m 2 or more than 30 kg/m 2 , or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation ( P <0.001). The mean pain scores were 5.17, 4.72, and 3.93 on the VAS for air, carbon dioxide, and water insufflation ( P <0.001). The cecal intubation rate or procedure time did not differ significantly between the 3 groups. Water insufflation was superior to air or carbon dioxide for pain tolerance. This was seen in the subgroups with BMI <18 kg/m 2 and the post-surgical group, but not in the group with BMI >30 kg/m 2 .

  4. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  5. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  6. Ultrasonic predator-prey interactions in water-convergent evolution with insects and bats in air?

    PubMed

    Wilson, Maria; Wahlberg, Magnus; Surlykke, Annemarie; Madsen, Peter Teglberg

    2013-01-01

    Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

  7. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry.

    PubMed

    Juárez, J; Galaz, J G; Machi, L; Burboa, M; Gutiérrez-Millán, L E; Goycoolea, F M; Valdez, M A

    2007-03-15

    Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai

  8. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  9. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  10. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  11. Interaction of SO2 with the Surface of a Water Nanodroplet.

    PubMed

    Zhong, Jie; Zhu, Chongqin; Li, Lei; Richmond, Geraldine L; Francisco, Joseph S; Zeng, Xiao Cheng

    2017-11-29

    We present a comprehensive computational study of interaction of a SO 2 with water molecules in the gas phase and with the surface of various sized water nanodroplets to investigate the solvation behavior of SO 2 in different atmospheric environments. Born-Oppenheimer molecular dynamics (BOMD) simulation shows that, in the gas phase and at a temperature of 300 K, the dominant interaction between SO 2 and H 2 O is (SO 2 ) S···O (H 2 O) , consistent with previous density-functional theory (DFT) computation at 0 K. However, at the surface of a water nanodroplet, BOMD simulation shows that the hydrogen-bonding interaction of (SO 2 ) O···H (H 2 O) becomes increasingly important with the increase of droplet size, reflecting a marked effect of the water surface on the SO 2 solvation. This conclusion is in good accordance with spectroscopy evidence obtained previously (J. Am. Chem. Soc. 2005, 127, 16806; J. Am. Chem. Soc. 2006, 128, 3256). The prevailing interaction (SO 2 ) O···H (H 2 O) on a large droplet is mainly due to favorable exposure of H atoms of H 2 O at the air-water interface. Indeed, the conversion of the dominant interaction in the gas phase (SO 2 ) S···O (H 2 O) to the dominant interaction on the water nanodroplet (SO 2 ) O···H (H 2 O) may incur effects on the SO 2 chemistry in atmospheric aerosols because the solvation of SO 2 at the water surface can affect the reactive sites and electrophilicity of SO 2 . Hence, the solvation of SO 2 on the aerosol surface may have new implications when studying SO 2 chemistry in the aerosol-containing troposphere.

  12. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    PubMed

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  13. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    PubMed Central

    Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-01-01

    Background/Aims This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Methods Patients with body mass index (BMI) less than 18 kg/m2 or more than 30 kg/m2, or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. Results The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation (P<0.001). The mean pain scores were 5.17, 4.72, and 3.93 on the VAS for air, carbon dioxide, and water insufflation (P<0.001). The cecal intubation rate or procedure time did not differ significantly between the 3 groups. Conclusions Water insufflation was superior to air or carbon dioxide for pain tolerance. This was seen in the subgroups with BMI <18 kg/m2 and the post-surgical group, but not in the group with BMI >30 kg/m2. PMID:29743844

  14. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or supplement...

  15. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  16. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.

    2016-12-01

    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  17. Interaction between heterogeneous environmental quality domains (air, water, land, socio-demographic and built environment) on preterm birth.

    EPA Science Inventory

    Environmental exposures are often measured individually, though many occur in tandem. To address aggregate exposures, a county-level Environmental Quality Index (EQI) representing five environmental domains (air, water, land, built and sociodemographic) was constructed. Recent st...

  18. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).

    PubMed

    Richards, Jennifer H; Kuhn, David N; Bishop, Kristin

    2012-12-01

    Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.

  19. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure.

    PubMed

    Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V

    2014-06-24

    Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single surfactants. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single surfactants. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary surfactant systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing nature of the surfactant hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.

  20. METHYL TERT-BUTYLETHER-WATER INTERACTION

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...

  1. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or wate...

  2. Air-sea interaction at the subtropical convergence south of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van

    1994-12-31

    The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBTmore » and CTD) were jointly made with radiosonde observations and air-sea interaction measurements. The air-sea interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.« less

  3. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  4. Effect of water temperature and air stream velocity on performance of direct evaporative air cooler for thermal comfort

    NASA Astrophysics Data System (ADS)

    Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra

    2017-01-01

    The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.

  5. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  6. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  7. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  8. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  9. Prospective randomized trial compares suction versus water seal for air leaks.

    PubMed

    Cerfolio, R J; Bass, C; Katholi, C R

    2001-05-01

    Surgeons treat air leaks differently. Our goal was to evaluate whether it is better to place chest tubes on suction or water seal for stopping air leaks after pulmonary surgery. A second goal was to evaluate a new classification system for air leaks that we developed. Patients were prospectively randomized before surgery to receive suction or water seal to their chest tubes on postoperative day (POD) #2. Air leaks were described and quantified daily by a classification system and a leak meter. The air-leak meter scored leaks from 1 (least) to 7 (greatest). The group randomized to water seal stayed on water seal unless a pneumothorax developed. On POD #2, 33 of 140 patients had an air leak. Eighteen patients had been preoperatively randomized to water seal and 15 to suction. Air leaks resolved in 12 (67%) of the water seal patients by the morning of POD #3. All 6 patients whose air leak did not stop had a leak that was 4/7 or greater (p < 0.0001) on the leak meter. Of the 15 patients randomized to suction, only 1 patient's air leak (7%) resolved by the morning of POD #3. The randomization aspect of the trial was ended and statistical analysis showed water seal was superior (p = 0.001). The remaining 14 patients were then placed to water seal and by the morning of POD #4, 13 patients' leaks had stopped. Of the 32 total patients placed to seal, 7 (22%) developed a pneumothorax and 6 of these 7 patients had leaks that were 4/7 or greater (p = 0.001). Placing chest tubes on water seal seems superior to wall suction for stopping air leaks after pulmonary resection. However, water seal does not stop expiratory leaks that are 4/7 or greater. Pneumothorax may occur when chest tubes are placed on seal with leaks this large.

  10. River Gardens Intermediate-Care Facility water-to-air heating and air-conditioning demonstration project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.

    An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less

  11. Metasurface for Water-to-Air Sound Transmission

    NASA Astrophysics Data System (ADS)

    Bok, Eun; Park, Jong Jin; Choi, Haejin; Han, Chung Kyu; Wright, Oliver B.; Lee, Sam H.

    2018-01-01

    Effective transmission of sound from water to air is crucial for the enhancement of the detection sensitivity of underwater sound. However, only 0.1% of the acoustic energy is naturally transmitted at such a boundary. At audio frequencies, quarter-wave plates or multilayered antireflection coatings are too bulky for practical use for such enhancement. Here we present an acoustic metasurface of a thickness of only ˜λ /100 , where λ is the wavelength in air, consisting of an array of meta-atoms that each contain a set of membranes and an air-filled cavity. We experimentally demonstrate that such a meta-atom increases the transmission of sound at ˜700 Hz by 2 orders of magnitude, allowing about 30% of the incident acoustic power from water to be transmitted into air. Applications include underwater sonic sensing and communication.

  12. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  13. Efficacy of air/water syringe tip sterilization.

    PubMed

    Inger, M; Bennani, V; Farella, M; Bennani, F; Cannon, R D

    2014-03-01

    Dental procedures involve contact between instruments and the patient's tissues, blood or saliva. This study evaluated the efficacy of the standardized sterilization of non-disposable air/water syringe tips and corrosion and contaminant build-up in these tips. The bacterial contamination of single-use and multiple-use non-disposable air/water syringe tips after routine use and sterilization was compared to that of single-use disposable tips by microbial culturing on PCA and blood agar plates. The effect of flushing the syringe tips prior to sterilization was also measured. The amount of corrosion in single-use and multiple-use non-disposable syringes was measured by SEM and EDS analyses. Non-disposable syringe tips had significantly (p < 0.05) greater bacterial contamination than single-use disposable tips. There were no statistically different levels of contamination between flushed and non-flushed non-disposable syringes or between single-use and multiple-use non-disposable syringes. SEM and EDS analyses showed greater evidence of corrosion and contaminant build-up in multiple-use syringes compared to single-use non-disposable syringes. Sterilization of non-disposable air/water syringes is not completely effective and rinsing, or the number of uses, does not affect the effectiveness of sterilization. There may be a lower risk of cross-infection from the use of disposable air/water syringe tips, instead of non-disposable ones. © 2014 Australian Dental Association.

  14. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    NASA Astrophysics Data System (ADS)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (p<=0.05). Nd:YAG laser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  15. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  16. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures. Published by Elsevier B.V.

  17. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  18. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  19. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  20. Amyloid-beta-sheet formation at the air-water interface.

    PubMed Central

    Schladitz, C; Vieira, E P; Hermel, H; Möhwald, H

    1999-01-01

    An amyloid(1-40) solution rich in coil, turn, and alpha-helix, but poor in beta-sheet, develops monolayers with a high beta-sheet content when spread at the air-water interface. These monolayers are resistant to repeated compression-dilatation cycles and interaction with trifluoroethanol. The secondary structure motifs were detected by circular dichroism (CD) in solution and with infrared reflection-absorption spectroscopy (IRRAS) at the interface. Hydrophobic influences are discussed for the structure conversion in an effort to understand the completely unknown reason for the natural change of the normal prion protein cellular (PrP(C)) into the abnormal prion protein scrapie (PrP(Sc)). PMID:10585952

  1. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    PubMed

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Protein adsorption at the electrified air-water interface: implications on foam stability.

    PubMed

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.

  3. Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface.

    PubMed

    Rojewska, Monika; Skrzypiec, Marta; Prochaska, Krystyna

    2017-02-01

    From the point of view of the possible medical applications of POSS (polyhedral oligomeric silsesquioxanes), it is crucial to analyse interactions occurring between POSS and model biological membrane at molecular level. Knowledge of the interaction between POSS and DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) allows prediction of the impact of POSS contained in biomaterials or cosmetics on a living organism. In the study presented, the surface properties and morphology of Langmuir monolayers formed by mixtures of POSS and the phospholipid (DPPC) at the air/water surface are examined. We selected two POSS derivatives, with completely different chemical structure of substituents attached to the corner of the silicon open cage, which allowed the analysis of the impact of the character of organic moieties (strongly hydrophobic or clearly hydrophilic) on the order of POSS molecules and their tendency to form self-aggregates at the air/water surface. POSS derivatives significantly changed the profile of the π-A isotherms obtained for DPPC but in different ways. On the basis of the regular solution theory, the miscibility and stability of the two components in the monolayer were analysed in terms of compression modulus (C s -1 ), excess Gibbs free energy (ΔG exc ), activity coefficients (γ) and interaction parameter (ξ). The results obtained indicate the existence of two different interaction mechanisms between DPPC and POSS which depend on the chemical character of moieties present in POSS molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The air, carbon, water synergies and trade-offs in China's natural gas industry

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Mauzerall, D. L.; Höglund-Isaksson, L.; Wagner, F.; Byers, E.

    2017-12-01

    Both energy production and consumption can simultaneously affect regional air quality, local water stress, and the global climate. Identifying air, carbon and water impacts of various energy sources and end-uses is important in determining the relative merits of various energy policies. Here, we examine the air-carbon-water interdependencies of China's six major natural gas source choices (domestic conventional natural gas, domestic coal-based synthetic natural gas (SNG), domestic shale gas, imported liquefied natural gas, imported Russian pipeline gas, and imported Central Asian pipeline gas) and three end-use coal-to-gas deployment strategies (with substitution strategies that focus in turn on air quality, carbon, and water) in 2020. On the supply side, we find that gas sources other than SNG offer national air-carbon-water co-benefits. However, we find striking air-carbon/water trade-offs for SNG at the national scale. Moreover, the use of SNG significantly increases water demand and carbon emissions in regions already suffering from the most severe water stress and the highest per capita carbon footprint. On the end-use side, gas substitution for coal can result in enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs. Our study finds that, except for SNG, end-use choices generally have a much larger influence on air quality, carbon emissions and water use than do gas source choices. Simultaneous consideration of air, carbon, and water impacts is necessary in designing both beneficial energy development and deployment policies.

  5. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc

  6. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  7. Interpreting contact angle results under air, water and oil for the same surfaces

    NASA Astrophysics Data System (ADS)

    Ozkan, Orkun; Yildirim Erbil, H.

    2017-06-01

    Under-water and under-oil superhydropobicity and superhydrophilicity have gained significant attention over the last few years. In this study, contact angles on five flat surfaces (polypropylene, poly(methyl methacrylate), polycarbonate, TEFLON-FEP and glass slide) were measured in water drop-in-air, air bubble-under-water, oil drop-in-air, air bubble-under-oil, oil drop-under-water and water drop-under-oil conditions. Heptane, octane, nonane, decane, dodecane, and hexadecane hydrocarbons were used as oils. Immiscible water/oil pairs were previously mutually saturated to provide thermodynamical equilibrium conditions and their surface and interfacial tensions were determined experimentally. These pairs were used in the two-liquid contact angle measurements. Surface free energies of the solid surfaces in air were determined independently by using the van Oss-Good method, using the contact angle results of pure water, ethylene glycol, formamide, methylene iodide and α-bromonaphalene. In addition, Zisman’s ‘critical surface tension’ values were also determined for comparison. In theory, the summation of contact angle results in a complementary case would give a total of 180° for ideal surfaces. However, it was determined that there are large deviations from this rule in practical cases and these deviations depend on surface free energies of solids. Three complementary cases of (water-in-air with air bubble-under-water); (oil-in-air with air bubble-under-oil); and (oil-under-water with water-under-oil) were investigated in particular to determine the deviations from ideality. A novel approach, named ‘complementary hysteresis’ [γ WA(cosθ 1  -  cosθ 2) and γ OW(cosθ 6  -  cosθ 5)] was developed where γ WA and γ OW represent the interfacial tensions of water/air and oil/water, and θ 1, θ 2, θ 5, and θ 6 were the contact angles of water/air, air bubble/water, oil/water and water/oil respectively. It was experimentally determined that

  8. Effects of air vessel on water hammer in high-head pumping station

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  9. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    NASA Astrophysics Data System (ADS)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences

  10. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  11. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  12. Novel water-air circulation quenching process for AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  13. Surface, Water and Air Biocharacterization (SWAB)

    NASA Image and Video Library

    2009-08-18

    ISS020-E-031558 (18 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  14. Integrating air quality, water and climate concerns into China's energy strategy

    NASA Astrophysics Data System (ADS)

    Peng, Wei

    As the world's top carbon emitter, China also suffers from serious air pollution and increasingly severe water stress. My dissertation focuses on a variety of energy strategies in China and examines potential synergies and tradeoffs between air quality, water conservation and carbon mitigation objectives. It includes four analytical chapters. Chapter 2 and 3 examines the air quality and climate implications of a variety policy options in the near term and at the 2030 time horizon, respectively. Based on an integrated assessment using regional air pollution model and epidemiological evidence, I find that improving industrial energy efficiency is the most effective near-term strategy to curb air pollution and carbon emissions, while electrifying end-use sectors (e.g. vehicles and residential stoves) with decarbonized electricity will likely become the favorable co-control strategy in 2030. These two chapters hence provide a scientific basis for policymakers in China to coordinate air pollution and carbon mitigation strategies. Chapter 4 and 5 then examines the role of electricity transmission, as a critical element of the electrification strategy, in the nexus of air pollution, water stress and carbon emissions. Chapter 4 evaluates the potential air quality and climate benefits of long-distance electricity transmission in China in the near term. I find that transmitting a hybrid mix of renewable and coal power can be a cost-effective energy transfer strategy to curb air pollution impacts and carbon emissions, because it not only utilizes zero-carbon renewable resources in the west, but also displaces coal power generation and associated air pollution impacts in highly populated eastern regions. Chapter 5 studies the potential tradeoffs in the transmission system designs to achieve air quality or water conservation benefits from a decarbonized generation system. Since air pollution and water stress are severe in eastern and northern China respectively, I find that an

  15. Water Collection from Air Humidity in Bahrain

    NASA Astrophysics Data System (ADS)

    Dahman, Nidal A.; Al Juboori, Khalil J.; BuKamal, Eman A.; Ali, Fatima M.; AlSharooqi, Khadija K.; Al-Banna, Shaima A.

    2017-11-01

    The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  16. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  17. Molybdenum disulfide and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.

    2017-09-01

    Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.

  18. Interaction of polyhedral oligomeric silsesquioxanes and dipalmitoylphosphatidylcholine at the air/water interface: Thermodynamic and rheological study.

    PubMed

    Skrzypiec, M; Georgiev, G As; Rojewska, M; Prochaska, K

    2017-10-01

    Polyhedral oligomeric silsesquioxanes (POSS) derivatives containing open silsesquioxane cage bear great potential for biomedical applications and therefore their lateral interactions with phospholipids, major biomembranes and drug vehicles constituent, should be studied in detail. That is why the properties of surface films by two POSS-derivatives, POSS-polyethylene glycol (POSS-PEG) and POSS-perfluoroalkyl (POSS-OFP), pure and in presence of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) were studied using Langmuir surface balance. Side chains of opposite nature (PEG is hydrophilic; OFP is hydrophobic) were selected, so that to evaluate their impact on polymers' surface properties. Two types of measurements were performed: (i) the miscibility of POSS-derivatives with DPPC was evaluated via thermodynamic analysis of the surface pressure (π)-area (A) isotherms and (ii) the dilatational rheology of selected POSS-polymer containing films was studied by the stress relaxation method. Fourier transformation analysis of the relaxation transients allows to access films' dynamic interfacial properties in broad frequency range (10 -5 -1Hz). Film morphology was monitored with Brewster Angle Microscopy. PEG moiety enabled POSS-PEG to stably incorporate in DPPC films, modifying their equilibrium and dynamic properties. In contrast OFP chains excluded from interactions with other molecules and diminished PEG-OFP amphiphilicity. Therefore at high packing densities (π≥25mN/m) PEG-OFP was expelled from the air/water interface in DPPC/PEG-OFP mixtures, and the binary films equilibrium and dynamic surface properties were determined primarily by DPPC. Thus the choice of POSS side chains can play key role in biomedical applications depending on whether strong or weak incorporation of POSS-polymers in lipid environment is aimed for. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  20. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  1. Sensing the flux of volatile chemicals through the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackay, D.; Schroeder, W.H.; Ooijen, H. von

    1997-12-31

    There are several situations in which there is a need to assess the direction and magnitude of the flux across the air-water interface. Contaminants may be evaporating or absorbing in wastewater treatment systems in natural lake, river, estuarine and marine systems, and any attempt to compile a mass balance must include this process. In this study the authors review the theory underlying air-water exchange, then describe and discuss a sparging approach by which the direction and magnitude of the flux can be ascertained. The principle of the method is that a known flow rate of air is bubbled through themore » sparger and allowed to equilibrate with the water. The gas exiting the water surface is passed through a sorbent trap and later analyzed. The concentration, and hence the fugacity, of the contaminant in the sparged air can be deduced. In parallel, a similar flow of air from the atmosphere above the water is drawn through another sparger at a similar flow rate for a similar time and the trapped chemical analyzed giving the concentration and fugacity in the air. These data show the direction of air-water exchange (i.e. from high to low fugacity) and with information on the mass transfer coefficients and area, the flux. Successful tests were conducted of the system in a laboratory tank, in Lake Ontario and in Hamilton Harbour. Analyses of the traps showed a large number of peaks on the chromatogram many of which are believed to be of petroleum origin from fuels and vessel exhaust. The system will perform best under conditions where concentrations of specific contaminants are large, as occurs in waste water treatment systems. The approach has the potential to contribute to more accurate assessment of air-water fluxes. It avoids the problems of different analytical methodologies and the effect of sorption in the water column.« less

  2. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  3. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  4. Method and apparatus for extracting water from air using a desiccant

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  5. Water penetration/accommodation and phase behaviour of the neutral Langmuir monolayer at the air/water interface probed with sum frequency generation vibrational spectroscopy (SFG-VS).

    PubMed

    Zhang, Zhen; Zheng, De-Sheng; Guo, Yuan; Wang, Hong-Fei

    2009-02-14

    A strong and broad hydrogen bonded O-H band around 3520 cm(-1) is observed in the insoluble monolayer of the neutral liquid crystal molecules of 4''-n-pentyl-4-p-cyanobiphenyl (5CB) and 4''-n-octyl-4-p-cyanobiphenyl (8CB) throughout the whole surface density range, but not in the 4-pentyl-4'-cyanoterphenyl (5CT) monolayer, at the air/water interface. This novel spectral feature suggests the existence of an oriented water cluster species which has penetrated or accommodated into the Langmuir monolayer of the 8CB and 5CB molecules. This finding provided a molecular level mechanism for the stark difference in the phase behaviour between the CB and CT insoluble Langmuir monolayers at the air/water interface. It also calls for attention to the details of the specific water-surface interaction in mediating the structure and the phase behaviour of the molecular assemblies at the heterogeneous aqueous interfaces.

  6. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Interaction Between Air Propellers and Airplane Structures

    NASA Technical Reports Server (NTRS)

    Durand, W F

    1927-01-01

    The purpose of this investigation was the determination of the character and amount of interaction between air propellers as usually mounted on airplanes and the adjacent parts of the airplane structure - or, more specifically, those parts of the airplane structure within the wash of the propeller, and capable of producing any significant effect on propeller performance. In report no. 177 such interaction between air propellers and certain simple geometrical forms was made the subject of investigation and report. The present investigation aims to carry this general study one stage further by substituting actual airplane structures for the simple geometrical forms. From the point of view of the present investigation, the airplane structures, viewed as an obstruction in the wake of the propeller, must also be viewed as a necessary part of the airplane and not as an appendage which might be installed or removed at will. (author)

  8. LASE Observations of Interactions Between African Easterly Waves and the Saharan Air Layer

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Biswas, Mrinal; Krishnamurti, T. N.; Notari, Anthony; Heymsfield, Andrew; Butler, Carolyn; Burton, Sharon; hide

    2010-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) participated in the NASA African Monsoon Multidisciplinary Analyses (NAMMA) field experiment in 2006 that was conducted from Sal, Cape Verde to study the Saharan Air Layer (SAL) and its influence on the African Easterly Waves (AEWs) and Tropical Cyclones (TCs). During NAMMA, LASE collected simultaneous water vapor and aerosol lidar measurements from 14 flights onboard the NASA DC- 8. In this paper we present three examples of the interaction of the SAL and AEWs regarding: moistening of the SAL and transfer of latent heat; injection of dust in an updraft; and influence of dry air intrusion on an AEW. A brief discussion is also given on activities related to the refurbishment of LASE to enhance its operational performance and plans to participate in the next NASA hurricane field experiment in the summer of 2010.

  9. Second-Order Vibrational Lineshapes from the Air/Water Interface.

    PubMed

    Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M

    2018-05-10

    We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.

  10. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    NASA Astrophysics Data System (ADS)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied

  11. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  12. Coniferyl alcohol reactivity at the air/water interface.

    PubMed

    Cathala, Bernard; Aguié-Béghin, Véronique; Douillard, Roger

    2004-01-01

    In order to investigate the sensitivity of the lignin monomer coupling reactions to the environment physicochemical conditions, coniferyl alcohol (CA) was polymerised at the air/water interface. Characterisation of the interface during the reaction by surface pressure measurement and ellipsometry demonstrates that the reaction occurs near or at the interface. Coupling products were analysed by HPLC and compared to reaction products obtained in the case of polymerisation in solution. Relative proportions of beta-beta and beta-O-4 dehydrodimers were found to increase in air/water interface experiment.

  13. Brewster Angle Microscopy Study of Model Stratum Corneum Lipid Monolayers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Adams, Ellen; Champagne, Alex; William, Joseph; Allen, Heather

    2012-04-01

    As the first and last barrier in the body, the stratum corneum (SC) is essential to life. Understanding the interactions and organization of lipids within the SC provides insight into essential physiological processes, including water loss prevention and the adsorption of substances from the environment. Langmuir monolayers have long been used to study complex systems, such as biological membranes and marine aerosols, due to their ability to shed light on intermolecular interactions. In this study, lipid mixtures with varying cholesterol and cerebroside ratios were investigated at the air/water interface. Surface tension measurements along with Brewster angle microscopy (BAM) images were used to examine the lipid phase transitions. Results indicate that cholesterol and cerebrosides form miscible monolayers, exhibiting ideal behavior. BAM images of a singular, uniform collapse phase also suggest formation of a miscible monolayer.

  14. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    USGS Publications Warehouse

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  15. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX) - A study of air-sea interaction in a region of strong oceanic gradients

    NASA Technical Reports Server (NTRS)

    Weller, Robert A.

    1991-01-01

    From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.

  16. Definition of Free O-H Groups of Water at the Air-Water Interface.

    PubMed

    Tang, Fujie; Ohto, Tatsuhiko; Hasegawa, Taisuke; Xie, Wen Jun; Xu, Limei; Bonn, Mischa; Nagata, Yuki

    2018-01-09

    Free O-H groups of water are often found at the water-hydrophobic medium interface, e.g. for water contact with hydrophobic protein residues, or at the water-air interface. In surface-specific vibrational spectroscopic studies using sum-frequency generation (SFG) spectroscopy, free O-H groups are experimentally well characterized in the O-H stretch region by a sharp 3700 cm -1 peak. Although these free O-H groups are often defined as the O-H groups which are not hydrogen-bonded to other water molecules, a direct correlation between such non-hydrogen-bonded O-H groups and the 3700 cm -1 SFG response has been lacking. Our data show that commonly used hydrogen bond definitions do not adequately capture the free O-H groups contributing to the 3700 cm -1 peak. We thus formulate a new definition for capturing the subensemble of the surface free O-H groups using the intermolecular distance and the angle formed by the water dimer, through the comparison of the ∼3700 cm -1 SFG response and the responses from the selected free O-H groups at the HOD-air interface. Using these optimized free O-H group definitions, we infer the fraction of interfacial water molecules with free O-H groups of 28%, a vibrational lifetime of the free O-H groups of 1.3 ps, and the angle formed by the free O-H groups and the surface normal of 67° at the water-air interface. We expect that this improved free O-H group definition can be helpful in exploring the structure and dynamics of the interfacial water.

  17. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.

    PubMed

    Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2014-07-28

    Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An Interactive Microcomputer Wargame for an Air Battle.

    DTIC Science & Technology

    1982-10-01

    Monterey, California THESIS An Interactive Microcomputer Wargame for an Air Battle by James Owen Wilson October 1982 Thesis Advisor: A. F. Andrus...CONTIRCT 00 GRAN0T 186degg(.J James Owen Wilson 11101FRINA 111ANZATGN 0009 O GO498 1. PROGRAM 9L9060" . PRJr.AS S. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f9 PR@UN...Wargame for an Air Battle by James Owen Wilson Lieutenant, United States Navy oo B.A., University of Texas, 1974 Accession ForSubmitted in partial

  19. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  20. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. Copyright © 2015. Published by Elsevier B.V.

  1. Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.

    2005-01-01

    The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.

  2. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  3. Two and three-dimensional prediffuser combustor studies with air-water mixture

    NASA Technical Reports Server (NTRS)

    Laing, Peter; Ehresman, C. M.; Murthy, S. N. B.

    1993-01-01

    Two- and three-dimensional gas turbine prediffuser-combustor sectors were experimentally studied under a number of mixture and flow conditions in a tunnel operating with a two-phase, air-liquid film-droplet mixture. It is concluded that water vaporization in the combustor causes changes in both local gas temperature and state of vitiation and reduces reaction rates. Substantial accumulation of water and water vapor takes place in pocket over the combustor volume, even when the air-water mixture is steady in time. The accuracy of determining combustor performance changes increases with a better knowledge of the state of the air-water mixture in the primary zone. To establish flame-out conditions it is considered to be necessary to combine the prediction of detailed flowfield and chemical activity with that of flame stability and motion characteristics.

  4. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  5. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  6. Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant.

    PubMed Central

    Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M

    2002-01-01

    To study the structure-function relationship of pulmonary surfactant under conditions close to nature, molecular films of a model system consisting of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, and surfactant-associated protein C were prepared at the air-water interface of air bubbles about the size of human alveoli (diameter of 100 microm). The high mechanical stability as well as the absence of substantial film flow, inherent to small air bubbles, allowed for scanning force microscopy (SFM) directly at the air-water interface. The SFM topographical structure was correlated to the local distribution of fluorescent-labeled dipalmitoylphosphatidylcholine, as revealed from fluorescence light microscopy of the same bubbles. Although SFM has proven before to be exceptionally well suited to probe the structure of molecular films of pulmonary surfactant, the films so far had to be transferred onto a solid support from the air-water interface of a film balance, where they had been formed. This made them prone to artifacts imposed by the transfer. Moreover, the supported monolayers disallowed the direct observation of the structural dynamics associated with expansion and compression of the films as upon breathing. The current findings are compared in this respect to our earlier findings from films, transferred onto a solid support. PMID:11751334

  7. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization.

    PubMed

    Bejagam, Karteek K; Singh, Samrendra; Deshmukh, Sanket A

    2018-05-05

    New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10 -11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  9. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  10. Interpreting Vibrational Sum-frequency Spectra of Sulfur Dioxide at the Air/Water Interface: A Comprehensive Molecular Dynamics Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Marcel; Mundy, Christopher J.; Chang, Tsun-Mei

    We investigated the solvation and spectroscopic properties of SO2 at the air/water interface using molecular simulation techniques. Molecular interactions from both Kohn-Sham (KS) density functional theory (DFT) and classical polarizable models were utilized to understand the properties of SO2:(H2O)x complexes in the vicinity of the air/water interface. The KS-DFT was included to allow comparisons with sum-frequency generation spectroscopy through the identification of surface SO2:(H2O)x complexes. Using our simulation results, we were able to develop a much more detailed picture for the surface structure of SO2 that is consistent with the spectroscopic data obtained Richmond and coworkers (J. Am. Chem. Soc.more » 127, 16806 (2005)). We also found many similarities and differences between to the two interaction potentials, including a noticeable weakness of the classical potential model in reproducing the asymmetric hydrogen bonding of water with SO2 due to its inability to account for SO2 resonance structures. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  11. Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon.

    PubMed

    Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried

    2013-12-01

    There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the interactive effects between equivalent temperature and air pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that interactive effects exist between air pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including interaction terms showed an increased risk of mortality during periods of elevated equivalent temperatures and air pollution. Cold effects were mostly unaffected by air pollution. The study underscores the importance of air pollution control in mitigating heat effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Air-sea interaction and remote sensing

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1992-01-01

    The first part of the proposed research was a joint effort between our group and the Applied Physics Laboratory (APL), University of Washington. Our own research goal is to investigate the relation between the air-sea exchange processes and the sea state over the open ocean and to compare these findings with our previous results obtained over a small body of water namely, Lake Washington. The goals of the APL researchers are to study (1) the infrared sea surface temperature (SST) signature of breaking waves and surface slicks, and (2) microwave and acoustic scattering from water surface. The task of our group in this joint effort is to conduct measurements of surface fluxes (of momentum, sensible heat, and water vapor) and atmospheric radiation (longwave and shortwave) to achieve our research goal as well as to provide crucial complementary data for the APL studies. The progress of the project is summarized.

  13. Nature of the water/aromatic parallel alignment interactions.

    PubMed

    Mitoraj, Mariusz P; Janjić, Goran V; Medaković, Vesna B; Veljković, Dušan Ž; Michalak, Artur; Zarić, Snežana D; Milčić, Miloš K

    2015-01-30

    The water/aromatic parallel alignment interactions are interactions where the water molecule or one of its O-H bonds is parallel to the aromatic ring plane. The calculated energies of the interactions are significant, up to ΔE(CCSD)(T)(limit) = -2.45 kcal mol(-1) at large horizontal displacement, out of benzene ring and CH bond region. These interactions are stronger than CH···O water/benzene interactions, but weaker than OH···π interactions. To investigate the nature of water/aromatic parallel alignment interactions, energy decomposition methods, symmetry-adapted perturbation theory, and extended transition state-natural orbitals for chemical valence (NOCV), were used. The calculations have shown that, for the complexes at large horizontal displacements, major contribution to interaction energy comes from electrostatic interactions between monomers, and for the complexes at small horizontal displacements, dispersion interactions are dominant binding force. The NOCV-based analysis has shown that in structures with strong interaction energies charge transfer of the type π → σ*(O-H) between the monomers also exists. © 2014 Wiley Periodicals, Inc.

  14. Metabolism and thermoregulation during fasting in king penguins, Aptenodytes patagonicus, in air and water.

    PubMed

    Fahlman, A; Schmidt, A; Handrich, Y; Woakes, A J; Butler, P J

    2005-09-01

    We measured oxygen consumption rate (Vo(2)) and body temperatures in 10 king penguins in air and water. Vo(2) was measured during rest and at submaximal and maximal exercise before (fed) and after (fasted) an average fasting duration of 14.4 +/- 2.3 days (mean +/- 1 SD, range 10-19 days) in air and water. Concurrently, we measured subcutaneous temperature and temperature of the upper (heart and liver), middle (stomach) and lower (intestine) abdomen. The mean body mass (M(b)) was 13.8 +/- 1.2 kg in fed and 11.0 +/- 0.6 kg in fasted birds. After fasting, resting Vo(2) was 93% higher in water than in air (air: 86.9 +/- 8.8 ml/min; water: 167.3 +/- 36.7 ml/min, P < 0.01), while there was no difference in resting Vo(2) between air and water in fed animals (air: 117.1 +/- 20.0 ml O(2)/min; water: 114.8 +/- 32.7 ml O(2)/min, P > 0.6). In air, Vo(2) decreased with M(b), while it increased with M(b) in water. Body temperature did not change with fasting in air, whereas in water, there were complex changes in the peripheral body temperatures. These latter changes may, therefore, be indicative of a loss in body insulation and of variations in peripheral perfusion. Four animals were given a single meal after fasting and the temperature changes were partly reversed 24 h after refeeding in all body regions except the subcutaneous, indicating a rapid reversal to a prefasting state where body heat loss is minimal. The data emphasize the importance in considering nutritional status when studying king penguins and that the fasting-related physiological changes diverge in air and water.

  15. Continuous measurement of air-water gas exchange by underwater eddy covariance

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  16. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  17. Specific features of aluminum nanoparticle water and wet air oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru; Glazkova, Elena A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, Natalia V., E-mail: nvsv@ispms.tsc.ru

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  18. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  19. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  20. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  1. Modeling the interaction Between Ethylene Diamine and Water Films on the Surface of a Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Walther, Jens H.; Zimmerli, Urs; Koumoutsakos, Petros

    2004-01-01

    It has been observed that a carbon nanotube (CNT) AFM tip coated with ethylene diamine (EDA) penetrates the liquid water-air interface more easily than an uncoated nanotube tip. The EDA coating remains intact through repeated cycles of dipping and removal. In order to understand the physical basis for this observation, we use ab initio quantum chemistry calculations to study the EDA-CNT-water interaction and to parameterize a force field describing this system. Molecular dynamics (MD) simulations are carried out for EDA-water mixtures and an EDA-coated carbon nanotube immmed in water. These simulations are similar to our earlier MD study that characterized the CNT-water interface. The attractive CNT-EDA and CNT-water interactions arise primarily from van der Waals forces, and the EDA-EDA, EDA-water and water-water interactions are mainly due to hydrogen bond formation. The binding energ of single EDA molecule to the nanotube is nearly three times larger than the corresponding value found for water (4.3 versus 1.5 kcal mol, respectively). The EDA molecules readily stick to and diffuse along the CNT surface. As a resulf mixing of the EDA and water films does not occur on the timescale of the MD simulations. The EDA film reduces the hydrophobicity of the nanotube surface and acts like a prototypical surfactant in stabilizing the suspension of carbon nanotubes in water. For this presentation, we use the MD simulations to determine how the presence of the carbon nanotube surface perturbs the properties of EDA-water mixtures.

  2. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  3. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

    PubMed

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives.

  4. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  5. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  6. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  7. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.

    PubMed

    Lyu, Ying; Brusseau, Mark L; Chen, Wei; Yan, Ni; Fu, Xiaori; Lin, Xueyu

    2018-06-26

    Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.

  9. The water-filled versus air-filled status of vessels cut open in air: the 'Scholander assumption' revisited

    Treesearch

    M.T. Tyree; H. Cochard; P. Cruziat

    2003-01-01

    When petioles of transpiring leaves are cut in the air, according to the 'Scholander assumption', the vessels cut open should fill with air as the water is drained away by continued transpiration, The distribution of air-filled vessels versus distance from the cut surface should match the distribution of lengths of 'open vessels', i.e. vessels cut...

  10. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    PubMed

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  11. Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes.

    PubMed

    Nuckols, John R; Ashley, David L; Lyu, Christopher; Gordon, Sydney M; Hinckley, Alison F; Singer, Philip

    2005-07-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre-water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and post-activity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities.

  12. Influence of Tap Water Quality and Household Water Use Activities on Indoor Air and Internal Dose Levels of Trihalomethanes

    PubMed Central

    Nuckols, John R.; Ashley, David L.; Lyu, Christopher; Gordon, Sydney M.; Hinckley, Alison F.; Singer, Philip

    2005-01-01

    Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre–water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and postactivity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities. PMID:16002374

  13. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Ferry Engine Repower to Provide Benefits for Air and Water

    EPA Pesticide Factsheets

    EPA’s Diesel Emission Reduction Act grant to the Delaware River and Bay Authority is bringing new clean air technology to the Cape May-Lewes Ferry, thereby reducing air pollution emissions and contributing to cleaner water in the Chesapeake Bay.

  15. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  16. Ground-water resources of Olmsted Air Force Base, Middletown, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold; Longwill, Stanley Miller

    1961-01-01

    Olmsted Air Force Base is underlain by the Gettysburg shale of Triassic age. The Gettysburg shale at the Air Force Base consists of interbedded red sandstone, siltstone, and shale. The average strike of the strata is N. 43° E., and the strata dip to the northwest at an average angle of 26°. The transmissibility of known aquifers in the warehouse area of the Air Force Base is low. Therefore, wells in the warehouse area have low specific capacities and yield only small supplies of water. Wells on the main base, however, yield relatively large supplies of water because the transmissibilities of the aquifers are relatively high. Pumping tests in the warehouse area and the eastern area of the main base indicated the presence of impermeable boundaries in both areas. Pumping tests in the central and western parts of the main base revealed that the Susquehanna River probably is acting as a source of recharge (forms a recharge boundary) for wells in those areas. Data obtained during this investigation indicate that additional supplies of ground water for Olmsted Air Force Base could best be obtained from the western part of the main base.

  17. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E

    2015-03-17

    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  18. Water Resources Investigations at Edwards Air Force Base since 1988

    USGS Publications Warehouse

    Sneed, Michelle; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Edwards Air Force Base (EAFB) in southern California (fig. 1) has relied on ground water to meet its water-supply needs. The extraction of ground water has led to two major problems that can directly affect the mission of EAFB: declining water levels (more than 120 ft since the 1920s) and land subsidence, a gradual downward movement of the land surface (more than 4 ft since the late 1920s). As water levels decline, this valuable resource becomes depleted, thus requiring mitigating measures. Land subsidence has caused cracked (fissured) runways and accelerated erosion on Rogers lakebed. In 1988, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, began investigations of the effects of declining water levels and land subsidence at EAFB and possible mitigation measures, such as the injection of imported surface water into the ground-water system. The cooperative investigations included data collection and analyses, numerical simulations of ground-water flow and land subsidence, and development of a preliminary simulation-optimization model. The results of these investigations indicate that the injection of imported water may help to control land subsidence; however, the potential ground-water-quality impacts are unknown.

  19. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  20. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  1. Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice

    PubMed Central

    Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki

    2013-01-01

    Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. PMID:23755221

  2. Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface.

    PubMed

    Li, Quanyang; Zhao, Zhengtao

    2017-10-01

    This research investigated the complexation behaviour between lactoferrin (Lf) and sodium caseinate (NaCas) before and after heat treatment. The results showed that heating facilitated their interaction and different complexes were formed at different Lf/NaCas ratios. The presence of low concentrations of NaCas resulted in the rapid precipitation of Lf, while no precipitation was observed at the NaCas concentrations higher than Lf/NaCas ratio of 2:1. The formed complexes at the ratio of 2:1 have an average diameter of 194±9.0nm and they exhibited a great capacity in lowering the air/water interfacial tension. Further increase of NaCas concentration to ratios of 1:1 and 1:2 resulted in the formation of smaller complexes with average diameters of 60±2.5nm. The complexes formed at these two ratios showed similar adsorption behaviour at the air/water interface and they exhibited lower capacity in decreasing the interfacial tension than the ratio of 2:1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  4. Influence of Poly(ethylenimine) on the Monolayer of Oleic Acid at the Air/Water Interface.

    PubMed

    Hwan Ha, Tai; Kyu Kim, Dai; Choi, Myung-Un; Kim, Kwan

    2000-06-01

    The effect of poly(ethylenimine) (PEI) dissolved in water on the surface pressure-area isotherm of oleic acid (OA) at the air/water interface was investigated. On a concentrated PEI solution, the isotherm of the OA monolayers exhibited a noticeable difference as a function of subphase pH. PEI caused the collapse pressure of the OA monolayer to increase up to 45 mN/m, due to a stronger acid-base-type interaction occurring between the amine group of the PEI and the carboxyl group of OA; on a pure water subphase, the collapse pressure was;28 mN/m. On the other hand, owing to a stronger OA-PEI interaction, the OA monolayers favored a liquid-expanded state more on the PEI-containing water subphase than on the pure water. From the QCM measurement, each OA molecule appeared to interact, on average, with 4.3-5.8 ethylenimine repeating units at basic pHs. We also found that OA multilayers could be assembled on a hydrophilic substrate by a Z-type Langmuir-Blodgett (LB) deposition in a PEI-containing subphase at basic pHs. The ATR-IR spectral data revealed that, in a Z-type LB film, the headgroup of OA was mostly present as carboxylate, interacting in an ionic state with the protonated amine groups of PEI. In acidic conditions, neither a Y-type nor a Z-type deposition was really accomplished. Nonetheless, the ATR-IR spectral data suggested that OA molecules should exist in a monomeric state in a LB film assembled at acidic pHs without PEI while they would form intermolecular hydrogen bridges and/or dimers in the presence of PEI. Copyright 2000 Academic Press.

  5. The patterns and implications of diurnal variations in d-excess of plant water, shallow soil water and air moisture

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wang, L.; Xiao, H.; Cheng, G.; Ruan, Y.; Zhou, M.; Wang, F.

    2014-04-01

    Deuterium excess (d-excess) of air moisture is traditionally considered as a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However direct field observations supporting the role of vegetation in d-excess variations is not well documented. In this study, we quantified d-excess of air moisture, leaf and xylem water of multiple dominant species as well as shallow soil water (5 and 10 cm) at hourly interval during three extensive field campaigns at two climatically different locations within the Heihe River Basin. The results showed that with the increase of temperature (T) and decrease of relative humidity (RH), the δD-δ18O plots of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values among different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values (-85.6‰) were found in leaf water. The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after rain event showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found the opposite diurnal variations for dleaf and dmoisture during the sunny day, and for dleaf during the sunny days, and shallow soil water dsoil and dmoisture during the first sunny day after rain event. Significant negative relationships were found between dleaf and dmoisture in all the sites during the sunny day. Our results provide direct evidence that dmoisture of the surface air at continental

  6. Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dachs, J.; Eisenreich, S.J.; Baker, J.E.

    1999-10-15

    A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production resultsmore » in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.« less

  7. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  8. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (water quality guidelines for the protection of human health from the consumption of fish. Spatial distributions of

  9. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  10. Ground-water conditions at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Page, R.W.

    1980-01-01

    Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)

  11. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  12. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  13. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    PubMed

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  14. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  15. How changes in top water bother big turning packs of up-going wet air

    NASA Astrophysics Data System (ADS)

    Wood, K.

    2017-12-01

    Big turning packs of up-going wet air form near areas of warm water at the top of big bodies of water. After these turning packs form, they usually get stronger if the top water stays warm. If the top water becomes less warm, the turning packs usually get less strong. Other things can change how strong a turning pack gets, like how wet the air around it is and if that air moves faster higher up than lower down. When these turning packs hit land, their rain and winds can hurt people and the stuff they own, especially if the turning pack is really strong. But it's hard to know how much stronger or less strong it will become before it hits land. Warm top water gives a turning pack of up-going wet air a lot of power, but cool top water doesn't, so we need to know how warm the top water is. Because I can't go into every turning pack myself, flying computers in outer space tell me what the top water is doing. I look at the top water near turning packs that get strong and see how it's different from the top water near those that get less strong. Top water that changes from warm to cool in a small area bothers a turning pack of up-going wet air, which then gets less strong. If we see these top water changes ahead of time, that might help us know what a turning pack will do before it gets close to land.

  16. Turbulence and wave breaking effects on air-water gas exchange

    PubMed

    Boettcher; Fineberg; Lathrop

    2000-08-28

    We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.

  17. Adsorption of mixtures of poly(amidoamine) dendrimers and sodium dodecyl sulfate at the air-water interface.

    PubMed

    Arteta, Marianna Yanez; Campbell, Richard A; Nylander, Tommy

    2014-05-27

    We relate the adsorption from mixtures of well-defined poly(amidoamine) (PAMAM) dendrimers of generations 4 and 8 with sodium dodecyl sulfate (SDS) at the air-water interface to the bulk solution properties. The anionic surfactant shows strong attractive interactions with the cationic dendrimers at pH 7, and electrophoretic mobility measurements indicate that the association is primarily driven by electrostatic interactions. Optical density measurements highlight the lack of colloidal stability of the formed bulk aggregates at compositions close to charge neutrality, the time scale of which is dependent on the dendrimer generation. Adsorption at the air-water interface was followed from samples immediately after mixing using a combination of surface tension, neutron reflectometry, and ellipsometry measurements. In the phase separation region for dendrimers of generation 4, we observed high surface tension corresponding to a depleted surfactant solution but only when the aggregates carried an excess of surfactant. Interestingly, these depleted adsorption layers contained spontaneously adsorbed macroscopic aggregates, and these embedded particles do not rearrange to spread monomeric material at the interface. These findings are discussed in relation to the interfacial properties of mixtures involving dendrimers of generation 8 as well as polydisperse linear and hyperbranched polyelectrolytes where there is polyelectrolyte bound to a surfactant monolayer. The results presented here demonstrate the capability of dendrimers to sequester anionic surfactants in a controllable manner, with potential applications as demulsification and antifoaming agents.

  18. Air- ice-snow interaction in the Northern Hemisphere under different stability conditions

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Chechin, Dmitry; Artamonov, Arseny

    2013-04-01

    The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of air pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as sea ice, marginal ice zone or stormy sea). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface air layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and

  19. Influence of water content on the inactivation of P. digitatum spores using an air-water plasma jet

    NASA Astrophysics Data System (ADS)

    Youyi, HU; Weidong, ZHU; Kun, LIU; Leng, HAN; Zhenfeng, ZHENG; Huimin, HU

    2018-04-01

    In order to investigate whether an air-water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+-X2Πi) and O (3p5P-3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53-9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+-X2Πi) rises with the increase of water content, whereas the O (3p5P-3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air-water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+-X2Πi) is a more effective species in inactivation than O (3p5P-3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+-X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.

  20. The patterns and implications of diurnal variations in the d-excess of plant water, shallow soil water and air moisture

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Wang, L.; Liu, X.; Xiao, H.; Ruan, Y.; Zhou, M.

    2014-10-01

    Deuterium excess (d-excess) of air moisture is traditionally considered a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However, direct field observations supporting the role of vegetation in d-excess variations are not well documented. In this study, we quantified the d-excess of air moisture, shallow soil water (5 and 10 cm) and plant water (leaf, root and xylem) of multiple dominant species at hourly intervals during three extensive field campaigns at two climatically different locations within the Heihe River basin, northwestern China. The ecosystems at the two locations range from forest to desert. The results showed that with the increase in temperature (T) and the decrease in relative humidity (RH), the δD-δ18O regression lines of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values between different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values were found in leaf water (-85.6‰). The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after a rain event, showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found opposite diurnal variations for dleaf and dmoisture during the sunny days, and for dsoil and dmoisture during the first sunny day after the rain event. The steady-state Craig-Gordon model captured the diurnal variations in dleaf, with small discrepancies in the magnitude. Overall, this

  1. Periodic water- and air-temperature records for Utah streams, 1966-70

    USGS Publications Warehouse

    Whitaker, G.L.

    1971-01-01

    Since 1967, all Geological Survey hydrographers have been instructed to observe and record the water and air temperatures at times when water-discharge measurements were being made at stream-gaging stations in Utah. The frequency of these observations generally varies from I to 5 weeks, depending upon the magnitude of the stream flow.This report summarizes the periodic water and air temperatures that have been recorded in Utah since that effort began. This information may be of value to individuals or agencies concerned with thermal pollution of streams, or with enforcement of water-quality standards.A compilation of all daily water-temperature records recorded for streams in Utah by the U. S. Geological Survey during the period 1944-68 is contained in Utah Basic-Data Release No. 19.

  2. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up.

    PubMed

    Gref, Anna; Merid, Simon K; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bossé, Yohan; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S; Korek, Michal; Kozyrskyj, Anita L; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M T; van den Berge, Maarten; Vonk, Judith M; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran; Melén, Erik

    2017-05-15

    The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO 2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. In the European cohorts, 186 SNPs had an interaction P < 1 × 10 -4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10 -4 ). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10 -17 ). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Our results indicated that gene-environment interactions are important for asthma development and provided supportive evidence for

  3. Plasma Shield for In-Air and Under-Water Beam Processes

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2007-11-01

    As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.

  4. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  5. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  6. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  7. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  8. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  9. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  10. Air bells of water spiders are an extended phenotype modified in response to gas composition.

    PubMed

    Schütz, Dolores; Taborsky, Michael; Drapela, Thomas

    2007-10-01

    The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O2, pure CO2, or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO2 treatment than in the O2 treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat.

  11. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  12. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  13. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    PubMed

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Marcinkowski, Kuba; Kobiela, Tomasz; Trapp, Marcus; Gutberlet, Thomas; Geue, Thomas

    2014-05-01

    Adsorption of a natural glycoside surfactant Quillaja bark saponin ("QBS", Sigma Aldrich 84510) was studied at the air/water and Si/water interfaces using a combination of surface pressure (SP), surface dilatational rheology, neutron reflectivity (NR), Infra-Red Attenuated Total Reflection Spectroscopy (IR ATR) and Quartz Crystal Microbalance (QCM). The adsorbed layers formed at the air/water interface are predominantly elastic, with the dilatational surface storage modulus reaching the maximum value of E'=184 mN/m. The NR results point to a strong hydration of the adsorbed layers (about 65% hydration, corresponding to about 60 molecules of water per one QBS molecule), most likely related to the presence of multiple sugar groups constituting the glycone part of the QBS molecules. With a layer thickness of 19 Å, the adsorbed amount obtained from NR seems largely underestimated in comparison to the value obtained from the surface tension isotherm. While this high extent of hydration does not prevent formation of dense and highly elastic layers at the air-water surface, QBS adsorption at the Si/water interface is much weaker. The adsorption isotherm of QBS on Si obtained from the QCM study reflects much lower affinity of highly hydrated and negatively charged saponin molecules to the Si/water interface. We postulate that at the air/water interface, QBS adsorbs through the triterpene aglycone moiety. In contrast, weak hydrogen bonding between the glycone part and the surface silanol groups of Si is responsible for QBS adsorption on more polar Si/water interface. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agasti, Nityananda, E-mail: nnagasti@gmail.com; Singh, Vinay K.; Kaushik, N.K.

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in themore » presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.« less

  16. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason; hide

    2008-01-01

    LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.

  17. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  18. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  19. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  20. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    USDA-ARS?s Scientific Manuscript database

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  1. Molecular adsorption steers bacterial swimming at the air/water interface.

    PubMed

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  3. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  4. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  5. Sudden Appearance of Water in Flowmeter During Air/Oxygen and Sevoflurane Anaesthesia.

    PubMed

    Kandemir, Tünay; Muslu, Selda; Kandemir, Erbin

    2015-02-01

    Endotracheal intubation was performed, and a water bubbling sound was heard from the anaesthesia device immediately after the release of gases to administer the O2-air-sevoflurane mixture. The flowmeter on the anaesthesia device was then found to be filled with water. The breakdown of the dryer in the medical air compressor system was determined as the source of the problem, since a greasy fluid mixture was released from the air-wall outlets in all rooms. Consequently, the anaesthesia team should keep in mind that problems as seen in the current case might emerge and should be alert.

  6. Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies.

    PubMed

    Bowatte, Gayan; Lodge, Caroline J; Perret, Jennifer L; Matheson, Melanie C; Dharmage, Shyamali C

    2016-11-01

    The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of air pollution on asthma, allergic diseases, and lung function. Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of air pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant interaction with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and air pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other interactions involving a number of unaccounted environment exposures and multiple genes. Although there is evidence of an interaction between GST genes and air pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.

  7. Experimentally quantifying anion polarizability at the air/water interface.

    PubMed

    Tong, Yujin; Zhang, Igor Ying; Campen, R Kramer

    2018-04-03

    The adsorption of large, polarizable anions from aqueous solution on the air/water interface controls important atmospheric chemistry and is thought to resemble anion adsorption at hydrophobic interfaces generally. While the favourability of adsorption of such ions is clear, quantifying adsorption thermodynamics has proven challenging because it requires accurate description of the structure of the anion and its solvation shell at the interface. In principle anion polarizability offers a structural window, but to the best of our knowledge there has so far been no experimental technique that allowed its characterization with interfacial specificity. Here, we meet this challenge using interface-specific vibrational spectroscopy of Cl-O vibrations of the [Formula: see text] anion at the air/water interface and report that the interface breaks the symmetry of the anion, the anisotropy of [Formula: see text]'s polarizability tensor is more than two times larger than in bulk water and concentration dependent, and concentration-dependent polarizability changes are consistent with correlated changes in surface tension.

  8. Simulation study of air and water cooled photovoltaic panel using ANSYS

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  9. Hadronic Interaction Models and the Air Shower Simulation Program CORSIKA

    NASA Astrophysics Data System (ADS)

    Heck, D.; KASCADE Collaboration

    The Monte Carlo program CORSIKA simulates the 4-dimensional evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei. It contains links to the hadronic interaction models DPMJET, HDPM, NEXUS, QGSJET, SIBYLL, and VENUS. These codes are employed to treat the hadronic interactions at energies above 80 GeV. Since their first implementation in 1996 the models DPMJET and SIBYLL have been revised to versions II.5 and 2.1, respectively. Also the treatment of diffractive interactions by QGSJET has been slightly modified. The models DPMJET, QGSJET and SIBYLL are able to simulate collisions even at the highest energies reaching up to 1020 eV, which are at the focus of present research. The recently added NEXUS 2 program uses a unified approach combining Gribov-Regge theory and perturbative QCD. This model is based on the universality hypothesis of the behavior of highenergy interactions and presently works up to 1017 eV. A comparison of simulations performed with different models gives an indication on the systematic uncertainties of simulated air shower properties, which arise from the extrapolations to energies, kinematic ranges, or projectile-target combinations not covered by man-made colliders. Results obtained with the most actual programs are presented.

  10. The impact of horizontal resolution on the representation of air-sea interaction over North Atlantic open ocean convection sites

    NASA Astrophysics Data System (ADS)

    Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng

    2017-04-01

    Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold air outbreaks characterized by large surface turbulent heat fluxes and convective roll cloud development. Here we compare the statistics of the air-sea interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent heat fluxes, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold air outbreaks.

  11. Adsorption kinetics of c-Fos and c-Jun to air-water interfaces.

    PubMed

    Del Boca, Maximiliano; Nobre, Thatyane Morimoto; Zaniquelli, Maria Elisabete Darbello; Maggio, Bruno; Borioli, Graciela A

    2007-11-01

    The kinetics of adsorption to air-water interfaces of the biomembrane active transcription factors c-Fos, c-Jun and their mixtures is investigated. The adsorption process shows three distinct stages: a lag time, a fast pseudo zero-order stage, and a halting stage. The initial stage determines the course of the process, which is concentration dependent until the end of the fast stage. We show that c-Fos has faster adsorption kinetics than c-Jun over all three stages and that the interaction between both proteins is apparent in the adsorption profiles of the mixtures. Protein molecular reorganization at the interface determines the transition to the final adsorption stage of the pure proteins as well as that of the mixtures.

  12. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

    PubMed Central

    Gref, Anna; Merid, Simon K.; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S.; Korek, Michal; Kozyrskyj, Anita L.; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M. T.; van den Berge, Maarten; Vonk, Judith M.; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M.; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W. James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H.; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran

    2017-01-01

    Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene

  13. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  14. A Case Study of Air Cleaner by the Intelligent Interaction and Emotion

    NASA Astrophysics Data System (ADS)

    Cao, Huai; Sun, Yuwen

    2018-02-01

    The pure and fresh air can not only contribute to our physical and mental health, but also can be beneficial to ease the pressure and relax the mood. The vertical intelligent air cleaner can remove the harmful gases from the air and absorb the suspended particles in the air, especially all kinds of the bacteria and viruses. The air cleaner is good for improving the air quality of the indoor and maintaining the health of the people. The designing of the vertical air cleaner is as follows: The designing of the vertical intelligent make full use of the developed air purification technology. The smart home is inserted into the work. Simultaneously, in the aspect of the design of intelligent products, the intelligent interactive processes are scientifically planned. Moreover, the emotional design and the user experience are fully considered, which can enhance the comprehensive design ability.

  15. Experimental verification of enhanced sound transmission from water to air at low frequencies.

    PubMed

    Calvo, David C; Nicholas, Michael; Orris, Gregory J

    2013-11-01

    Laboratory measurements of enhanced sound transmission from water to air at low frequencies are presented. The pressure at a monitoring hydrophone is found to decrease for shallow source depths in agreement with the classical theory of a monopole source in proximity to a pressure release interface. On the other hand, for source depths below 1/10 of an acoustic wavelength in water, the radiation pattern in the air measured by two microphones becomes progressively omnidirectional in contrast to the classical geometrical acoustics picture in which sound is contained within a cone of 13.4° half angle. The measured directivities agree with wavenumber integration results for a point source over a range of frequencies and source depths. The wider radiation pattern owes itself to the conversion of evanescent waves in the water into propagating waves in the air that fill the angular space outside the cone. A ratio of pressure measurements made using an on-axis microphone and a near-axis hydrophone are also reported and compared with theory. Collectively, these pressure measurements are consistent with the theory of anomalous transparency of the water-air interface in which a large fraction of acoustic power emitted by a shallow source is radiated into the air.

  16. Metabolic and cardiovascular adjustment to work in air and water at 18, 25, and 33 degrees C.

    PubMed

    McArdle, W D; Magel, J R; Lesmes, G R; Pechar, G S

    1976-01-01

    By use of successive increments of discontinuous work with an arm-leg cycle ergometer the VO2, Q, SV, and HR were studied in six male subjects at rest and during exercise in air and in water at 18, 25, and 33 degrees C. The Q values obtained by CO2 rebreathing were reproducible. VO2 was linearly related to work with the plots for air and 33 degrees C water being similar. However, during work in 25 and 18 degrees C water, the VO2 averaged 9.0% (150 ml) and 25.3% (400 ml) higher, respectively, than values observed in 33 degrees C water, with the largest differences observed in leaner subjects. The plot of HR-VO2 was linear and almost identical during work in air and 33 degrees C water, but shifted significantly to the right in cooler water. VO2 averaged 250-700 ml higher in cold water compared to air and 33 degrees C water at a given mean heart rate. The Q vs. VO2 line was similar during work in air and in water with no effect of water or temperature. At similar levels of VO2, SV was significantly larger (P less than 0.05) in 25 and 18 degrees C water than in air or 33 degrees C water. Consequently, the reduction in heart rate during work in cold water was entirely compensated for by a proportionate increase in the SV of the heart. Q was therefore maintained at similar levels of energy expenditure in air and in 18, 25, and 30 degrees C water.

  17. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  19. Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure.

    PubMed

    Li, Li Jun; Hong, Peng; Jiang, Ze Dong; Yang, Yuan Fan; Du, Xi Ping; Sun, Hao; Wu, Li Ming; Ni, Hui; Chen, Feng

    2018-01-15

    d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  1. Are the measurements of water-filled and air-charged catheters the same in urodynamics?

    PubMed

    Digesu, G Alessandro; Derpapas, Alexandros; Robshaw, Penny; Vijaya, Gopalan; Hendricken, Caroline; Khullar, Vik

    2014-01-01

    The aim of our study was to compare air-charged and water-filled catheters simultaneously in the measurement of the intravesical, abdominal and detrusor pressure during urodynamic investigations. Consecutive women with lower urinary tract symptoms, referred for urodynamics were prospectively studied. Readings of intravesical pressure (p(ves)), abdominal pressure (p(abd)) and detrusor pressure (p(det)), recorded by both the air-charged and water-filled catheters, were displayed simultaneously and compared at the end of filling, on standing, on sitting prior to voiding and at the maximum involuntary detrusor contraction. The signals (pressures) recorded by both types of catheter were compared using the Bland-Altman plot and paired samples t test. Twenty women with a mean age of 49 (range 36-72) were recruited. One patient with normal urodynamics was excluded in view of the poor quality trace. At each of the four comparison points, the air-charged catheters consistently produced higher mean pressures than the water-filled catheters. There were wide variations in the difference between the readings produced by the two types of catheter. Pressures measured using air-charged catheters are not comparable with water-filled catheters and are therefore not interchangeable. Caution must be used when comparing urodynamic parameters using air-charged and water-filled catheters.

  2. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.

    PubMed

    Pérez-Hernández, Guillermo; Schmidt, Burkhard

    2013-04-14

    Effective Lennard-Jones models for the water-carbon interaction are derived from existing high-level ab initio calculations of water adsorbed on graphene models. The resulting potential energy well (εCO + 2εCH ≈ 1 kJ mol(-1)) is deeper than most of the previously used values in the literature on water in carbon nanotubes (CNTs). Moreover, a substantial anisotropy of the water-carbon interaction (εCO ≈ 2εCH) is obtained, which is neglected in most of the literature. We systematically investigate the effect of this anisotropy on structure and dynamics of TIP5P water confined in narrow, single-walled CNTs by means of molecular dynamics simulations for T = 300 K. While for isotropic models water usually forms one-dimensional, ordered chains inside (6,6) CNTs, we find frequent chain ruptures in simulations with medium to strongly anisotropic potentials. Here, the water molecules tend to form denser clusters displaying a liquid-like behaviour, allowing for self-diffusion along the CNT axis, in contrast to all previous simulations employing spherical (εCH = 0) interaction models. For (7,7) CNTs we observe structures close to trigonal, helical ice nanotubes which exhibit a non-monotonous dependence on the anisotropy of the water-carbon interaction. Both for vanishing and for large values of εCH we find increased fluctuations leading to a more liquid-like behaviour, with enhanced axial diffusion. In contrast, structure and dynamics of water inside (8,8) CNTs are found to be almost independent of the anisotropy of the underlying potential, which is attributed to the higher stability of the non-helical fivefold water prisms. We predict this situation to also prevail for larger CNTs, as the influence of the water-water interaction dominates over that of the water-carbon interaction.

  3. Signatures of Air-Wave Interactions Over a Large Lake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Bou-Zeid, Elie; Vercauteren, Nikki; Parlange, Marc

    2018-06-01

    The air-water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress-wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress-wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave-wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (κ ) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.

  4. Role of air-water interfaces on retention of viruses under unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.; van den Berg, H. H. J. L.

    2006-12-01

    We investigated transport of viruses through saturated and unsaturated sand columns. Unsaturated experiments were conducted under conditions of uniform saturation and steady state water flow. The water saturation ranged from 1 to 0.5. Bacteriophages MS2 and ϕX174 were used as surrogates for pathogenic viruses in these studies. Phosphate-buffered solutions with different pH values (7.5, 6.2, 5.5, and 5) were utilized. Virus transport was modeled assuming first-order kinetic adsorption for interactions to the solid-water interface (SWI) and the air-water interface (AWI). Under saturated conditions, virus retention increased as pH decreased, and a one-site kinetic model produced a good fit to the breakthrough curves. Under unsaturated conditions a two-site kinetic model was needed to fit the breakthrough curves satisfactorily. The second site was attributed to the adsorption of phages to the AWI. According to our results, ϕX174 exhibits a high affinity to the AWI at pH values below 6.6 (the isoelectric point of ϕX174). Although it is believed that MS2 is more hydrophobic than ϕX174, MS2 had a lower affinity to the AWI than ϕX174, presumably because of the lower isoelectric point of MS2, which is equal to 3.9. Under unsaturated conditions, viruses captured within the column could be recovered in the column outflow by resaturating and immediately draining the column. Draining columns under saturated conditions, however, did not result in any recovery of viruses. Therefore the recovery can be attributed to the release of viruses adsorbed to the AWI. Our results suggest that electrostatic interactions of viruses with the AWI are much more important than hydrophobicity.

  5. Water Reuse Reconsidered

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    The Second National Conference on Complete WateReuse stressed better planning, management, and use of water. The sessions covered: water reuse and its problems; water's interface with air and land, and modification of these interactions by the imposition of energy; and heavy metals in the environment and methods for their removal. (BT)

  6. It's Alive!: Students Observe Air-Water Interface Samples Rich with Organisms

    ERIC Educational Resources Information Center

    Avant, Thomas

    2002-01-01

    This article describes an experiment, designed by Cindy Henk, manager of the Socolofsky Microscopy Center at Louisiana State University (LSU), that involved collecting and viewing microorganisms in the air-water interface. The experiment was participated by Leesville High School microbiology students. The students found that the air-water…

  7. Low Cost, Efficient Microcavity Plasma Ozone Generation for Water Remediation and Air Purification

    DTIC Science & Technology

    2012-06-01

    Eliasson, and M. Hirth, “ Ozone Generation from Oxygen and Air: Discharge Physics and Reaction Mechanisms,” Ozone Sci. and Eng., vol. 10, pp. 367-378...Phase I Final Report: Low Cost, Efficient Microcavity Plasma Ozone Generation for Water Remediation and Air Purification...Contract Number: FA9550-11-C-0087 June 2012 Low Cost, Efficient Microcavity Plasma Ozone Generation for Water Remediation

  8. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  10. Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules.

    PubMed

    Devineau, Stéphanie; Inoue, Ken-Ichi; Kusaka, Ryoji; Urashima, Shu-Hei; Nihonyanagi, Satoshi; Baigl, Damien; Tsuneshige, Antonio; Tahara, Tahei

    2017-04-19

    Elucidation of the molecular mechanisms of protein adsorption is of essential importance for further development of biotechnology. Here, we use interface-selective nonlinear vibrational spectroscopy to investigate protein charge at the air/water interface by probing the orientation of interfacial water molecules. We measured the Im χ (2) spectra of hemoglobin, myoglobin, serum albumin and lysozyme at the air/water interface in the CH and OH stretching regions using heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy, and we deduced the isoelectric point of the protein by monitoring the orientational flip-flop of water molecules at the interface. Strikingly, our measurements indicate that the isoelectric point of hemoglobin is significantly lowered (by about one pH unit) at the air/water interface compared to that in the bulk. This can be predominantly attributed to the modifications of the protein structure at the air/water interface. Our results also suggest that a similar mechanism accounts for the modification of myoglobin charge at the air/water interface. This effect has not been reported for other model proteins at interfaces probed by conventional VSFG techniques, and it emphasizes the importance of the structural modifications of proteins at the interface, which can drastically affect their charge profiles in a protein-specific manner. The direct experimental approach using HD-VSFG can unveil the changes of the isoelectric point of adsorbed proteins at various interfaces, which is of major relevance to many biological applications and sheds new light on the effect of interfaces on protein charge.

  11. Solubility of methane in water: the significance of the methane-water interaction potential.

    PubMed

    Konrad, Oliver; Lankau, Timm

    2005-12-15

    The influence of the methane-water interaction potential on the value of the Henry constant obtained from molecular dynamics simulations was investigated. The SPC, SPC/E, MSPC/E, and TIP3P potentials were used to describe water and the OPLS-UA and TraPPE potentials for methane. Nonbonding interactions between unlike atoms were calculated both with one of four mixing rules and with our new methane-water interaction potential. The Henry constants obtained from simulations using any of the mixing rules differed significantly from the experimental ones. Good agreement between simulation and experiment was achieved with the new potential over the whole temperature range.

  12. Statistics of surface divergence and their relation to air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  13. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  14. A comparison study of exploding a Cu wire in air, water, and solid powders

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  15. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general.

  16. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  17. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  18. Investigation of Ground Water Pollution at Air Force Plant Number 4, Fort Worth Texas

    DTIC Science & Technology

    1986-10-01

    Dbtibz~o Ud~mxtm!UCTtq! - INVESTIGATION OF GROUND WATER POLLUTION AT - AIR FORCE PLANT NO. 4 FORT WORTH, TEXAS REPORT TO - UNITED STATES AIR FORCE...performed at the plant : Three pairs of Paluxy monitoring wells weze drilled along the south boundary of the plant to determine if pollutants discovered in...a nonhazardous dye tracer in selected wells. v U, INVESTIGATION OF POLLUTION OF GROUND WATER IN THE PALUXY AQUIFER AT AIR FORCE PLANT NO. 4, FORT

  19. X-ray luminescence imaging of water, air, and tissue phantoms

    NASA Astrophysics Data System (ADS)

    Lun, Michael C.; Li, Changqing

    2018-02-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality. In XLCT, high energy x-ray photons excite phosphors emitting optical photons for tomographic image reconstruction. During XLCT, the optical signal obtained is thought to only originate from the embedded phosphor particles. However, numerous studies have reported other sources of optical photons such as in air, water, and tissue that are generated from ionization. These sources of optical photons will provide background noise and will limit the molecular sensitivity of XLCT imaging. In this study, using a water-cooled electron multiplying charge-coupled device (EMCCD) camera, we performed luminescence imaging of water, air, and several tissue mimicking phantoms including one embedded with a target containing 0.01 mg/mL of europium-doped gadolinium oxysulfide (GOS:Eu3+) particles during x-ray irradiation using a focused x-ray beam with energy less than the Cerenkov radiation threshold. In addition, a spectrograph was used to measure the x-ray luminescence spectrum. The phantom embedded with the GOS:Eu3+ target displayed the greatest luminescence intensity, followed by the tissue phantom, and finally the water phantom. Our results indicate that the x-ray luminescence intensity from a background phantom is equivalent to a GOS:Eu3+ concentration of 0.8 μg/mL. We also found a 3-fold difference in the radioluminescence intensity between liquid water and air. From the measurements of the emission spectra, we found that water produced a broad spectrum and that a tissue-mimicking phantom made from Intralipid had a different x-ray emission spectrum than one made with TiO2 and India ink. The measured spectra suggest that it is better to use Intralipid instead if TiO2 as optical scatterer for future XLCT imaging.

  20. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS. ACTION... Water Show safety zone on Lake Michigan near Lincoln Park. This action is necessary to accurately reflect the enforcement dates and times for this safety zone due to changes made in this year's air show...

  1. Production and application of O2 enriched air produced by fresh and salt water desorption in chemical plants.

    PubMed

    Galli, F; Previtali, D; Bozzano, G; Bianchi, C L; Manenti, F; Pirola, C

    2018-07-01

    Oxygen enriched air intensifies oxidation processes since smaller reactors reach the same conversion of typical unit operations that employ simple air as reactant. However, the cost to produce pure oxygen or oxygen enriched air with traditional methods, i.e. cryogenic separation or membrane technologies, may be unaffordable. Here, we propose a new continuous technology for gas mixture separation, focusing on the production of oxygen enriched air as a case study. This operation is an absorption-desorption process that takes advantage of the higher oxygen solubility in water compared to nitrogen. In a pressurized solubilisation tank, water absorbs air. Subsequently, reducing pressure desorbs oxygen enriched air. PRO/II 9.3 (Simsci-Scheider Electrics) simulated, optimized, and calculated the capital and operative expenses of this technology. Moreover, we tested for the first time salt water instead of distilled water as appealing possibility for chemical plant near sea and ocean. We varied the inlet water flowrate between 5 and 15 m 3 /h. The optimum operative absortion unit pressure is 15-35 barg. After degassing, water may be recycled. With salt water, the extracted quantity of enriched air decreases compared with the desorption from fresh water (20% less), while the concentration of oxygen is independent from the salt concentration. The cost of enriched air at the optimum condition is 2-3.35 EUR/Nm 3 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Breath-hold times in air compared to breath-hold times during cold water immersions.

    PubMed

    Taber, Michael J; MacKinnon, Scott N; Power, Jonathan; Walker, Robert

    2015-02-01

    Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time. After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire. The first BH was completed while standing on the pool deck. The second BH was completed while fully immersed (face down) in 2-3°C water. There were 40 of the volunteers who also breathed from an emergency breathing system (EBS) while in the cold water. Results demonstrated that BH capabilities in cold water were significantly lower than those in ambient air. A significant correlation was also found between BH in air and the difference in cold water vs. air BH capabilities, which suggests that subjects who can hold their breath the longest in air experienced the greatest decrease in BH when immersed. Results indicate that 92% of the subjects reported that the practical cold water immersion exercise had a high value. Finally, 58% of those who used the EBS reported that it was harder to breathe in cold water than while in the training pool (approximately 22°C). The BH times for this group were similar to those reported in previous cold water immersion studies. Based on the questionnaire results, it is possible, when carefully applied, to include a practical cold water immersion exercise into existing HUET programs.

  3. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  4. Morphological variation of stimuli-responsive polypeptide at air-water interface

    NASA Astrophysics Data System (ADS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-12-01

    The morphological variation of stimuli-responsive polypeptide molecules at the air-water interface as a function of temperature and compression was described. The surface pressure-area (π-A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir-Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air-water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π-A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air-water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  5. Experimental investigations on characteristics of stable water electrospray in air without discharge

    NASA Astrophysics Data System (ADS)

    Park, Inyong; Hong, Won Seok; Kim, Sang Bok; Kim, Sang Soo

    2017-06-01

    An experimental study was conducted to resolve previous conflicting results on water electrospray in air at atmospheric pressure. Using a small flow rate relative to that used in previous studies and a small nonmetallic nozzle, we observed stable electrospray of water in air without discharge and distinguished three distinct operating regimes for applied voltage and flow rate. The well-known cone-jet mode was observed and the general scaling law of the generated droplet size in the cone-jet mode was confirmed by direct visualization of the meniscus, jet, and generated droplets. We also observed and analyzed whipping motion in the electrified water jet.

  6. Mercury exchange at the air-water-soil interface: an overview of methods.

    PubMed

    Fang, Fengman; Wang, Qichao; Liu, Ruhai

    2002-06-12

    An attempt is made to assess the present knowledge about the methods of determining mercury (Hg) exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water) are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  7. Air Emissions Damages from Municipal Drinking Water Treatment Under Current and Proposed Regulatory Standards.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2017-09-19

    Water treatment processes present intersectoral and cross-media risk trade-offs that are not presently considered in Safe Drinking Water Act regulatory analyses. This paper develops a method for assessing the air emission implications of common municipal water treatment processes used to comply with recently promulgated and proposed regulatory standards, including concentration limits for, lead and copper, disinfection byproducts, chromium(VI), strontium, and PFOA/PFOS. Life-cycle models of electricity and chemical consumption for individual drinking water unit processes are used to estimate embedded NO x , SO 2 , PM 2.5 , and CO 2 emissions on a cubic meter basis. We estimate air emission damages from currently installed treatment processes at U.S. drinking water facilities to be on the order of $500 million USD annually. Fully complying with six promulgated and proposed rules would increase baseline air emission damages by approximately 50%, with three-quarters of these damages originating from chemical manufacturing. Despite the magnitude of these air emission damages, the net benefit of currently implemented rules remains positive. For some proposed rules, however, the promise of net benefits remains contingent on technology choice.

  8. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    NASA Astrophysics Data System (ADS)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  9. The Water music of Vanuatu

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd; Hurd, Randy; Belden, Jesse; Speirs, Nathan; Merritt, Andrew; Allen, John

    2017-11-01

    Female musicians from the northern islands of Vanuatu (within larger Polynesia) use the water surface as an instrument to create a variety of unique sounds. Water music is often made by a line of performers standing side by side, waist deep in clear island waters. Accompanied by singing, the women work in unison exhibiting several percussive techniques, which include striking the water surface and throwing handfuls of water which scatter into droplets before impacting the surface. Each interaction produces a unique acoustic response corresponding to the air-water-hand interaction. We highlight the connection between water interaction, cavity shape and the resulting sound which was discovered by these people through their own experimentation.

  10. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    PubMed

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  11. Wind and water tunnel testing of a morphing aquatic micro air vehicle

    PubMed Central

    Ortega Ancel, Alejandro; Kovač, Mirko

    2017-01-01

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae. The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive. PMID:28163877

  12. Harvesting Water from Air: Using Anhydrous Salt with Sunlight.

    PubMed

    Li, Renyuan; Shi, Yusuf; Shi, Le; Alsaedi, Mossab; Wang, Peng

    2018-05-01

    Atmospheric water is an abundant alternative water resource, equivalent to 6 times the water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting, and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl 2 ), copper sulfate (CuSO 4 ), and magnesium sulfate (MgSO 4 ) distinguish themselves and are further made into bilayer water collection devices, with the top layer being the photothermal layer, while the bottom layer acts as a salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15%) and releasing water under regular and even weakened sunlight (i.e., 0.7 kW/m 2 ). The work shines light on the potential use of anhydrous salt toward producing drinking water in water scarce regions.

  13. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  14. Oxygen and carbon dioxide sensitivity of ventilation in amphibious crabs, Cardisoma guanhumi, breathing air and water.

    PubMed

    Gannon, Andrew T; Henry, Raymond P

    2004-05-01

    Amphibious crabs, Cardisoma guanhumi, were acclimated to breathing either air or water and exposed to altered levels of oxygen and/or carbon dioxide in the medium. Hypercapnia (22, 36 and 73 torr CO(2)) stimulated a significant hypercapnic ventilatory response (HCVR) in both groups of crabs, with a much greater effect on scaphognathite frequency (Deltaf(SC)=+700%) in air-breathing crabs than water-breathing crabs (Deltaf(SC)=+100%). In contrast, hyperoxia induced significant hypoventilation in both sets of crabs. However, simultaneous hyperoxia and hypercapnia triggered a greater than 10-fold increase in f(SC) in air-breathing crabs but no change in water-breathing crabs. For water-breathing crabs hypoxia simultaneous with hypercapnia triggered the same response as hypoxia alone-bradycardia (-50%), and a significant increase in f(SC) at moderate exposures but not at the more extreme levels. The response of air-breathing crabs to hypoxia concurrent with hypercapnia was proportionally closer to the response to hypercapnia alone than to hypoxia. Thus, C. guanhumi were more sensitive to ambient CO(2) than O(2) when breathing air, characteristic of fully terrestrial species, and more sensitive to ambient O(2) when breathing water, characteristic of fully aquatic species. C. guanhumi possesses both an O(2)- and a CO(2)-based ventilatory drive whether breathing air or water, but the relative importance switches when the respiratory medium is altered.

  15. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  16. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  17. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    NASA Astrophysics Data System (ADS)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  18. Generalized water-table and water-level data at the US Air Force plant 42 and vicinity, Palmdale, California, March-April, 1997

    USGS Publications Warehouse

    Christensen, Allen H.

    1999-01-01

    The U.S. Air Force Plant 42 (Plant 42) which is in the Antelope Valley about 1.5 miles northeast of Palmdale and 3 miles southeast of Lancaster in Los Angeles County. Historically, ground water has been the primary source of water owing, in large part, to the scarcity of surface water in the region. Since 1972, supplemental surface water has been imported from the California Water Project to help meet the demand for water. Despite the importation of surface water, ground-water withdrawal for both municipal and agricultural uses is affecting ground-water levels in the vicinity of Plant 42. To better understand the effects of ground-water withdrawal on ground-water levels and movement in the area, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, constructed a generalized water-table-contour map of the aquifer system underlying Plant 42 and the surrounding area.

  19. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    PubMed

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.

  20. 75 FR 11560 - Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air... for the Defendant's violations of the Clean Water Act, 33 U.S.C. 1251 et seq., and the Clean Air Act... including the installation of water effluent controls, the rerouting of air emissions through control...

  1. Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan.

    PubMed

    Tandon, Kshitij; Yang, Shan-Hua; Wan, Min-Tao; Yang, Chia-Chin; Baatar, Bayanmunkh; Chiu, Chih-Yu; Tsai, Jeng-Wei; Liu, Wen-Cheng; Tang, Sen-Lin

    2018-04-21

    Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes-located 21 km apart and with disparate trophic characteristics-and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.

  2. The electrostatic interaction between interfacial colloidal particles

    NASA Astrophysics Data System (ADS)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  3. Pre-service primary school teachers’ abilities in explaining water and air pollution scientifically

    NASA Astrophysics Data System (ADS)

    Lukmannudin; Sopandi, W.; Sujana, A.; Sukardi, R.

    2018-05-01

    The purpose of this study is to determine the ability of pre-service primary school teachers (PSPST) in explaining the phenomenon of water and air pollution scientifically. The research method used descriptive method of analysis with qualitative approach. The respondents were PSPTP at 4th semester. This study used a four-tier instrument diagnostic test. The number of subjects was 84 PSPTP at Universitas Pendidikan Indonesia, Kampus Daerah Sumedang. The results demonstrate the ability of PSPST in explaining water and air pollution scientifically. The results show that only 6% of PSPST who are able to explain the phenomenon of water pollution and only 4% of PSPST who are able to explain the phenomenon of air pollution. The fact should be attention for PSPST because these understanding are crucial in the process of learning activities in the classroom.

  4. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    PubMed

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society

  5. Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Lyu, Xiaopu; Guo, Hai; Wang, Yu; Zou, Shichun; Ling, Zhenhao; Wang, Xinming; Jiang, Fei; Zeren, Yangzong; Pan, Wenzhuo; Huang, Xiaobo; Shen, Jin

    2018-03-01

    Marine atmosphere is usually considered to be a clean environment, but this study indicates that the near-coast waters of the South China Sea (SCS) suffer from even worse air quality than coastal cities. The analyses were based on concurrent field measurements of target air pollutants and meteorological parameters conducted at a suburban site (Tung Chung, TC) and a nearby marine site (Wan Shan, WS) from August to November 2013. The observations showed that the levels of primary air pollutants were significantly lower at WS than those at TC, while the ozone (O3) value was greater at WS. Higher O3 levels at WS were attributed to the weaker NO titration and higher O3 production rate because of stronger oxidative capacity of the atmosphere. However, O3 episodes were concurrently observed at both sites under certain meteorological conditions, such as tropical cyclones, continental anticyclones and sea-land breezes (SLBs). Driven by these synoptic systems and mesoscale recirculations, the interaction between continental and marine air masses profoundly changed the atmospheric composition and subsequently influenced the formation and redistribution of O3 in the coastal areas. When continental air intruded into marine atmosphere, the O3 pollution was magnified over the SCS, and the elevated O3 ( > 100 ppbv) could overspread the sea boundary layer ˜ 8 times the area of Hong Kong. In some cases, the exaggerated O3 pollution over the SCS was recirculated to the coastal inshore by sea breeze, leading to aggravated O3 pollution in coastal cities. The findings are applicable to similar mesoscale environments around the world where the maritime atmosphere is potentially influenced by severe continental air pollution.

  6. Interaction Between Air Pollutants and Pollen Grains: The Role on the Rising Trend in Allergy

    PubMed Central

    Sedghy, Farnaz; Varasteh, Abdol-Reza; Sankian, Mojtaba; Moghadam, Malihe

    2018-01-01

    Asthma and allergic diseases cases have risen in recent decades. Plant pollen is considered as the main aeroallergen causing allergic reactions. According to available data, urban residents experience more respiratory allergies than rural residents mainly due to the interaction between chemical air pollutants and pollen grains. This interaction can occur through several mechanisms; chemical pollutants might facilitate pollen allergen release, act as adjuvants to stimulate IgE-mediated responses, modify allergenic potential, and enhance the expression of some allergens in pollen grains. This review focuses on the most recent theories explaining how air pollutants can interact with pollen grains and allergens. PMID:29766006

  7. Role of water mediated interactions in protein-protein recognition landscapes.

    PubMed

    Papoian, Garegin A; Ulander, Johan; Wolynes, Peter G

    2003-07-30

    The energy landscape picture of protein folding and binding is employed to optimize a number of pair potentials for direct and water-mediated interactions in protein complex interfaces. We find that water-mediated interactions greatly complement direct interactions in discriminating against various types of trap interactions that model those present in the cell. We highlight the context dependent nature of knowledge-based binding potentials, as contrasted with the situation for autonomous folding. By performing a Principal Component Analysis (PCA) of the corresponding interaction matrixes, we rationalize the strength of the recognition signal for each combination of the contact type and reference trap states using the differential in the idealized "canonical" amino acid compositions of native and trap layers. The comparison of direct and water-mediated contact potential matrixes emphasizes the importance of partial solvation in stabilizing charged groups in the protein interfaces. Specific water-mediated interresidue interactions are expected to influence significantly the kinetics as well as thermodynamics of protein association.

  8. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  9. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light interaction for water dissociation simulated by the means of COMSOL

    NASA Astrophysics Data System (ADS)

    Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.

    2018-06-01

    The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.

  11. Volatilization Rates from Water to Indoor Air Phase II

    EPA Science Inventory

    Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attemp...

  12. Recent advances in understanding the interaction of groundwater and surface water

    USGS Publications Warehouse

    Winter, Thomas C.

    1995-01-01

    The most common image of the interaction of groundwater and surface water is that of the interaction of streams with a contiguous alluvial aquifer. This type of system has been the focus of study for more than 100 years, from the work of Boussinesq (1877) to the present, and stream-aquifer interaction continues to be the most common topic of papers discussing the interaction of groundwater and surface water. However, groundwater and surface water interact in a wide variety of landscapes from alpine to coastal. Within these landscapes, ground-water systems range in scale from local to regional, and the types of surface water include streams, lakes, wetlands, and oceans. Given the broad spectrum of the topic of groundwater and surface water interaction, an overview of studies of this topic could be organized according to surface water type, landscape type, scale of hydrologic systems, or field and analytical methods. All these factors are discussed, but this paper is organized according to landscape type because of the great increase in studies of the interaction of groundwater and surface water in landscapes other than riverine systems in the last 15 years. Furthermore, discussing studies by landscape type facilitates comparison of methods and results from different geologic and climatic settings. The general landscapes discussed are mountain terrane, riverine systems, coastal terrane, hummocky terrane, and karst terrane.

  13. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  14. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  15. Effects of water nanodroplets on skin moisture and viscoelasticity during air-conditioning.

    PubMed

    Ohno, Hideo; Nishimura, Naoki; Yamada, Kuniyuki; Shimizu, Yuuki; Iwase, Satoshi; Sugenoya, Junichi; Sato, Motohiko

    2013-11-01

    In air-conditioned rooms, dry air exacerbates some skin diseases, for example, senile xerosis, atopic dermatitis, and surface roughness. Humidifiers are used to improve air dryness, which often induces excess humidity and thermal discomfort. To address this issue, we investigated the effects of water nanodroplets (mist) on skin hydration, which may increase skin hydration by penetrating into the interstitial spaces between corneocytes of the stratum corneum (SC) without increasing air humidity. We examined biophysical parameters, including skin conductance and transepidermal water loss (TEWL), and biomechanical parameters of skin distension/retraction before and after suction at the forehead, lateral canthus, and cheek, with or without mist, in a testing environment (24°C, 35% relative humidity) for 120 min. In the group without mist, TEWL values significantly decreased at all the sites after 1 h compared with the initial values. However, in the presence of mist, TEWL values were maintained at the initial values through the test, yielding significant differences vs. the group without mist. There were no significant differences between mist and mist-free groups in terms of skin conductance. Skin distension was significantly increased in the group with mist compared with that in the group without mist at the forehead and cheek, suggesting a softening effect of mist. Skin deformation of the face was improved by mist, suggesting hydration of the SC by mist. The change in TEWL was influenced by mist, suggesting supply of water to the skin, particularly the SC, by mist. These data indicated that a mist of water nanodroplets played an important role in softening skin in an air-conditioned room without increasing excess humidity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  17. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    NASA Astrophysics Data System (ADS)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  18. The Relationship Between Temperature and Gas Concentration Fluctuation Rates at an Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Jessup, A. T.; Liang, H.; Zappa, C. J.

    2008-12-01

    The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG(CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry's Gas Law equilibrium, and CW is the gas concentration in the bulk water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Surface divergence theory for the air-water transfer of gas and heat predicts that kG and kH will scale as the square root of the surface divergence rate, r. However, because of the interaction between diffusivity and the scale depth of the surface divergences, the scale factor for heat is likely to be different from the scale factor for gases. Infrared imagery was used to measure the timescales of variations in temperature at a water surface and laser-induced fluorescence (LIF) was used to measure temporal fluctuations in aqueous-phase concentrations of carbon dioxide (CO2) at a water surface. The rate at which these temperature and concentration fluctuations occur is then assumed to be related to r. The divergence rates derived for temperature from the IR images can be compared to the rates for gas derived from the LIF measurements to understand how r estimated from the two measurements differ. The square root of r is compared to concurrently measured kG for helium and sulfur hexafluoride to test the assumption that r1/2 scales with kG. Additionally, we measured kH using the active controlled flux technique, and those heat transfer velocities can also be used to test for a r1/2 dependence. All measurements reported here were made in the APL-UW synthetic jet array facility.

  19. Hexagonal boron nitride and water interaction parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less

  20. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  1. Stable Encapsulated Air Nanobubbles in Water.

    PubMed

    Wang, Yu; Liu, Guojun; Hu, Heng; Li, Terry Yantian; Johri, Amer M; Li, Xiaoyu; Wang, Jian

    2015-11-23

    The dispersion into water of nanocapsules bearing a highly hydrophobic fluorinated internal lining yielded encapsulated air nanobubbles. These bubbles, like their micrometer-sized counterparts (microbubbles), effectively reflected ultrasound. More importantly, the nanobubbles survived under ultrasonication 100-times longer than a commercial microbubble sample that is currently in clinical use. We justify this unprecedented stability theoretically. These nanobubbles, owing to their small size and potential ability to permeate the capillary networks of tissues, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Occurrence and Spatial and Temporal Variations of Disinfection By-Products in the Water and Air of Two Indoor Swimming Pools

    PubMed Central

    Catto, Cyril; Sabrina, Simard; Ginette, Charest-Tardif; Manuel, Rodriguez; Robert, Tardif

    2012-01-01

    In order to improve disinfection by-product (DBP) exposure assessment, this study was designed to document both water and air levels of these chemical contaminants in two indoor swimming pools and to analyze their within-day and day-to-day variations in both of them. Intensive sampling was carried out during two one-week campaigns to measure trihalomethanes (THMs) and chloramines (CAMs) in water and air, and haloacetic acids (HAAs) in water several times daily. Water samples were systematically collected at three locations in each pool and air samples were collected at various heights around the pool and in other rooms (e.g., changing room) in the buildings. In addition, the ability of various models to predict air concentrations from water was tested using this database. No clear trends, but actual variations of contamination levels, appeared for both water and air according to the sampling locations and times. Likewise, the available models resulted in realistic but imprecise estimates of air contamination levels from water. This study supports the recommendation that suitable minimal air and water sampling should be carried out in swimming pools to assess exposure to DBPs. PMID:23066383

  3. Liquid-surface entrainment induced by shocked air stream

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.

    2018-02-01

    Recently, we experimentally studied, in a shock tube environment, shock waves propagating over horizontal free water layers having depths of 10, 20, and 30 mm for shock wave Mach numbers M_is equal to 1.1 and 1.4. The qualitative interaction process was observed by means of high-speed visualizations, and the pressures arising in the air and in the water layer were measured and interpreted in terms of the various incident and refracted shock waves in air and water; in particular, it was concluded that the compression wave in the water is driven by the planar shock wave in the air. Additional experiments have been conducted and the novel contributions of the present technical note are quantitative results regarding the liquid-surface entrainment. At low Mach number (M_is=1.1 ), we show that the velocity of the droplets ejected into the air is independent of the water depth, unlike the wavelength of initial ripples and the angle of ejection. When the shock wave strength increases (M_is=1.4 ), the dispersion of a very thin droplet mist and a single large wave take place. We show that the thickening of the water mist and the velocity of the subsequent large wave decreases with the water-layer depth.

  4. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  5. Photochemical influences on the air-water exchange of mercury

    NASA Astrophysics Data System (ADS)

    Vette, Alan Frederic

    The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas exchange may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in air and water. These data were used to develop a mechanistic model to estimate air-water exchange of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission

  6. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China

    NASA Astrophysics Data System (ADS)

    Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen

    2018-03-01

    Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.

  7. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  8. Constraining the Energetics of Explosive Lava-Water Interactions

    NASA Astrophysics Data System (ADS)

    Fitch, E. P.; Fagents, S. A.

    2017-12-01

    During volcanic eruptions, water, such as groundwater or melted ice or snow, may interact with magma within the conduit during eruption, generating explosions when the heat of the magma causes the water to rapidly turn to steam and expand, resulting in what we call a "phreatomagmatic" eruption. In 2010, the eruption of Eyjafjallajökull volcano in Iceland produced a plume of fine ash, through the interaction between magma and glacial melt water, which resulted in the closure of substantial airspace, ultimately costing a total of almost 5 billion dollars. Although an important area of study, it is difficult to quantify the effect of eternal water on eruption intensity when the gas inside of magma is also expanding and fragmenting the magma. In an attempt to understand the energetics of magma-water interactions, small-scale laboratory experiments have been performed. Explosion energy is found to depend mostly on kinetic energy, which is proportional to dispersal distance, and fragmentation energy, which is proportional to the mean grain size of the ejecta, and the mass percent of ash-sized grains. It is thought that in order to generate heat transfer rates sufficiently rapid to cause explosive detonation, the source melt must be finely fragmented, producing ash-sized grains. Those grains undergo brittle fragmentation due to rapid cooling and weak shock waves generated by the vaporization of superheated water. We take the novel approach of studying explosive interactions between lava and water to obtain additional explosion energy constraints. We identified and analyzed numerous beds of lava-water explosion ejecta of varying explosion energy, and we analyzed the ash-sized grains of these beds in detail. We verified that the mass of ash-sized grains increases with increasing explosion energy, and can form at the interface between lava and water. We found that brittle fragmentation occurs to a greater degree as grain size decreases and that the ash of highly

  9. Theoretical and experimental studies of water interaction in acetate based ionic liquids.

    PubMed

    Shi, Wei; Damodaran, Krishnan; Nulwala, Hunaid B; Luebke, David R

    2012-12-05

    Water interactions in 1-ethyl-3-methylimidazolium acetate ([emim][CH(3)COO]) were studied utilizing classical and ab initio simulation methods. The self-diffusivities for water and the ionic liquid (IL) were studied experimentally using pulse field gradient NMR spectroscopy and correlated with computational results. Water forms hydrogen bonding networks with the ionic liquid, and depending on the concentration of water, there are profound effects on the self-diffusivities of the various species. Both simulation and experiments show that the self-diffusivities for species in the water-[emim][CH(3)COO] system exhibit minima at 40-50 mol% water. Water interaction with the [CH(3)COO](-) anion predominates over the water-water and water-cation interactions at most water concentrations. Simulations further indicate that decreasing water-[CH(3)COO](-) interaction will increase the IL and water self-diffusivities. Self-diffusivities in the water-IL systems are dependent upon the cation in a complex way. Water interactions with [P(4444)][CH(3)COO] are reduced compared to [emim][CH(3)COO]. The [P(4444)](+) cation is bulkier than the [emim](+) cation and has a smaller self-diffusivity, but when water was introduced to [P(4444)] [CH(3)COO], the water-[CH(3)COO](-) hydrogen bonding network in the [P(4444)][CH(3)COO] was much smaller than the one observed in [emim][CH(3)COO].

  10. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    PubMed

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  11. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  12. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  13. Observation of the water cycle from space with the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Chahine, M. T.; Waliser, D. E.; Fetzer, E. J.; Olsen, E. T.

    2007-12-01

    AIRS is one of six instruments on board the Aqua satellite, part of NASA's Earth Observing System launched in a sun synchronous near polar orbit on May 4, 2002. AIRS and its partner microwave instrument, AMSU A, provide high quality data facilitating studies of the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases. The exceptional stability of the AIRS instrument provides a climate record of thermal infrared radiance spectra spanning the 3.74 15.4 mm spectral band with 2378 channels at a nominal resolution of 1/1200. (Chahine et al, in BAMS, July 2006) Accurate knowledge of the vertical distribution of water vapor in the atmosphere is critically important to the determination of the warming the Earth will experience as a result of anthropogenic forcing. Comparison of the AIRS specific humidity product to state of the art climate models has shown most models exhibit a pattern of drier than observed (by 10 25%) in the tropics below 800 hPa and moister than observed (by 25 100%) between 300 and 600 hPa in the extra tropics (Pierce et al, GRL 2006). The AIRS water vapor measurements also reveal tropospheric moisture perturbations that are much larger than those depicted in previous NCAR/NCEP reanalysis and ECMWF analysis datasets, both of which have been widely used as observations to validate models. This suggests that the impact of convection induced downdrafts on the atmospheric boundary layer is significantly underestimated in both ECMWF and NCEP reanalysis (Fu et al., GRL 2006). AIRS data have led to the discovery of significant differences in the lower troposphere moisture and temperature fields during the spatial temporal evolution of the Madden Julian Oscillation (MJO). The anomalous lower troposphere temperature structure is observed in detail by AIRS for the Indian and western Pacific Oceans, while it remains much less well defined in the NCEP temperature fields (Tian et al

  14. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  15. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  16. Role of air on local water retention behavior in the shallow heterogeneous vadose zone

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-12-01

    In the presence of a subsurface source, air flowing through the unsaturated soil can transport toxic vapor into subsurface structures due to pressure gradients created by, e.g., a pressure drop within the building. Development of dynamic air pathways in the subsurface are largely controlled by the geological heterogeneity and the spatial and temporal distribution of soil moisture. To better understand how these air pathways are developed, it is crucial to know how water is retained in heterogeneous medium at spatial resolutions that are finer than those adopted in typical hydrologic and soil physics applications. Although methods for soil water pressure measurement can be readily found in literature, a technique for measuring “air pressure” in wet soil is not well-established or documented. Hydrophobic porous ceramic cups have been used to measure non-wetting NAPL phase pressure in two-phase systems. However, our preliminary tests using the hydrophobic ceramic cups installed in highly wet soil showed that under conditions of fast drainage of the wetting fluid that is replaced by air, it typically took some time before the cups responded to register the air pressure. Therefore, an attempt was made to develop a more robust method where the time lag is minimized. The tested materials were; 1) ceramic porous cups, 2) sintered stainless steel cups, 3) porous glass discs, and 4) non-woven PTFE fabric. The ceramic cups, sintered stainless steel cups and sintered porous glass discs required hydrophobic treatment, whereas the non-woven PTFE fabric is hydrophobic by itself. To treat the ceramic porous cups, the method proposed by Parker and Lenhard [1988] was adopted. The sintered porous stainless steel cups and porous glass discs were treated by a commercially available water repellant compound. For those four materials, contact angle, water entry pressure, and time lag to respond to an imposed pressure were measured. The best performing material was then tested in a

  17. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  18. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  19. 77 FR 44672 - Notice of Lodging of Consent Decree Under the Clean Water and Clean Air Acts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water and Clean Air Acts... a civil penalty of $1,750,000 to resolve its violations of the Clean Air Act and the Clean Water Act... of coke oven gas. Under the Clean Water Act, Plaintiffs allege that Shenango violated the effluent...

  20. Range Cattle Winter Water Consumption in Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Water consumption and DMI may interact to alter range cow productivity. Furthermore, environmental conditions and water temperature may influence water consumption. Therefore, the objective of this study was to determine influences of water and air temperature on quantity and pattern of water intake...

  1. Atmospheric photochemistry at a fatty acid coated air/water interface

    NASA Astrophysics Data System (ADS)

    George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James

    2017-04-01

    Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could

  2. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  3. Comparison of air-charged and water-filled urodynamic pressure measurement catheters.

    PubMed

    Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S

    2011-03-01

    Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.

  4. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline

  5. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  6. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Water Acts (a) If performance of this contract would involve the use of facilities which have given rise... which gave rise to said conviction. If no such statement is submitted, submission of an offer... facilities which have given rise to a conviction under section 113(c)(1) of the Clean Air Act or section 309...

  7. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Water Acts (a) If performance of this contract would involve the use of facilities which have given rise... which gave rise to said conviction. If no such statement is submitted, submission of an offer... facilities which have given rise to a conviction under section 113(c)(1) of the Clean Air Act or section 309...

  8. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  9. Direct measurements of the interactions between clathrate hydrate particles and water droplets.

    PubMed

    Liu, Chenwei; Li, Mingzhong; Zhang, Guodong; Koh, Carolyn A

    2015-08-14

    Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.

  10. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  11. Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface.

    PubMed

    Liu, Wei; Li, Shanghao; Wang, Zhuguang; Yan, Elsa C Y; Leblanc, Roger M

    2017-08-01

    Biofilm is an extracellular matrix of bacteria and serves as a protective shield of bacterial communities. It is crucial for microbial growth and one of the leading causes of human chronic infections as well. However, the structures and molecular mechanism of biofilm formation remain largely unknown. Here, we examined a protein, BslA, expressed in the biofilms of Bacillus subtilis. We characterized the Langmuir monolayers of BslA at the air/water interface. Using techniques in surface chemistry and spectroscopy, we found that BslA forms a stable and robust Langmuir monolayer at the air/water interface. Our results show that the BslA Langmuir monolayer underwent two-stage elasticity in the solid state phase upon mechanical compression: one is possibly due to the intermolecular interaction and the other is likely due to both the intermolecular compulsion and the intramolecular distortion. The Langmuir monolayer of BslA shows abrupt changes in rigidities and elasticities at ∼25 mN/m. This surface pressure is close to the one at which BlsA saturates the air/water interface as a self-assembled film without mechanical compression, corresponding to a mean molecular area of ∼700 Å 2 per molecule. Based on the results of surface UV-visible spectroscopy and infrared reflective-absorption spectroscopy, we propose that the BslA Langmuir monolayer carries intermolecular elasticity before ∼25 mN/m and both intermolecular and intramolecular elasticity after ∼25 mN/m. These results provide valuable insights into the understanding of biofilm-associated protein under high mechanical force, shedding light on further investigation of biofilm structure and functionalities.

  12. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  13. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  14. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  15. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  16. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  17. 27 CFR 30.66 - Table 6, showing respective volumes of alcohol and water and the specific gravity in both air and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...

  18. An Integrated Approach to Economic and Environmental Aspects of Air Pollution and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.

    2007-12-01

    Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have

  19. Magnesium, Iron and Aluminum in LLNL Air Particulate and Rain Samples with Reference to Magnesium in Industrial Storm Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esser, Bradley K.; Bibby, Richard K.; Fish, Craig

    Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevatedmore » Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with

  20. Fracture toughness of alloy 690 and EN52 welds in air and water

    NASA Astrophysics Data System (ADS)

    Brown, C. M.; Mills, W. J.

    2002-06-01

    The effect of low- and high-temperature water with high hydrogen on the fracture toughness of alloy 690 and its weld, EN52, was characterized using elastic-plastic J IC methodology. While both materials display excellent fracture resistance in air and elevated-temperature (>93 °C) water, a dramatic degradation in toughness is observed in 54 °C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism, where hydrogen is picked up from the water. Comparison of the cracking behavior in low-temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low-temperature embrittlement is on the order of 120 to 160 ppm. Loading-rate studies show that cracking resistance is improved at rates above ˜ 1000 MPa √m/h, because there is insufficient time to produce grain-boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanisms.

  1. Isotopic composition of water vapor near the air-water interface

    NASA Astrophysics Data System (ADS)

    Zannoni, Daniele; Bergamasco, Andrea; Peschiutta, Mirco; Rampazzo, Giancarlo; Stenni, Barbara

    2017-04-01

    Evaporation is a key process in water cycle that links liquid water to the atmosphere. In the last fifty years stable isotopes of hydrogen and oxygen have been intensively used to describe climate processes related to evaporation and precipitation, ranging in different spatial and temporal scales. Evaporation introduces large isotopic effects in the phases involved. The well known Craig-Gordon model (Craig & Gordon, 1965) describes those isotopic effects involving several steps and different processes, moving from the air-water interface to the free atmosphere. However, very few works in literature have tested the vertical behavior of the Craig-Gordon model in natural conditions on both fresh and marine waters. In this work we present the results from four field experiments aimed to describe the vertical variability of δ18O and δD in the first few meters over a large water body (the coastal lagoon of Venice, northern Italy) and to test the Craig-Gordon model in such conditions. Each experiment involved cryotrapping of water vapor at different height over the water surface (0.1m, 2m and 4m) and the sampling of the liquid water at two depth (surface and 0.5m). During the experiments, water vapor was also sampled in the nearest mainland (˜2.5 km from gradient measurements) to determine the isotopic composition of background water vapor. Liquid samples were then analyzed with a Picarro L1102-i and Thermo-Fisher Delta Plus Advantage for water vapor and lagoon water, respectively. The last two experiments have also involved simultaneous measurements of relative humidity using commercially-available humidity probes at each height. This approach was used to determine a reference scale in order to compare observations to modeled estimates. Despite the coarse time resolution due to cryotrapping method (measurements are averaged over 1.5 hours), preliminary results show measurable differences in the isotopic composition of water vapor along the vertical gradient and good

  2. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  3. Interactions between groundwater and surface water: The state of the science

    USGS Publications Warehouse

    Sophocleous, M.

    2002-01-01

    The interactions between groundwater and surface water are complex. To understand these interactions in relation to climate, landform, geology, and biotic factors, a sound hydrogeoecological framework is needed. All these aspects are synthesized and exemplified in this overview. In addition, the mechanisms of interactions between groundwater and surface water (GW-SW) as they affect recharge-discharge processes are comprehensively outlined, and the ecological significance and the human impacts of such interactions are emphasized. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. This overview concludes with a discussion of research needs and challenges facting this evolving field. The biogeochemical processes within the upper few centimeters of sediments beneath nearly all surface-water bodies (hyporheic zone) have a profound effect on the chemistry of the water interchange, and here is where most of the recent research has been focusing. However, to advance conceptual and other modeling of GW-SW systems, a broader perspective of such interactions across and between surface-water bodies is needed, including multidimensional analyses, interface hydraulic characterization and spatial variability, site-to-region regionalization approaches, as well as cross-disciplinary collaborations.

  4. Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.

    2013-11-01

    In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.

  5. Interactions of Climate Change, Air Pollution, and Human Health.

    PubMed

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  6. Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology

    DTIC Science & Technology

    2003-01-01

    Aqueous Film Forming Foam ( AFFF ) Treatment Using Air-Sparged Hydrocyclone Technology January 2003 Report Documentation Page Form ApprovedOMB No. 0704...2003 to 00-00-2003 4. TITLE AND SUBTITLE Oil/Water Emulsion and Aqueous Film Forming Foam ( AFFF ) Treatment Using Air-Sparged Hydrocyclone Technology...ACRONYMS AFB Air Force Base AFFF Aqueous Film Forming Foam AFRL Air Force Research Laboratory ASH

  7. Toward coordinated space-based air quality, carbon cycle, and ecosystem measurements to quantify air quality-ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Schimel, D.; Lerdau, M.; Drewry, D.; Fu, D.; Payne, V.; Bowman, K. W.; Worden, J. R.

    2016-12-01

    Tropospheric ozone concentrations are increasing in many regions of the world, and this ozone can severely damage vegetation. Ozone enters plants through their stomata and oxidizes tissues, inhibiting physiology and decreasing ecosystem productivity. Ozone has been experimentally shown to reduce crop production, with important implications for global food security as concentrations rise. Ozone damage to forests also alters productivity and carbon storage and may drive changes in species distributions and biodiversity. Process-based quantitative estimates of these ozone impacts on terrestrial ecosystems at continental to global scales as well as of feedbacks to air quality via production of volatile organic compounds (VOCs) are thus crucial to sustainable development planning. We demonstrate that leveraging planned and proposed missions to measure ozone, formaldehyde, and isoprene along with solar-induced fluorescence (SiF), evapotranspiration, and plant nitrogen content can meet the requirements of an integrated observing system for air quality-ecosystem interactions while also meeting the needs of the individual Air Quality, Carbon Cycle, and Ecosystems communities.

  8. The AirWaterGas Teacher Professional Development Program: Lessons Learned by Pairing Scientists and Teachers to Develop Curriculum on Global Climate Change and Regional Unconventional Oil and Gas Development

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Rogers, J. D.; Casey, J. G.; Lackey, G.; Birdsell, D.; Brown, K.; Polmear, M.; Capps, S.; Rosenblum, J.; Sitterley, K.; Hafich, K. A.; Hannigan, M.; Knight, D.

    2015-12-01

    The AirWaterGas Teacher Professional Development Program, run by the UCAR Center for Science Education, brought together scientists and secondary science teachers in a yearlong program culminating in the development of curriculum related to the impacts of unconventional oil and gas development. Graduate students and research scientists taught about their research area and its relationship to oil and gas throughout three online courses during the 2015-16 school year, during which teachers and scientists engaged in active online discussions. Topics covered included climate change, oil and gas infrastructure, air quality, water quality, public health, and practices and policies relating to oil and gas development. Building upon their initial online interactions and a face-to-face meeting in March, teachers were paired with appropriate AirWaterGas team members as science advisors during a month-long residency in Boulder, Colorado. During the residency, graduate student scientists provided resources and feedback as teachers developed curriculum projects in collaboration with each other and UCAR science educators. Additionally, teachers and AirWaterGas researchers shared experiences on an oil and gas well site tour, and a short course on drilling methods with a drilling rig simulator. Here, we share lessons learned from both sides of the aisle, including initial results from program assessment conducted with the participating teachers.

  9. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2002-05-01

    Water is perhaps the most important and most pervasive chemical on our planet. The influence of water permeates virtually all areas of biochemical, chemical and physical importance, and is especially evident in phenomena occurring at the interfaces of solid surfaces. Since 1987, when Thiel and Madey (TM) published their review titled "The Interaction of Water with Solid Surfaces: Fundamental Aspects" in Surface Science Reports, there has been considerable progress made in further understanding the fundamental interactions of water with solid surfaces. In the decade and a half, the increased capability of surface scientists to probe at the molecular-level has resultedmore » in more detailed information of the properties of water on progressively more complicated materials and under more stringent conditions. This progress in understanding the properties of water on solid surfaces is evident both in areas for which surface science methodology has traditionally been strong (catalysis and electronic materials) and also in new areas not traditionally studied by surface scientists, such as electrochemistry, photoconversion, mineralogy, adhesion, sensors, atmospheric chemistry, and tribology. Researchers in all these fields grapple with very basic questions regarding the interactions of water with solid surfaces, such as how is water adsorbed, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated, and how do coadsorbates influence these properties of water. The attention paid to these and other fundamental questions in the past decade and a half has been immense. In this review, experimental studies published since the TM review are assimilated with those covered by TM to provide a current picture of the fundamental interactions of water with solid surfaces.« less

  10. Water interactions with condensed organic phases: a combined experimental and theoretical study of molecular-level processes

    NASA Astrophysics Data System (ADS)

    Johansson, Sofia M.; Kong, Xiangrui; Thomson, Erik S.; Papagiannakopoulos, Panos; Pettersson, Jan B. C.; Lovrić, Josip; Toubin, Céline

    2016-04-01

    Water uptake on aerosol particles modifies their chemistry and microphysics with important implications for air quality and climate. A large fraction of the atmospheric aerosol consists of organic aerosol particles or inorganic particles with condensed organic components. Here, we combine laboratory studies using the environmental molecular beam (EMB) method1 with molecular dynamics (MD) simulations to characterize water interactions with organic surfaces in detail. The over-arching aim is to characterize the mechanisms that govern water uptake, in order to guide the development of physics-based models to be used in atmospheric modelling. The EMB method enables molecular level studies of interactions between gases and volatile surfaces at near ambient pressure,1 and the technique may provide information about collision dynamics, surface and bulk accommodation, desorption and diffusion kinetics. Molecular dynamics simulations provide complementary information about the collision dynamics and initial interactions between gas molecules and the condensed phase. Here, we focus on water interactions with condensed alcohol phases that serve as highly simplified proxies for systems in the environment. Gas-surface collisions are in general found to be highly inelastic and result in efficient surface accommodation of water molecules. As a consequence, surface accommodation of water can be safely assumed to be close to unity under typical ambient conditions. Bulk accommodation is inefficient on solid alcohol and the condensed materials appear to produce hydrophobic surface structures, with limited opportunities for adsorbed water to form hydrogen bonds with surface molecules. Accommodation is significantly more efficient on the dynamic liquid alcohol surfaces. The results for n-butanol (BuOH) are particularly intriguing where substantial changes in water accommodation taking place over a 10 K interval below and above the BuOH melting point.2 The governing mechanisms for the

  11. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  12. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  13. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  14. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  15. 33 CFR 334.330 - Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...

  16. Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure

    PubMed Central

    2016-01-01

    The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of ∼85 and ∼61° were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid–base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear-logarithmic relationship with exposure time, until saturating at a maximum value of 92–98°. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10–16% to about 37–41 mJ/m2. Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene. PMID:26900413

  17. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    USGS Publications Warehouse

    Harvey, J.W.; Newlin, J.T.; Krupa, S.L.

    2006-01-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d-1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  18. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    NASA Astrophysics Data System (ADS)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  19. 78 FR 17229 - Notice of Lodging of Proposed Consent Decree Amendment Under the Clean Air Act; the Clean Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Act; the Clean Water Act; the Resource Conservation and Recovery Act; the Missouri Air Conservation Law; the Missouri Clean Water Law and the Missouri Hazardous Waste Management Law On March 14, 2013..., the Missouri Air Conservation Law, the Clean Water Act, the Missouri Clean Water Law, the Resource...

  20. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  1. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the

  2. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    USGS Publications Warehouse

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  3. Water Stress Impacts Tree-Atmosphere Interaction in the Amazon

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Oliveira, R. S.; Van De Giesen, N.

    2017-12-01

    Land-atmosphere interactions depend on momentum exchange from the atmosphere to the canopy, which depends on the tree drag coefficient. It is known that the drag coefficient, and thus tree-atmosphere interaction, can vary strongly within a canopy. Yet, only few measurements are available to study the variation of tree-atmosphere interaction in time and space, and in response to vegetation water stress. Recent work [1] demonstrated how accelerometers can be used to study tree properties and responses. For this study, accelerometers were used to derive a measure of tree-atmosphere interaction for 19 individual trees of seven different species in the Brazilian Amazon. This study demonstrates that under field conditions, tree-atmosphere interaction can vary considerably in time and space. The five month measurement period included the transitioning from the wet to the dry season. We demonstrate that increased tree water deficit, measured with dendrometers, is related to observed changes in tree-atmosphere interaction, which is hypothesized to be caused by water stress induced changes in tree mass. References [1]. van Emmerik, T.; Steele-Dunne, S.; Hut, R.; Gentine, P.; Guerin, M.; Oliveira, R.S.; Wagner, J.; Selker, J.; van de Giesen, N. Measuring Tree Properties and Responses Using Low-Cost Accelerometers. Sensors 2017, 17, 1098.

  4. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  5. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation.

    PubMed

    Pedram, Sara; Mortaheb, Hamid Reza; Arefi-Khonsari, Farzaneh

    2018-01-01

    In order to obtain a durable cost-effective membrane for membrane distillation (MD) process, flat sheet polyethersulfone (PES) membranes were modified by an atmospheric pressure nonequilibrium plasma generated using a dielectric barrier discharge in a mixture of argon and hexamethyldisiloxane as the organosilicon precursor. The surface properties of the plasma-modified membranes were characterized by water contact angle (CA), liquid entry pressure, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water CA of the membrane was increased from 64° to 104° by depositing a Si(CH 3 )-rich thin layer. While the pristine PES membrane was not applicable in the MD process, the modified PES membrane could be applied for the first time in an air gap membrane distillation setup for the removal of benzene as a volatile organic compound from water. The experimental design using central composite design and response surface methodology was applied to study the effects of feed temperature, concentration, and flow rate as well as their binary interactions on the overall permeate flux and separation factor. The separation factor and permeation flux of the modified PES membrane at optimum conditions were comparable with those of commercial polytetrafluoroethylene membrane.

  6. A correlation between secondary structure and rheological properties of low-density lipoproteins at air/water interfaces.

    PubMed

    Khattari, Ziad

    2017-09-01

    The secondary structure of apolipoprotein B-100 is studied within the bulk phase and at the air/water interface. In these "in viro" experiments, infrared reflection absorption spectroscopy (IRRAS) study was performed at the air/water interface while circular dichroism (CD) was conducted in the bulk phase. In the bulk phase, the conformational structure containing a significant amount of β-structure, whereas varying amount of α-helix, unordered structures, and β-sheet were observed at the air/water interface depending on the low-density lipoprotein (LDL) film interfacial pressure. The present IRRAS results demonstrate the importance of interfacial pressure-induced structural conformations on the apoB-100. A correlation between the secondary structure of the apoB-100 protein and the monomolecular film elasticity at the air/water interface was also established. The orientation of apoB-100 with respect to the LDL film-normal was found to depend on the interfacial pressure exhibited by the monomolecular film. These results may shed light on LDL's pivotal role in the progression of atherosclerotic coronary artery disease as demonstrated previously by clinical trials.

  7. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  8. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X -(H 2O), X = F, Cl, Br, I, and alkali metal-water, M +(H 2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits tomore » the ab initio data that are between one and two orders of magnitude better in the χ 2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.« less

  9. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  10. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  11. Measurement of the oxygen mass transfer through the air-water interface.

    PubMed

    Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas

    2005-01-01

    Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple

  12. Topotactic redox chemistry of NaFeAs in water and air and superconducting behavior with stoichiometry change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, I.; Chung, D. Y.; Claus, H.

    2010-07-13

    We report experimental evidence that shows superconductivity in NaFeAs occurs when it is Na deficient. The oxidation of NaFeAs progresses differently in water and in air. In water the material oxidizes slowly and slightly retaining the original anti-PbFCl structure. In air NaFeAs oxidizes topotactically quickly and extensively transforming to the ThCr{sub 2}Si{sub 2} structure type. Water acts as a mild oxidizing agent on the FeAs layer by extracting electrons and Na{sup +} cations from the structure, while oxidation in air is more extensive and leads to change in structure type from NaFeAs to NaFe{sub 2}As{sub 2}. The superconducting transition temperaturemore » moves dramatically during the oxidation process. Exposed to water for an extended time period NaFeAs shows a substantial increase in T{sub c} up to 25 K with contraction of unit cell volume. NaFe{sub 2}As{sub 2}, the air oxidized product, shows T{sub c} of 12 K. We report detailed characterization of the redox chemistry and transformation of NaFeAs in water and air using single crystal and powder X-ray diffraction, magnetization studies, transmission electron microscopy, Moessbauer spectroscopy, pOH and elemental analysis.« less

  13. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  14. Proteins at the air-water interface in a lattice model

    NASA Astrophysics Data System (ADS)

    Zhao, Yani; Cieplak, Marek

    2018-03-01

    We construct a lattice protein version of the hydrophobic-polar model to study the effects of the air-water interface on the protein and on an interfacial layer formed through aggregation of many proteins. The basic unit of the model is a 14-mer that is known to have a unique ground state in three dimensions. The equilibrium and kinetic properties of the systems with and without the interface are studied through a Monte Carlo process. We find that the proteins at high dilution can be pinned and depinned many times from the air-water interface. When pinned, the proteins undergo deformation. The staying time depends on the strength of the coupling to the interface. For dense protein systems, we observe glassy effects. Thus, the lattice model yields results which are similar to those obtained through molecular dynamics in off-lattice models. In addition, we study dynamical effects induced by local temperature gradients in protein films.

  15. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  16. Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.

    PubMed

    Minick, D James; Anderson, Kim A

    2017-09-01

    Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC. © 2017 SETAC.

  17. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    NASA Astrophysics Data System (ADS)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  18. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Wright, D. G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R.

    2010-02-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  19. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Kretzschmar, H.-J.; Span, R.; Hagen, E.; Wright, D. G.; Herrmann, S.

    2009-10-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  20. Internal gravity wave-atmospheric wind interaction - A cause of clear air turbulence.

    NASA Technical Reports Server (NTRS)

    Bekofske, K.; Liu, V. C.

    1972-01-01

    The interaction between an internal gravity wave (IGW) and a vertical wind shear is discussed as a possible cause in the production of clear air turbulence in the free atmosphere. It is shown that under certain typical condition the interaction of an IGW with a background wind shear near a critical level provides a mechanism for depositing sufficient momentum in certain regions of the atmosphere to significantly increase the local mean wind shear and to lead to the production of turbulence.

  1. Air demand estimation in bottom outlets with the particle finite element method. Susqueda Dam case study

    NASA Astrophysics Data System (ADS)

    Salazar, Fernando; San-Mauro, Javier; Celigueta, Miguel Ángel; Oñate, Eugenio

    2017-07-01

    Dam bottom outlets play a vital role in dam operation and safety, as they allow controlling the water surface elevation below the spillway level. For partial openings, water flows under the gate lip at high velocity and drags the air downstream of the gate, which may cause damages due to cavitation and vibration. The convenience of installing air vents in dam bottom outlets is well known by practitioners. The design of this element depends basically on the maximum air flow through the air vent, which in turn is a function of the specific geometry and the boundary conditions. The intrinsic features of this phenomenon makes it hard to analyse either on site or in full scaled experimental facilities. As a consequence, empirical formulas are frequently employed, which offer a conservative estimate of the maximum air flow. In this work, the particle finite element method was used to model the air-water interaction in Susqueda Dam bottom outlet, with different gate openings. Specific enhancements of the formulation were developed to consider air-water interaction. The results were analysed as compared to the conventional design criteria and to information gathered on site during the gate operation tests. This analysis suggests that numerical modelling with the PFEM can be helpful for the design of this kind of hydraulic works.

  2. Plants + microbes: Innovative food crop systems that also clean air and water

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Wolverton, B. C.

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. It is known that most biogeochemical cycles have a microbial link, and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, have long been established. Wetland plants and soil/media also been extensively researched for their ability to purify wastewaters of all kinds of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and root microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an extraordinary adaptive capacity as long as the starting populations are sufficiently diverse. It is known that tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and machines enclosed. Human waste products carry a plethora of microbes can are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors which operate without the need for human direction. We will

  3. Self-assembly of short amyloidogenic peptides at the air-water interface.

    PubMed

    Chaudhary, Nitin; Nagaraj, Ramakrishnan

    2011-08-01

    Short peptide stretches in amyloidogenic proteins can form amyloid fibrils in vitro and have served as good models for studying amyloid fibril formation. Recently, these amyloidogenic peptides have gained considerable attention, as non-amyloid ordered structures can be obtained from these peptides by carefully tuning the conditions of self-assembly, especially pH, temperature and presence of organic solvents. We have examined the effect of surface pressure on the self-assembled structures of two amyloidogenic peptides, Pβ(2)m (Ac-DWSFYLLYYTEFT-am) and AcPHF6 (Ac-VQIVYK-am) at the air-water interface when deposited from different solvents. Both the peptides are surface-active and form Thioflavin T (ThT) positive structures at the air-water interface. There is considerable hysteresis in the compression and expansion isotherms, suggesting the occurrence of structural rearrangements during compression. Preformed Pβ(2)m fibrillar structures at the air-water interface are disrupted as peptide is compressed to lower molecular areas but restored if the film is expanded, suggesting that the process is reversible. AcPHF6, on the other hand, shows largely sheet-like structures at lower molecular areas. The solvents used for dissolution of the peptides appear to influence the nature of the aggregates formed. Our results show that like hydrostatic pressure, surface pressure can also be utilized for modulating the self-assembly of the amyloidogenic and self-assembling peptides. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Multiple Interactive Pollutants in Water Quality Trading

    NASA Astrophysics Data System (ADS)

    Sarang, Amin; Lence, Barbara J.; Shamsai, Abolfazl

    2008-10-01

    Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs.

  5. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    NASA Astrophysics Data System (ADS)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  6. Fracture toughness of Alloy 690 and EN52 weld in air and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.M.; Mills, W.J.

    1999-06-01

    The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content requiredmore » to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.« less

  7. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  8. Fisk-based criteria to support validation of detection methods for drinking water and air.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonell, M.; Bhattacharyya, M.; Finster, M.

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminantsmore » identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  9. Automated optimization of water-water interaction parameters for a coarse-grained model.

    PubMed

    Fogarty, Joseph C; Chiu, See-Wing; Kirby, Peter; Jakobsson, Eric; Pandit, Sagar A

    2014-02-13

    We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder-Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site. Polarizability is introduced by the addition of a harmonic angle term defined among three charged points within each bead. The target function for parameter optimization was based on the experimental density, surface tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with experimental observation. We found very good performance of the optimization procedure and good agreement of the model with experiment.

  10. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Air and water pollution control requirements. 923.45 Section 923.45 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT COASTAL ZONE...

  11. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    PubMed

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro

    2015-02-01

    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  13. Modeling of multi-phase interactions of reactive nitrogen between snow and air in Antarctica

    NASA Astrophysics Data System (ADS)

    McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.

    2016-12-01

    In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional processes that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume air-liquid interactions and aqueous phase chemistry taking place at the interface between the snow grain and air. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (<30 kg m-2 yr-1); and Halley, a coastal site with at times at or above freezing temperatures during summer, high accumulation rate and high background level of sea salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two processes, thermodynamic equilibrium of HNO3 between interstitial air and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.

  14. Dynamic ion-ion and water-ion interactions in ion channels.

    PubMed Central

    Wu, J V

    1992-01-01

    The dynamic interactions among ions and water molecules in ion channels are treated based on an assumption that ions at binding sites can be knocked off by both transient entering ions and local water molecules. The theory, when applied to a single-site model K+ channel, provides solutions for super- and subsaturations, flux-ratio exponent (n') greater than 1, osmotic streaming current, activity-dependent reversal potentials, and anomalous mole-fraction behavior. The analysis predicts that: (a) the saturation may but, in general, does not follow the Michaelis-Menten relation; (b) streaming current results from imbalanced water-ion knock-off interactions; (c) n' greater than 1 even for single-site channels, but it is unlikely to exceed 1.4 unless the pore is occupied by one or more ion(s); (d) in the calculation involving two permeant ion species with similar radii, the heavier ions show higher affinity; the ion-ion knock-off dissociation from the site is more effective when two interacting ions are identical. Therefore, the "multi-ion behaviors" found in most ion channels are the consequences of dynamic ion-ion and water-ion interactions. The presence of these interactions does not require two or more binding sites in channels. PMID:1376158

  15. A Classroom Simulation of Water-Rock Interaction for Upper-Level Geochemistry Courses.

    ERIC Educational Resources Information Center

    Cercone, Karen Rose

    1988-01-01

    Describes a simple hands-on model of water-rock interaction that can be constructed in the classroom using styrofoam bowls and foil-wrapped candies. This interactive simulation allows students to vary the factors which control water-rock interaction and to obtain immediate results. (Author/CW)

  16. Special features of high-speed interaction of supercavitating solids in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishchenko, Aleksandr, E-mail: ichan@niipmm.tsu.ru; Afanas’eva, Svetlana, E-mail: s.a.afanasyeva@mail.ru; Burkin, Viktor, E-mail: v.v.burkin@mail.ru

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initialmore » flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.« less

  17. Special features of high-speed interaction of supercavitating solids in water

    NASA Astrophysics Data System (ADS)

    Ishchenko, Aleksandr; Akinshin, Ruslan; Afanas'eva, Svetlana; Borisenkov, Igor; Burkin, Viktor; Diachkovskii, Aleksei; Korolkov, Leonid; Moiseev, Dmitrii; Khabibullin, Marat

    2016-01-01

    Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.

  18. The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants

    PubMed Central

    Weyens, Nele; Thijs, Sofie; Popek, Robert; Witters, Nele; Przybysz, Arkadiusz; Espenshade, Jordan; Gawronska, Helena; Vangronsveld, Jaco; Gawronski, Stanislaw W.

    2015-01-01

    Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant–microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented. PMID:26516837

  19. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants.

    PubMed

    Weyens, Nele; Thijs, Sofie; Popek, Robert; Witters, Nele; Przybysz, Arkadiusz; Espenshade, Jordan; Gawronska, Helena; Vangronsveld, Jaco; Gawronski, Stanislaw W

    2015-10-26

    Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant-microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented.

  20. Molecular dynamics approach to probe PKCβII-ligand interactions and influence of crystal water molecules on these interactions.

    PubMed

    Grewal, Baljinder K; Bhat, Jyotsna; Sobhia, Masilamani Elizabeth

    2015-01-01

    PKCβII is a potential target for therapeutic intervention against pandemic diabetic complications. Present study probes the molecular interactions of PKCβII with its clinically important ligands, viz. ruboxistaurin, enzastaurin and co-crystallized ligand, 2-methyl-1H-indol-3-yl-BIM-1. The essentials of PKCβII-ligand interaction, crystal water-induced alterations in these interactions and key interacting flexible residues are analyzed. Computational methodologies, viz. molecular docking and molecular simulation coupled with molecular mechanics-Poisson-Boltzmann surface area and generalized born surface area (MM-PB[GB]SA) are employed. The structural changes in the presence and absence of crystal water molecules in PKCβII ATP binding site residues, and its interaction with bound ligand, are identified. Difference in interaction of selective and nonselective ligand with ATP binding site residues of PKCβII is reported. The study showed that the nonbonding interactions contribute significantly in PKCβII-ligand binding and presence of crystal water molecules affects the interactions. The findings of present work may integrate the new aspects in the drug design process of PKCβII inhibitors.

  1. Impact of artificial monolayer application on stored water quality at the air-water interface.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B

    2015-01-01

    Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered.

  2. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  3. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    USGS Publications Warehouse

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  4. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation.

    PubMed

    Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S

    2017-02-21

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

  5. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation

    PubMed Central

    Gingerich, Daniel B.; Behrer, A. Patrick; Azevedo, Inês L.

    2017-01-01

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts. PMID:28167772

  6. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.

    2016-08-01

    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  7. Maxwell displacement current allows to study structural changes of gramicidin A in monolayers at the air-water interface.

    PubMed

    Vitovic, Pavol; Weis, Martin; Tomcík, Pavol; Cirák, Július; Hianik, Tibor

    2007-05-01

    We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.

  8. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Farm water budgets for semiarid irrigated floodplains of northern New Mexico: characterizing the surface water-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.

    2013-12-01

    KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.

  10. Air-water exchange of PAHs and OPAHs at a superfund mega-site.

    PubMed

    Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A

    2017-12-15

    Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m 2 )/day. The estimated one-year total flux of phenanthrene was -7.9×10 5 (ng/m 2 )/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-06

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.

  12. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  13. Direct synthesis of hydrogen peroxide from plasma-water interactions

    PubMed Central

    Liu, Jiandi; He, Bangbang; Chen, Qiang; Li, Junshuai; Xiong, Qing; Yue, Guanghui; Zhang, Xianhui; Yang, Size; Liu, Hai; Liu, Qing Huo

    2016-01-01

    Hydrogen peroxide (H2O2) is usually considered to be an important reagent in green chemistry since water is the only by-product in H2O2 involved oxidation reactions. Early studies show that direct synthesis of H2O2 by plasma-water interactions is possible, while the factors affecting the H2O2 production in this method remain unclear. Herein, we present a study on the H2O2 synthesis by atmospheric pressure plasma-water interactions. The results indicate that the most important factors for the H2O2 production are the processes taking place at the plasma-water interface, including sputtering, electric field induced hydrated ion emission, and evaporation. The H2O2 production rate reaches ~1200 μmol/h when the liquid cathode is purified water or an aqueous solution of NaCl with an initial conductivity of 10500 μS cm−1. PMID:27917925

  14. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  15. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  16. Smart nanogels at the air/water interface: structural studies by neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Zielińska, Katarzyna; Sun, Huihui; Campbell, Richard A.; Zarbakhsh, Ali; Resmini, Marina

    2016-02-01

    The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes of nanogels as a function of the degree of cross-linking at the air/water interface.The development of effective transdermal drug delivery systems based on nanosized polymers requires a better understanding of the behaviour of such nanomaterials at interfaces. N-Isopropylacrylamide-based nanogels synthesized with different percentages of N,N'-methylenebisacrylamide as cross-linker, ranging from 10 to 30%, were characterized at physiological temperature at the air/water interface, using neutron reflectivity (NR), with isotopic contrast variation, and surface tension measurements; this allowed us to resolve the adsorbed amount and the volume fraction of nanogels at the interface. A large conformational change for the nanogels results in strong deformations at the interface. As the percentage of cross-linker incorporated in the nanogels becomes higher, more rigid matrices are obtained, although less deformed, and the amount of adsorbed nanogels is increased. The data provide the first experimental evidence of structural changes

  17. Gene-environment interactions linking air pollution and inflammation in Parkinson's disease.

    PubMed

    Lee, Pei-Chen; Raaschou-Nielsen, Ole; Lill, Christina M; Bertram, Lars; Sinsheimer, Janet S; Hansen, Johnni; Ritz, Beate

    2016-11-01

    Both air pollution exposure and systemic inflammation have been linked to Parkinson's disease (PD). In the PASIDA study, 408 incident cases of PD diagnosed in 2006-2009 and their 495 population controls were interviewed and provided DNA samples. Markers of long term traffic related air pollution measures were derived from geographic information systems (GIS)-based modeling. Furthermore, we genotyped functional polymorphisms in genes encoding proinflammatory cytokines, namely rs1800629 in TNFα (tumor necrosis factor alpha) and rs16944 in IL1B (interleukin-1β). In logistic regression models, long-term exposure to NO 2 increased PD risk overall (odds ratio (OR)=1.06 per 2.94μg/m 3 increase, 95% CI=1.00-1.13). The OR for PD in individuals with high NO 2 exposure (≧75th percentile) and the AA genotype of IL1B rs16944 was 3.10 (95% CI=1.14-8.38) compared with individuals with lower NO 2 exposure (<75th percentile) and the GG genotype. The interaction term was nominally significant on the multiplicative scale (p=0.01). We did not find significant gene-environment interactions with TNF rs1800629. Our finds may provide suggestive evidence that a combination of traffic-related air pollution and genetic variation in the proinflammatory cytokine gene IL1B contribute to risk of developing PD. However, as statistical evidence was only modest in this large sample we cannot rule out that these results represent a chance finding, and additional replication efforts are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Explosion interaction with water in a tube

    NASA Astrophysics Data System (ADS)

    Homae, T.; Sugiyama, Y.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.

    2017-02-01

    As proposed and legislated in Japan, subsurface magazines have an explosive storage chamber, a horizontal passageway, and a vertical shaft for a vent. The authors found that a small amount of water on the floor of the storage chamber mitigated blast pressure remarkably. The mitigation mechanism has been examined more closely. To examine the effect of water, the present study assesses explosions in a transparent, square cross section, and a straight tube. A high-speed camera used to observe the tube interior. Blast pressure in and around the tube was also measured. Images obtained using the high-speed camera revealed that water inside the tube did not move after the explosion. Differences between cases of tubes without water and with water were unclear. Along with blast pressure measurements, these study results suggest that blast pressure mitigation by water occurs because of interaction between the explosion and the water near the explosion point.

  19. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  20. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    PubMed

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo

    2017-03-07

    The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer

  1. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  2. Contamination of dental unit water and air outlets following use of clean head system and conventional handpieces.

    PubMed

    Toomarian, Lida; Rikhtegaran, Sahand; Sadighi, Mehrnoosh; Savadi Oskoee, Siavash; Alizadeh Oskoee, Parnian

    2007-01-01

    Dental handpiece is a source of contamination because it is in constant touch with the oral cavity. Sterilization does not seem to be sufficient to prevent penetration of microorganisms into air and water lines of the unit, because negative pressure developed by valves (which are placed in water outlets) and post shut-off inertial rotation of handpiece result in water and debris being sucked into air and water outlets of dental unit. The aim of this study was to compare dental unit contamination following use of clean head system handpieces and conventional handpieces. Twenty-two dental units in the Department of Pediatric Dentistry in Shahid Beheshti Faculty of Dentistry were used for the purpose of this study. A 1.5×108 cfu/mm3 concentration of Staphylococcus epidermis (SE) was used to contaminate the air and water outlets of dental units. Ten clean head system handpieces and 10 conventional handpieces were used for 30 seconds in the above-mentioned suspension. Microbial samples were collected from the air and water lines. Culturing and colony counting procedures were carried out. Data was analyzed by t-test; a value of p<0.01 was considered significant. Results demonstrated a significantly lower SE contamination in water outlets following the use of clean head system (p<0.01). A lower tendency of clean head system handpieces to transmit SE compared to conventional system makes them a better choice for infection control.

  3. Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina

    USGS Publications Warehouse

    Cardinell, A.P.; Howe, S.S.

    1997-01-01

    A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.

  4. Investigation of the impact of extreme air temperature on river water temperature: case study of the heat episode 2013.

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Goler, Robert; Formayer, Herbert; Holzapfel, Gerda; Rauch, Hans Peter

    2014-05-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influences the sensitive and latent heat flux. The present study investigates the impact of the heat episode of summer 2013 on water temperature of two lowland rivers in south eastern Austria. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz have been performed since spring 2012. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity have been carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. The heat episode of summer 2013 started, according to the Kysely- definition, on 18 July and lasted until 14 August. The highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In Güssing, which is located within the project area, 40.0 °C were recorded. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. Using the extensive data set

  5. Investigation of radon level in air and tap water of workplaces at Thailand Institute of Nuclear Technology, Thailand

    NASA Astrophysics Data System (ADS)

    Sola, P.; Youngchuay, U.; Kongsri, S.; Kongtana, A.

    2017-06-01

    Thailand Institute of Nuclear Technology (TINT) has continuously monitored radiation exposure and radionuclide in workplaces specifically radon gas to estimate effective dose for workers. Radon exposure is the second leading cause of lung cancer in the world. In this study, radon in air and tap water at building no. 3, 7, 8, 9 and 18 on Ongkharak site of TINT have been measured for 5 years from 2012 to 2016. Radon level in air and tap water were investigated on 83 stations (workplaces) and 54 samples, respectively. Radon concentrations in air and tap water were measured by using the pulsed ionization chamber (ATMOS 12 DPX). Indoor radon concentrations in air were in the range of 12-138 Bq.m-3 with an average value of 30.13±17.05 Bq.m-3. Radon concentrations in tap water were in the range of 0.10 to 2.89 Bq.l-1 with an average value of 0.51±0.55 Bq.l-1. The results of radon concentrations at TINT were below the US Environmental Protection Agency (US EPA) safety limit of 148 Bq.m-3 and 150 Bq.l-1, for, air and tap water, respectively. The average effective dose for TINT’s workers due to indoor radon exposure was approximately 0.20±0.11 mSv.y-1. The value is 100 times less than the annual dose limit for limit occupational radiation worker defined by the International Commission on Radiological Protection (ICRP). As a result, the TINT’s workplaces are radiologically safe from radon content in air and tap water.

  6. Range Cattle Winter Water Consumption in Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Water consumption and DMI has been found to be positively correlated and may interact to alter range cow productivity. Environmental conditions can have a significant influence on water consumption during the winter. The objective of this study was to determine influences of water and air temperatur...

  7. Land Use, Climate, and Water Resources-Global Stages of Interaction.

    PubMed

    Kaushal, Sujay S; Gold, Arthur J; Mayer, Paul M

    2017-10-24

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization). During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs). During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability). During the final stage, management and restoration strategies attempt to regain lost ecosystem structure, function, and services but need to adapt to climate change. By anticipating the increasing interaction between land use and climate change, intervention points can be identified, and management strategies can be adjusted to improve outcomes for realistic expectations. Overall, global water security cannot be adequately restored without considering an increasing interaction between land use and climate change across progressive stages and our ever-increasing human domination of the water cycle from degradation to ecosystem restoration.

  8. The interaction of caffeine with substituted cyclodextrins in water

    NASA Astrophysics Data System (ADS)

    Terekhova, I. V.; Kumeev, R. S.; Al'Per, G. A.

    2007-07-01

    The interaction of caffeine with hydroxypropyl-and methylcyclodextrins in water was studied by the calorimetry, spectroscopy, and solubility methods at 298.15 K. The interaction of caffeine with these cyclodextrins did not result in the formation of stable inclusion complexes and was mostly accompanied by predominantly endothermic effects of particle dehydration. The introduction of substituents and changes in the size of cyclodextrin molecular cavity did not influence the ability of cyclodextrins to form complexes with caffeine. The conclusion was drawn that substituted cyclodextrins could not be used for increasing the solubility of caffeine in water.

  9. Plants + soil/wetland microbes: Food crop systems that also clean air and water

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Wolverton, B. C.

    2011-02-01

    The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. Biogeochemical cycles have microbial links and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, has long been established. Wetland plants and the rootzone microbes of wetland soils/media also been extensively researched for their ability to purify wastewaters of a great number of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and rootzone microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an adaptive capacity as long as the starting populations are sufficiently diverse. Tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and equipment enclosed. Human waste products carry a plethora of microbes which are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors as these systems operate without the need for human intervention. We review

  10. Safe drinking water and clean air: an experimental study evaluating the concept of combining household water treatment and indoor air improvement using the Water Disinfection Stove (WADIS).

    PubMed

    Christen, Andri; Navarro, Carlos Morante; Mäusezahl, Daniel

    2009-09-01

    Indoor air pollution and unsafe water remain two of the most important environmental risk factors for the global burden of infectious diseases. Improved stoves and household water treatment (HWT) methods represent two of the most effective interventions to fight respiratory and diarrhoeal illnesses at household level. Since new improved stoves are highly accepted and HWT methods have their drawbacks regarding sustained use, combining the two interventions in one technical solution could result in notable positive convenience and health benefits. A WAter DIsinfection Stove (WADIS) based on a Lorena-stove design with a simple flow-through boiling water-treatment system was developed and tested by a pilot experimental study in rural Bolivia. The results of a post-implementation evaluation of two WADIS and 27 Lorena-stoves indicate high social acceptance rather due to convenience gains of the stove than to perceived health improvements. The high efficacy of the WADIS-water treatment system, with a reduction of microbiological contamination load in the treated water from 87600 thermotolerant coliform colony forming units per 100mL (CFU/100mL) to zero is indicative. The WADIS concept unifies two interventions addressing two important global burdens of disease. WADIS' simple design, relying on locally available materials and low manufacturing costs (approx. 6 US) indicates potential for spontaneous diffusion and scaling up.

  11. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    PubMed

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions

  12. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  13. Probing the interactions between ionic liquids and water: experimental and quantum chemical approach.

    PubMed

    Khan, Imran; Kurnia, Kiki A; Mutelet, Fabrice; Pinho, Simão P; Coutinho, João A P

    2014-02-20

    For an adequate choice or design of ionic liquids, the knowledge of their interaction with other solutes and solvents is an essential feature for predicting the reactivity and selectivity of systems involving these compounds. In this work, the activity coefficient of water in several imidazolium-based ionic liquids with the common cation 1-butyl-3-methylimidazolium was measured at 298.2 K. To contribute to a deeper insight into the interaction between ionic liquids and water, COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies. The results showed good agreement between experimental and predicted activity coefficient of water in ionic liquids and that the interaction of water and ionic liquids was strongly influenced by the hydrogen bonding of the anion with water. Accordingly, the intensity of interaction of the anions with water can be ranked as the following: [CF3SO3](-) < [SCN](-) < [TFA](-) < Br(-) < [TOS](-) < Cl(-) < [CH3SO3](-) [DMP](-) < [Ac](-). In addition, fluorination and aromatization of anions are shown to reduce their interaction with water. The effect of temperature on the activity coefficient of water at infinite dilution was measured by inverse gas chromatography and predicted by COSMO-RS. Further analysis based on COSMO-RS provided information on the nature of hydrogen bonding between water and anion as well as the possibility of anion-water complex formation.

  14. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  15. Flowing Air-Water Cooled Slab Nd: Glass Laser

    NASA Astrophysics Data System (ADS)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  16. Improved recovery of Listeria monocytogenes from stainless steel and polytetrafluoroethylene surfaces using air/water ablation.

    PubMed

    Gião, M S; Blanc, S; Porta, S; Belenguer, J; Keevil, C W

    2015-07-01

    To develop a gentle ablation technique to recover Listeria monocytogenes biofilms from stainless steel (SS) and polytetrafluoroethylene (PTFE) surfaces by using compressed air and water injection. Biofilms were grown for 4, 24 and 48 h or 7 days and a compressed air and water flow at 2, 3 and 4 bars was applied for cell removal. Collected cells were quantified for total/dead by staining with SYTO 9/PI double staining and cultivable populations were determined by plating onto brain heart infusion (BHI) agar, while coupon surfaces also were stained with DAPI to quantify in situ the remaining cells. The recovery efficiency was compared to that of conventional swabbing. Results showed that the air/water ablation is able to collect up to 98·6% of cells from SS surfaces while swabbing only recovered 11·2% of biofilm. Moreover, air/water ablation recovered 99·9% of cells from PTFE surfaces. The high recovery rate achieved by this technique, along with the fact that cells were able to retain membrane integrity and cultivability, indicate that this device is suitable for the gentle recovery of viable L. monocytogenes biofilm cells. This work presents a highly efficient technique to remove, collect and quantify L. monocytogenes from surfaces commonly used in the food industry, which can thus serve as an important aid in verifying cleaning and sanitation as well as in reducing the likelihood of cross-contamination events. © 2015 The Society for Applied Microbiology.

  17. Application of an interactive water simulation model in urban water management: a case study in Amsterdam.

    PubMed

    Leskens, J G; Brugnach, M; Hoekstra, A Y

    2014-01-01

    Water simulation models are available to support decision-makers in urban water management. To use current water simulation models, special expertise is required. Therefore, model information is prepared prior to work sessions, in which decision-makers weigh different solutions. However, this model information quickly becomes outdated when new suggestions for solutions arise and are therefore limited in use. We suggest that new model techniques, i.e. fast and flexible computation algorithms and realistic visualizations, allow this problem to be solved by using simulation models during work sessions. A new Interactive Water Simulation Model was applied for two case study areas in Amsterdam and was used in two workshops. In these workshops, the Interactive Water Simulation Model was positively received. It included non-specialist participants in the process of suggesting and selecting possible solutions and made them part of the accompanying discussions and negotiations. It also provided the opportunity to evaluate and enhance possible solutions more often within the time horizon of a decision-making process. Several preconditions proved to be important for successfully applying the Interactive Water Simulation Model, such as the willingness of the stakeholders to participate and the preparation of different general main solutions that can be used for further iterations during a work session.

  18. Review: Groundwater management and groundwater/surface-water interaction in the context of South African water policy

    NASA Astrophysics Data System (ADS)

    Levy, Jonathan; Xu, Yongxin

    2012-03-01

    Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. In South Africa's 1998 National Water Act (NWA), water-use licenses, including groundwater, are granted only after defining the Reserve, the amount of water needed to supply basic human needs and preserve some ecological integrity. Accurate quantification of groundwater contributions to ecosystems for successful implementation of the NWA proves challenging; many of South Africa's aquifers are in heterogeneous and anisotropic fractured-rock settings. This paper reviews the current conceptualizations and investigative approaches regarding groundwater/surface-water interactions in the context of South African policies. Some selected pitfall experiences are emphasized. The most common approach in South Africa is estimation of average annual fluxes at the scale of fourth-order catchments (˜500 km2) with baseflow separation techniques and then subtracting the groundwater discharge rate from the recharge rate. This approach might be a good start, but it ignores spatial and temporal variability, potentially missing local impacts associated with production-well placement. As South Africa's NWA has already been emulated in many countries including Zambia, Zimbabwe and Kenya, the successes and failures of the South African experience dealing with the groundwater/surface-water interaction will be analyzed to guide future policy directions.

  19. Sea water - basalt interactions and genesis of the coastal thermal waters of Maharashtra, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthuraman, K.

    1986-01-01

    The thermal waters close to the western coastal belt of India (in Maharashtra State) generally discharge Na-Ca-Cl and Ca-Na-Cl types of waters through the basic lava flows of late Cretaceous-early Tertiary age. Experimental work to study the reactions between the dilute sea water and basalt conducted in static autoclaves at selected elevated temperatures, indicates the possibility of producing chloride waters with relatively high calcium, similar to these thermal waters. In view of the increase in Ca in the resultant solutions during sea water-basalt reactions at elevated temperatures, the base temperatures computed by Na-K-Ca geothermometry would be far lower than themore » actual temperatures of the system. At lower temperatures (around 100/sup 0/C) absorption by K by basalt is possible and, hence, alkali geothermometry also may not be reliable for such systems. Anhydrite saturation temperature seems to be a reliable geothermometer for such coastal thermal water systems involving a sea water component. The results of the computer processing of the chemistry of some of these thermal waters using ''WATEQ'' are discussed. Two of these waters are oversaturated with diopside, tremolite, calcite and aragonite, indicating a rather low temperature of origin. In two other cases, interaction with ultramafic rocks is indicated, as these waters are oversaturated with diopside, tremolite, talc, chrysotile, sepiolite and its precipitate. There is no clear evidence to show that the thermal waters of the west coast of India emerge directly from either marine evaporites or oil field waters. It is proposed that the majority of these thermal waters should have originated through interaction of an admixture of sea water and meteoric water with the local basalt flows at some elevated temperatures.« less

  20. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China.

    PubMed

    Qiu, Hang; Tan, Kun; Long, Feiyu; Wang, Liya; Yu, Haiyan; Deng, Ren; Long, Hu; Zhang, Yanlong; Pan, Jingping

    2018-03-11

    Evidence on the burden of chronic obstructive pulmonary disease (COPD) morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM) with aerodynamic diameter <10 μm (PM 10 ) and <2.5 μm (PM 2.5 ), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO) and ozone (O₃)) with risk of hospital admissions (HAs) for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM) with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM 2.5 , PM 10 and SO₂) and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years) and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19%) and 14.72% (95% CI: 10.38%, 19.06%) of COPD HAs were attributable to PM 2.5 and PM 10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO₂ on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  1. Environmental health in China: challenges to achieving clean air and safe water

    PubMed Central

    Zhang, Junfeng (Jim); Mauzerall, Denise L.; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin

    2014-01-01

    The health effects of environmental risks, especially those of air and water pollution, remain a major source of morbidity and mortality in China. Biomass fuel and coal are routinely burned for cooking and heating in almost all rural and many urban households resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and santiation, and thus the risk of waterborne disease in many regions remains high. At the same time, China is rapidly industrializing with associated increases in energy use and industrial waste. While economic growth resulting from industrialization has improved health and quality of life indicators in China, it has also increased the incidence of environmental disasters and the release of chemical toxins into the environment, with severe impacts on health. Air quality in China's cities is among the worst in the world and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health problems, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental problems, China has committed substantial resources to environmental improvement. China has the opportunity to both address its national environmental health challenges and to assume a central role in the international effort to improve the global environment. PMID:20346817

  2. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  3. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  4. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  5. Simulated effects of development on regional ground-water/surface-water interactions in the northern Coastal Plain of New Jersey

    NASA Astrophysics Data System (ADS)

    Pucci, Amleto A.; Pope, Daryll A.

    1995-05-01

    Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams

  6. Analysis of asymmetries in air pollution with water resources, and energy consumption in Iran.

    PubMed

    Ashouri, Mohammad Javad; Rafei, Meysam

    2018-04-17

    Iran should pay special attention to its excessive consumption of energy and air pollution due to the limited availability of water resources. This study explores the effects of the consumption of energy and water resources on air pollution in Iran from 1971 to 2014. It utilizes the non-linear autoregressive distributed lag approach to establish a robust relationship between the variables which show that both long- and short-run coefficients are asymmetrical. The positive and negative aspects of the long-run coefficients of energy consumption and water resources were found to be 0.19, - 1.63, 0.18, and 2.36, respectively, while only the negative ones were significant for energy consumption. Based on the cumulative effects, it can be established that there are important and significant differences in the responses of air pollution to positive and negative changes in water productivity and energy consumption. In particular, CO 2 gas emissions are affected by negative changes in H 2 O productivity both in terms of the total and the GDP per unit of energy use in Iran. In regard to short-run results, considerable asymmetric effects occur on all the variables for CO 2 emissions. Based on the results obtained, some recommendations are presented, which policymakers can adopt in efforts to address the issues of pollution and consumption.

  7. Increased ambient air temperature alters the severity of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard

    2017-04-01

    Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with

  8. Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.

    PubMed

    Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi

    2013-04-16

    The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.

  9. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantlymore » transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.« less

  10. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  11. Generalized water-level contours, September-October 2000 and March-April 2001, and long-term water-level changes, at the U.S. Air Force Plant 42 and vicinity, Palmdale, California

    USGS Publications Warehouse

    Christensen, Allen H.

    2005-01-01

    Historically, the U.S. Air Force Plant 42 has relied on ground water as the primary source of water owing, in large part, to the scarcity of surface water in the region. Groundwater withdrawal for municipal, industrial, and agricultural use has affected ground-water levels at U.S. Air Force Plant 42, and vicinity. A study to document changes in groundwater gradients and to present historical water-level data was completed by the U.S. Geological Survey in cooperation with the U.S. Air Force. This report presents historical water-level data, hydrographs, and generalized seasonal water-level and water-level contours for September?October 2000 and March?April 2001. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently water availability. During September?October 2000 and March?April 2001 the U.S. Geological Survey and other agencies made a total of 102 water-level measurements, 46 during September?October 2000 and 56 during March?April 2001. These data document recent conditions and, when compared with historical data, document changes in ground-water levels. Two water-level contour maps were drawn: the first depicts water-level conditions for September?October 2000 map and the second depicts water-level conditions for March?April 2001 map. In general, the water-level contour maps show water-level depressions formed as result of ground-water withdrawal. One hundred sixteen long-term hydrographs, using water-level data from 1915 through 2000, were constructed to show water-level trends in the area. The hydrographs indicate that water-level decline occurred throughout the study area, with the greatest declines south of U.S. Air Force Plant 42.

  12. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  13. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.

    PubMed

    Ishizaki, So; Fujiki, Itto; Sano, Daisuke; Okabe, Satoshi

    2014-10-07

    Alkalization on the cathode electrode limits the electrical power generation of air-cathode microbial fuel cells (MFCs), and thus external proton supply to the cathode electrode is essential to enhance the electrical power generation. In this study, the effects of external CO2 and water supplies to the cathode electrode on the electrical power generation were investigated, and then the relative contributions of CO2 and water supplies to the total proton consumption were experimentally evaluated. The CO2 supply decreased the cathode pH and consequently increased the power generation. Carbonate dissolution was the main proton source under ambient air conditions, which provides about 67% of total protons consumed for the cathode reaction. It is also critical to adequately control the water content on the cathode electrode of air-cathode MFCs because the carbonate dissolution was highly dependent on water content. On the basis of these experimental results, the power density was increased by 400% (143.0 ± 3.5 mW/m(2) to 575.0 ± 36.0 mW/m(2)) by supplying a humid gas containing 50% CO2 to the cathode chamber. This study demonstrates that the simultaneous CO2 and water supplies to the cathode electrode were effective to increase the electrical power generation of air-cathode MFCs for the first time.

  14. The transfer of carbon fibers through a commercial aircraft water separator and air cleaner

    NASA Technical Reports Server (NTRS)

    Meyers, J. A.

    1979-01-01

    The fraction of carbon fibers passing through a water separator and an air filter was determined in order to estimate the proportion of fibers outside a closed aircraft that are transmitted to the electronics through the air conditioning system. When both devices were used together and only fibers 3 mm or larger were considered, a transfer function of .001 was obtained.

  15. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  16. Designing heteropolymers to fold into unique structures via water-mediated interactions.

    PubMed

    Jamadagni, Sumanth N; Bosoy, Christian; Garde, Shekhar

    2010-10-28

    Hydrophobic homopolymers collapse into globular structures in water driven by hydrophobic interactions. Here we employ extensive molecular dynamics simulations to study the collapse of heteropolymers containing one or two pairs of oppositely charged monomers. We show that charging a pair of monomers can dramatically alter the most stable conformations from compact globular to more open hairpin-like. We systematically explore a subset of the sequence space of one- and two-charge-pair polymers, focusing on the locations of the charge pairs. Conformational stability is governed by a balance of hydrophobic interactions, hydration and interactions of charge groups, water-mediated charged-hydrophobic monomer repulsions, and other factors. As a result, placing charge pairs in the middle, away from the hairpin ends, leads to stable hairpin-like structures. Turning off the monomer-water attractions enhances hydrophobic interactions significantly leading to a collapse into compact globular structures even for two-charge-pair heteropolymers. In contrast, the addition of salt leads to open and extended structures, suggesting that solvation of charged monomer sites by salt ions dominates the salt-induced enhancement of hydrophobic interactions. We also test the ability of a predictive scheme based on the additivity of free energy of contact formation. The success of the scheme for symmetric two-charge-pair sequences and the failure for their flipped versions highlight the complexity of the heteropolymer conformation space and of the design problem. Collectively, our results underscore the ability of tuning water-mediated interactions to design stable nonglobular structures in water and present model heteropolymers for further studies in the extended thermodynamic space and in inhomogeneous environments.

  17. A test of the hadronic interaction model EPOS with air shower data

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Luczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-03-01

    Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.

  18. Test of the hadronic interaction model EPOS with KASCADE air shower data

    NASA Astrophysics Data System (ADS)

    Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; KASCADE-Grande Collaboration

    2009-12-01

    Predictions of the hadronic interaction model EPOS 1.61 as implemented in the air shower simulation program CORSIKA are compared to observations with the KASCADE experiment. The investigations reveal that the predictions of EPOS are not compatible with KASCADE measurements. The discrepancies seen are most likely due to use of a set of inelastic hadronic cross sections that are too high.

  19. Keeping warm with fur in cold water: entrainment of air in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette

    2015-11-01

    Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.

  20. Towards a bulk approach to local interactions of hydrometeors

    NASA Astrophysics Data System (ADS)

    Baumgartner, Manuel; Spichtinger, Peter

    2018-02-01

    The growth of small cloud droplets and ice crystals is dominated by the diffusion of water vapor. Usually, Maxwell's approach to growth for isolated particles is used in describing this process. However, recent investigations show that local interactions between particles can change diffusion properties of cloud particles. In this study we develop an approach for including these local interactions into a bulk model approach. For this purpose, a simplified framework of local interaction is proposed and governing equations are derived from this setup. The new model is tested against direct simulations and incorporated into a parcel model framework. Using the parcel model, possible implications of the new model approach for clouds are investigated. The results indicate that for specific scenarios the lifetime of cloud droplets in subsaturated air may be longer (e.g., for an initially water supersaturated air parcel within a downdraft). These effects might have an impact on mixed-phase clouds, for example in terms of riming efficiencies.

  1. Large-scale oil-in-ice experiment in the Barents Sea: monitoring of oil in water and MetOcean interactions.

    PubMed

    Faksness, Liv-Guri; Brandvik, Per Johan; Daae, Ragnhild L; Leirvik, Frode; Børseth, Jan Fredrik

    2011-05-01

    A large-scale field experiment took place in the marginal ice zone in the Barents Sea in May 2009. Fresh oil (7000 L) was released uncontained between the ice floes to study oil weathering and spreading in ice and surface water. A detailed monitoring of oil-in-water and ice interactions was performed throughout the six-day experiment. In addition, meteorological and oceanographic data were recorded for monitoring of the wind speed and direction, air temperature, currents and ice floe movements. The monitoring showed low concentrations of dissolved hydrocarbons and the predicted acute toxicity indicated that the acute toxicity was low. The ice field drifted nearly 80 km during the experimental period, and although the oil drifted with the ice, it remained contained between the ice floes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    PubMed

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool.

  3. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Image and Video Library

    2003-09-20

    This false-color image shows the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner. Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain. http://photojournal.jpl.nasa.gov/catalog/PIA00430

  4. Solitary water wave interactions

    NASA Astrophysics Data System (ADS)

    Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C.

    2006-05-01

    This article concerns the pairwise nonlinear interaction of solitary waves in the free surface of a body of water lying over a horizontal bottom. Unlike solitary waves in many completely integrable model systems, solitary waves for the full Euler equations do not collide elastically; after interactions, there is a nonzero residual wave that trails the post-collision solitary waves. In this report on new numerical and experimental studies of such solitary wave interactions, we verify that this is the case, both in head-on collisions (the counterpropagating case) and overtaking collisions (the copropagating case), quantifying the degree to which interactions are inelastic. In the situation in which two identical solitary waves undergo a head-on collision, we compare the asymptotic predictions of Su and Mirie [J. Fluid Mech. 98, 509 (1980)] and Byatt-Smith [J. Fluid Mech. 49, 625 (1971)], the wavetank experiments of Maxworthy [J. Fluid Mech. 76, 177 (1976)], and the numerical results of Cooker, Weidman, and Bale [J. Fluid Mech. 342, 141 (1997)] with independent numerical simulations, in which we quantify the phase change, the run-up, and the form of the residual wave and its Fourier signature in both small- and large-amplitude interactions. This updates the prior numerical observations of inelastic interactions in Fenton and Rienecker [J. Fluid Mech. 118, 411 (1982)]. In the case of two nonidentical solitary waves, our precision wavetank experiments are compared with numerical simulations, again observing the run-up, phase lag, and generation of a residual from the interaction. Considering overtaking solitary wave interactions, we compare our experimental observations, numerical simulations, and the asymptotic predictions of Zou and Su [Phys. Fluids 29, 2113 (1986)], and again we quantify the inelastic residual after collisions in the simulations. Geometrically, our numerical simulations of overtaking interactions fit into the three categories of Korteweg-deVries two

  5. Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.

    PubMed

    Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew

    2015-11-12

    In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.

  6. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  7. The North Carolina Department of Environment and Natural Resources: clean land, water, and air for healthy people and communities.

    PubMed

    Riegel, Lisa Diaz; Wakild, Charles; Boothe, Laura; Hildebrandt, Heather J; Nicholson, Bruce

    2012-01-01

    The North Carolina Department of Environment and Natural Resources works with communities and other agencies to sustain clean air, water, and land. Sustainability efforts include protecting air quality through community design, community enhancement through brownfields revitalization, community development strategies to protect water resources, and the integration of natural resource conservation.

  8. Some physicochemical aspects of water-soluble mineral flotation.

    PubMed

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhancement of Thermodynamic Gas-Phase Acidity and Basicity of Water by Means of Secondary Interactions.

    PubMed

    Montero-Campillo, M Merced; Alkorta, Ibon; Elguero, Jose

    2018-06-26

    A series of A···water, B···water complexes (A = acid, B =base) are studied at the G4 level of theory to show that water acidity or basicity can be modulated by non-covalent interactions. Protic and non-protic acids interacting with water form hydrogen bonds or other kind of non-covalent interactions, respectively, that may dramatically change the acidity of water up to almost 360 kJ·mol-1 in terms of enthalpy. Similarly, hydrogen bonds responsible for the interaction between typical small nitrogen-containing Lewis bases and water can enhance the proton affinity of water by almost 300 kJ·mol-1. Our results reveal that these large enhancements are linearly related with the binding energy of the charged complexes, and are determined by the Lewis acid-base properties of the molecule involved in the interaction, allowing a quite precise modulation of the corresponding acid-base properties of water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. the observation, simulation and evaluation of lake-air interaction process over a high altitude small lake on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Ma, Yaoming; Ma, Weiqiang; Su, Bob

    2017-04-01

    Lakes are an important part of the landscape on the Tibetan Plateau. The area that contains most of the plateau lakes has been expanding in recent years, but the impact of lakes on lake-atmosphere energy and water interactions is poorly understood because of a lack of observational data and adequate modeling systems. Furthermore, Precise measurements of evaporation and understanding of the physical controls on turbulent heat flux over lakes at different time scales have fundamental significance for catchment-scale water balance analysis and local-scale climate modeling. To test the performance of lake-air turbulent exchange models over high-altitude lakes and to understanding the driving forces for turbulent heat flux and obtain the actual evaporation over the small high-altitude lakes, an eddy covariance observational system was built above the water surface of the small Nam Co Lake (with an altitude of 4715 m and an area of approximately 1 km2) in April 2012. Firstly, we proposed the proper Charnock coefficient (0.031) and the roughness Reynolds number (0.54) for simulation using turbulent data in 2012, and validated the results using data in 2013 independently; secondly, wind speed shows significance at half-hourly time scales, whereas water vapor and temperature gradients have higher correlations over daily and monthly time scales in lake-air turbulent heat exchange; thirdly, the total evaporation in this small lake (812 mm) is approximately 200 mm larger than that from adjacent Nam Co (approximately 627 mm) during their ice-free seasons. Moreover, the energy stored during April to June is mainly released during September to November, suggesting an energy balance closure value of 0.97 over the entire ice-free season; lastly, 10 evaporation estimation methods are evaluated with the prepared datasets.

  11. Dynamic water behaviour due to one trapped air pocket in a laboratory pipeline apparatus

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Karadžić, U.; Tijsseling, A.

    2016-11-01

    Trapped air pockets may cause severe operational problems in hydropower and water supply systems. A locally isolated air pocket creates distinct amplitude, shape and timing of pressure pulses. This paper investigates dynamic behaviour of a single trapped air pocket. The air pocket is incorporated as a boundary condition into the discrete gas cavity model (DGCM). DGCM allows small gas cavities to form at computational sections in the method of characteristics (MOC). The growth of the pocket and gas cavities is described by the water hammer compatibility equation(s), the continuity equation for the cavity volume, and the equation of state of an ideal gas. Isentropic behaviour is assumed for the trapped gas pocket and an isothermal bath for small gas cavities. Experimental investigations have been performed in a laboratory pipeline apparatus. The apparatus consists of an upstream end high-pressure tank, a horizontal steel pipeline (total length 55.37 m, inner diameter 18 mm), four valve units positioned along the pipeline including the end points, and a downstream end tank. A trapped air pocket is captured between two ball valves at the downstream end of the pipeline. The transient event is initiated by rapid opening of the upstream end valve; the downstream end valve stays closed during the event. Predicted and measured results for a few typical cases are compared and discussed.

  12. Neutron scattering studies of nano-scale wood-water interactions

    Treesearch

    Nayomi Z. Plaza Rodriguez

    2017-01-01

    Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding of the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My...

  13. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  14. Columnar phase of pyramidic amphiphiles spread at the air-water interface

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Muller, P.; Peretti, P.; Gallet, F.; Billard, J.

    1993-06-01

    Two compounds, forming thermotropic liquid-crystalline phases in the bulk, were spread at the air-water interface. For both compounds, the surface pressure versus molecular area diagrams exhibit a large domain of molecular areas where the surface pressure of the film is quasi-constant. This plateau region of the isotherms corresponds to a transition from a monolayer in a liquid-expanded phase to a metastable condensed monolayer in which the molecules may adopt an “edge-on” arrangement. In this arrangement, the base of the pyramidic core is normal to the air-water interface. The film was also observed by means of fluorescence and polarizing microscopy. These techniques allowed us to show the formation of anisotropic slowly growing multilayered domains from the “edge-on” monolayer. An original method, based on the light reflectivity of the domains, was developed to measure their thickness and their optical anisotropy. The results show that these domains are formed by an arrangement of the molecules in rectilinear columns for one compound and in spiral columns for the other compound.

  15. Air Compressibility Effect on Bouwer and Rice Seepage Meter.

    PubMed

    Peng, Xin; Zhan, Hongbin

    2017-11-01

    Measuring a disconnected streambed seepage flux using a seepage meter can give important streambed information and help understanding groundwater-surface water interaction. In this study, we provide a correction for calculating the seepage flux rate with the consideration of air compressibility inside the manometer of the Bouwer and Rice seepage meter. We notice that the effect of air compressibility in the manometer is considerably larger when more air is included in the manometer. We find that the relative error from neglecting air compressibility can be constrained within 5% if the manometer of the Bouwer and Rice seepage meter is shorter than 0.8 m and the experiment is done in a suction mode in which air is pumped out from the manometer before the start of measurement. For manometers longer than 0.8 m, the relative error will be larger than 5%. It may be over 10% if the manometer height is longer than 1.5 m and the experiment is done in a no-suction mode, in which air is not pumped out from the manometer before the start of measurement. © 2017, National Ground Water Association.

  16. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  17. Panta Rhei-Everything flows: Global Hotspots of Human-Water Interactions

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.; Srinivasan, V.; Tian, F.; Mohamed, Y.; Krueger, T.; Kreibich, H.; Liu, J.; Troy, T. J.; AghaKouchak, A.

    2017-12-01

    Panta Rhei-Everything Flows is the scientific decade (2013-2022) of the International Association of Hydrological Sciences (IAHS). This initiative aims to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems (Montanari et al., 2013; McMillan et al., 2016). More than 400 water scientists have been involved in Panta Rhei so far, and several working groups have produced significant outcomes. In this presentation, we first summarize some key achievements of this initiative by showing how they have advanced our understanding of the way in which humans impact on, and respond to, hydrological change. Then, we suggest simple indicators to characterize interactions between water and human systems. These indicators aim to capture the relevance of human-water interactions and their potential to generate negative effects, such as water crises or unintended consequences. Finally, we show an application of these indicators to global hotspots, i.e. contrasting case studies from around the world. Our goal is to facilitate a community-wide effort in collecting and sharing essential data to map the role of human-water interactions across social and hydrological conditions. ReferencesMontanari et al. (2013) Panta Rhei—Everything Flows: Change in hydrology and society—The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58(6), 1256-1275. McMillan et al. (2016) Panta Rhei 2013-2015: Global perspectives on hydrology, society and change. Hydrological sciences journal 61(7), 1174-1191.

  18. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  19. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    NASA Astrophysics Data System (ADS)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  20. Effects of oxygen-enriched air on cognitive performance during SCUBA-diving - an open-water study.

    PubMed

    Brebeck, Anne-Kathrin; Deussen, Andreas; Schmitz-Peiffer, Henning; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D

    2017-01-01

    Backround: Nitrogen narcosis impairs cognitive function, a fact relevant during SCUBA-diving. Oxygen-enriched air (nitrox) became popular in recreational diving, while evidence of its advantages over air is limited. Compare effects of nitrox28 and air on two psychometric tests. In this prospective, double-blind, open-water study, 108 advanced divers (38 females) were randomized to an air or a nitrox-group for a 60-min dive to 24 m salt water. Breathing gas effects on cognitive performance were assessed during the dive using a short- and long-term memory test and a number connection test. Nitrox28 divers made fewer mistakes only on the long-term memory test (p = 0.038). Female divers remembered more items than male divers (p < 0.001). There were no significant differences in the number connection test between the groups. Likely owing to the comparatively low N 2 reduction and the conservative dive, beneficial nitrox28 effects to diver performance were moderate but could contribute to diving safety.

  1. Thermodynamic and Structural Properties of Methanol-Water Solutions Using Non-Additive Interaction Models

    PubMed Central

    Zhong, Yang; Warren, G. Lee; Patel, Sandeep

    2014-01-01

    We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be −5.6±0.2 kcal/mole, in respectable agreement with the experimental value of −5.1 kcal/mole. With respect to solution micro-structure, the present cluster analysis suggests that the micro-scale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bi-percolating network structure. PMID:18074339

  2. Utilization of air conditioner condenser as water heater in an effort to energy conservation

    NASA Astrophysics Data System (ADS)

    Sonawan, Hery; Saputro, Panji; Kurniawan, Iden Muhtar

    2018-04-01

    This paper presents an experimental study of utilization of air conditioner condenser as water heater. Modification of existing air conditioner system is an effort to harvest waste heat energy from condenser. Modification is conducted in order to test the system into two mode tests, first mode with one condenser and second mode with two condensers. Harvesting the waste heat from condenser needs a theoretical and practice study to see how much the AC performance changes if modifications are made. It should also be considered how the technique of harvesting waste heat for water heating purposes. From the problem, this paper presents a comparison between AC performance before and after modification. From the experiment, an increase in compressor power consumption is 4.3% after adding a new condenser. The hot water temperature is attained to 69 °C and ready for warm bath. The increase in power consumption is not too significant compared to the attainable hot water temperature. Also seen that the value of condenser Performance Factor increase from 5.8 to 6.25 or by 7.8%.

  3. Water-mediated ion–ion interactions are enhanced at the water vapor–liquid interface

    PubMed Central

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-01-01

    There is overwhelming evidence that ions are present near the vapor–liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion–ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor–liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. “Sticky” electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn–like one in response to charging of its ends. PMID:24889634

  4. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.

    PubMed

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-06-17

    There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.

  5. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  6. Characteristics and applications of diffuse discharge of water electrode in air

    NASA Astrophysics Data System (ADS)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  7. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air

    NASA Astrophysics Data System (ADS)

    Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin

    2017-12-01

    Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.

  8. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.

    PubMed

    Veljković, Dušan Ž

    2018-03-01

    Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  10. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    USGS Publications Warehouse

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  11. Criegee intermediate-hydrogen sulfide chemistry at the air/water interface.

    PubMed

    Kumar, Manoj; Zhong, Jie; Francisco, Joseph S; Zeng, Xiao C

    2017-08-01

    We carry out Born-Oppenheimer molecular dynamic simulations to show that the reaction between the smallest Criegee intermediate, CH 2 OO, and hydrogen sulfide (H 2 S) at the air/water interface can be observed within few picoseconds. The reaction follows both concerted and stepwise mechanisms with former being the dominant reaction pathway. The concerted reaction proceeds with or without the involvement of one or two nearby water molecules. An important implication of the simulation results is that the Criegee-H 2 S reaction can provide a novel non-photochemical pathway for the formation of a C-S linkage in clouds and could be a new oxidation pathway for H 2 S in terrestrial, geothermal and volcanic regions.

  12. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities.

    PubMed

    Vanos, J K; Cakmak, S; Kalkstein, L S; Yagouti, Abderrahmane

    It has been well established that both meteorological attributes and air pollution concentrations affect human health outcomes. We examined all cause nonaccident mortality relationships for 28 years (1981-2008) in relation to air pollution and synoptic weather type (encompassing air mass) data in 12 Canadian cities. This study first determines the likelihood of summertime extreme air pollution events within weather types using spatial synoptic classification. Second, it examines the modifying effect of weather types on the relative risk of mortality (RR) due to daily concentrations of air pollution (nitrogen dioxide, ozone, sulfur dioxide, and particulate matter <2.5 μm). We assess both single- and two-pollutant interactions to determine dependent and independent pollutant effects using the relatively new time series technique of distributed lag nonlinear modeling (DLNM). Results display dry tropical (DT) and moist tropical plus (MT+) weathers to result in a fourfold and twofold increased likelihood, respectively, of an extreme pollution event (top 5 % of pollution concentrations throughout the 28 years) occurring. We also demonstrate statistically significant effects of single-pollutant exposure on mortality ( p  < 0.05) to be dependent on summer weather type, where stronger results occur in dry moderate (fair weather) and DT or MT+ weather types. The overall average single-effect RR increases due to pollutant exposure within DT and MT+ weather types are 14.9 and 11.9 %, respectively. Adjusted exposures (two-way pollutant effect estimates) generally results in decreased RR estimates, indicating that the pollutants are not independent. Adjusting for ozone significantly lowers 67 % of the single-pollutant RR estimates and reduces model variability, which demonstrates that ozone significantly controls a portion of the mortality signal from the model. Our findings demonstrate the mortality risks of air pollution exposure to differ by weather type, with

  13. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  14. Legionella species colonization of water distribution systems, pools and air conditioning systems in cruise ships and ferries

    PubMed Central

    Goutziana, Georgia; Mouchtouri, Varvara A; Karanika, Maria; Kavagias, Antonios; Stathakis, Nikolaos E; Gourgoulianis, Kostantinos; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2008-01-01

    Background Legionnaires' disease continues to be a public health concern in passenger ships. This study was scheduled in order to investigate Legionella spp. colonization of water distribution systems (WDS), recreational pools, and air-conditioning systems on board ferries and cruise ships in an attempt to identify risk factors for Legionella spp. colonization associated with ship water systems and water characteristics. Methods Water systems of 21 ferries and 10 cruise ships including WDS, air conditioning systems and pools were investigated for the presence of Legionella spp. Results The 133 samples collected from the 10 cruise ships WDS, air conditioning systems and pools were negative for Legionella spp. Of the 21 ferries WDS examined, 14 (66.7%) were legionellae-positive. A total of 276 samples were collected from WDS and air conditioning systems. Legionella spp. was isolated from 37.8% of the hot water samples and 17.5% of the cold water samples. Of the total 96 positive isolates, 87 (90.6%) were L. pneumophila. Legionella spp. colonization was positively associated with ship age. The temperature of the hot water samples was negatively associated with colonization of L. pneumophila serogroup (sg) 1 and that of L. pneumophila sg 2 to 14. Increases in pH ≥7.8 and total plate count ≥400 CFU/L, correlated positively with the counts of L. pneumophila sg 2 to 14 and Legionella spp. respectively. Free chlorine of ≥0.2 mg/L inhibited colonization of Legionella spp. Conclusion WDS of ferries can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease for passengers and crew members. Guidelines and advising of Legionnaires' disease prevention regarding ferries are needed, in particular for operators and crew members. PMID:19025638

  15. Legionella species colonization of water distribution systems, pools and air conditioning systems in cruise ships and ferries.

    PubMed

    Goutziana, Georgia; Mouchtouri, Varvara A; Karanika, Maria; Kavagias, Antonios; Stathakis, Nikolaos E; Gourgoulianis, Kostantinos; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2008-11-24

    Legionnaires' disease continues to be a public health concern in passenger ships. This study was scheduled in order to investigate Legionella spp. colonization of water distribution systems (WDS), recreational pools, and air-conditioning systems on board ferries and cruise ships in an attempt to identify risk factors for Legionella spp. colonization associated with ship water systems and water characteristics. Water systems of 21 ferries and 10 cruise ships including WDS, air conditioning systems and pools were investigated for the presence of Legionella spp. The 133 samples collected from the 10 cruise ships WDS, air conditioning systems and pools were negative for Legionella spp. Of the 21 ferries WDS examined, 14 (66.7%) were legionellae-positive. A total of 276 samples were collected from WDS and air conditioning systems. Legionella spp. was isolated from 37.8% of the hot water samples and 17.5% of the cold water samples. Of the total 96 positive isolates, 87 (90.6%) were L. pneumophila. Legionella spp. colonization was positively associated with ship age. The temperature of the hot water samples was negatively associated with colonization of L. pneumophila serogroup (sg) 1 and that of L. pneumophila sg 2 to 14. Increases in pH >/=7.8 and total plate count > or =400 CFU/L, correlated positively with the counts of L. pneumophila sg 2 to 14 and Legionella spp. respectively. Free chlorine of > or =0.2 mg/L inhibited colonization of Legionella spp. WDS of ferries can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease for passengers and crew members. Guidelines and advising of Legionnaires' disease prevention regarding ferries are needed, in particular for operators and crew members.

  16. Water- and air-quality and surficial bed-sediment monitoring of the Sweetwater Reservoir watershed, San Diego County, California, 2003-09

    USGS Publications Warehouse

    Mendez, Gregory O.; Majewski, Michael S.; Foreman, William T.; Morita, Andrew Y.

    2015-01-01

    Sampling results show concentrations of the gasoline oxygenate methyl tert-butyl ether in water and air samples declined after it was phased out by the State of California in January 2004. The largest concentrations of gasoline hydrocarbons benzene and toluene in water were detected at or near the surface of the SWR. Isophorone and phenol were the two most frequently detected BNA compounds in water. Diuron, prometon, and simazine were the most frequently detected pesticide compounds in water. Concentrations of benzene and toluene in air samples were highest during the cooler months and had a consistent seasonal pattern over time. Ten PAH compounds were detected frequently in air samples. Twelve pesticide compounds were also detected in air samples. Surficial bed-sediment samples were analyzed for 53 PAHs; 22 of the compounds had one or more detections. Surficial bed-sediment samples were analyzed for 22 organic compounds; only 6 compounds had one or more detections. Surficial bed-sediment samples were analyzed for 37 metals.

  17. Simulating Urban Tree Effects on Air, Water, and Heat Pollution Mitigation: iTree-Hydro Model

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Endreny, T. A.; Nowak, D.

    2011-12-01

    Urban and suburban development changes land surface thermal, radiative, porous, and roughness properties and pollutant loading rates, with the combined effect leading to increased air, water, and heat pollution (e.g., urban heat islands). In this research we present the USDA Forest Service urban forest ecosystem and hydrology model, iTree Eco and Hydro, used to analyze how tree cover can deliver valuable ecosystem services to mitigate air, water, and heat pollution. Air pollution mitigation is simulated by dry deposition processes based on detected pollutant levels for CO, NO2, SO2, O3 and atmospheric stability and leaf area indices. Water quality mitigation is simulated with event mean concentration loading algorithms for N, P, metals, and TSS, and by green infrastructure pollutant filtering algorithms that consider flow path dispersal areas. Urban cooling considers direct shading and indirect evapotranspiration. Spatially distributed estimates of hourly tree evapotranspiration during the growing season are used to estimate human thermal comfort. Two main factors regulating evapotranspiration are soil moisture and canopy radiation. Spatial variation of soil moisture is represented by a modified urban topographic index and radiation for each tree is modified by considering aspect, slope and shade from surrounding buildings or hills. We compare the urban cooling algorithms used in iTree-Hydro with the urban canopy and land surface physics schemes used in the Weather Research and Forecasting model. We conclude by identifying biophysical feedbacks between tree-modulated air and water quality environmental services and how these may respond to urban heating and cooling. Improvements to this iTree model are intended to assist managers identify valuable tree services for urban living.

  18. Patterns and properties of polarized light in air and water

    PubMed Central

    Cronin, Thomas W.; Marshall, Justin

    2011-01-01

    Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165

  19. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.

    PubMed

    Thompson, Katherine C; Jones, Stephanie H; Rennie, Adrian R; King, Martin D; Ward, Andrew D; Hughes, Brian R; Lucas, Claire O M; Campbell, Richard A; Hughes, Arwel V

    2013-04-09

    The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.

  20. Industrial growth in the U. S. border communities and associated water and air problems: an economic perspective. [U. S. -Mexican border

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayer, H.W.; Hoyt, P.G.

    1977-10-01

    The impact of rapid growth along the U.S.-Mexican border on air and water quality is studied to determine the problem's significance and the cost of alternative solutions. The study analyzes supply and demand factors for water as a material input for industry and evaluates how the cost of water affects industries along the border from San Diego to Brownsville. Four research needs are identified: (1) a focus on San Diego and El Paso and on the problem of air pollution, (2) more accurate data, (3) more theoretical and empirical economic data on the concept of air markets in the areasmore » of San Diego-Tijuana and El Paso-Juarez, and (4) analysis of the extent and distribution of various costs and benefits of proposals to relieve air or water pollution.« less